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A NOVEL PIPELINE FOR DRUG DISCOVERY IN 
NEUROPSYCHIATRIC DISORDERS USING HIGH-

CONTENT SINGLE-CELL SCREENING OF SIGNALLING 
NETWORK RESPONSES EX VIVO 

SANTIAGO GUILLERMO LAGO COOKE 

ABSTRACT

The current work entails the development of a novel high content platform for the measurement 

of kinetic ligand responses across cell signalling networks at the single-cell level in distinct PBMC 

subtypes ex vivo. Using automated sample preparation, fluorescent cellular barcoding and flow 

cytometry the platform is capable of detecting 21, 840 parallel cell signalling responses in each 

PBMC sample. We apply this platform to characterize the effects of neuropsychiatric treatments 

and CNS ligands on the T cell signalling repertoire. We apply it to define cell signalling network 

abnormalities in PBMCs from drug-naïve first-onset schizophrenia patients (n=12) relative to 

healthy controls (n=12) which are subsequently normalized in PBMCs from the same patients (n=10) 

after a six week course of clinical treatment with the atypical antipsychotic olanzapine. We then 

validate the abnormal cell signalling responses in PBMCs from an independent cohort of drug-naïve 

first-onset schizophrenia patients (n=25) relative to controls (n=25) and investigate the specificity 

of the abnormal PBMC responses in schizophrenia as compared to major depression (n=25), bipolar 

disorder (n=25) and autism spectrum disorder (n=25). Subsequently we conduct a phenotypic drug 

screen using the US Food and Drug Administration (FDA) approved compound library, in addition 

to experimental neuropsychiatric drug candidates and nutraceuticals, to identify compounds which 

selectively normalize the schizophrenia-associated cell signalling response. Finally these candidate 

compounds are characterized using structure-activity relationships to reveal specific chemical 

moieties implicated in the putative therapeutic effect. 

4



PREFACE 
 

This dissertation is the result of my own work and includes nothing which is the outcome of work 
done in collaboration except as declared in the Preface and Acknowledgements and specified in the 
text.  

It is not substantially the same as any that I have submitted, or, is being concurrently submitted for 
a degree or diploma or other qualification at the University of Cambridge or any other University or 
similar institution except as declared in the Preface and specified in the text. I further state that no 
substantial part of my dissertation has already been submitted, or, is being concurrently submitted 
for any such degree, diploma or other qualification at the University of Cambridge or any other 
University of similar institution except as declared in the Preface and specified in the text  

It does not exceed the prescribed word limit for the relevant Degree Committee.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5



TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION .............................................................................................................................. 9 

1.1 Background and significance ................................................................................................................ 9 

1.1.1 Neuropsychiatric disorders a persistent unmet medical need ........................................................ 9 

1.1.2 Current bottleneck in neuropsychiatric drug discovery ................................................................. 10 

1.1.3 Genomic analyses of neuropsychiatric disorders ........................................................................... 11 

1.1.4 Differential diagnosis and the neuropsychiatric spectrum ............................................................ 13 

1.1.5 Systems level functional exploration and the concept of ‘coping’ ................................................. 15 

1.1.6 Peripheral blood mononuclear cells as a surrogate model for CNS pathology .............................. 15 

1.1.7 Ex vivo functional cytomics as a novel platform for neuropsychiatric drug discovery ................... 18 

1.1.8 Comparison of ex vivo functional cytomics to the state of the art ................................................ 20 

1.1.9 Clinical relevance of ex vivo functional cytomics ........................................................................... 22 

1.1.10 Drug repurposing in neuropsychiatric disorders........................................................................ 23 

1.2 Aims of the current study ................................................................................................................... 25 

1.3 Study design ........................................................................................................................................ 25 

1.4 Figures 1.3&1.4 ................................................................................................................................... 27 

CHAPTER 2: MATERIALS AND METHODS ......................................................................................................... 29 

2.1 Clinical sample recruitment ................................................................................................................ 29 

2.2 PBMC isolation and culture ................................................................................................................ 30 

2.3 Preparation of functional ligands and compound libraries ................................................................ 31 

2.4 Stimulation of PBMCs ......................................................................................................................... 32 

2.5 Fluorescent cell barcoding .................................................................................................................. 33 

2.6 Intracellular staining of cell signalling epitopes in PBMC subsets ...................................................... 33 

2.7 Immunophenotyping .......................................................................................................................... 34 

2.8 Data acquisition using flow cytometry ............................................................................................... 34 

2.9 Statistical data analysis ....................................................................................................................... 35 

1.3 Tables 2.1-2.3 ...................................................................................................................................... 38 

CHAPTER 3: ESTABLISHING THE HIGH-CONTENT PLATFORM .......................................................................... 49 

3.1 Introduction ........................................................................................................................................ 49 

3.2 Results................................................................................................................................................. 49 

3.2.1 Multiplexing of T cell signalling modulators ................................................................................... 49 

3.2.2 Time course selection of optimal ligand and epitope arrays ......................................................... 50 

3.2.3 Reproducibility ............................................................................................................................... 52 

3.2.4 Sensitivity, specificity and dynamic regulation of cytokine signalling responses ........................... 53 

3.2.5 Kinetic exploration of CNS ligands .................................................................................................. 54 

6



3.2.6 Kinetic exploration of neuropsychiatric treatments and novel inhibitors ..................................... 55 

3.2.7 Figures 3.1-3.13 and Tables 3.1&3.2 .............................................................................................. 58 

3.3 Discussion ........................................................................................................................................... 76 

3.3.1 Comparison of the present ex vivo methodology to the state of the art ....................................... 77 

3.3.2 Modulation of constitutive activity ................................................................................................ 78 

3.3.3 Convergent inhibition of 4EBP1 (pT36/pT45) across neuropsychiatric drug indications ............... 79 

3.3.4 Ex vivo correlates for bipolar disorder treatments ........................................................................ 82 

3.3.5 Ex vivo correlates for antipsychotic treatments ............................................................................. 85 

3.3.6 Ex vivo correlates of antidepressant treatments ........................................................................... 88 

3.3.7 Functional coupling as a novel therapeutic strategy ...................................................................... 88 

CHAPTER 4: CLINICAL DRUG TARGET DISCOVERY FOR SCHIZOPHRENIA ......................................................... 92 

4.1 Introduction ........................................................................................................................................ 92 

4.2 Results................................................................................................................................................. 93 

4.2.1 Drug target discovery using an in vivo antipsychotic intervention study design ........................... 93 

4.2.2 Signature for altered cell signalling and clinical antipsychotic treatment response in schizophrenia
…………………………………………………………………………………………………………...........................................94 

4.2.3 Prioritization of putative drug targets based on normalization of disease signalling nodes following 
clinical antipsychotic treatment................................................................................................................... 96 

4.2.4 Symptom subscale segregation of cell signalling responses .......................................................... 96 

4.2.5 Comparison of ex vivo and in vivo effects of olanzapine on cell signalling epitopes ..................... 97 

4.2.6 Validation of putative schizophrenia drug target specificities using a differential diagnosis study 
design …………………………………………………………………………………………………………………………………………………..98 

4.2.7 Validation of altered basal epitope expression identified in the AI study ..................................... 99 

4.2.8 Exploration of ligand responses at epitopes which were normalized by antipsychotic therapy in the 
AI study …………………………………………………………………………………………………………………………………………………..99 

4.2.9 Figures 4.1-4.13 and Tables 4.1-4.6 .............................................................................................. 102 

4.3 Discussion ......................................................................................................................................... 120 

4.3.1 Altered PLC-γ1- thapsigargin response as the primary drug target identified by functional cytomic 
screening in schizophrenia PBMCs ............................................................................................................ 120 

4.3.2 PLC-γ1- thapsigargin mechanism of action................................................................................... 121 

4.3.3 Voltage-gated calcium channels as putative mediators of the PLC-γ1- thapsigargin response in 
schizophrenia ............................................................................................................................................. 122 

4.3.4 PLC isotypes in schizophrenia and related neuropsychiatric disorders ....................................... 124 

4.3.5 PLC-γ1/2- thapsigargin as a functional endophenotype in schizophrenia- summarizing complex 
genetic risk ................................................................................................................................................. 125 

4.3.6 PLC-γ1/2- thapsigargin as a functional endophenotype in schizophrenia- investigating disease 
specificity within the neuropsychiatric spectrum ...................................................................................... 126 

4.3.7 Functional exploration of PLC-γ isotype responses in heterogeneous primary cell populations ex 
vivo …………………………………………………………………………………………………………………………………………………127 

7



4.3.8 Altered Akt1 expression as a positive control in schizophrenia ................................................... 128 

4.3.9 Akt1 as a shared cell signalling substrate for efficacy and side-effects of clinical antipsychotic 
treatment ................................................................................................................................................... 130 

4.3.10 Implication of altered STAT3 activation in schizophrenia ........................................................ 131 

4.3.11 STAT3 (pY705) activation status is a reflection of altered circulating cytokines in schizophrenia
…………………………………………………………………………………………………………………………………………….132 

4.3.12 STAT3 (pY705) activation status reflects an intrinsic cellular phenotype common to both 
immune and neuronal cells in schizophrenia ............................................................................................ 133 

4.3.13 STAT3 phosphorylation represents a shared cell signalling substrate between negative 
symptoms in schizophrenia and major depressive disorder ..................................................................... 135 

4.3.14           Src & functional integration of nodes normalized in the AI study ......................................... 137 

4.3.15 Ex vivo treatment response prediction .................................................................................... 138 

CHAPTER 5: DRUG REPURPOSING FOR SCHIZOPHRENIA ............................................................................... 139 

5.1 Introduction ...................................................................................................................................... 139 

5.2 Results............................................................................................................................................... 140 

5.2.1 Drug discovery and repurposing for schizophrenia ...................................................................... 140 

5.2.2 Extended FDA library screening hits ............................................................................................. 141 

5.2.3 Selective potentiation of the TG-PLC-γ1 response ....................................................................... 141 

5.2.4 Figures 5.1-5.8 and Table 5.1 ....................................................................................................... 143 

5.3 Discussion ......................................................................................................................................... 157 

5.3.1 Structure-activity relationships to bridge the knowledge gap between genomic schizophrenia risk 
loci and clinical efficacy.............................................................................................................................. 157 

5.3.2 Functional cytomic modelling of compounds which target treatment resistant clinical phenotypes
…………………………………………………………………………………………………………………………………………………159 

5.3.3 Clinical implications of divergent cellular responses to typical and atypical antipsychotic 
treatments ................................................................................................................................................. 160 

5.3.4 Differential pharmacology for dissecting disease mechanisms ................................................... 160 

CHAPTER 6: CONCLUSION .............................................................................................................................. 163 

6.1 Summary ........................................................................................................................................... 163 

6.2 Significance ....................................................................................................................................... 164 

6.3 Limitations and future work ............................................................................................................. 166 

6.3.1 Clinical samples ............................................................................................................................ 166 

6.3.2 Further characterization of cell signalling networks .................................................................... 168 

6.3.3 Compound libraries ...................................................................................................................... 172 

ACKNOWLEDGEMENTS .................................................................................................................................. 174 

REFRENCES ..................................................................................................................................................... 176 

GLOSSARY and ABBREVIATIONS .................................................................................................................... 194 

8



CHAPTER 1 

INTRODUCTION 

CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 

The current work entails the development of a novel neuropsychiatric drug discovery pipeline based 

on ex vivo functional cytomics, for drug target discovery, and FDA approved compound library 

screening for the identification of novel drug candidates. Below we review the challenges in the 

current field of neuropsychiatric drug discovery relative to the increasing unmet medical need. 

Subsequently we present the novel ex vivo functional cytomics pipeline and suggest ways in which 

it seeks to address these challenges. Finally we will describe the application of this platform to 

neuropsychiatric drug discovery in schizophrenia. 

1.1.1 NEUROPSYCHIATRIC DISORDERS A PERSISTENT UNMET MEDICAL NEED 

In few areas of post-genomic drug discovery is the disconnect between improved scientific 

resources and a lack of novel drug entities as devastatingly apparent as in the case of 

neuropsychiatric disorders1–4. Modern biomedical methods allow genomic sequencing, 

determination of three-dimensional protein structure and synthesis of drug-like compound at rates 

that exceed the capacity available four decades ago by several orders of magnitude5. Nevertheless 

the number of novel drugs approved by the US Food and Drug Administration (FDA) per billion 

dollars of US research and development (R&D) spending (adjusted for inflation) has decreased 

steadily by half every nine years since the 1950s, a phenomenon recognized by ‘Eroom’s Law’5. This 

trend in decreased R&D efficiency is even more striking for neuropsychiatric disorders where no 

drugs with fundamentally different mechanisms of action have emerged for over two decades 3,6–9. 

This lack of innovation has contributed to the fact that several of the main pharmaceutical 

companies have abandoned their CNS R&D initiatives5.  
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Neuropsychiatric disorders represent an enormous burden on worldwide health, accounting for 

31% of years lived with disability (YLD) and a lifetime prevalence of up to 20% of the global 

population (17% for major depression and 0.5-1% each for schizophrenia, bipolar disorder and 

autism respectively)10,11. They are associated with significant comorbidities including cardiovascular 

disease, suicide , substance abuse , immune disorders, obesity  and diabetes10,12,13. Current 

treatments are effective in only 40-60% of individuals, dependent on the disease in question14–17. 

They provide partial symptomatic relief and not reversal of disease aetiology14–17. Adverse side 

effects and delayed onset of therapeutic action, from weeks to months, are persistent problems3,8. 

The fact that the global market for treatment of neuropsychiatric disorders is vast while the 

discovery of novel drug treatments so scarce, highlights the immense difficulties encountered to 

date and the urgent requirement to develop novel strategies capable of addressing this unmet 

medical need. 

1.1.2 CURRENT BOTTLENECK IN NEUROPSYCHIATRIC DRUG DISCOVERY

There is a fundamental lack of understanding in the pathophysiology of neuropsychiatric disease 

which has compromised the identification of novel drug targets9. All of the major neuropsychiatric 

medications share mechanisms of action with compounds that were discovered serendipitously 

during clinical administration in other disease indications in the 1950s and 1960s. For example 

antipsychotic medications were discovered through use of chlorpromazine as a pre-anaesthetic, 

antidepressants stem from use of iproniazid for tuberculosis and mood stabilizers for treatment of 

bipolar disorder arose through the use of lithium carbonate in urology and sodium valproate for 

epilepsy1,3,18.  

The elucidation that many of these ‘blockbuster’ drugs discovered by chance share mechanisms of 

action involving normalization of monoaminergic (e.g. dopamine, serotonin and noradrenaline) 

neurotransmission has led to the dominance of the ‘monoamine hypothesis’ for psychiatric 

pathophysiology8,19. Although these drugs have revolutionized the treatment of mental disorders 

they have also come to represent a double-edged sword in the long-term. The pharmaceutical 

industry has focused on producing a vast array of monoaminergic derivatives with improved 

efficacy, safety or administration profiles. This ‘me-too’ drug development strategy represents a 

reduced risk of failure especially in the presence of recently increased regulatory standards20. 

However, because the fundamental mechanisms of efficacy remain similar, subtypes of symptoms 

and patient cohorts which were refractory to the original drugs in the series have often remained 

underserved by successive waves of monoaminergic drugs. For example in schizophrenia the 
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second generation antipsychotic clozapine has provided a substantial increase in efficacy for 

treatment of positive symptoms, such as hallucinations and disordered thoughts, with the 

advantage of reduced extrapyramidal side effects compared to the first generation antipsychotics. 

However it has done less to improve negative symptoms such as anhedonia or avolition or cognitive 

deficits and is associated with potentially life threatening agranulocytosis and metabolic side 

effects14,16,21. Likewise the tenuous relationship between behavioural traits in preclinical animal 

models and neuropsychiatric symptoms in humans is often validated using drugs with 

monoaminergic mechanisms of action6–8. Therefore the drugs which are developed using these 

preclinical models by definition fall within the monoaminergic doctrine. Furthermore the full 

mechanisms of action of many of the monoaminergic drugs are yet to be characterized3.  

1.1.3 GENOMIC ANALYSES OF NEUROPSYCHIATRIC DISORDERS 

In an attempt to better understand the pathophysiology of neuropsychiatric diseases and identify 

drug targets outside of the monoaminergic doctrine of therapy researchers have implemented 

multiple ‘bottom-up’ non-hypothesis driven molecular profiling strategies such as genomics, 

proteomics and metabolomics. Measures of genetic influence, including recurrence risk and 

heritability index, suggest psychiatric disorders such as schizophrenia, bipolar disorder and autism 

are among the most heritable common diseases11,22,23. Therefore the identification of intrinsic 

physiological drug targets is, in theory, feasible with these methodologies. However the genomic 

complexity and interaction with environmental factors has made causative genetic elements 

difficult to isolate. This is demonstrated by lack of Mendelian inheritance ratios between twins and 

unpredictable segregation patterns in families23. 

Only very recently with the advent of genome wide association studies (GWAS), whole exome 

sequencing and copy number variation (CNV) studies, which are sufficiently powered (tens of 

thousands of cases and controls), is the genetic landscape of neuropsychiatric disorders beginning 

to be resolved23. For example the largest GWAS study in schizophrenia to date (36,989 cases vs. 

113,075 controls) revealed significant associations to 108 genomic loci encompassing 

approximately 600 genes24. These include the dopamine 2 receptor gene (DRD2), widely considered 

the primary target of efficacious antipsychotic medications, and genes such as GRM3 (metabotropic 

glutamate receptor), GRIN2A (NMDA receptor subunit 2A), GRIA1 (AMPA receptor subunit GluA1) 

and SRR (serine racemase), which are involved in putative alterations in glutamatergic 

neurotransmission and synaptic plasticity in schizophrenia24,25.  
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Despite the profound contribution these studies have made towards a better understanding of the 

genetic basis of neuropsychiatric pathogenesis, there remain several limitations in terms of 

translating these findings into novel treatments. First in the case of the schizophrenia GWAS data 

there are often multiple genes implicated at a given locus. Therefore it is not clear which genes 

actually contribute to pathogenesis and which are simply in linkage disequilibrium with true 

causative variants26. Second very few associated SNPs correspond to non-synonymous exonic 

polymorphisms which alter protein function. Instead the majority represent synonymous 

polymorphisms or are present within introns or intergenic regions26,27. Third each associated locus 

only accounts for a very marginal increase in disease risk with odds ratios (ORs) typically under 1.1 

and differences in allele frequency between cases and controls less than 2%10,26. While whole exon 

sequencing and CNV studies have to some extent overcome these limitations, by identifying genetic 

variants with higher penetrance and protein coding mutations, these abnormalities are relatively 

rare28,29. These results suggest that genetic risk for neuropsychiatric disorders results from the 

combination of multiple common risk alleles each with a small incremental contribution and 

occasionally rare alleles with a more profound contribution. Even so polygenic risk profile scores 

(RPSs) currently account for only 7% of the liability to develop schizophrenia24. While extrapolations 

based on potential larger sample sizes in the future suggest that up to 33% of genetic liability might 

be indexed by RPS, this still falls considerably short of the 65-80% heritability derived from family 

and monozygotic twin studies10,26. This feature has similarly been reported for other major 

neuropsychiatric disorders including bipolar disorder, major depression, autism spectrum disorder 

and attention–deficit/ hyperactivity disorder (ADHD)30.  

Finally, leaving these considerations aside, the most poignant obstacle is understanding the 

functional implications of these putative risk genes and more importantly how they interact to elicit 

the altered cellular and organismal phenotypes associated with disease. For example the current 

best practice for validating the significance of neuropsychiatric GWAS risk loci is to demonstrate a 

differential expression of the risk alleles in the brain, using expression quantitative trait loci (eQTL) 

mapping, and subsequently predict their mutual interaction in silico31. This is confounded by the 

fact that currently both eQTL catalogues and pathway analysis databases are insufficiently curated 

to provide meaningful functional analyses relative to the complexity of the biological system24,32. In 

many cases these resources implicate non-specific pathophysiological alterations such as cell 

motility, glycolysis, synaptic plasticity or differentiation32. While these results serve to generate 

hypotheses they are too general to represent ‘druggable’ targets. In some cases potent risk alleles, 

for example in catechol-O-methyltransferase (COMT), neuregulin 1 (NRG1) and disrupted in 

schizophrenia (DISC1) genes, have been linked to phenotypic differences in brain functional 

magnetic resonance imaging (fMRI) and cognitive function indicative of schizophrenia. However 
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even when single genetic variants can be linked to relevant pathology at the highest order of 

complexity it is still unclear how these phenotypes arise at the cellular level. Finally even if the 

pathways in which multiple genetic risk factors interact could be accurately predicted, we still lack 

a viable cellular model in which to test them33. The methodology in the current project seeks to 

address these challenges by using live peripheral blood mononuclear cells (PBMCs) from 

neuropsychiatric patients and controls as a viable model, and ex vivo functional cytomics as a means 

to empirically measure functional alterations in cell signalling pathways associated with disease. 

 

1.1.4 DIFFERENTIAL DIAGNOSIS AND THE NEUROPSYCHIATRIC SPECTRUM 

The recent explosion of genetic association data has also confirmed the long suspected overlap of 

risk alleles between related neuropsychiatric disorders. For example voltage-gated calcium channel 

subunits CACNA1C and CACNB2, which were highly significant in the largest schizophrenia GWAS 

to date, were also among the four top loci implicated in a combined cohort of five different 

neuropsychiatric diseases (schizophrenia (SCZ), bipolar disorder (BD), major depression (MDD), 

autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD)), relative to 

controls, in the largest cross-disorder GWAS24,34. Similarly DISC 1 and DISC 2 genes are two of the 

most widely reported risk factors for schizophrenia26,35,36. However even in the original pedigree in 

which these genes were discovered, carriers of the pathogenic translocation received varying 

diagnoses including schizophrenia, schizoaffective disorder, and major depression36,37. DISC1 

mutations have also subsequently been linked to bipolar disorder and different forms of autism36,38.  

The current understanding of the relative strengths of genetic association between 

neuropsychiatric disorders is summarized in a recent comparison by the Cross-Disorder Group of 

the Psychiatric Genomics Consortium (CDG-PGC)30. Genetic pleiotropy is not confined to 

neuropsychiatric disorders and some studies suggest that up to 17% of disease-associated genes in 

humans contribute to multiple disorders39. Thus whilst also being related to each other, 

neuropsychiatric disorders are linked to a range of other medical conditions in the emerging 

concept of disease networks40,41. This is exemplified by the coincidence of schizophrenia with 

metabolic and cardiovascular disorders13,42. While this was long thought to be an effect of 

antipsychotic therapy, recent evidence suggests that there might be a common genetic 

predisposition between these disorders, with the direction of causality being the subject of lively 

debate43,44. 

Concurrent with the recently defined genetic overlap between neuropsychiatric disorders is the 

persistent and formidable clinical challenge of defining neuropsychiatric phenotypes. Psychiatric 
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diagnoses do not fall into discrete clinical groups. They represent a wide spectrum of disorders with 

a gradation of overlapping symptoms shared across different conditions22,45. The difficulties in 

neuropsychiatric nosology are evident throughout its inception with distinctions between bipolar 

and unipolar depression or autism and childhood schizophrenia being formally recognized only in 

the 1950s and 1970s respectively46,47. Even today 20% of individuals who meet the criteria for one 

disorder in the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) also fulfil the 

criteria for at least two more45. This results in a lack of diagnostic stability, with up to 50% of patients 

with a major psychiatric disorder switching diagnosis over a 10 year period48. An alternative 

approach suggests that these classifications should be reframed in terms of multiple dimensions of 

symptoms, for example compulsivity, which can be expressed in varying degrees across different 

diagnostic categories45. Nevertheless the decision to class a patient in a given diagnostic group 

remains a subjective observation of behavioural symptoms at the hands of medical practitioners 

and not an objective measure of biological aetiology49. While significant progress has been made in 

recent years using blood based biomarkers to improve the accuracy of neuropsychiatric diagnoses 

these methods are yet to be widely implemented in clinical practice49–54. For example the first 

blood-based test for diagnosis of schizophrenia was released to the market in 201050. The test was 

highly sensitive for detecting schizophrenia relative to controls. However it lacked specificity for 

distinguishing between schizophrenia and bipolar disorder. This highlights the fact that differential 

diagnosis is a more persistent bottleneck in clinical psychiatry relative to case-control definition. 

In many cases the diagnosis is ultimately defined by relative response to treatment following 

successive rounds of pharmacological titration across different drug classes14. This process can have 

a devastating effect on patient quality of life and can even exacerbate the initial symptoms48. Thus 

in many ways the critical issue facing medical practitioners is treatment choice more so than specific 

disease nosology15,46,55. In this respect it has been suggested that within each of the major 

neuropsychiatric disorders there are subgroups of patients with distinct disease aetiologies which 

influence treatment response10. For example in schizophrenia activation of brain microglia and 

proinflammatory cytokines have been proposed to characterize subgroups of patients with 

deleterious negative symptoms and cognitive deficits which are refractory to most antipsychotic 

treatments16,56,57. Taken together these findings suggest that there is an urgent need to identify 

predictive biomarkers of treatment response. Moreover in terms of drug target discovery it is 

necessary to transcend the usual case-control design confined to a single neuropsychiatric disease. 

Instead it is potentially more informative to include multiple related neuropsychiatric disorders 

within the initial discovery design and also to correlate the biological changes to changes in 

symptom subscales over the course of clinical treatment. The present study aims to address these 

challenges by using a longitudinal cohort of schizophrenia patients before and after antipsychotic 
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treatment, for the purpose of drug target discovery, and subsequently a combined cohort of 

different neuropsychiatric diseases to validate the specificity of the drug target in schizophrenia. 

 

1.1.5 SYSTEMS LEVEL FUNCTIONAL EXPLORATION AND THE CONCEPT OF ‘COPING’ 

The patient profiling strategies applied to date in the form of genomics, transcriptomics and 

proteomics represent a significant advance towards systems biology in the sense that they quantify 

a large proportion of the elements within the biological system. However they lack the 

dimensionality of a true systems biology approach in that they do not measure the strength of 

interactions between these elements and how they change over time to impact the integrated 

phenotype. The dynamic nature of disease processes and loss of homeostatic mechanisms can only 

be assessed empirically if the same samples are subjected to multiple system perturbations or 

functional challenges with kinetic resolution. The Overt Glucose Tolerance Test (OGTT) for insulin 

resistance is a physiological example of this principle. A diabetic and metabolically healthy 

individual might have similar resting blood glucose and insulin levels. However it is only upon 

administration of a high dose of glucose and subsequent tracking of blood glucose levels over time 

that the in-ability of the diabetic individual to maintain glucose homeostasis is revealed. Likewise 

in psychiatry life stress is an important predisposing factor. For some individuals a relatively small 

amount of stress is enough to precipitate psychiatric pathology, whereas others do not develop 

pathology despite elevated stress exposure. It is not the stress itself, but the variable capacity of 

each individual to cope with stress, that dictates whether pathology will develop. This concept of 

‘coping’ is well recognized at the psychological level however it is equally important across all levels 

of organism complexity. There are two fundamental prerequisites to exploit the potential of this 

concept within the framework of molecular neuropsychiatric drug discovery: firstly a methodology 

which provides a systems understanding of the composite molecular disease process and secondly 

a physiologically relevant model in which to implement it. 

 

1.1.6 PERIPHERAL BLOOD MONONUCLEAR CELLS AS A SURROGATE MODEL FOR CNS 

PATHOLOGY 

It is becoming increasingly apparent that neuropsychiatric diseases are systemic disorders with 

parallel manifestations in the brain and peripheral tissues. In the case of the blood this is 

exemplified in several studies by our group and others which have used multiplex immunoassays 

and mass spectrometry to identify serum proteins and peptides which constitute biomarkers of 
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neuropsychiatric illnesses including schizophrenia, bipolar disorder, major depression and autism 

spectrum disorders50,52,53,58–61. Importantly these serum biomarkers have been used to predict the 

onset of schizophrenia or major depressive disorder before manifestation of overt clinical 

symptoms54,62,63. While this is vital for early intervention strategies it also suggests that there is a 

profound intrinsic representation of neuropsychiatric disorders in the blood.  Similar studies have 

also correlated serum proteins to different mood states within bipolar disorder or different putative 

disease aetiologies, for example immune dysregulation or abnormal hormone and growth factor 

secretion in the case of schizophrenia43,44,64–66. Finally they have addressed the critical challenges of 

treatment response and side effect prediction67,68. 

With respect to peripheral blood mononuclear cells (PBMCs) the majority of published work in 

neuropsychiatry has focused on alterations in relative proportions of different PBMC subsets, their 

activation status or their cytokine secretion profile. Subsets commonly assessed include monocytes, 

T helper (Th1, Th2, Th17), T cytotoxic, T regulatory, B cells and natural killer (NK) cells69–72. While 

these studies have been vital in elucidating immunological dysfunction in these disorders, and have 

even been linked to pathogenic mechanisms in the brain such as microglial activation and brain T 

cell infiltration, there is also substantial evidence that PBMCs might provide valuable models for the 

systemic alteration of CNS targets. For example PBMCs express a range of neurotransmitter 

receptors (e.g. D1-5, CB1/2, 5HT1A/2/5A, GABA, mACh, nACh, β-2A, MR, GR, NMDA), neurotrophin 

receptors (BDNF, NGF) and monoamine transporters (DAT, 5-HTT) which are reported to mediate 

neuropsychiatric pathogenesis73–76. They also share many of the intracellular signalling cascades 

which have been implicated in neuropsychiatric disorders, downstream of the aforementioned 

receptors in neurons, including Akt-GSK-3β, PLC-PKC, cAMP-PKA and MAPK-ERK77–81. Furthermore 

many of these receptors or their cell signalling substrates have been shown to be altered in 

neuropsychiatric patient PBMCs and correlated to therapeutic efficacy or disease severity81–86. 

The Akt-GSK-3β pathway provides an example of how PBMCs can serve as valuable sentinel tissue 

for aetiological neuropsychiatric mechanisms in the brain. First, in neurons Akt1 and GSK-3β serve 

to integrate intracellular signal transduction following the activation of cell surface receptors 

intimately linked to neuropsychiatric pathology. These include G protein-coupled receptors (GPCRs) 

and receptor tyrosine kinases (RTKs) activated by neurotransmitters (e.g. dopamine and 5-HT) and 

neurotrophic ligands (e.g. BDNF and NGF) respectively80,87. Second, polymorphisms in Akt1 and GSK-

3β have been associated with risk for schizophrenia and bipolar disorder respectively and, in the 

case of GSK-3β, response to mood stabilizing or antidepressant medication88–94. Third, the 

expression of Akt1 and phosphorylated GSK-3β (pS9) is reported to be altered in both post mortem 

brain and PBMCs from schizophrenia and bipolar disorder patients respectively88–95. Fourth 
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behavioural symptoms in mice are reminiscent of schizophrenia, following Akt1-/- knockdown, and 

of both depressive and manic mood states in bipolar disorder following alanine mutation of the 

GSK-3β (pS9) regulatory site88–94. Finally, and most importantly, changes in total Akt1 and GSK-

3β (pS9) phosphorylation have been linked to clinical treatment response and symptom severity in 

bipolar disorder and schizophrenia patient PBMCs respectively88–94,96. Taken together these findings 

suggest that Akt1 and GSK-3β represent an aetiological genetic predisposition to neuropsychiatric 

disorders with systemic representation in both the brain and PBMCs. Crucially their function is 

modified by efficacious clinical neuropsychiatric treatments suggesting that previously unexplored 

drugs which modulate their activity in PBMCs might constitute novel treatments for these diseases. 

While the Akt1- GSK-3β pathway is presented as an example, there are multiple studies which have 

shown alterations in other CNS targets in PBMCs. For example 5HT-2A receptor clustering in 

lymphocytes is reversed by eight weeks of antidepressant therapy and associated to treatment 

response86.  In schizophrenia diagnostic subscale scores (including BPRS, PANSS and AIMS) were 

correlated to D2 receptor expression on CD8+ T cells and D4 receptor expression on CD4+ T cells85. 

The finding is also concurrent with reports that D4 receptor polymorphisms are related to age of 

onset and disease severity in schizophrenia97. CB2 receptor expression has been shown to be 

increased in PBMCs from children with autism spectrum disorders98.  

Despite the potential validity of PBMCs as live cellular models for neuropsychiatric disorders, 

especially considering the impracticalities of obtaining live human brain tissue, this resource has 

remained largely unexploited by previous studies for several reasons. Firstly almost all studies which 

have accessed these CNS targets in PBMCs have solely examined basal expression of mRNA or 

proteins without functional testing. For example while D2/4 receptor expression is reported to be 

altered in T cells from schizophrenia patients, it is not known whether these receptors are 

functionally affected in terms of active coupling to different intracellular signalling cascades, ligand 

induced internalization and desensitization, isoenergetic conformational change or receptor 

ensemble formation in the disease state99. Likewise in the example provided of Akt1-GSK-3β it is 

not known whether these signalling proteins have the same up- or down-stream regulatory 

partners, or indeed a complete rewiring of the cell signalling network, in neuropsychiatric disease.  

Secondly, many pathological alterations in cell signalling may not be immediately apparent unless 

assessed in the presence of a cellular stressor. In other words it is not the relative levels of cell 

signalling proteins which determine the disease but instead how they react as a network to 

functional challenge100.  
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Thirdly the few studies which have conducted functional testing in PBMCs of neuropsychiatric 

patients have done so using a reduced set of stimulants and readouts to provide validation of a pre-

existing hypotheses related to immune function, for example glucocorticoid suppression of IL-6 

secretion in MDD or mitogen-induced cytokine secretion (IL-2, IL-6, IL10 and IFN-γ) in 

schizophrenia101,102. While these studies provide valuable insight into disease mechanisms they do 

not constitute a systems level interrogation of cellular pathology capable of generating novel 

hypotheses. In contrast one study which assessed whole proteome changes in schizophrenia PBMCs 

relative to controls, following stimulation of the T cell receptor complex using staphylococcal 

enterotoxin B and anti-CD28, identified abnormalities across glycolytic pathway proteins which 

were not detected in the unstimulated state103. Albeit limited to a single stimulant cocktail, this 

highlights the potential for the generation of novel hypotheses when a functional challenge is 

combined with high content measurements. Finally most of the functional studies in PBMCs in 

neuropsychiatry to date have focused on PBMCs as a whole and not on specific cell subtypes, such 

as T or B cells, which are known to have significantly different functional repertoires104. Taken 

together there is a need for high content functional analysis of specific PBMC subsets in 

neuropsychiatric disorders to accurately determine their utility for drug target discovery. 

 

1.1.7 EX VIVO FUNCTIONAL CYTOMICS AS A NOVEL PLATFORM FOR NEUROPSYCHIATRIC 

DRUG DISCOVERY 

To address this need we have developed a platform capable of high-content single –cell screening 

of functional ligand-receptor interactions and downstream signalling mechanisms in PBMCs ex vivo 

(Fig. 1.1). The platform uses flow cytometry, fluorescent cell barcoding and automated sample 

preparation to enable the parallel detection of multiple functional ligand responses across multiple 

cell signalling epitopes and cell subtypes in heterogeneous primary cell populations. Briefly, PBMCs 

from neuropsychiatric patients and controls are incubated with small ligand libraries for up to 30 

min. These libraries are designed to include a mechanistically diverse set of ligands such as CNS 

receptor agonists, neuropsychiatric medications, cytokines, hormones/ growth factors, antigens 

and intracellular signalling modulators.  The cells are then fixed, permeabilized and multiplexed 

using fluorescent cell barcoding105. Subsequently the responses to each of the ligands are detected 

by measuring the expression and phosphorylation status of intracellular signalling epitopes which 

span a wide variety of pathways, for example Akt/GSK-3β, PKA, PKC, MAPK, JAK/STAT, IL1R/TLR and 

TCR/BCR. Finally different PBMC subtypes are resolved using immunophenotyping.  
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Figure 1.1 Ex vivo functional cytomics as a novel platform for neuropsychiatric drug discovery 

 

This creates a combinatorial expansion of the number of functional assays performed in each PBMC 

sample. For example under the current dimensions of each parameter that will be presented in this 

work it is possible to measure the response of up to 80 ligands across 80 cell signalling epitopes in 

three PBMC subtypes ex vivo. This creates a three dimensional matrix of up to 19,200 parallel 

functional assays measurable in each PBMC sample at a given time point (Fig. 1.2). Thus each data 

point derived from this technology can be indexed as a function of the ligand used for stimulation, 

the cell signalling epitope used for detection and the PBMC subtype in which it was measured. Each 

combination of these parameters is referred to as a cell signalling response ‘node’. All the nodes 

together form a unique profile which is indicative of the functional repertoire of the PBMCs from 

each donor. Additionally the same matrix can be repeated at different time points to provide kinetic 

resolution of cell signalling responses.  

Comparison of these profiles between donors in different clinical groups, for example schizophrenia 

vs. control, allows the identification of cell signalling responses which are altered in the disease 

state. It can alternatively be used to compare patients before and after clinical treatment, for 

example antipsychotic therapy in schizophrenia, and determine which cell signalling responses are 

associated to clinical drug efficacy. Finally it can be used to differentiate cell signalling responses 

between related neuropsychiatric disorders for example schizophrenia (SCZ), bipolar disorder (BD), 

major depression (MDD) and autism spectrum disorders (ASD). The ultimate objective of these 

comparisons is to identify an aberrant functional cell signalling response which is specific to a 

particular neuropsychiatric disorder and is normalized by efficacious clinical treatment. This 

response then constitutes a drug target against which compound libraries, for example the FDA 

library, can be screened to derive novel drug candidates. 

 

19



 

Figure 1.2 Combinatorial expansion of the number of functional assays conducted in each PBMC 

sample using ex vivo functional cytomics. Figure shows the maximum number of conditions 

assessed for each of the parameters in the current study. Each data point or ‘cell signalling node’ is 

a function of the ligand used for stimulation, the cell signalling epitope used for detection and the 

PBMC subtype in which it was measured. All possible combinations of these variables, defined as 

ligands (n=80) x signalling epitopes (n=80) x cell subtypes (n=3), creates a total of 19,200 parallel 

functional assays or ‘cell signalling nodes’ measurable in each PBMC samples. Comparison of these 

high content response profiles between clinical groups allows the identification of biomarkers of 

disease and treatment response.  

 

1.1.8 COMPARISON OF EX VIVO FUNCTIONAL CYTOMICS TO THE STATE OF THE ART 

While the methodological details of ex vivo functional cytomics are described in more detail in 

Chapter 2 and at the beginning of Chapter 3, it is important to highlight the potential advantages 

of this technology relative to the state of the art. First, with many drug discovery efforts still based 

on isolated biochemical assays or recombinant cell lines the use of live primary cells from patients 

affected by neuropsychiatric disease is paramount to the physiological relevance of the assay. 

Although limited by the number of cells available the use of primary human tissue at the early stages 

of the drug development pipeline is associated with a higher potential success rate for the targets 

and compounds discovered99. Second the use of functional testing in live cells allows the elucidation 

of relevant disease specific alterations in cell signalling networks which are not observable simply 

by quantification of the protein levels in their basal state. This includes alterations in homeostatic 

and regulatory mechanisms consistent with the concept of ‘cellular coping’. Third cell signalling 

20



pathway alterations are a common conclusion in many genomic and proteomic screens in 

neuropsychiatry. However these assumptions are confounded by incomplete annotation of protein 

function and moreover network connectivity as described earlier. Using the current technology we 

can measure the parallel activation status of key hubs in these cell signalling networks directly in 

live patient cells and furthermore assess their connectivity through correlated responses to ligand 

stimulation. Thus it is possible to empirically test leading theories in neuropsychiatric pathway 

dysfunction, in addition to potentially revealing new ones, as opposed to relying on in silico 

imputation.  

Fourth, as described earlier the majority of genetic risk for neuropsychiatric disorders has yet to be 

indexed and, from what is known so far, each patient is likely to have a different combination of 

common but weak, or rare but penetrate risk alleles24,106,107. The current technology provides the 

potential to summarize these complex genetic risk factors with heterogeneous manifestations as 

integrated cellular phenotypes. Thus while we may not know the full catalogue and annotation of 

genes and proteins involved in the pathogenesis of each patient we can still potentially derive points 

of mechanistic convergence in terms of cell signalling which represent common drug targets. These 

points of mechanistic convergence can be thought of as functional endophenotypes. In other words 

they are biological traits which are more tractable and amenable to drug screening than the 

disparate and complex molecular pathways from which they arise. By extension the cellular 

responses altered in the disease state can form the basis of phenotypic drug screening for potential 

novel therapeutic compounds capable of normalizing these responses. Thus, in contrast to target 

based drug discovery, potential treatments can be identified even before the molecular 

mechanisms are fully understood.  

Fifth, the technology allows us to interrogate, using a series of specific and potent ligands, many of 

the CNS receptors and downstream signalling cascades described earlier for which function in 

PBMCs is unknown. Furthermore the majority of the ligands used in the present functional cytomic 

platform target GPCRs, RTKs or ion channels while the cell signalling epitopes are predominantly 

located on protein kinases and phosphatases. Collectively GPCRs, RTKs, ion channels and protein 

kinases and phosphatases represent the targets for the vast majority of currently approved 

medications consistent with their role as key cellular functional executioners108–110. Thus targeting 

these proteins in the drug target discovery phase represents heuristic screening of the most 

‘druggable’ part of the genome. Importantly, many of these highly functional molecules, for 

example GPCRs, have a relatively low level of expression. Therefore, in the case of proteomics, they 

often remain undetected relative to more abundant housekeeping proteins. In contrast an 
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amplified signalling event downstream of these low abundance receptors can be accurately 

measured using fluorescence flow cytometry111.  

Sixth, the ability to measure the effects of a ligand across multiple signalling pathways in parallel 

allows the identification of compounds with multi-target efficacies, a feature common to existing 

neuropsychiatric drugs112. Conversely it also allows the identification of potentially toxic off target 

signalling interactions. Identification of toxic side effects in primary cells at the drug discovery phase 

can reduce the costly risk of failure at later stages in the drug development pipeline113,114. Finally 

the ability to measure responses at the single-cell level affords the statistical power necessary to 

identify clinically relevant functional phenotypes in minority cell populations within a 

heterogeneous primary sample100. 

 

1.1.9 CLINICAL RELEVANCE OF EX VIVO FUNCTIONAL CYTOMICS  

The development of the ex vivo functional cytomics platform draws heavily on previous work by 

Nolan et al. This includes the pioneering detection of phosphorylation events in single-cell signalling 

networks in response to ligand stimulation using flow cytometry (‘phospho-flow cytometry’) and 

the high content multiplexing of different stimulation conditions using fluorescent cell barcoding 

(FCB)105,115,116. One particular study by this group serves to illustrate the potential clinical impact of 

this methodology with respect to several of the features described above117. The authors assessed 

the phosphorylation status of several cell signalling proteins (STAT1, 3, 5, 6, p38 and Erk1/2) under 

basal conditions or in response to ligand stimulation (IFN-γ, IL-3, G-CSF, GM-CSF and FLT3) in CD33+ 

blast cells from patients with acute myeloid leukaemia (AML) relative to CD33+ cells in healthy 

controls. First, differences in the phosphorylation status of these signalling epitopes in normal vs. 

malignant cells was only distinguishable following stimulation with cytokines and growth factors 

and not in the basal state. Second, the cell signalling profiles allowed the definition of a subgroup 

of patients with poor response to chemotherapy and corresponding genetic abnormalities 

(including Flt3 mutation) associated to poor prognosis. Taken together these results highlight how 

a functional cytomic response can summarize the genetic differences between patients into a 

phenotype which is more relevant to holistic disease physiology, in this case myeloid proliferation 

mediated by G-CSF, and treatment response prediction. By extension this functional cellular 

phenotype also provides the mechanistic basis for a readily implementable cellular screening assay 

for the discovery of novel drugs. Finally the functional screening also revealed specific subsets of 

blasts with altered response profiles within each patient. This highlights the potential of phospho-

flow cytometry to identify clinically relevant pathogenic subtypes at the single-cell level within 
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heterogeneous primary cell populations. Similar applications of this technology have also yielded 

clinically relevant results in terms of characterizing immune cell signalling responses in other forms 

of haematological cancer, viral and bacterial infections and autoimmune disorders118–122.  

 

The current application of ex vivo functional cytomics seeks to extend the clinical relevance of these 

technological applications whilst distinguishing itself in two important features. First, all the 

aforementioned studies involve diseases where the primary pathology is recognized in immune 

cells. In contrast in neuropsychiatric disorders, despite the increasingly accepted role of the immune 

system, the primary manifestation of pathology is still attributed to the brain. Thus we seek to 

provide a novel application of this methodology in which immune cell signalling responses are used 

as a surrogate model for aberrant function of brain cell lineages including neurons, astrocytes and 

microglia. Second, to achieve this objective we have expanded the repertoire of functional ligands 

and cell signalling epitopes measured beyond the dimensions of previous ex vivo studies and 

included many ligands and readouts specific to CNS pathology. To our knowledge this represents 

the most extensive functional characterization of live cells from neuropsychiatric patients and 

controls to date.   

 

1.1.10 DRUG REPURPOSING IN NEUROPSYCHIATRIC DISORDERS 

Drug repurposing (also referred to as ‘repositioning’ or ‘reprofiling’) involves the screening of 

approved drugs for use in novel indications. A frequently cited example is sildenafil (Viagra; Pfizer) 

which was originally developed as an anti-angina medication110. The advantage of screening 

approved medications is that the resulting drug candidates already have well documented 

toxicology, pharmacokinetic, dosing and medicinal chemistry profiles obtained during the original 

clinical trials and history of public use110.  This expedites clinical trials in the new indication and 

reduces the risk of failure due to adverse side effects or poor pharmacokinetics in humans, features 

which are responsible for the high attrition rate (over 90%) of the majority of novel drug entities110. 

By extension this means that repurposed drugs can potentially reach the clinic in less time and that 

this strategy is within the reach of small-medium enterprises and academic collaborations with 

limited resources relative to large pharmaceutical companies110. This is a formidable advantage 

considering the average ten year development pipeline and over € 2 billion cost of bringing a new 

drug to market110,123. Drug repurposing is also directly relevant to the current project in 

neuropsychiatry in several ways. Firstly, the majority of compounds used currently for the 

treatment of neuropsychiatric disorders derive from lead compounds which were repurposed 

following the discovery of beneficial neuropsychiatric side-effects during application to other 
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indications. Thus it is a strategy which has served the field well in the past. Secondly in the FDA drug 

screening stage of the current project we seek to normalize an aberrant cell signalling response 

observed in PBMCs from schizophrenia patients relative to controls. This drug discovery initiative 

therefore represents a phenotypic screen in the sense that the full mechanism of altered cellular 

signalling in the disease state is not characterized. As the majority of the FDA approved drugs have 

well documented targets and mechanisms of action, their relative interactions with the targeted 

response can be used to dissect the mechanism of aberrant cell signalling in patients. An elegant 

example of this differential pharmacology strategy is the elucidation of the role of 5-HT2A receptor 

antagonists, such as atypical antipsychotics, in preventing human polyomavirus JC (JCV) from 

infecting astrocytes and oligodendrocytes leading to progressive multifocal leukoencephalopathy 

(PML)110,124.  Finally the extensive annotation of bio-distribution for FDA approved compounds 

allows drug candidates to be readily prioritized in terms of brain penetrance at the initial stages of 

the neuropsychiatric drug discovery pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24



1.2 AIMS OF THE CURRENT STUDY 
 

1. Establish a robust high content screening platform for the quantification of cell signalling 

responses relevant to neuropsychiatric disease mechanisms in PBMCs ex vivo (Chapter 3). 

 

2. Identify abnormal alterations in the cell signalling repertoire of PBMCs from individuals with 

schizophrenia, relative to healthy controls, and track how these alterations are normalized by in 

vivo antipsychotic therapy (Chapter 4). 

 

3. Assess the relative specificity of the potential drug targets in schizophrenia relative to other major 

neuropsychiatric diseases including bipolar disorder, autism spectrum disorder and major 

depressive disorder (Chapter 4). 

 

4. Discover novel classes of FDA approved compounds which are capable of normalizing the cell 

signalling responses associated with schizophrenia pathology (Chapter 5). 

 

 

1.3 STUDY DESIGN 
 

This project is conducted in four stages, consistent with each of the aims above, which sequentially 

form a novel ex vivo drug discovery pipeline for neuropsychiatric disorders (Fig. 1.3). The 

experimental conditions at each stage in terms of PBMC samples usage, the dimensions of each 

step within the high content assay and principal outcomes are further detailed in Fig. 1.4. 

  

The first stage (‘time course’, Fig. 1.3b and 1.4a; Chapter 3) involves establishing a robust high-

content functional cytomics platform for the quantification of cell signalling responses relevant to 

neuropsychiatric disease mechanisms in PBMCs ex vivo. This stage uses PBMCs from healthy control 

donors and focuses on T cells as the most abundant PBMC cell type. The first step is to establish a 

robust fluorescent cell barcoding (FCB) protocol which enables 80 populations of PBMCs, each 

treated with different ligands or vehicle conditions, to be multiplexed and therefore combined in 

the same antibody staining reaction for detection of cell signalling changes. This allows reproducible 

staining across the ligand conditions, increased dimensionality for high content analysis and also 

efficient use of the limited PBMC samples. The second step involves testing a diverse set of ligands 
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(n=70) and cell signalling epitopes (n=78) across four different time points (1, 5, 15 and 30 min) to 

provide a total of 21,840 parallel assays in each PBMC sample. This allows the selection of a subset 

of the most active ligand-epitope combinations and the single most active time point for application 

in the subsequent stage using limited clinical samples. We also use the kinetic response profiles of 

each ligand to validate the sensitivity and specificity of the platform, with respect to characteristic 

T cell cytokine signalling networks, and explore its potential for identifying surrogate models of CNS 

drug efficacy including neuropsychiatric medications and experimental drug candidates.  

The second stage (‘antipsychotic intervention’, Fig. 1.3c and 1.4b; Chapter 4) involves applying the 

refined set of ligand-epitope combinations (56 ligands vs. 66 epitopes) at a single time point (30 

min) to PBMCs (specifically T cells) derived from a longitudinal cohort of drug-naive male 

schizophrenia patients before (n=12) and after (n=10) six weeks of treatment with the antipsychotic 

olanzapine in addition to matched healthy control donors (n=12). Comparison of schizophrenia 

patients before treatment to controls allows the identification of putative signalling mechanisms 

altered in the disease state. Comparison of schizophrenia patients before and after treatment 

allows the determination of surrogate markers of drug efficacy in vivo. Specifically we focus on 

which cell signalling responses are altered in the disease state and normalized by antipsychotic 

intervention in vivo. These normalized responses are then prioritized in terms of their validity as 

putative drug targets for the subsequent drug screening stage using the FDA approved compound 

library. We also correlate the changes in specific cell signalling responses to changes in positive and 

negative syndrome scale (PANSS) scores over the course of olanzapine treatment to assess the 

potential of the platform to derive biomarkers of clinical efficacy which are specific to symptom 

subscales. Finally we explore the relationship between PBMC cell signalling responses to acute 

olanzapine administration ex vivo and chronic clinical olanzapine treatment in vivo in terms of the 

potential for treatment response prediction. 

The third stage (‘differential diagnosis’, Fig. 1.3d and 1.4c; Chapter 4) involves the replication of the 

putative schizophrenia drug targets, from the antipsychotic intervention study, in an independent 

cohort of drug-naive schizophrenia patients (n=25) and controls (n=25) and assessment of their 

relative specificity for schizophrenia as compared to other major neuropsychiatric disorders 

including bipolar disorder (n=25), autism spectrum disorder (n=25) and major depressive disorder 

(n=25). Furthermore the relative specificity of the putative drug targets across different PBMC 

subsets (CD4+ T cells, CD4- T cells and B cells) is resolved. 
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In the fourth stage (‘FDA library screening’, Fig. 1.3e and 1.4d; Chapter 5) the most 

significantly altered cell signalling response specific to schizophrenia, identified in the proceeding 

clinical studies (antipsychotic intervention and differential  diagnosis), is subjected to compound 

screening using the FDA library and selected experimental drugs (946 compounds in total) in 

control PBMCs (n=6-12). This allows the identification of compounds with the potential to 

normalize the altered response observed in schizophrenia.  
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Figure 1.3 Ex vivo CNS drug discovery pipeline. (a) Human primary peripheral blood mononuclear 
cells (PBMCs) provide an accessible ex vivo model of physiological single-cell phenotypes in health 
and disease. (b) Time course exploration of responses to 70 ligands (including CNS ligands and 
neuropsychiatric treatments) across 78 diverse cell signalling epitopes (5460 responses in total) in T cells 
from healthy control donors (n=8) at 1, 5, 15 and 30 min ligand incubation times. (c) Identification of 
functional drug targets by comparing T cell signalling response profiles of 56 ligands across 66 cell 
signalling epitopes (3696 responses) in PBMC samples from three clinical groups: healthy controls (n=12), 
antipsychotic drug-naïve schizophrenia patients (SCZ T0; n=12) and the same patients following six 
weeks of clinical treatment with the atypical antipsychotic olanzapine (SCZ T6; n=10). (d) 
Evaluation of the disease specificity of the functional drug targets for schizophrenia relative to other 
major neuropsychiatric disorders by comparing cell signalling response profiles to 12 ligands 
across 42 cell signalling epitopes (504 responses) in different PBMC subtypes (CD4+ T cells, CD4- 
T cells and B cells) from five clinical groups: healthy controls (n=100), antipsychotic drug-naïve 
schizophrenia (SCZ; n=25), bipolar disorder (BD; n=25), major depressive disorder (MDD; n=25), 
autism spectrum disorder (ASD; n=25). (e) Modelling of schizophrenia disease-associated cellular 
responses and screening of FDA approved drugs (repurposing) and experimental neuropsychiatric 
compounds (n=946 in total) in T cells from healthy control PBMC donors (n=6-12).
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CHAPTER 2 

MATERIALS AND METHODS 

CHAPTER 2: MATERIALS AND METHODS 
CHAPTER 2 MATERIALS AND METHO 

The Materials and Methods relevant to all studies are described below. Methods relevant to specific 

substudies are indicated by the following abbreviations where necessary: time course (TC), 

antipsychotic intervention (AI), differential diagnosis (DD) and FDA compound library screening 

(FDA). 

2.1 CLINICAL SAMPLE RECRUITMENT 
For the TC and FDA studies, healthy control PBMC donors were recruited at the Cambridge Centre 

for Neuropsychiatric Research, Cambridge University, UK. For the AI study, first-onset antipsychotic 

drug-naive schizophrenia patients before (n=12) and the same patients after (n=10) six weeks of 

treatment with the atypical antipsychotic medication olanzapine (10-20mg/day), in addition to 

matched controls (n=12), were recruited from the Erasmus Medical Centre, Rotterdam, the 

Netherlands. For the DD study, patients in each disease group (n=25) and matched controls (n=25/ 

group) were recruited from clinical centres as follows: schizophrenia (University Hospital Marqués 

de Valdecilla, Santander, Spain), major depressive disorder (Westfälische Wilhelms University 

Hospital, Münster, Germany), bipolar disorder (Foundation Biological Psychiatry, Sofia, Bulgaria and 

Union House, Cambridgeshire and Peterborough Mental Health Foundation Trust, Cambridge, UK) 

and autism spectrum disorder (Cambridge Autism Research Centre, Cambridge University, 

Cambridge, UK). The medical faculty ethical committees responsible for the respective sample 

collection sites approved the study protocols. Informed consent was given in writing by all 

participants and clinical investigations were conducted according to the Declaration of Helsinki125 

and Standards for Reporting of Diagnostic Accuracy126. Please refer to respective AI and DD chapters 

for demographic information and statistical matching of clinical participants. Participants from 

different clinical groups, alongside quality control (QC) samples from healthy control donors, were 

randomized across different plate positions and experimental days for both AI and DD studies.   
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Diagnoses of neuropsychiatric pathology were conducted by experienced psychiatrists and were 

based on the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Review (DSM-IV-TR) 3 

and International Statistical Classification of Diseases and Related Health Problems- 10th Revision 

(ICD- 10) 4. Clinical rating scales used to diagnose patients and quantify symptoms in each clinical 

study were as follows: Schizophrenia (AI): Positive and Negative Syndrome Scale (PANSS). 

Schizophrenia (DD): Brief Psychiatric Rating Scale (BPRS), Scale for the Assessment of Positive 

Symptoms (SAPS) and Scale for the Assessment of Negative Symptoms (SANS). Bipolar disorder 

(DD): Young Mania Rating Scale (YMRS), Hamilton Rating Scale for Depression (HAM-D) and 

Inventory of Depressive Symptomatology- Clinician (IDS-C). Major Depressive Disorder (DD): 

Inventory of Depressive Symptomatology Clinician (IDS-C). Autism (DD): autism-spectrum quotient 

(AQ), empathy quotient (EQ) and systemizing quotient-revised (SQ-R).  

The exclusion criteria for patients and controls included: additional neuropsychiatric diagnoses 

other than the targeted one, other neurological  disorders including epilepsy, mental retardation, 

multiple sclerosis, immune/ autoimmune disorders, infectious disease, metabolic disorders 

including diabetes, cardiovascular disease, hepatic and renal insufficiency, gastrointestinal 

disorders, endocrine disorders including hypo-/ hyperthyroidism and hypo-/ hypercortisolism , 

respiratory diseases, cancer, severe trauma, pregnancy/ lactation, substance abuse including 

psychotropic drugs and alcohol, somatic medication with brain side-effects, somatic medication 

affecting the immune system including glucocorticoids, anti-inflammatory/immunomodulating 

drugs and antibiotics.   

2.2 PBMC ISOLATION AND CULTURE 
Peripheral blood mononuclear cells (PBMCs) were prepared from blood collected into 7.5 ml 

sodium heparin tubes (BD Biosciences,) with the exception of schizophrenia and control samples 

which were prepared at the University Hospital Marqués de Valdecilla (Santander, Spain) and which 

were collected into 7.5 ml tubes containing acid citrate dextrose solution A. Whole blood was 

pelleted, diluted 1: 1 with Dulbecco’s phosphate-buffered saline solution (PBS; Sigma–Aldrich) and 

centrifuged over Ficoll (GE Healthcare) at 750 g for 20 min at 23 oC. PBMCs were extracted from the 

interphase, washed three times with PBS at 300 g for 10 min and cryopreserved at 5 × 106 cells/ml 

in heat-inactivated foetal bovine serum (FBS; Life Technologies) containing 10% dimethyl sulfoxide 

(DMSO; Sigma–Aldrich) or, in the case of samples collected at the Foundation Biological Psychiatry 

(Sofia, Bulgaria) in complete Roswell Park Memorial Institute (RPMI) media with 10% DMSO (RPMI-

1640 with sodium bicarbonate (Sigma-Aldrich), 10 % FBS (Life Technologies),  50 U/ml penicillin and 
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50 µg/ml streptomycin (Life Technologies), 2 mM L-alanyl-L-glutamine dipeptide (Life Technologies) 

and 10% DMSO).PBMCs were thawed at 37oC and resuspended in sterile conditions in complete 

RPMI media with deoxyribonuclease (DNAse) (RPMI-1640 with sodium bicarbonate (Sigma-Aldrich), 

10 % FBS (Life Technologies),  50 U/ml penicillin and 50 µg/ml streptomycin (Life Technologies), 2 

mM L-alanyl-L-glutamine dipeptide (Life Technologies) and 20 µg/ml DNAse  (Sigma-Aldrich)). The 

cells were counted using a Coulter Counter (Beckman Coulter), pelleted and resuspended at 1*106 

cells/ml (TC, AI  and FDA studies) or 2*106 cells/ml (DD study). The cells were rested for 24 hours at 

37°C/ 5 % CO2 either in cell culture flasks (TC and AI studies) or, via a 40µm cell strainer, in 96-well 

polypropylene plates (Starlab; FDA and DD studies). 

2.3 PREPARATION OF FUNCTIONAL LIGANDS AND COMPOUND 

LIBRARIES  

Ligands (including cell signalling activators/ inhibitors and receptor agonists/ antagonists) were 

purchased from Sigma-Aldrich, Tocris/ Bio-Techne, eBioscience/ Affymetrix, R&D systems, Life 

Technologies, Abcam, Antibodies-online and Enzo Life Sciences. CHIR 99021 and JB1121 were 

provided by collaborators Haggarty SJ and Petryshen TL at the Broad Institute, Cambridge, MA, USA. 

Table 2.1 lists the ligands used with their primary mechanisms of action and final assay 

concentrations. Stock solutions of ligands were prepared in sterile conditions. Initial solubilization 

was achieved using DMSO where possible and alternatively PBS, H2O or H2O with equimolar NaOH 

as per the manufacturer’s instructions. Intermediate dilutions were made in PBS and DMSO was 

added to equivalent amounts for each ligand and vehicle.  

The FDA approved compound library (n=786, v. 2.0; Enzo Life Sciences) was extended to incorporate 

experimental compounds (n=160) either contributed by collaborators (Jones-Brando L, Yolken R, 

Posner GH, D’Angelo JG, Hencken CP(Johns Hopkins University School of Medicine, Baltimore, MD, 

USA), McNulty J (McMaster University, Hamilton, Ontario, Canada), Wagner FF, Holson EB, 

Petryshen TL, Haggarty SJ (Broad Institute, Cambridge, MA, USA) and Williams RS (Royal Holloway 

University of London, Egham, UK)) or representing positive controls/ nutraceuticals, related to 

putative drug targets, from the Cambridge Centre for Neuropsychiatric Research (CCNR) compound 

library (Table 2.2). Initial solubilisation was conducted using DMSO where possible and alternatively 

PBS, H2O or H2O with equimolar NaOH as per the manufacturer’s instructions. Intermediate 

dilutions were prepared using complete RPMI media without penicillin-streptomycin (RPMI-1640 

with sodium bicarbonate (Sigma-Aldrich), 10 % FBS (Life Technologies) and 2 mM L-alanyl-L-
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glutamine dipeptide (Life Technologies)). DMSO was added to equivalent amounts across all 

compounds and the vehicle. The final assay concentration of the majority (95%, n=899) of 

compounds in the extended FDA library was 20 µM with some exceptions in the experimental 

compounds from collaborators and ligands included from the CCNR library (Table 2.2). The choice 

of a final assay concentration of 20 µM is consistent with established protocols for high-throughput 

functional screening of small molecule (<900 daltons) drug libraries in PBMCs and other cell 

types127,128. It also represents the maximum assay concentration of compound obtainable, following 

dilution of the 10 mM FDA library stock, which does not exceed the threshold toxicity concentration 

for functional assays of 0.2% DMSO128–131. Compounds assayed at concentrations other than 20 µM 

(5%, n=47) reflected either dilutions of existing 20 µM library compounds or compounds for which 

in vitro EC50 data differed from 20 µM by several orders of magnitude. All stocks and dilutions of 

stimulants and compounds were stored at -80oC and repeated freeze thaw cycles were avoided. 

2.4 STIMULATION OF PBMCS 
Stimulation is defined broadly as the exposure of PBMC cells to a ligand which has the potential to 

perturb resting state cell signalling dynamics by either increasing or decreasing the expression of 

cell signalling epitopes. PBMCs were pelleted and resuspended (via 30µm cell strainer (Partec) for 

TC and AI studies) at 90 µl/well in 96-well polypropylene plates using complete RPMI media without 

penicillin-streptomycin. The resuspended cell concentrations were 2*106 cells/ml (TC), 0.75*106 

cells/ml (AI), 1.2*106 cells/ml (FDA) and 3.2*106 cells/ml (DD). The cells were rested for 90 min (TC, 

AI) or 45 min (FDA and DD studies) at 37°C before ligand exposure. For the FDA study, this resting 

period was used to preincubate the cells with the extended FDA library compounds prior to 

stimulation.   

Stimulants and vehicle were reconstituted in complete RPMI media without penicillin-streptomycin 

and added to the cells using a Biomek NX liquid handler (Beckman Coulter) with integrated compact 

shaker-heater-cooler system (Inheco). The ligand cocktail anti-CD3/CD28-XL was added in a two-

step process (DD). First, anti-CD3/CD28 antibodies were added for 2 min at 37oC, and then the cross-

linking Neutravidin (-XL) was added simultaneously with the rest of the stimulants. The final 

concentration of DMSO in all conditions including vehicle was 0.10 % (TC, AI and DD studies) and 

0.21% (FDA). Vehicle wells represented one eighth of the total wells assayed (TC, AI and DD studies) 

or one sixth of the total wells assayed (FDA) and were spaced evenly across each 96-well plate. The 

cells were exposed to the stimulants at 37oC for 1, 5, 15 and 30 min (TC) or 30 min (AI, FDA and DD 
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studies). Ligand exposure was halted by fixation for 10 min at 37oC using paraformaldehyde (Sigma-

Aldrich) at a final concentration of 1.6 % in PBS.  

2.5 FLUORESCENT CELL BARCODING 

Stock solutions of barcoding dyes CBD 450 (BD Biosciences), CBD 500 (BD Biosciences) and DL800 

(Thermo Scientific) were prepared as per the manufacturer’s instructions in DMSO in polypropylene 

96-well plates and stored at -80oC. Different combinations of these dyes were used to produce a

different number of barcoded cell populations specific to each study as follows. For the TC study 80

populations were resolved using final concentrations of CBD 450 (0.000, 0.015, 0.075, 0.300 µg/ml)

combined with CBD 500 (0.000, 0.038, 0.188, 0.750 µg/ml) and DL800 (0.000, 0.011, 0.033, 0.100,

0.300 µg/ml). For the AI study 64 populations were resolved using final concentrations of CBD 450

(0.000, 0.015, 0.050, 0.150 µg/ml) combined with CBD 500 (0.000, 0.038, 0.125, 0.375 µg/ml) and

DL800 (0.000, 0.017, 0.050, 0.150 µg/ml). For the DD study 16 populations were resolved using final 

concentrations of CBD 450 (0.000, 0.015, 0.050, 0.150 µg/ml) combined with CBD 500 (0.000, 0.038, 

0.125, 0.375 µg/ml). For the FDA study four populations were resolved using final concentrations

of DL800 (0.000, 0.017, 0.050, 0.150 µg/ml).

Fixed cells were washed with PBS and permeabilized in 100 µl ice cold methanol for 20 min at 2oC 

using a Biomek NX liquid handler. The barcoding dyes were diluted in ice cold PBS and 100 µl/well 

added to the suspension of cells in methanol. The final concentration of DMSO from the barcoding 

dyes at this stage was 3.5%. The barcoding reaction was incubated for 30 min at 2oC and the cells 

were washed five times (TC, AI, DD), or four times (FDA), in ice cold FACS buffer (PBS with bovine 

serum albumin 0.05 % (Sigma-Aldrich)). The barcoding wells were pooled, washed in a total volume 

of 45 ml (TC, AI), 2 ml (DD) or 0.28 ml (FDA) FACS buffer and resuspended at 1*106 cells/ml in FACS 

buffer.  

2.6 INTRACELLULAR STAINING OF CELL SIGNALLING EPITOPES IN 

PBMC SUBSETS 
The suspension of fixed-permeabilized-barcoded cells was either stained using PBMC subtyping 

antibodies directly (TC, AI, FDA) or following pre-incubation with human Fc receptor binding 

inhibitor (DD; eBioscience). The pre-incubation consisted of 20 min at 1*107 cells/ml in FACS buffer 
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with 12.5% human Fc receptor binding inhibitor, followed by resuspension for staining in FACS 

buffer at 1*106 cells/ml (DD). The cell suspension was stained with either 0.5 µl/ml anti-human CD3 

(UCHT1) PE-Cy7 (eBioscience) (TC, AI), or 1 µl/ml anti-human CD3 (UCHT1) PE-Cy7 and 1 µl/ml anti-

human CD4 (SK3) PerCP-eFluor 710 (eBioscience) (DD), or 1 µl/ml anti-human CD3 (UCHT1) APC 

(eBioscience) (FDA). The suspension was distributed across a 96 well polypropylene plate at 90 

µl/well (TC, AI and DD) or 60 µl/well (FDA). The cells were stained using a Biomek NX liquid handler 

(Beckman Coulter) with fluorescently-conjugated anti-human antibodies against intracellular 

signalling epitopes (Table 2.3) for 45 min at room temperature, as per the manufacturer’s 

instructions.  Antibodies were purchased from BD Biosciences, Cell Signalling Technology, Merck 

Millipore and Bioss. Antibodies against intracellular epitopes were used either individually (TC, FDA) 

or in groups of three antibodies per plex (AI, DD). The cells were washed twice with FACS buffer and 

resuspended in a final volume of 150 µl/well (TC, AI, and DD) or 100 µl (FDA) using FACS buffer. 

2.7 IMMUNOPHENOTYPING 

PBMCs were resuspended at 1 x106 cells/ml in 100 µl of FACS buffer, with 20 % human Fc receptor 

binding inhibitor and incubated for 20 min at room temperature in 5ml polystyrene FACS tubes. The 

PBMCs were stained in a total volume of 135 µl/tube with 0.5 µl of anti-human CD3 (UCHT1) PE-

Cy7 (eBioscience), 0.5 µl of anti-human CD4 (SK3) PerCP-eFluor 710 (eBioscience), 0.5 µl of anti-

human CD8 (SK1) APC-eFluor780 (eBioscience). The cells were incubated for 30 min at room 

temperature. They were washed twice with 3 ml of FACS buffer and resuspended in 0.5 ml of FACS 

buffer with 1 µM DAPI (Sigma-Aldrich). 

2.8 DATA ACQUISITION USING FLOW CYTOMETRY 
PBMC cell suspensions were acquired using an eight colour FACS Verse flow cytometer (BD 

Biosciences) with 405, 488 and 640 nm laser excitation at an average flow rate of 2 µl/sec and an 

average threshold event rate of 1000-2000 events/sec. The average number of viable single cell 

events collected per barcode population was 500 events (TC, AI), 3000 events (DD) and 2000 events 

(FDA). Multicolour Cytometer Setup and Tracking (CST) beads (BD Biosciences) were used for 

quality control and standardization of photomultiplier tube (PMT) detector voltages across multiple 

experimental runs. Fluorescence compensation for immunophenotyping was conducted using anti-

mouse IgGκ antibody capture beads (Bangs Laboratories) labelled separately with each antibody. 
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Fluorescence compensation for barcoding dyes was conducted using single stain controls with 

maximum and minimum concentrations of each barcoding dye per PBMC sample. Fluorescence 

compensation for intracellular cell signalling epitopes in different PBMC subsets was conducted 

using anti-mouse IgGκ antibody capture beads labelled separately with individual antibodies for 

each study as follows. For the TC and AI studies, anti-human CD3 (UCHT1) PeCy7 (eBioscience), anti-

human STAT3 (pY705) (4/P-STAT3) AlexaFluor488 (AF 488; BD Biosciences), anti-human STAT3 

(pY705) (4/P-STAT3) PE (BD Biosciences) and anti-human STAT3 (pY705) (4/P-STAT3) AlexaFluor647 

(AF647; BD Biosciences) were used. For the DD study, anti-human CD3 (UCHT1) PeCy7 

(eBioscience), anti-human CD4 (SK3) PerCP-eFluor 710 (eBioscience), anti-human STAT3 (pY705) 

(4/P-STAT3) AlexaFluor488 (AF 488; BD Biosciences), anti-human STAT3 (pY705) (4/P-STAT3) PE (BD 

Biosciences) and anti-human STAT3 (pY705) (4/P-STAT3) AlexaFluor647 (AF647; BD Biosciences) 

were used. For the FDA study, anti-human CD3 (UCHT1) APC (eBioscience) and anti-human PLC-γ1 

(10/PLCgamma) PE (BD Biosciences) were used. 

2.9 STATISTICAL DATA ANALYSIS 
Flow cytometry data was analyzed in FCS 3.0 file format using Flow Jo v. 10.0.8 (Tree Star) and 

Kaluza Analysis v. 1.3 (Beckman Coulter) software. Statistical analysis was conducted using R v. 3.1.2 

software (R Core Team). PBMC samples in which the lymphocyte gate contained less than 30% of 

events, measured by forward scatter (FSC-A)/side scatter (SSC-A), were excluded from further 

analysis. Within each PBMC sample, individual treatment-epitope combinations (nodes) for which 

the cell count was lower than 50 cells (TC, AI, DD) or 200 cells (FDA) were excluded from further 

analysis. Across PBMC samples, nodes with fewer than 4 data points (i.e. 4 PBMC samples; TC, FDA) 

or fewer than 8 data points (i.e. 8 PBMC samples; AI, DD) were excluded from further analysis. 

Negative median fluorescence intensities (MFIs) caused by background and spectral overlap 

compensation were replaced by the minimum positive node value (DD). MFIs in the DD study were 

log2 transformed to approximate normality before statistical analysis. MFIs in the TC, AI and FDA 

studies were analysed untransformed.  For the clinical studies, batch effects in MFIs, caused by 

running samples on different days (AI, DD) and by using samples collected in different clinical 

centres (DD), were normalized for each epitope using the empirical Bayes algorithm- ComBat. 

Experimental variables including positional effects within and across 96 well plates, barcoding dye 

fluorescence spillover, sample viability, cell counts, clinical group and sample source were 

controlled for by principal component and Z factor analyses. Matching of clinical groups was 
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conducted using the Mann-Whitney U test for continuous variables or the Fisher’s exact test for 

categorical variables. 

For the determination of stimulant activity, the MFIs across PBMC samples, per stained epitope, 

were compared between each stimulant and the vehicle treatment using the unpaired Wilcoxon 

rank-sum test. To account for the unknown distribution of the data, the small sample size and the 

presence of outliers, the null distribution of the test statistic was estimated by randomly permuting 

sample labels 10,000 times for each node. The same test was also applied for each stimulant per 

functional fluorescence channel (AF 488, PE and AF647) in the unstained condition to determine 

whether the stimulant activity was an artefact of fluorescence spillover from adjacent channels or 

ligand auto-fluorescence (collectively termed background fluorescence). In cases where the 

stimulant MFI was significantly (permuted p<0.05) altered with respect to vehicle MFI in the 

unstained condition, the epitopes labelled in the corresponding functional channel were only 

counted as active if the MFI response was in a different direction or had a 10% greater fold change 

than the unstained  condition. For stimulants with significant activity (permuted p<0.05) which 

superseded the background fluorescence, the response ratio was quantified as the MFI of the 

stimulant divided by the MFI of the vehicle across PBMC samples. For responses <1 (i.e. where the 

stimulant caused a decrease in MFI with respect to the vehicle) the response is reported as a 

negative fold change (-1/ response ratio).  The stain index of each antibody was calculated across 

PBMC samples, in the absence of stimulation, as the median MFI of the antibody stained sample 

divided by the median MFI of the corresponding unstained control.  The two-tailed Spearman’s rank 

test was used to assess the correlation in fold change responses for nodes replicated in independent 

experiments. 

In the AI and DD studies, association of each signalling node MFI to clinical group status was 

investigated using linear fixed effects regression after adjusting for covariates. The predictive 

variables of clinical group and ligand presence were set as interaction terms within the regression 

model to determine epitopes which responded differently to individual ligand exposures across the 

clinical groups. Differences in basal epitope expression between clinical groups were defined as 

epitopes in which at least 30% of nodes tested significantly (permuted p<0.05) for a main effect of 

the clinical group variable, independently of the ligand identity variable. Where basal epitope 

expression differences were detected between groups, the mean MFI of the vehicle condition per 

epitope and sample group was used to represent the fold change. Optional covariates, age and BMI, 

were selected in the regression model in a stepwise procedure for each node separately using 

Bayesian Information Criterion. The mean of eight measurements in the vehicle condition and a 

single measurement in the stimulant condition per donor were used for the analysis. To account for 
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the unknown distribution of the data, the small sample size and the presence of outliers, the null 

distribution of the test statistic was estimated by randomly permuting sample labels 10,000 times 

for each node. Due to the exploratory nature of the AI and DD study, nodes with an unadjusted 

permuted p<0.05 were considered significant. Unsupervised hierarchical clustering using the 

correlation similarity metric and average linkage clustering (R ‘made4’ package) was used to group 

nodes significantly associated to clinical status and group PBMC samples with different clinical 

identities. Nodes were represented for clustering as the ratio of MFI of the ligand treatment to MFI 

of the vehicle treatment (for ligand responses) or ratio of the MFI of the vehicle condition to mean 

MFI of the vehicle condition in the control group (for basal epitope expression) per condition and 

sample, scaled across all nodes. Missing data were replaced for clustering with the mean of the 

respective node and clinical group. 

In the FDA study, association of phospholipase C (PLC)-γ1 MFI to compound and stimulant status 

was investigated using permutation-based linear fixed effects regression (n=10,000 permutations). 

The predictive variables of stimulant group (thapsigargin or vehicle) and compound exposure 

(compound or vehicle) were set as interaction terms in the regression model to determine 

compounds which modified the PLC-γ1 response to thapsigargin. For compounds which showed a 

significant interaction with the stimulant (permuted p<0.05), post-hoc one-way analysis of variance 

(ANOVA) tests and median values were used to determine the directionality of the effects. In the 

validation experiments, dose-response data was fitted with 4-parameter (thapsigargin dose-

response experiments) or 5-parameter (drug dose-response experiments) logistic regression 

models (R ‘nplr’ package and GraphPad Prism 5). 

Data was visualized using Flow Jo v. 10.0.8, Kaluza Analysis v. 1.3, R software, GraphPad Prism 5, 

Excel 2016, PubChem and Adobe Illustrator.  
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Table 2.2: Extended FDA compound library (n=946). 

Source refers to the original compound library. The 

majority come from the FDA approved drug library v.2- 

Enzo Life Sciences (n=786; FDA). Experimental 

compounds (n=160) include those from collaborators 

(Broad Institute (BI), John’s Hopkins University/ 

McMaster University (JH/ M), Royal Holloway 

University (RH)) and positive controls and 

neutraceuticals from the Cambridge Centre for 

Neuropsychiatric Research library (CCNR). The choice 

of a final assay concentration of 20 µM is consistent 
with established protocols for high-throughput 
functional screening of small molecule
(<900 Da) drug libraries in PBMCs and other cell
types127,128. It also represents the maximum assay 
concentration of compound obtainable, following 
dilution of the 10 mM FDA library stock, which does 
not exceed the threshold toxicity concentration for 
functional assays of 0.2% DMSO128–131. Compounds 
assayed at concentrations other then 20 µM (5%, 
n=47) reflected either dilutions of existing 20 µM 
library compounds or compounds for which in vitro 
EC50 data differed from 20 µM by several orders of 
magnitude.

ID Source Ligand Assay 
conc. 
(uM) 

1 FDA (±) Isoproterenol·HCl  20 

2 FDA (±)-Atenolol 20 

3 FDA (S)-Timolol Maleate 20 

4 FDA 4-Aminosalicylic Acid 20 
5 FDA Abacavir Sulfate 20 

6 FDA Acamprosate  20 

7 FDA Acarbose 20 
8 FDA Acebutolol·HCl 20 

9 FDA Acetaminophen 20 

10 FDA Acetazolamide 20 
11 FDA Acetohexamide 20 

12 FDA Acetohydroxamic Acid 20 

13 FDA Acetylcholine Chloride 20 
14 FDA Acetylcysteine 20 

15 FDA Acitretin 20 

16 FDA Acrivastine 4 
17 FDA Acyclovir (Acycloguanosine) 

Zovirax 
20 

18 FDA Adapalene 20 

19 FDA Adefovir Dipivoxil 20 

20 FDA Adenosine 20 
21 FDA Albendazole 20 

22 FDA Alendronate·Na Trihydrate 20 

23 FDA Alfuzosin 20 
24 FDA Alitretinoin 20 

25 FDA Allopurinol 20 

26 FDA Almotriptan 20 
27 FDA Alosetron·HCl 20 

28 FDA Alprostadil 20 
29 FDA Altretamine 20 

30 FDA Amantadine·HCl 20 

31 FDA Ambrisentan 20 
32 FDA Amcinonide 20 

33 FDA Amifostine 20 

34 FDA Amikacin Disulfate 20 
35 FDA Amiloride·HCl·2H2O 20 

36 FDA Aminocaproic Acid 20 

37 FDA Aminohippurate·Na 20 

38 FDA Aminolevulinic Acid·HCl 20 
39 FDA Aminophylline  20 

40 FDA Amiodarone·HCl 20 

41 FDA Amitriptyline·HCl 20 
42 FDA Amlexanox 20 

43 FDA Amlodipine 20 

44 FDA Amoxapine 20 
45 FDA Amoxicillin 20 

46 FDA Amphotericin B 20 

47 FDA Ampicillin Trihydrate 20 
48 FDA Amrinone 20 

49 FDA Anagrelide 20 

50 FDA Anastrozole 20 
51 FDA Apomorphine·HCl 

Hemihydrate 

20 

52 FDA Aprepitant 20 

53 FDA Argatroban 20 

54 FDA Aripiprazole 20 
55 FDA Arsenic Trioxide 20 

56 FDA Artemether 20 

57 FDA Articaine·HCl 20 
58 FDA Asenapine Maleate 20 

59 FDA Aspirin (Acetylsalicylic Acid) 20 

60 FDA Atazanavir 20 
61 FDA Atomoxetine·HCl 20 

62 FDA Atorvastatin Calcium 20 

63 FDA Atovaquone 20 
64 FDA Atracurium Besylate 20 

65 FDA Atropine Sulfate Monohydrate 20 

66 FDA Auranofin 20 

67 FDA Azacitidine 20 
68 FDA Azathioprine 20 

69 FDA Azelaic Acid 20 

70 FDA Azelastine·HCl 20 
71 FDA Azithromycin 20 

72 FDA Aztreonam 20 

73 FDA Bacitracin 20 
74 FDA Baclofen 20 

75 FDA Balsalazide 20 

76 FDA Beclomethasone Dipropionate 20 
77 FDA Benazepril·HCl 20 

78 FDA Bendamustine·HCl 20 

79 FDA Bendroflumethiazide 20 
80 FDA Benztropine Mesylate 20 

81 FDA Betaine  20 

82 FDA Betamethasone 20 

83 FDA Betaxolol·HCl 20 
84 FDA Bethanechol Chloride 20 

85 FDA Bexarotene 20 

86 FDA Bicalutamide 20 
87 FDA Bimatoprost 20 

88 FDA Biperiden·HCl 20 

89 FDA Bisacodyl 20 
90 FDA Bisoprolol Fumarate 20 

91 FDA Bleomycin Sulfate 20 

92 FDA Bortezomib 20 
93 FDA Bosentan 20 
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94 FDA Brimonidine 20 
95 FDA Bromfenac  20 

96 FDA Bromocriptine Mesylate 20 

97 FDA Brompheniramine Maleate 20 
98 FDA Budesonide 20 

99 FDA Bumetanide 20 

100 FDA Bupivacaine·HCl 20 
101 FDA Bupropion  20 

102 FDA Buspirone·HCl 20 

103 FDA Busulfan 20 

104 FDA Butenafine·HCl 20 
105 FDA Butoconazole Nitrate 20 

106 FDA Butorphanol-(+)-Tartrate 
(Schedule Iv) 

20 

107 FDA Cabergoline 20 
108 FDA Caffeine  20 

109 FDA Calcipotriene 20 

110 FDA Calcitriol 20 
111 FDA Candesartan 20 

112 FDA Capecitabine 20 

113 FDA Capreomycin Sulfate 20 
114 FDA Capsaicin 20 

115 FDA Captopril 20 

116 FDA Carbachol (Carbamylcholine ) 
Chloride 

20 

117 FDA Carbamazepine 20 
118 FDA Carbidopa 20 

119 FDA Carbinoxamine Maleate 20 

120 FDA Carboplatin 20 
121 FDA Carglumic Acid 20 

122 FDA Carmustine 20 

123 FDA Carvedilol 20 
124 FDA Cefaclor 20 

125 FDA Cefadroxil 20 

126 FDA Cefazolin·Na 20 
127 FDA Cefdinir 20 

128 FDA Cefditoren Pivoxil 20 

129 FDA Cefepime·HCl Hydrate 20 
130 FDA Cefixime 20 

131 FDA Cefotaxime Acid 20 

132 FDA Cefotetan Disodium 20 

133 FDA Cefoxitin·Na 20 
134 FDA Cefpodoxime Proxetil 20 

135 FDA Cefprozil 20 

136 FDA Ceftazidime 20 
137 FDA Ceftibuten 20 

138 FDA Ceftizoxim·Na 20 

139 FDA Ceftriaxone·Na 20 
140 FDA Cefuroxime Axetil 20 

141 FDA Cefuroxime·Na 20 

142 FDA Celecoxib 20 
143 FDA Cephalexin Monohydrate 20 

144 FDA Cetirizine 2HCl 20 

145 FDA Chenodiol (Chenodeoxycholic 
Acid) 

20 

146 FDA Chlorambucil 20 

147 FDA Chloramphenicol 20 

148 FDA Chlorhexidine Dihydrochloride 20 

149 FDA Chloroquine Diphosphate 20 
150 FDA Chlorothiazide 20 

151 FDA Chlorpheniramine Maleate 20 

152 FDA Chlorpromazine·HCl 20 
153 FDA Chlorpropamide 20 

154 FDA Chlorthalidone 20 

155 FDA Chlorzoxazone 20 
156 FDA Ciclesonide 20 

157 FDA Ciclopirox 20 

158 FDA Cidofovir 20 

159 FDA Cilastatin·Na 20 
160 FDA Cilostazol 20 

161 FDA Cimetidine 20 

162 FDA Cinacalcet·HCl 20 
163 FDA Ciprofloxacin 20 

164 FDA Cisatracurium Besylate 20 

165 FDA Cisplatin (Cis-
Diamineplatinum(Ii) 
Dichloride) 

20 

166 FDA Citalopram·HBr 20 
167 FDA Cladribine 20 

168 FDA Clarithromycin 20 

169 FDA Clavulanate Potassium 20 
170 FDA Clemastine Fumarate 20 

171 FDA Clindamycin Palmitate·HCl 20 

172 FDA Clindamycin·HCl 20 
173 FDA Clobazam 20 

174 FDA Clobetasol Propionate 20 

175 FDA Clofarabine 20 
176 FDA Clofazimine 20 

177 FDA Clomiphene Citrate 20 

178 FDA Clomipramine·HCl 20 
179 FDA Clonazepam 20 

180 FDA Clonidine·HCl 20 

181 FDA Clopidogrel Hydrogen Sulfate  20 

182 FDA Clotrimazole 20 
183 FDA Cloxacillin·Na 20 

184 FDA Clozapine 20 

185 FDA Colchicine 20 
186 FDA Colistimethate·Na 20 

187 FDA Colistin Sulfate 20 

188 FDA Cortisone Acetate 20 
189 FDA Cromolyn·Na (Disodium 

Cromoglycate) 
20 

190 FDA Crotamiton 20 

191 FDA Cyclobenzaprine·HCl 20 
192 FDA Cyclopentolate  20 

193 FDA Cyclophosphamide (Free Base) 20 

194 FDA Cycloserine 20 
195 FDA Cyclosporine A 20 

196 FDA Cyproheptadine·HCl 
Sesquihydrate 

20 

197 FDA Cysteamine·HCl 20 

198 FDA Cytarabine 20 
199 FDA Dacarbazine 20 

200 FDA Dactinomycin (= Actinomycin 
D) 

20 

201 FDA Dalfampridine (4-
Aminopyridine) 

20 

202 FDA Danazol 20 

203 FDA Dantrolene·Na 20 

204 FDA Dapsone 20 
205 FDA Daptomycin 20 

206 FDA Darifenacin·HBr 20 

207 FDA Darunavir 20 
208 FDA Dasatinib 20 

209 FDA Daunorubicin·HCl 20 

210 FDA Decitabine 20 

211 FDA Deferasirox 20 
212 FDA Deferoxamine Mesylate 20 

213 FDA Delavirdine Mesylate 20 

214 FDA Demeclocycline·HCl 20 
215 FDA Desipramine·HCl 20 

216 FDA Desloratadine 20 

217 FDA Desogestrel 20 
218 FDA Desonide 20 

219 FDA Desoximetasone 20 

220 FDA Desvenlafaxine Succinate 20 
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Hydrate 
221 FDA Dexamethasone 20 

222 FDA Dexchlorpheniramine Maleate 20 

223 FDA Dexmedetomidine·HCl 20 
224 FDA Dexrazoxane  20 

225 FDA Dextromethorphan 20 

226 FDA Diatrizoate Meglumine 20 
227 FDA Diazepam 20 

228 FDA Diazoxide 20 

229 FDA Diclofenac·Na Salt 20 

230 FDA Dicloxacillin·Na Salt 
Monohydrate 

20 

231 FDA Dicyclomine·HCl 20 

232 FDA Didanosine 20 

233 FDA Dienogest 20 
234 FDA Diflunisal 20 

235 FDA Difluprednate 20 

236 FDA Digoxin 20 
237 FDA Dihydroergotamine Mesylate 20 

238 FDA Diltiazem·HCl 20 

239 FDA Dimenhydrinate 20 
240 FDA Dinoprostone 20 

241 FDA Diphenhydramine·HCl 20 

242 FDA Dipyridamole 20 

243 FDA Disopyramide  20 
244 FDA Disulfiram 20 

245 FDA Dobutamine·HCl 20 

246 FDA Docetaxel (Taxotere) 20 
247 FDA Dofetilide 20 

248 FDA Dolasetron 20 

249 FDA Donepezil·HCl 20 
250 FDA Dopamine·HCl 20 

251 FDA Doripenem 20 

252 FDA Dorzolamide·HCl 20 
253 FDA Doxapram·HCl 20 

254 FDA Doxazosin Mesylate 20 

255 FDA Doxepin·HCl 20 
256 FDA Doxorubicin·HCl 20 

257 FDA Doxycycline Monohydrate 20 

258 FDA Droperidol 20 

259 FDA Drospirenone 20 
260 FDA Duloxetine·HCl 20 

261 FDA Dutasteride 20 

262 FDA Dyphylline 20 
263 FDA Econazole Nitrate 20 

264 FDA Efavirenz 20 

265 FDA Eflornithine·HCl 20 
266 FDA Emtricitabine 20 

267 FDA Enalapril 20 

268 FDA Enalaprilat Maleate 20 
269 FDA Entacapone 20 

270 FDA Epinastine·HCl 20 

271 FDA Epinephrine (L-(-)-
Epinephrine-(+)-Bitartrate) 

20 

272 FDA Epirubicin·HCl 20 

273 FDA Eplerenone 20 

274 FDA Eprosartan Mesylate 20 

275 FDA Eptifibatide 20 
276 FDA Ergotamine Tartrate 20 

277 FDA Erlotinib 20 

278 FDA Erythromycin 20 
279 FDA Escitalopram  20 

280 FDA Esmolol 20 

281 FDA Esomeprazole Potassium 20 
282 FDA Estradiol 20 

283 FDA Estramustine Phosphate·Na 20 

284 FDA Estrone 20 
285 FDA Estropipate 20 

286 FDA Eszopiclone 20 
287 FDA Ethacrynic Acid 20 

288 FDA Ethambutol Dihydrochloride 20 

289 FDA Ethinyl Estradiol 20 
290 FDA Ethionamide 20 

291 FDA Ethosuximide 20 

292 FDA Etidronate Disodium 20 
293 FDA Etodolac 20 

294 FDA Etomidate 20 

295 FDA Etonogestrel 20 

296 FDA Etoposide 20 
297 FDA Everolimus 20 

298 FDA Exemestane 20 

299 FDA Ezetimibe 20 
300 FDA Famciclovir 20 

301 FDA Famotidine 20 

302 FDA Febuxostat 20 
303 FDA Felbamate 20 

304 FDA Felodipine 20 

305 FDA Fenofibrate 20 
306 FDA Fenoldopam Mesylate 20 

307 FDA Fenoprofen Calcium 20 

308 FDA Fexofenadine·HCl 20 
309 FDA Finasteride 20 

310 FDA Fingolimod 20 

311 FDA Flavoxate·HCl 20 

312 FDA Flecainide Acetate 20 
313 FDA Floxuridine 20 

314 FDA Fluconazole 20 

315 FDA Flucytosine 20 
316 FDA Fludarabine Phosphate 20 

317 FDA Fludrocortisone Acetate 20 

318 FDA Flumazenil 20 
319 FDA Flunisolide 20 

320 FDA Fluocinolone Acetonide 20 

321 FDA Fluocinonide 20 
322 FDA Fluorometholone 20 

323 FDA Fluorouracil (5-Fluorouracil) 20 

324 FDA Fluoxetine·HCl 20 
325 FDA Fluphenazine·HCl 20 

326 FDA Flurandrenolide 20 

327 FDA Flurbiprofen 20 

328 FDA Flutamide 20 
329 FDA Fluticasone Propionate 20 

330 FDA Fluvastatin·Na 20 

331 FDA Fluvoxamine Maleate 20 
332 FDA Fomepizole 20 

333 FDA Formoterol 20 

334 FDA Foscarnet·Na (Sodium 
Phosphonoformate Tribasic 
Hexahydrate)  

20 

335 FDA Fosfomycin Calcium 20 

336 FDA Fosinopril·Na 20 

337 FDA Fosphenytoin·Na 
Pentahydrate 

20 

338 FDA Fulvestrant 20 

339 FDA Furosemide 20 

340 FDA Gabapentin 20 

341 FDA Galantamine·HBr 20 
342 FDA Ganciclovir 20 

343 FDA Gatifloxacin 20 

344 FDA Gefitinib 20 
345 FDA Gemcitabine·HCl 20 

346 FDA Gemfibrozil 20 

347 FDA Gemifloxacin  20 
348 FDA Gentamycin Sulfate 20 

349 FDA Glimepiride 20 

350 FDA Glipizide 20 

42



351 FDA Glyburide 20 
352 FDA Glycopyrrolate Iodide 20 

353 FDA Goserelin Acetate 20 

354 FDA Granisetron·HCl 20 
355 FDA Griseofulvin 20 

356 FDA Guanabenz Acetate  20 

357 FDA Guanfacine·HCl 20 
358 FDA Guanidine·HCl 20 

359 FDA Halcinonide 20 

360 FDA Halobetasol Propionate 20 

361 FDA Haloperidol  20 
362 FDA Hexachlorophene 20 

363 FDA Homatropine Methylbromide 20 

364 FDA Hydralazine·HCl 20 
365 FDA Hydrochlorothiazide 20 

366 FDA Hydrocortisone 20 

367 FDA Hydrocortisone Acetate 20 
368 FDA Hydroflumethiazide 20 

369 FDA Hydroxocobalamin·HCl 20 

370 FDA Hydroxychloroquine Sulfate 20 
371 FDA Hydroxyurea 20 

372 FDA Hydroxyzine Dihydrochloride 20 

373 FDA Ibandronate·Na Monohydrate 20 
374 FDA Ibuprofen 20 

375 FDA Ibutilide Fumarate 20 

376 FDA Idarubicin·HCl 20 

377 FDA Idoxuridine 20 
378 FDA Ifosfamide 20 

379 FDA Iloperidone 20 

380 FDA Imatinib Mesylate 20 
381 FDA Imipenem 20 

382 FDA Imipramine·HCl 20 

383 FDA Imiquimod 20 
384 FDA Indapamide 20 

385 FDA Indinavir  20 

386 FDA Indomethacin 20 
387 FDA Ipratropium·Br 20 

388 FDA Irbesartan 20 

389 FDA Irinotecan·HCl 20 
390 FDA Isocarboxazid 20 

391 FDA Isoniazid 20 

392 FDA Isosorbide Dinitrate 20 

393 FDA Isotretinoin (13-Cis-Retinoic 
Acid) 

20 

394 FDA Isradipine 20 

395 FDA Itraconazole 20 

396 FDA Ivermectin 20 
397 FDA Kanamycin Sulfate 20 

398 FDA Ketoconazole 20 

399 FDA Ketoprofen 20 
400 FDA Ketorolac Tromethamine 20 

401 FDA Ketotifen Fumarate 20 

402 FDA Labetalol·HCl 20 
403 FDA Lacosamide 20 

404 FDA Lactulose 20 

405 FDA Lamivudine 20 

406 FDA Lamotrigine 20 
407 FDA Lansoprazole 20 

408 FDA Lapatinib Ditosylate 20 

409 FDA L-Ascorbic Acid 20 
410 FDA Latanoprost 20 

411 FDA Leflunomide 20 

412 FDA Lenalidomide 20 
413 FDA Letrozole 20 

414 FDA Leucovorin Calcium 
Pentahydrate 

20 

415 FDA Levalbuterol·HCl 20 
416 FDA Levetiracetam 20 

417 FDA Levobunolol·HCl 20 
418 FDA Levocarnitine 20 

419 FDA Levocetirizine Dihydrochloride 20 

420 FDA Levofloxacin·HCl 20 
421 FDA Levonorgestrel 20 

422 FDA Levothyroxine·Na 20 

423 FDA Lidocaine·HCl·H2O 20 
424 FDA Lincomycin·HCl 20 

425 FDA Lindane 20 

426 FDA Linezolid 20 

427 FDA Liothyronine·Na 20 
428 FDA Lisinopril·2H2O 20 

429 FDA Lomustine 20 

430 FDA Loperamide·HCl 20 
431 FDA Lopinavir 20 

432 FDA Loratadine 20 

433 FDA Lorazepam 20 
434 FDA Losartan Potassium 20 

435 FDA Loteprednol Etabonate 20 

436 FDA Lovastatin 20 
437 FDA Loxapine Succinate 20 

438 FDA Mafenide·HCl 20 

439 FDA Malathion 20 
440 FDA Mannitol 20 

441 FDA Maprotiline·HCl 20 

442 FDA Maraviroc 20 

443 FDA Mebendazole 20 
444 FDA Mechlorethamine·HCl 20 

445 FDA Meclizine Dihydrochloride 20 

446 FDA Meclofenamate·Na 20 
447 FDA Medroxyprogesterone 

Acetate 
20 

448 FDA Mefenamic Acid 20 

449 FDA Mefloquine·HCl 20 
450 FDA Megestrol Acetate 20 

451 FDA Meloxicam 20 

452 FDA Melphalan 20 
453 FDA Memantine·HCl 20 

454 FDA Mepenzolate Bromide 20 

455 FDA Mepivacaine·HCl 20 

456 FDA Meprobamate (Schedule Iv) 20 
457 FDA Mequinol 20 

458 FDA Mercaptopurine Hydrate 20 

459 FDA Meropenem 20 
460 FDA Mesalamine (5-Aminosalicylic 

Acid) 
20 

461 FDA Mesna 20 

462 FDA Mestranol 20 
463 FDA Metaproterenol Hemisulfate 

(Orciprenaline) 
20 

464 FDA Metaraminol Bitartrate 20 

465 FDA Metaxalone 20 
466 FDA Metformin·HCl 20 

467 FDA Methacholine Chloride 20 

468 FDA Methazolamide 20 
469 FDA Methenamine Hippurate 20 

470 FDA Methimazole 20 

471 FDA Methocarbamol 20 

472 FDA Methotrexate  20 
473 FDA Methoxsalen (Xanthotoxin) 20 

474 FDA Methscopolamine Bromide 
((−)-Scopolamine Methyl 
Bromide) 

20 

475 FDA Methsuximide 20 
476 FDA Methyclothiazide 20 

477 FDA Methyl Aminolevulinate·HCl 20 

478 FDA Methyldopa Sesquihydrate (L-
Α-Methyl-Dopa Sesquihyrate) 

20 
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479 FDA Methylergonovine Maleate 20 
480 FDA Methylprednisolone 20 

481 FDA Metoclopramide·HCl 20 

482 FDA Metolazone 20 
483 FDA Metoprolol Tartrate 20 

484 FDA Metronidazole 20 

485 FDA Metyrapone 20 
486 FDA Mexiletine·HCl 20 

487 FDA Micafungin  20 

488 FDA Miconazole 20 

489 FDA Midodrine·HCl 20 
490 FDA Mifepristone 20 

491 FDA Miglitol 20 

492 FDA Miglustat (N-
Butyldeoxynojirimycin·HCl) 

20 

493 FDA Milnacipran·HCl 20 

494 FDA Milrinone 20 

495 FDA Minocycline  20 
496 FDA Minoxidil 20 

497 FDA Mirtazapine 20 

498 FDA Misoprostol 20 
499 FDA Mitomycin C 20 

500 FDA Mitotane 20 

501 FDA Mitoxantrone·HCl 20 

502 FDA Modafinil (Schedule Iv) 20 
503 FDA Moexipril·HCl 20 

504 FDA Mometasone Furoate 20 

505 FDA Montelukast·Na 20 
506 FDA Moxifloxacin·HCl 20 

507 FDA Mupirocin 20 

508 FDA Mycophenolate Mofetil 20 
509 FDA Mycophenolic Acid 20 

510 FDA Nabumetone 20 

511 FDA Nadolol 20 
512 FDA Nafcillin·Na 20 

513 FDA Naftifine·HCl 20 

514 FDA Nalbuphine·HCl Dihydrate 20 
515 FDA Naloxone·HCl 20 

516 FDA Naltrexone·HCl 20 

517 FDA Naphazoline·HCl 20 

518 FDA Naproxen 20 
519 FDA Naratriptan·HCl 20 

520 FDA Natamycin 20 

521 FDA Nateglinide 20 
522 FDA Nebivolol·HCl 20 

523 FDA Nefazodone·HCl 20 

524 FDA Nelarabine 20 
525 FDA Nelfinavir Mesylate 20 

526 FDA Neomycin Sulfate 20 

527 FDA Nepafenac 20 
528 FDA Nevirapine 20 

529 FDA Niacin (Known As Vitamin B3, 
Nicotinic Acid And Vitamin Pp)  

20 

530 FDA Nicardipine·HCl 20 
531 FDA Nicotine 20 

532 FDA Nifedipine 20 

533 FDA Nilotinib 20 

534 FDA Nilutamide 20 
535 FDA Nimodipine 20 

536 FDA Nisoldipine 20 

537 FDA Nitazoxanide 20 
538 FDA Nitisinone 20 

539 FDA Nitrofurantoin 20 

540 FDA Nizatidine 20 
541 FDA Norepinephrine Bitartrate 

Monohydrate 
20 

542 FDA Norethindrone 20 

543 FDA Norfloxacin 20 

544 FDA Nortriptyline·HCl 20 
545 FDA Nystatin 20 

546 FDA Ofloxacin 20 

547 FDA Olanzapine 20 
548 FDA Olmesartan 20 

549 FDA Olopatadine 20 

550 FDA Olsalazine·Na 20 
551 FDA Omeprazole 20 

552 FDA Ondansetron 20 

553 FDA Orlistat (Tetrahydrolipstatin) 20 

554 FDA Orphenadrine Citrate 20 
555 FDA Oseltamivir Phosphate 20 

556 FDA Oxacillin·Na 20 

557 FDA Oxaliplatin 20 
558 FDA Oxaprozin 20 

559 FDA Oxazepam 20 

560 FDA Oxcarbazepine 20 
561 FDA Oxiconazole Nitrate 20 

562 FDA Oxtriphylline 20 

563 FDA Oxybutynin Chloride 20 
564 FDA Oxytetracycline·HCl 20 

565 FDA Paclitaxel (Taxol) 20 

566 FDA Paliperidone 20 
567 FDA Palonosetron·HCl 20 

568 FDA Pamidronate Disodium  
Pentahydrate (Pamidronic 
Acid) 

20 

569 FDA Pancuronium·2Br 20 

570 FDA Pantoprazole 20 
571 FDA Paromomycin Sulfate 20 

572 FDA Paroxetine·HCl 20 

573 FDA Pazopanib·HCl 20 
574 FDA Pemetrexed Disodium 20 

575 FDA Pemirolast Potassium 20 

576 FDA Penciclovir 20 
577 FDA Penicillamine (D-

Penicillamine) 
20 

578 FDA Penicillin G Potassium 
(Benzylpenicillin) 

20 

579 FDA Penicillin V Potassium 20 

580 FDA Pentamidine Isethionate 20 
581 FDA Pentostatin 20 

582 FDA Pentoxifylline 20 

583 FDA Perindopril Erbumine 20 
584 FDA Permethrin 20 

585 FDA Perphenazine 20 

586 FDA Phenelzine Sulfate 20 
587 FDA Phenoxybenzamine·HCl 20 

588 FDA Phentolamine·HCl 20 

589 FDA Phenylephrine  20 
590 FDA Phenytoin 20 

591 FDA Phytonadione 20 

592 FDA Pilocarpine·HCl 20 
593 FDA Pimecrolimus 20 

594 FDA Pimozide 20 

595 FDA Pindolol 20 

596 FDA Pioglitazone·HCl 20 
597 FDA Piperacillin 20 

598 FDA Piroxicam 20 

599 FDA Pitavastatin Calcium 20 
600 FDA Podofilox 20 

601 FDA Posaconazole 20 

602 FDA Pralidoxime Chloride 20 
603 FDA Pramipexole Dihydrochloride 

Monohydrate 
20 

604 FDA Prasugrel 20 

605 FDA Pravastatin·Na 20 
606 FDA Praziquantel 20 
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607 FDA Prazosin·HCl 20 
608 FDA Prednisolone 20 

609 FDA Prednisone 20 

610 FDA Pregabalin 20 
611 FDA Prilocaine·HCl 20 

612 FDA Primaquine Phosphate 20 

613 FDA Primidone 20 
614 FDA Probenecid 20 

615 FDA Procainamide·HCl 20 

616 FDA Procarbazine·HCl 20 

617 FDA Progesterone 20 
618 FDA Promethazine·HCl 20 

619 FDA Propafenone·HCl 20 

620 FDA Proparacaine·HCl 20 
621 FDA Propofol 20 

622 FDA Propranolol·HCl 20 

623 FDA Propylthiouracil 20 
624 FDA Protriptyline·HCl 20 

625 FDA Pyrazinamide 20 

626 FDA Pyridostigmine Bromide 20 
627 FDA Pyrimethamine 20 

628 FDA Quetiapine Fumarate 20 

629 FDA Quinapril·HCl 20 
630 FDA Quinidine·HCl·H2O 20 

631 FDA Quinine·HCl·H2O 20 

632 FDA Rabeprazole·Na 20 

633 FDA Raloxifene·HCl 20 
634 FDA Raltegravir 20 

635 FDA Ramelteon 20 

636 FDA Ramipril 20 
637 FDA Ranitidine·HCl 20 

638 FDA Ranolazine·2HCl 20 

639 FDA Rasagiline Mesylate 20 
640 FDA Regadenoson 20 

641 FDA Repaglinide 20 

642 FDA Reserpine 20 
643 FDA Ribavirin 20 

644 FDA Rifabutin 20 

645 FDA Rifampin (Rifampicin) 20 
646 FDA Rifapentine 20 

647 FDA Rifaximin 20 

648 FDA Riluzole·HCl 20 

649 FDA Rimantadine·HCl 20 
650 FDA Risperidone 20 

651 FDA Risredonic Acid 20 

652 FDA Ritonavir 20 
653 FDA Rivastigmine Tartrate 20 

654 FDA Rizatriptan Benzoate 20 

655 FDA Rocuronium Bromide 20 
656 FDA Ropinirole·HCl 20 

657 FDA Ropivacaine·HCl Monohydrate 20 

658 FDA Rosiglitazone  20 
659 FDA Rosuvastatin Calcium 20 

660 FDA Rufinamide 20 

661 FDA Salbutamol Hemisulfate 20 
662 FDA Salmeterol  20 

663 FDA Saquinavir Mesylate 20 

664 FDA Scopolamine·HBr 20 

665 FDA Selegiline·HCl 20 
666 FDA Sertaconazole 20 

667 FDA Sertraline·HCl 20 

668 FDA Sildenafil Citrate 20 
669 FDA Silver Sulfadiazine 20 

670 FDA Simvastatin 20 

671 FDA Sirolimus (Rapamycin) 20 
672 FDA Sitagliptin Phosphate 20 

673 FDA Sodium Phenylbutyrate 20 

674 FDA Sorafenib Tosylate 20 
675 FDA Sotalol·HCl 20 

676 FDA Spectinomycin·HCl 
Pentahydrate 

20 

677 FDA Spironolactone 20 
678 FDA Stavudine 20 

679 FDA Streptomycin Sulfate 20 

680 FDA Streptozocin 20 

681 FDA Succinylcholine Chloride·2H2O 20 
682 FDA Sulconazole Nitrate 20 

683 FDA Sulfacetamide·Na 20 

684 FDA Sulfadiazine 20 
685 FDA Sulfamethoxazole 20 

686 FDA Sulfanilamide 20 

687 FDA Sulfasalazine 20 
688 FDA Sulindac 20 

689 FDA Sumatriptan Succinate 20 

690 FDA Sunitinib Malate 20 
691 FDA Tacrine·HCl 20 

692 FDA Tacrolimus (Fk506) 20 

693 FDA Tadalafil 20 
694 FDA Tamoxifen Citrate 20 

695 FDA Tamsulosin·HCl 20 

696 FDA Tazarotene 20 

697 FDA Telbivudine  20 
698 FDA Telithromycin 20 

699 FDA Telmisartan 20 

700 FDA Temazepam 20 
701 FDA Temozolomide 20 

702 FDA Temsirolimus 20 

703 FDA Teniposide 20 
704 FDA Tenofovir 20 

705 FDA Terazosin·HCl 20 

706 FDA Terbinafine·HCl 20 
707 FDA Terbutaline Hemisulfate 20 

708 FDA Terconazole 20 

709 FDA Testosterone Enanthate 20 
710 FDA Tetrabenazine 20 

711 FDA Tetracycline 20 

712 FDA Tetrahydrozoline·HCl 20 

713 FDA Thalidomide 20 
714 FDA Theophylline 20 

715 FDA Thioguanine (6-Thioguanine) 20 

716 FDA Thioridazine·HCl 20 
717 FDA Thiotepa 20 

718 FDA Tiagabine·HCl 20 

719 FDA Ticlopidine·HCl 20 
720 FDA Tigecycline 20 

721 FDA Tiludronate Disodium 20 

722 FDA Tinidazole 20 
723 FDA Tiopronin 20 

724 FDA Tiotropium Bromide 
Monohydrate 

20 

725 FDA Tirofiban·HCl 20 
726 FDA Tizanidine·HCl 20 

727 FDA Tobramycin 20 

728 FDA Tolazamide 20 

729 FDA Tolbutamide 20 
730 FDA Tolcapone 20 

731 FDA Tolmetin·Na 20 

732 FDA Tolterodine Tartrate 20 
733 FDA Tolvaptan 20 

734 FDA Topiramate 20 

735 FDA Topotecan·HCl 20 
736 FDA Toremifene Base 20 

737 FDA Torsemide 20 

738 FDA Tramadol·HCl 20 
739 FDA Trandolapril 20 
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740 FDA Tranexamic Acid 20 
741 FDA Tranylcypromine Hemisulfate 20 

742 FDA Travoprost 20 

743 FDA Trazodone·HCl 20 
744 FDA Tretinoin 20 

745 FDA Triamcinolone Acetonide 20 

746 FDA Triamterene 20 
747 FDA Triazolam 20 

748 FDA Trientine Dihydrochloride 20 

749 FDA Trifluoperazine·HCl 20 

750 FDA Trihexyphenidyl·HCl 20 
751 FDA Trimethadione 20 

752 FDA Trimethobenzamide·HCl 20 

753 FDA Trimethoprim 20 
754 FDA Trimipramine Maleate 20 

755 FDA Triptorelin Acetate 20 

756 FDA Tropicamide 20 
757 FDA Trospium Chloride 20 

758 FDA Ursodiol 20 

759 FDA Valacyclovir·HCl 20 
760 FDA Valganciclovir·HCl 20 

761 FDA Valproate·Na 20 

762 FDA Valproic Acid 20 
763 FDA Valsartan 20 

764 FDA Vancomycin·HCl 20 

765 FDA Vardenafil  20 

766 FDA Varenicline Tartrate 20 
767 FDA Vecuronium Bromide 20 

768 FDA Venlafaxine·HCl 20 

769 FDA Verapamil·HCl 20 
770 FDA Vigabatrin 20 

771 FDA Vinblastine Sulfate 20 

772 FDA Vincristine Sulfate 20 
773 FDA Vinorelbine  20 

774 FDA Voriconazole 20 

775 FDA Vorinostat 20 
776 FDA Warfarin·Na 20 

777 FDA Zafirlukast 20 

778 FDA Zalcitabine (2',3'-
Dideoxycytidine) 

20 

779 FDA Zaleplon 20 
780 FDA Zanamivir 20 

781 FDA Zidovudine (3'-Azido-3'-
Deoxythymidine) 

20 

782 FDA Zileuton 20 
783 FDA Ziprasidone  20 

784 FDA Zoledronic Acid Monohydrate 20 

785 FDA Zolmitriptan 20 
786 FDA Zonisamide 20 

787 BI BRD_1 (TV062569) 20 

788 BI BRD_10 (TV062581) 20 
789 BI BRD_11 (TV062567) 20 

790 BI BRD_12 (TV062568) 20 

791 BI BRD_13 (TV062203) 20 
792 BI BRD_14 (TV062240) 20 

793 BI BRD_15 (TV062245) 20 

794 BI BRD_16 (TV062246) 20 

795 BI BRD_17 (TV062582) 20 
796 BI BRD_18 (TV062192) 20 

797 BI BRD_19 (TV062193) 20 

798 BI BRD_2 (TV062570) 20 
799 BI BRD_20 (TV062194) 20 

800 BI BRD_21 (TV062195) 20 

801 BI BRD_22 (TV062196) 20 
802 BI BRD_23 (TV062197) 20 

803 BI BRD_24 (TV062202) 20 

804 BI BRD_25 (TV062207) 20 
805 BI BRD_26 (TV062208) 20 

806 BI BRD_27 (TV062209) 20 
807 BI BRD_28 (TV062200) 20 

808 BI BRD_29 (TV062201) 20 

809 BI BRD_3 (TV062572) 20 
810 BI BRD_30 (TV062198) 20 

811 BI BRD_31 (TV062199) 20 

812 BI BRD_4 (TV062573) 20 
813 BI BRD_5 (TV062574) 20 

814 BI BRD_6 (TV062577) 20 

815 BI BRD_7 (TV062578) 20 

816 BI BRD_8 (TV062579) 20 
817 BI BRD_9 (TV062580) 20 

818 BI CHIR 99021 20 

819 BI SJH2  20 
820 BI SJH3 20 

821 BI SJH4 20 

822 BI SJH5 20 
823 BI JB 1121 20 

824 JH/ M 5C10 20 

825 JH/ M 78-3 20 
826 JH/ M 86-1 20 

827 JH/ M 86-2 20 

828 JH/ M 86-3 20 
829 JH/ M 87-1 20 

830 JH/ M 87-2 20 

831 JH/ M 87-3 20 

832 JH/ M 87-4 20 
833 JH/ M 90-2 20 

834 JH/ M 90-3 20 

835 JH/ M 90-4 20 
836 JH/ M 90-5 20 

837 JH/ M CPH2-102 20 

838 JH/ M CPH2-103 20 
839 JH/ M CPH2-128 20 

840 JH/ M CPH2-141 20 

841 JH/ M CPH2-48 20 
842 JH/ M CPH2-49 20 

843 JH/ M CPH2-52 20 

844 JH/ M CPH2-53 20 
845 JH/ M CPH2-56 20 

846 JH/ M CPH3-27 20 

847 JH/ M CPH6-60 20 

848 JH/ M FTY720 HCL 20 
849 JH/ M JDG3-82 20 

850 JH/ M JGD-13W(3f) 20 

851 JH/ M JGD3-142 20 
852 JH/ M JGD3-143 20 

853 JH/ M JGD4-11Y (3e) 20 

854 JH/ M JGD4-12W(3c) 20 
855 JH/ M JGD4-13Y(3d) 20 

856 JH/ M JGD4-20W 20 

857 JH/ M Toxo-0027 20 
858 JH/ M Toxo-0028 20 

859 RH RW_121 3000 

860 RH RW_26 3000 
861 RH RW_43 3000 

862 RH RW_44 3000 

863 RH RW_54 3000 

864 RH RW_60 3000 
865 RH RW17 3000 

866 CCNR 2-pirydylethylamine 20 

867 CCNR 7-hydroxy-DPAT 20 
868 CCNR 8-bromo-cAMP 1400 

869 CCNR agomelatine 20 

870 CCNR AICAR (+ GW501516 0.1uM) 20 
871 CCNR anti-CD3/CD28 0.006 

872 CCNR AS19 20 
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873 CCNR BCR stim 0.056 
874 CCNR BDNF 0.008 

875 CCNR calyculin 2 

876 CCNR clozapine 20 
877 CCNR cucurbitacin I 20 

878 CCNR Curcumin 20 

879 CCNR fenobam 20 
880 CCNR forskolin 20 

881 CCNR FPL 64176 0.2 

882 CCNR FPL 64176 2 

883 CCNR FPL 64176 20 
884 CCNR GSK690693 20 

885 CCNR GW7647 20 

886 CCNR haloperidol 20 
887 CCNR idebenone 20 

888 CCNR IFNalpha2C 0.01 

889 CCNR IFNgamma 0.012 
890 CCNR IL-10 0.01 

891 CCNR IL-1beta 0.012 

892 CCNR IL-2 0.014 
893 CCNR IL-23 0.004 

894 CCNR IL-4 0.014 

895 CCNR IL-6 0.008 
896 CCNR insulin 0.2 

897 CCNR isoproterenol 20 

898 CCNR KT 5720 0.8 

899 CCNR leptin 0.126 
900 CCNR LPS 0.0002 

901 CCNR LY-294,002 hydrochloride 20 

902 CCNR m-3M3FBS 0.2 
903 CCNR m-3M3FBS 2 

904 CCNR m-3M3FBS 20 

905 CCNR NECA 20 
906 CCNR Nefiracetam 0.2 

907 CCNR Nefiracetam 2 

908 CCNR Nefiracetam 20 
909 CCNR NNC 55-0396 dHCl 0.2 

910 CCNR NNC 55-0396 dHCl 2 

911 CCNR NNC 55-0396 dHCl 20 
912 CCNR olanzapine 20 

913 CCNR orthovanadate 300 

914 CCNR PCP 20 

915 CCNR Penfluridol 0.2 
916 CCNR Penfluridol 2 

917 CCNR Penfluridol 20 

918 CCNR PHA543613 20 
919 CCNR PMA/ionomycin 2 

920 CCNR PS48 20 

921 CCNR resveratrol  20 
922 CCNR risperidone 20 

923 CCNR ryanodine 0.2 

924 CCNR ryanodine 2 
925 CCNR ryanodine 20 

926 CCNR SB 239063 10 

927 CCNR SB202190 20 
928 CCNR SC9 20 

929 CCNR SEB 0.07 

930 CCNR SKF83822 20 

931 CCNR SR57227 20 
932 CCNR staurosporine 10 

933 CCNR sumanirole 20 

934 CCNR TCB-2 20 
935 CCNR TC-G 24 20 

936 CCNR thapsigargin 2 

937 CCNR TNFalpha 0.01 
938 CCNR trolox 20 

939 CCNR U0126 20 

940 CCNR U73122 0.2 
941 CCNR U73122 2 

942 CCNR U73122 20 

943 CCNR Vitamin D3 solution 0.2 
944 CCNR WHI-P 154 20 

945 CCNR xaliproden 20 

946 CCNR xanomeline 20 
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Table 2.3: Antibodies used to detect intracellular cell signalling epitopes and PBMC subtypes. Antibodies are 
grouped by class, in terms of which cell signalling pathways they are ascribed to, and then ordered
alphabetically. Time course (TC), Antipsychotic intervention (AI), Differential diagnosis (DD) and FDA compound 
screening (FDA) columns denote the studies for which the antibodies were used. Gene IDs are taken from NCBI 
Gene database. Stain index refers to median MFI of the stained samples/ median MFI of the unstained samples 
in the vehicle condition across eight PBMC donors for each epitope, based on data from the TC study. 
Abbreviations: Rabbit (R), Mouse (Ms),  protein kinase B (AKT), interleukin-1 receptor/ toll-like receptor (IL1R/
TLR), Janus kinase/signal transducer and activator of transcription (JAK/ STAT), mitogen-activated protein 
kinase (MAPK), protein kinase A (PKA), protein kinase C (PKC), T cell receptor/ B cell receptor (TCR/ BCR).

Epitopes Clone Isotype Gene Class
Fluoro-
chrome

Stain 
index TC AI DD FDA Supplier

4EBP1 (pT36/pT45) M31-16 Ms IgG1, κ EIF4EBP1 AKT AF 488 5.3 TC AI DD BD Biosciences
4EBP1 (pT69) M34-273 Ms IgG1, κ EIF4EBP1 AKT PE 1.9 TC AI BD Biosciences
Akt (pS473) M89-61 Ms IgG1, κ AKT1 AKT AF 647 22.4 TC AI DD BD Biosciences
Akt (pT308) J1-223.371 Ms IgG1, κ AKT1 AKT PE 8.6 TC AI DD BD Biosciences
Akt1 55/PKBa/Akt Ms IgG1, κ AKT1 AKT AF 488 12.4 TC AI DD BD Biosciences
β-Catenin (pS45) K63-363 Ms IgG1, κ CTNNB1 AKT AF 647 72.8 TC AI DD BD Biosciences
CD221 (pY1131) K74-218 Ms IgG1, κ IGF1R AKT AF 647 7.2 TC AI BD Biosciences
elF4E (pS209) J77-925 Ms IgG1, κ EIF4E AKT PE 1.7 TC AI BD Biosciences
Ezrin (pY353) I66-386 Ms IgG1 EZR AKT PE 1.4 TC AI BD Biosciences
FAK (pS910) K73-480 Ms IgG2b, κ PTK2 AKT AF 488 118.9 TC BD Biosciences
GSK-3α/β 4G-1E Ms IgG1 GSK3B AKT FITC 8.7 TC AI DD Merck Millipore
GSK-3β (pSer9) D85E12 R IgG GSK3B AKT PE 2.9 TC AI DD Cell Signaling 

Technology
GSK-3β (pThr390) polyclonal R IgG GSK3B AKT PE 23.1 TC AI Bioss
GSK-3β (pTyr216) polyclonal R IgG GSK3B AKT AF 647 498.6 TC Bioss
IRS-1 (pY896) K9-211 Ms IgG2a, κ IRS1 AKT AF 647 9.8 TC AI BD Biosciences
PDPK1 (pS241) J66-653.44.17 Ms IgG1, κ PDPK1 AKT AF 488 29.7 TC AI DD BD Biosciences
S6 (PS235/PS236) N7-548 Ms IgG1, κ RP26 AKT AF 647 9.9 TC AI DD BD Biosciences
S6 (PS240) N4-41 Ms IgG1, κ RPS6 AKT AF 488 1.4 TC AI BD Biosciences
IκBα 25/IkBa/MAD-3 Ms IgG1 NFKBIA IL1R/ TLR PE 25.9 TC AI DD BD Biosciences
IRAK4 L29-525 Ms IgG1, κ IRAK4 IL1R/ TLR PE 33.3 TC BD Biosciences
IRF-7 (pS477/pS479) K47-671 Ms IgG1, κ IRF7 IL1R/ TLR AF 488 32.2 TC AI DD BD Biosciences
NF-κB p65 (pS529) K10-895.12.50 Ms IgG2b, κ RELA IL1R/ TLR AF 647 23.1 TC AI DD BD Biosciences
STAT1 (N-Terminus) 1/Stat1 Ms IgG1 STAT1 JAK/ STAT PE 45.6 TC AI DD BD Biosciences
STAT1 (pS727) K51-856 Ms IgG1, κ STAT1 JAK/ STAT AF 488 5.9 TC AI DD BD Biosciences
STAT1 (pY701) 4a Ms IgG2a STAT1 JAK/ STAT AF 647 10.6 TC AI DD BD Biosciences
STAT3 M59-50 Ms IgG1, λ STAT3 JAK/ STAT PE 4.5 TC AI DD BD Biosciences
STAT3 (pS727) 49/p-Stat3 Ms IgG1 STAT3 JAK/ STAT AF 488 9.7 TC AI DD BD Biosciences
STAT3 (pY705) 4/P-STAT3 Ms IgG2a, κ STAT3 JAK/ STAT AF 647 14.4 TC AI DD BD Biosciences
STAT4 (pY693) 38/p-Stat4 Ms IgG2b STAT4 JAK/ STAT PE 5.8 TC AI DD BD Biosciences
STAT5 (pY694) 47/Stat5(pY694) Ms IgG1, κ STAT5A, STAT5B JAK/ STAT AF 647 61.5 TC AI DD BD Biosciences
STAT6 (pY641) 18/P-Stat6 Ms IgG2a STAT6 JAK/ STAT PE 1.5 TC AI BD Biosciences
Bcl-2 (pS70) N46-467 Ms IgG1 BCL2 MAPK AF 647 14.5 TC AI DD BD Biosciences
ERK1/2 (pT202/pY204) 20A Ms IgG1 MAPK1, MAPK3 MAPK AF 647 79.1 TC AI DD BD Biosciences
JNK (pT183/pY185) N9-66 Ms IgG1, κ MAPK8 MAPK AF 647 23.9 TC BD Biosciences
MAPKAPK-2 (pT334) P24-694 Ms IgG1, κ MAPKAPK MAPK AF 488 1.1 TC AI BD Biosciences
MEK1 (pS218)/MEK2 (pS222) O24-836 Ms IgG1, κ MAP2K1, MAP2K2 MAPK AF 647 18.4 TC AI BD Biosciences
MEK1 (pS298) J114-64 Ms IgG1, κ MAP2K1 MAPK PE 2.1 TC AI BD Biosciences
p38 MAPK (pT180/pY182) 36/p38 (pT180/pY182) Ms IgG1, κ MAPK14, MAPK13, 

MAPK12
MAPK AF 647 12.4 TC AI DD BD Biosciences

p53 (acK382) L82-51 Ms IgG1, κ TP53 MAPK AF 647 21.5 TC AI DD BD Biosciences
p53 (pS37) J159-641.79 Ms IgG1, κ TP53 MAPK AF 488 6.2 TC AI BD Biosciences
CD140b (pY857) J24-618 Ms IgG1, κ PDGFRB Other AF 488 1.2 TC AI BD Biosciences
Rb (pS780) J146-35 Ms IgG1, κ RB1 Other AF 488 2.6 TC AI BD Biosciences
Smad2 (pS465/pS467)/Smad3 (pS423/pS425) O72-670 Ms IgG1, κ SMAD2 Other PE 2.8 TC AI BD Biosciences
CREB (pS133) / ATF-1 (pS63) J151-21 Ms IgG1, κ CREB1 PKA AF 647 15 TC AI DD BD Biosciences
DARPP32 polyclonal R IgG PPP1R1B PKA PE 27 TC Bioss
DARPP32 (pThr34) polyclonal R IgG PPP1R1B PKA AF 647 188.7 TC Bioss
DARPP32 (pThr75) polyclonal R IgG PPP1R1B PKA AF 488 57 TC Bioss
PKA RII-α (pS99) I65-856.286 Ms IgG1, κ PRKAR2A PKA AF 647 91.7 TC AI DD BD Biosciences
PKA RII-β (pS114) 47/PKA Ms IgG1 PRKAR2B PKA AF 488 5 TC AI DD BD Biosciences
p120 Catenin (pS268) 9a.390 Ms IgG2b, κ CTNND1 PKC AF 488 1.4 TC AI BD Biosciences
p120 Catenin (pS879) K114-1011 Ms IgG1, κ CTNND1 PKC PE 4.1 TC AI BD Biosciences
p120 Catenin (pT310) 22/p120 (pT310) Ms IgG1, κ CTNND1 PKC AF 488 10.2 TC AI DD BD Biosciences
PKC-α 3/PKCα Ms IgG2b PRKCA PKC AF 488 43.6 TC AI DD BD Biosciences
PKC-α (pT497) K14-984 Ms IgG1, κ PRKCA PKC AF 647 33.4 TC AI DD BD Biosciences
PKC-α/βII (pThr638/641) polyclonal R IgG PRKCA, PRKCB PKC PE 14.8 TC Bioss
PKC-β1/2 (pThr500) polyclonal R IgG PRKCB PKC PE 1.9 TC Bioss
PKC-δ (pThr505) polyclonal R IgG PRKCD PKC AF 488 18.6 TC Bioss
PKC-θ 27/PKCθ Ms IgG2a, κ PRKCQ PKC PE 2.8 TC AI DD BD Biosciences
PKC-θ (pT538) polyclonal R IgG PRKCQ PKC PE 16.4 TC AI Bioss
PKC-θ(pSer695) polyclonal R IgG PRKCQ PKC AF 488 9.1 TC Bioss
PLC-γ1 10/PLCgamma Ms IgG1 PLCG1, PLCG2 PKC PE 15.1 TC AI DD FDA BD Biosciences
PLC-γ1 (pY783) 27/PLC Ms IgG1 PLCG1 PKC AF 647 12.4 TC AI DD BD Biosciences
PLC-γ2 K86-1161 Ms IgG1, κ PLCG2 PKC AF 488 1.7 TC AI DD BD Biosciences
PLC-γ2 (pY759) K86-689.37 Ms IgG1, κ PLCG2 PKC AF 647 9.4 TC AI DD BD Biosciences
BLNK (pY84) J117-1278 Ms IgG2b, κ BLNK TCR/ BCR PE 1.2 TC AI BD Biosciences
Btk (pY551) & Itk (pY511) 24a/BTK (Y551) Ms IgG1 BTK TCR/ BCR AF 647 16.4 TC BD Biosciences
c-Cbl (pY700) 47/c-Cbl Ms IgG1 CBL TCR/ BCR PE 2.2 TC AI BD Biosciences
c-Cbl (pY774) 29/c-Cbl Ms IgG1 CBL TCR/ BCR PE 1.9 TC AI BD Biosciences
CrkL (pY207) K30-391.50.80 Ms IgG2a, κ CRKL TCR/ BCR AF 488 14.1 TC AI DD BD Biosciences
LAT (pY226) J96-1238.58.93 Ms IgG1, κ LAT TCR/ BCR AF 488 1.5 TC AI BD Biosciences
Lck (pY505) 4/LCK-Y505 Ms IgG1 LCK TCR/ BCR AF 488 2.4 TC AI BD Biosciences
Pyk2 (pY402) L68-1256.272 Ms IgG2b, κ PTK2B TCR/ BCR PE 8.9 TC AI DD BD Biosciences
SHP2 (pY542) L99-921 Ms IgG1, κ PTPN11 TCR/ BCR AF 647 31 TC AI DD BD Biosciences
SLP-76 (pY128) J141-668.36.58 Ms IgG1, κ LCP2 TCR/ BCR AF 647 11.4 TC AI DD BD Biosciences
Src (pY418) K98-37 Ms IgG1, κ SRC TCR/ BCR AF 488 4.9 TC AI DD BD Biosciences
WIP (pS488) K32-824 Ms IgG1, κ WIPF1 TCR/ BCR PE 9.2 TC AI DD BD Biosciences
Zap70 (pY292) J34-602 Ms IgG1, κ ZAP70 TCR/ BCR AF 488 2 TC AI BD Biosciences
Zap70 (pY319)/Syk (pY352) 17A/P-ZAP70 Ms IgG1 SYK, ZAP70 TCR/ BCR AF 647 12.7 TC AI DD BD Biosciences
CD3 UCHT1 Ms IgG1, κ CD3E Subtyping PE Cy7 NA TC AI DD eBioscience
CD3 UCHT1 Ms IgG1, κ CD3E Subtyping APC NA FDA eBioscience
CD4 SK3 Ms IgG1, κ CD4 Subtyping PerCP-eF710 NA AI DD eBioscience
CD8a SK1 Ms IgG1, κ CD8A Subtyping APC-eF780 NA AI DD eBioscience
CD14 MφP9 IgG2b, κ CD14 Subtyping V500 NA AI DD BD Biosciences
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CHAPTER 3

ESTABLISHING THE HIGH-CONTENT PLATFORM 

CHAPTER 3: ESTABLISHING THE HIGH-CONTENT 

PLATFORM 

3.1 INTRODUCTION 

In this section we aim to evaluate the robustness of the high-content functional cytomics platform 

in terms of its multiplexing capacity and the reproducibility of the single-cell signalling response 

across different donors and experimental runs. Furthermore we aim to select the most relevant 

kinetics and cell signalling responses (time course- ‘TC’; Chapter 1 Fig. 1.3b) for application to 

clinical samples in later stages of the project. We will also evaluate the sensitivity and specificity of 

the platform in terms of kinetic cytokine responses in previously well characterized T cell signalling 

networks. Finally we seek to explore its potential for identifying surrogate models of CNS drug 

efficacy including cellular responses to neuropsychiatric medications and experimental drug 

candidates.  

3.2 RESULTS 

3.2.1 MULTIPLEXING OF T CELL SIGNALLING MODULATORS 

We employed fluorescent cell barcoding (FCB) technology to enable analysis of single-cell signalling 

responses of up to 80 ligands simultaneously in peripheral blood mononuclear cells (PBMCs) by flow 

cytometry (Fig. 3.1)105. FCB allows reproducible antibody staining across the ligand conditions, 

increased dimensionality for high content analysis and also efficient use of the limited PBMC 

samples. Briefly PBMCs were dispensed into 80 wells of a 96 well plate and each well was treated 

with a different ligand relevant to neuropsychiatric pathology or the vehicle. The PBMCs in each 
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well were then stained with different intensities of three fluorescent barcoding dyes (CBD 450, CBD 

500 and DL 800) in combination, such that PBMCs in each treatment well had a unique fluorescent 

signature. The cells from all wells were pooled and the different combinations of the barcoding dye 

intensities (4 x 4 x 5) enabled the resolution of 80 independent PBMC populations corresponding 

to the 80 ligands or vehicle conditions with which the cells had been treated (Fig. 3.2). Subsequently 

the pooled cells were permeabilized, stained with anti-CD3 PE-Cy7 to resolve T cells and distributed 

across an array of antibodies against 78 different intracellular signalling epitopes to determine 

signalling pathway responses to each ligand.  

To test the accuracy of this multiplexing methodology for the purpose of functional profiling of T 

cell signalling responses in neuropsychiatric diseases we defined the induction of STAT3 

phosphorylation at residue pY705 in response to 15 min stimulation with 50 ng/ml interleukin-6 (IL-

6) as a positive control. IL-6 has been repeatedly implicated as an inflammatory mediator of

neuropsychiatric disease132. IL-6 signalling through STAT3 (pY705) is also well characterized in T cells 

using this technology116,133. Firstly we assessed whether responses to IL-6 could be reproducibly

measured across each of the 80 positions in the barcoding matrix and in each of the three

fluorescent channels used for functional antibody detection (representative antibody detection

fluorophores in each channel include PE, AF 647 and AF 488). CVs across the 80 wells were 5% for

STAT3 (pY705) PE, 6% for STAT3 (pY705) AF 647 and 8% for STAT3 (pY705) AF 488 (data reflects

mean of 4 replicate plates; Fig. 3.3).  Furthermore we dispensed IL-6 and vehicle alternately in rows

or columns across the PBMC stimulation plate. Following multiplexing and deconvolution of the

barcode signatures, the orientation of IL-6 wells with respect to vehicle wells could be accurately

determined based on the STAT3 (pY705) response profile (Fig. 3.4). The Z’ factor values, which

account for the reproducibility and dynamic range of the assay134, were 0.75 and 0.68 for STAT3

(pY705) PE, 0.70 and 0.64 for STAT3 (pY705) AF 647 and 0.68 and 0.46 for STAT3 (pY705) AF 488 for

row and column orientations respectively. This indicates that cell signalling responses can be

measured with precision independently of the position of the ligand within the barcoding matrix or

the antibody detection fluorophore used.

3.2.2 TIME COURSE SELECTION OF OPTIMAL LIGAND AND EPITOPE ARRAYS 

A mechanistically diverse set of functional ligands and cell signalling epitopes was selected for this 

study with a view to identifying surrogate functional markers which reflect systemic abnormalities 

in cell signalling in neuropsychiatric disease (Chapter 2: Tables 2.1 and 2.3). However the functional 

relationships of many of these ligand-epitope combinations (especially those related to CNS 
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pathology) have never been systematically screened in PBMCs. Phosphorylation changes in cell 

signalling proteins in response to ligand binding reveal transient kinetic profiles135. Thus 

determination of the optimal time point for measuring cellular responses was crucial to 

characterizing this novel set of functional ligands and cell signalling epitopes. Previous high-content 

screens have suggested that phosphorylation of cell signalling proteins in response to many 

prototypical ligands (including immunomodulatory cytokines or antigen receptor stimulants) in 

PBMCs reaches a peak at 15-30 min post stimulation127,135,136, with even earlier (1-10 min) peak 

responses observed for specific subsets of proteins following T cell receptor stimulation79,137,138. 

Concurrently, maximal phosphorylation changes of signalling proteins in response to CNS ligands in 

neurons have also been reported to occur within 1-30 min 139,140. Therefore we set the maximum 

response time to 30 min and sought to explore kinetic responses within this time window. We 

conducted a time course experiment to measure the effects of 70 cellular stimulants (in addition to 

10 vehicle controls) on the expression of 78 cell signalling epitopes at 1, 5, 15 and 30 min time points 

post stimulation in PBMCs obtained from eight healthy donors. The ligands included a variety of 

CNS receptor agonists, neuropsychiatric medications, cytokines, hormones/ growth factors, 

antigens and intracellular signalling modulators. The epitopes spanned a wide variety of cell 

signalling pathways broadly including Akt/GSK-3β, PKA, PKC, MAPK, JAK/STAT, IL1R/TLR and 

TCR/BCR pathways. Putative expression of the target in lymphocytes and its potential implication 

in neuropsychiatric disease mechanisms were fundamental criteria for the inclusion of each ligand 

and epitope in the array.   This created a total of 5460 diverse ligand-epitope combinations, or 

“signalling nodes”, measured at each time point per donor (Chapter 1 Fig. 1.4a). 68 of the cell 

signalling epitopes represented phosphorylation sites linked to the activation state of the protein 

and the remaining 10 epitopes were included to quantify the total levels of key proteins 

independently of phosphorylation status. 

 A significant response to ligand was defined as an increase or decrease in the levels of a specific 

epitope relative to the vehicle control across the eight donor samples (unpaired Wilcoxon p<0.05, 

fold change >10%) after accounting for background fluorescence. Maximal induction of significant 

cell signalling responses was observed at 30 min where 228/ 5460 nodes were active compared to 

97, 146 and 211 nodes at 1, 5 and 15 min respectively (Fig. 3.5). In addition, the fold change 

distributions of significant nodes revealed an increased magnitude of responses at later time points 

with maximum negative and positive responses of -6.1 fold and 95.4 fold respectively at 30 min 

(Fig. 3.6). This is consistent with published data for induction of phosphorylation of cell signalling 

proteins using conventional PBMC ligands135. Moreover the distribution of significant nodes with 

respect to ligand or epitope class was largely preserved across time points such that 30 min 
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represented the maximal induction of nodes for the majority of classes (Fig. 3.7). Thus 30 min was 

selected as the optimal time point for the exploration of cell signalling nodes in clinical samples.  

Ranking of active ligands and epitopes at 30min (Table 3.1, Fig. 3.5d) revealed that positive controls 

calyculin (phosphatase inhibitor) and PMA/ionomycin (calcium flux/ PKC activator) were among the 

most effective ligands for inducing widespread increases in phosphorylation across cell signalling 

epitopes. This is consistent with their published role as broad spectrum cell signalling activators141. 

Conversely staurosporine, a known non-specific kinase inhibitor, had opposing effects resulting in 

widespread decreases in phosphorylation status across cell signalling epitopes. The kinetic 

induction of nodes by these positive controls was largely unidirectional. Interestingly the 

widespread signalling modulator thapsigargin, which raises cytosolic calcium concentrations by 

blocking calcium reuptake into the endoplasmic reticulum, displayed a bidirectional activity profile. 

32% of responses had a positive fold change and 68% had a negative fold change. Furthermore 15% 

of the responses which were sustained across at least two time points displayed a biphasic profile 

with increases in the earlier time points and decreases in the later time points. This is likely to reflect 

negative feedback regulation in which the initial activation is subsequently quenched by 

dephosphorylation or sequestration of the active protein. Taken together these findings suggest 

that thapsigargin is a relevant ligand for exposing regulatory interactions.  Finally epitopes were 

ranked by activity (Table 3.2) and their respective stain indices ((mean MFI of the stained samples/ 

mean MFI of the unstained samples) in the vehicle condition across eight PBMC donors) (Fig. 3.8). 

This allowed the identification of basal epitope expression, inactive epitopes and potentially 

nonspecific antibody clones. 

3.2.3 REPRODUCIBILITY 

Having examined the variation of cell signalling responses across different stimulation wells and 

positions of the barcoding matrix (as described above), we sought to define the variability of 

responses measured in the same PBMC donor across time. For this purpose, in the subsequent 

antipsychotic intervention (AI) and differential diagnosis (DD) studies, we measured responses for 

the total ligand and epitope arrays in the same PBMC sample from a healthy donor (quality control 

) across six and nine days respectively. Single measurements each day were taken for the AI study 

and duplicate measurements were taken for all except two days of the DD study (on which single 

measurements were taken instead). For the AI and DD studies, the mean CVs across all nodes for 

the quality control samples were 11% and 10% respectively, while the proportion of nodes with CVs 
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under 15% was 78% and 90% respectively (Fig. 3.9a, b). Considering the mechanistic scope of the 

ligands and epitopes used, the wide of range of fold changes across nodes and the challenges of 

reproducing functional responses ex vivo, this level of variation was considered satisfactory for 

assessment of clinical samples. 

We also sought to assess whether the functional responses and epitope staining patterns were 

reproducible in independent cohorts of healthy PBMC donors derived from different collection 

sites. To this end, we compared responses at 30 min and stain indices for control PBMCs in the time 

course (TC) study (n = 8 donors) and the AI study (n = 12 donors) for nodes (n = 3696 responses and 

n = 66 basal epitope expression levels) which were measured in both studies. Of the 259 nodes 

which were active in the TC study 75% were reproduced and displayed the same direction of change 

in the AI study. Furthermore there was a strong correlation between the studies in terms of the fold 

changes for nodes which were replicated (rs = 0.94, p < 1x10-15) and the epitope stain indices (rs = 

0.96, p < 1x10-15) (Fig. 3.9c, d). This shows that functional responses and epitope staining patterns 

across the ligand-epitope array are robust even in studies with small sample sizes, low cell counts 

and reformatting of ligands and antibodies across different positions in the barcoding matrix and 

detection fluorophores respectively. Finally we verified that this % replication and correlation of 

responses was preserved in the nodes selected for comparison of cytokine activity (100% 

replication, rs = 0.86, p = 6.1x10-10; Fig. 3.10) and the effects of Akt/GSK-3β pathway inhibitors (85% 

replication, rs = 0.90, p = 2.8x10-13; Fig. 3.13) which are presented subsequently as key aspects of 

the platform validation. 

3.2.4 SENSITIVITY, SPECIFICITY AND DYNAMIC REGULATION OF CYTOKINE SIGNALLING

RESPONSES

To validate the specificity of the platform and ensure that 30 min was the optimal time point to 

capture regulatory interactions between proteins, we examined the kinetic responses obtained 

across JAK/STAT signalling pathways in response to immuno-modulatory cytokines (Fig. 3.10a). 

Characteristic responses were obtained at the activation residues of the key STAT isotypes 

consistent with published data116,141,142. For example maximal phosphorylation at STAT1 (pY701) 

was induced by IFN-α2c, at STAT3 (pY705) by IL-6 and IL-10, at STAT5 (pY694) by IL-2 and at STAT6 

(pY641) by IL-4. Furthermore changes at multiple epitopes on STAT1 and STAT3 proteins in response 

to IL-6, IL-10 and IFN-α2c treatment revealed the dynamic regulation of JAK/STAT signalling. While 

induction of phosphorylation at the activation sites STAT1 (pY701) and STAT3 (pY705) was 

frequently present at earlier time points (1 and 5 min) and sustained until 30 min, phosphorylation 
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of the regulatory sites STAT1 (pS727) and STAT3 (pS727) was induced later and reached its 

maximum observed level at 30 min.  Decreases in the levels of total STAT1 and STAT3 were also 

observed at later time points (15 and 30 min) indicative of dimerization, sequestration by 

downstream signalling partners or negative feedback regulation of the signalling response. The 

dynamic regulation of STAT signalling, including different kinetic profiles for the activation, 

regulatory and total protein sites, is exemplified by responses to IFN-α2c at STAT1 and STAT3 (Fig. 

3.10b, c). Taken together these findings suggest that 30 min is an optimal time point to capture 

both specific activation profiles and regulatory interactions within the T cell signalling repertoire 

and provides a suitable reference point for the novel ligand-epitope combinations targeted in the 

clinical phase of this study. Finally to optimise use of the assay for clinical samples, in which cell 

numbers are limited, 12 epitopes and 14 ligands which showed minimal activity were excluded from 

the subsequent AI and DD studies (Chapter 2: Tables 2.1 and 2.3). This represented a reduction of 

the size of the functional matrix by a third and ensured that only the nodes with greater 

functionality, and hence greater potential for revealing disease-related drug targets, were carried 

forward to the clinical application stage of the study.  

3.2.5 KINETIC EXPLORATION OF CNS LIGANDS 

Significant novelty of the functional cytomics platform resides in the potential to use blood cells as 

a surrogate model for functional interactions at CNS drug targets, specifically neurotransmitter 

receptors, which are otherwise unavailable for ex vivo analysis. Kinetic screening of the T cell 

signalling repertoire revealed 59 significant responses (Wilcoxon p<0.05) for CNS receptor ligands 

relative to the vehicle at different time points. The response range for CNS ligands (-1.3 to 1.4 fold) 

was modest compared to the positive controls and cytokines described earlier. The CNS ligand class 

was the only one which did not display a rising activity profile at later time points. Instead many 

compounds in this class showed transient epitope effects at a single time point. The most robust 

responses were prioritized as those with activity at a minimum of two consecutive time points in 

the same direction (Fig. 3.11). Seven nodes satisfied this criteria including adenosine receptor 

agonist (NECA)/ CREB (pS133)- ATF-1 (pS63) (mean FC 1.25, 5-30 min), D3 receptor agonist (7-OH-

DPAT)/ MEK1 (pS298) (mean FC 1.26, 5-15 min), NMDA receptor antagonist (phencyclidine)/ CrkL 

(pY207) (mean FC 1.10, 1-5 min) and Lck (pY505) (mean FC 1.09, 1-5 min), 5-HT3 receptor agonist 

(SR 57227)/ S6 (pS240) (mean FC 1.15, 15-30 min) and CrkL (pY207) (mean FC 1.07, 1-5 min) and 5-

HT7 receptor agonist (AS 19)/ b-Catenin (pS45) (mean FC -1.08, 15-30 min). 
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Ligands which showed sporadic fold changes above 10% and convergent mechanisms at signalling 

epitopes traditionally located downstream of their receptors in the CNS are also noteworthy. These 

included reduction in PKA RIIα (pS99) in response to adenosine receptor agonist (NECA) and β-

adrenoreceptor agonist (isoproterenol) at 1 min, indicative of cAMP signalling. These also included 

convergence of 5-HT2C receptor agonist (WAY 161503) and 5-HT2A receptor agonist (TCB-2) on 

4EBP1 (pT36/ pT45) at 15 and 30 min respectively, indicative of mammalian target of rapamycin 

complex 1 (mTORC1) signalling.  

3.2.6 KINETIC EXPLORATION OF NEUROPSYCHIATRIC TREATMENTS AND NOVEL

INHIBITORS

Compounds which are commonly used to treat neuropsychiatric disorders, and have primary 

mechanisms of action in the brain, also revealed significant interactions at signalling epitopes within 

the T cell repertoire during the time course analysis. In total 77 significant interactions (Wilcoxon 

p<0.05) were found across different time points with fold changes ranging from -1.5 to 3.3. The 

epitopes 4EBP1 (pT36/pT45), CrkL (pY207) and GSK3-B (pS9) were enriched, accounting for 13%, 

9% and 8% of responses respectively, compared to less than 1% expected assuming a random 

distribution of responses across all 78 epitopes. We further prioritized 15 responses which 

displayed changes in epitope expression across two consecutive time points in the same direction 

(Fig. 3.12). 4EBP1 (pT36/pT45), CrkL (pY207) and GSK3-B (pS9) were the only epitopes for which 

more than one drug was active suggesting that the initial enrichment represented genuine kinetic 

profiles and not sporadic activation of these epitopes.  

Analysis of activities by therapeutic indication revealed convergent inhibition of phosphorylation at 

mTORC1 target, 4EBP1 (pT36/pT45), across antidepressant (fluoxetine, desipramine), mood 

stabilizing (lithium) and antipsychotic (risperidone) drug classes. Additionally inhibition was shared 

within the antidepressant class (fluoxetine, desipramine) at GSK-3β. Conversely potentiation at CrkL 

(pY207) was shared within the antipsychotic class. Olanzapine was also active at a single time point 

(30 min) at CrkL (pY207) with a similar fold change to haloperidol and clozapine. Aripiprazole was 

unique in its induction of PDPK1 (pS241). Notable heterogeneity was observed among additional 

sites for the mood stabilizers lithium, valproic acid and carbamazepine. Lithium was active at Smad2 

(pS465/pS467)/Smad3 (pS423/pS425) and STAT3, while valproic acid was active at Rb (pS780) and 

carbamazepine was inactive. The induction of MEK1 (pS298) by desipramine at 15-30min (1.5-3.3 
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FC respectively) represented the highest positive fold change of phosphorylation status across all 

the neuropsychiatric treatments. 

To further explore the potential of the platform to detect interactions of approved neuropsychiatric 

medications with relevant CNS pathways and to determine whether these interactions could be 

applied to the discovery of novel drugs, we focused on the Akt/GSK-3β pathway as one of the most 

widely implicated cell signalling pathways in neuropsychiatric drug discovery80,90,143,144. We 

compared the kinetic profile of compounds which are known to modulate Akt/GSK-3β pathway 

activity with established neuropsychiatric treatments and novel drug candidates. Signalling proteins 

within the Akt/GSK-3β pathway have been repeatedly linked to pathological changes in the brain 

of neuropsychiatric patients and are thought to represent principal mediators of clinical efficacy of 

antidepressant, antipsychotic and mood stabilizing medication80,90,143–146. Furthermore changes in 

Akt/GSK-3β pathway proteins have been linked to treatment response in PBMCs from patients with 

affective and psychotic disorders147,148.  

We measured kinetic interactions of different cellular ligands with Akt/GSK-3β pathway members 

and downstream effectors at 1, 5, 15 and 30min (Fig. 3.13). Calyculin (phosphatase inhibitor) and 

the PMA/ ionomycin cocktail (PKC activator/ calcium flux inducer) caused widespread activation of 

proteins within the canonical signalling pathway with induction of phosphorylation at 30 min 

reaching 95 fold at AKT (pT308) in response to calyculin and 80 fold at S6 (PS235/PS236) in response 

to PMA/ ionomycin. In addition to the characteristic kinetic profile of incremental response at later 

time points, dynamic regulation of the calyculin response was observed through -1.3 and -1.6 fold 

decreases in total Akt1 levels at 15 and 30 min suggestive of sequestration of the active Akt1 by 

downstream effectors.  

Having defined the limits of pathway activation using these positive controls we sought to 

reproduce phosphorylation inhibition patterns characteristic of known Akt/GSK-3β pathway 

inhibitors. Staurosporine displayed widespread inhibition of phosphorylation at 6 of the 13 

epitopes, GSK 690693 inhibited phosphorylation downstream of Akt1 at GSK-3β (pS9) and 

rapamycin inhibited phosphorylation downstream of mTORC1 at 4EBP1 (pT36/pT45). This is 

consistent with the roles of staurosporine as a broad spectrum kinase inhibitor, GSK 690693 as a 

specific Akt1 inhibitor and rapamycin as a specific mTORC1 complex inhibitor. The fact that the 

inhibition profiles observed for GSK690693 and rapamycin relate to specific sites, immediately 

downstream of the primary drug target, support the utility of the platform in determining causative 

signalling relationships in response to pharmacological intervention. In contrast CHIR 99021, a 

highly selective GSK-3β inhibitor, displayed inhibition of phosphorylation directly at the pS9 residue 
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on GSK-3β suggesting that the binding site of the drug is functionally coupled to the GSK-3β 

activation site itself.  

Several compounds used clinically to treat neuropsychiatric disorders displayed kinetic inhibition 

profiles which overlapped with those described for GSK 690693, rapamycin and CHIR 99021. 

Antidepressant medications fluoxetine and desipramine showed significant inhibition of 

phosphorylation at both GSK-3β (pS9) (max 32% and 26% respectively) and 4EBP1 (pT36/pT45) 

(max 35% and 26% respectively). Antipsychotic medications aripiprazole and risperidone inhibited 

phosphorylation at either GSK-3β (pS9) (17%) or 4EBP1 (pT36/pT45) (35%) respectively. The mood 

stabilizer lithium, commonly prescribed for treatment of bipolar disorder, exhibited 

phosphorylation inhibition at 4EBP1 (pT36/pT45) (30%) but not at either of the GSK-3β phospho-

epitopes. However several of these treatment drugs also displayed inhibitory effects on 

phosphorylation at key sites of other Akt/GSK-3β signalling proteins. For example lithium showed 

inhibition at PDPK1 (pS241) (5%), aripiprazole at Akt (pT308) (8%) and desipramine at NF-κB p65 

(pS529) (21%). In contrast novel compound JB 1121 showed a highly selective 20-30% 

phosphorylation inhibition of GSK-3β (pS9) across all the time points with no inhibition at any of the 

other selected pathway sites. This profile closely matched that of CHIR 99021, one of the most 

potent and selective GSK-3β inhibitors available.  
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Figure 3.1 Construction of a three dimensional fluorescent cell barcoding matrix for multiplexing of 80 
cellular treatments. (a) PBMCs in each treatment (ligand or vehicle) well of a 96 well plate were stained 
with different intensities of each of three fluorescent barcoding dyes (DL 800, CBD 450 and CBD 500). (b) 
Combination of the three dyes produced the 80 population barcoding matrix in which the contribution 
of each dye can be visualized as a distinct fluorescence intensity gradient along the x, y and z axes. The 
80 populations were then pooled and stained for intracellular signalling epitopes. (c) Three dimensional 
deconvolution of the 80 barcoded populations as individual ligand or vehicle treatments, for example A = 
staurosporine, B = calyculin and C= vehicle. Data represents one PBMC sample.
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Figure 3.2 Gating strategies for the functional analysis of 80 barcoded T cell populations. (a) Viable 
cells were gated (FSC-A vs. SSC-A), followed by single cell discrimination (SSC-A vs. SSC-W and FSC-A 
vs. FSC-W) and T vs. B lymphocyte cell subtyping using anti-CD3 PE-Cy7. (b) 80 populations, each 
corresponding to a different ligand or vehicle condition, were resolved within the T lymphocyte gate 
following fluorescent cell barcoding using DL 800, CBD 450 and CBD 500 dyes. T cells were gated 
first for DL 800 populations (DL 1-5) and subsequently for CBD 450 vs. CBD 500 populations (V1-16). 
(c) Within each barcoded T cell population functional analysis of intra-cellular signalling epitopes
(n=78) was conducted across AF 488, PE and AF 647 channels. Induction of STAT3 (pY705)
phosphorylation in response to 15 min stimulation with IL-6 50 ng/ml is shown as an example. Data
represents one PBMC sample.
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Figure 3.3 Median fluorescence intensities (MFIs) and CVs across 80 barcoded (BCD) T cell populations 
for each functional fluorescence channel. 80 wells in four different plates were treated with IL-6 50 ng/
ml for 15 min. Each plate was barcoded separately and the pooled sample from each plate was stained 
with anti-STAT3 (pY705) AF 647 (a), anti-STAT3 (pY705) AF488 (b) and anti-STAT3 (pY705) PE (c). (d) The %
CVs for each plate and the mean are shown for each functional channel. Data represents one PBMC 
sample.
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Figure 3.4 Z factor analyses across 80 barcoded T cell populations for each functional fluorescence 
channel. PBMCs were treated with IL-6 50 ng/ml or vehicle arranged alternately in rows (a) or columns (b) 
for 15 min. Mean MFIs of two PBMC donors for each barcode population were used to calculate the Z 
factor and fold change for each orientation after staining with anti-STAT3 (pY705) AF488 (c,d), anti-STAT3 
(pY705) AF 647 (e,f), and anti-STAT3 (pY705) PE (g,h). Differences in STAT3 (pY705) phosphorylation 
between PBMC donors (C4 and C10) were significant (t test, p < 0.05) following IL-6 50 ng/ml 
stimulation but not in vehicle condition across anti-STAT3 (pY705) AF488 (i), anti-STAT3 (pY705) AF 647 
(j), and anti-STAT3 (pY705) PE (k).
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Figure 3.5 Kinetic induction of cell signalling responses across the ligand and epitope array (n = 5460 
nodes). Responses in T cells to 70 diverse functional ligands (y axes) were measured at 78 intracellular 
signalling epitopes (x axes) following 1 min (a), 5 min (b), 15 min (c) or 30 min (d) ligand incubation times. 
Legend shows fold change in epitope expression, calculated as median MFI of the ligand treatment/ 
median MFI of the vehicle treatment across eight PBMC donors, with labels distributed evenly across 
the quantile range. For each epitope only ligands which showed significant responses (Wilcoxon p < 
0.05) with a minimum fold change of 10%, relative to the vehicle, are shown. Ligands and epitopes are 
ranked in terms of the number of significantly responding nodes at 30min.   
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Figure 3.5 Kinetic induction of cell signalling responses across the ligand and epitope array (n = 5460 
nodes) continued.
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Figure 3.5 Kinetic induction of cell signalling responses across the ligand and epitope array (n = 5460 
nodes) continued.
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Figure 3.5 Kinetic induction of cell signalling responses across the ligand and epitope array (n = 5460 
nodes) continued.
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Figure 3.6 Distribution of fold changes for T cell signalling responses across time points. The proportion 
of responses (%) in each fold change interval is shown for 1 min (a), 5 min (b), 15 min (c) and 30 min (d) 
time points. The data is binned in different increments for each FC interval as follows: -10 to -2 (0.2), -2 
to 2 (0.05), 2 to 10 (0.2) and 10 to 100 (2). Only significant responses (Wilcoxon p < 0.05) with a minimum 
fold change of 10%, relative to the vehicle, are shown. Data represents median responses of eight PBMC 
donors.
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Figure 3.7 Kinetic distribution of T cell signalling responses across ligand and epitope categories. 
Relative composition of the ligand (a) and epitope (b) arrays by class or pathway respectively. 
Composition of the total number of significant responses (nodes) for each time point by ligand class (c) or 
epitope pathway (d). Only significant responses (Wilcoxon p < 0.05) with a minimum fold change of 10%, 
relative to the vehicle, are shown. Data represents median of eight PBMC donors
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Table 3.1 Activity of ligands across the time course. Shows the number of significant 
responses (Wilcoxon p < 0.05) with a minimum fold change of 10% relative to the vehicle, across 1, 5, 
15 and 30 min time points. Ligands are ranked in ascending order of activity at 30 min. Data represents 
median of eight PBMC donors.

Ligand 1 min 5 min 15 min 30 min

calyculin A 12 19 35 41
staurosporine 16 21 33 38
thapsigargin 7 22 31 38
PMA/ionomycin 19 27 33 32
IFN-alpha 2c 5 7 8 9
GSK 690693 2 4 6 8
IL-2 1 2 6 8
IL-10 1 4 6 7
IL-6 2 6 7 7
aripiprazole 0 0 0 4
desipramine hydrochloride 6 5 4 4
fluoxetine 0 1 3 3
SC-9 0 1 0 3
sodium orthovanadate 0 0 0 3
anti-CD3/CD28 0 1 4 2
IFN gamma 1 1 1 2
IL-4 1 2 5 2
lithium chloride 0 2 2 2
PHA 543613 hydrochloride 0 0 1 2
2-pyridylethylamine dihydrochloride 0 1 0 1
8-bromo-cAMP 1 1 2 1
forskolin 1 3 2 1
leptin 0 0 1 1
NECA 1 2 1 1
olanzapine 0 0 0 1
rapamycin 1 1 1 1
risperidone 0 1 1 1
simvastatin 1 0 0 1
SJH 6 (JB1121) 1 2 1 1
SJH1 (CHIR 99021) 1 1 2 1
SR 57227 hydrochloride 0 0 1 1
xaliproden hydrochloride 0 0 0 1
(S)-3,5-DHPG 1 0 1 0
17 beta-estradiol 0 0 0 0
740 Y-P 0 0 1 0
7-hydroxy-DPAT hydrobromide 0 1 1 0
agomelatine 0 0 0 0
AS 19 0 0 0 0
BCR stim 0 0 0 0
BDNF 0 0 1 0
beta-NGF 0 0 0 0
carbamazepine 0 0 0 0
cis-ACPD/(S)-(-)-5-fluorowillardiine 0 0 0 0
clozapine 1 3 0 0
desvenlafaxin succinate (WY 45233) 0 0 0 0
dexamethasone 0 0 0 0
GW 9508 0 0 1 0
haloperidol 1 1 0 0
IL-1 beta 0 0 2 0
IL-23 0 0 0 0
insulin 0 0 1 0
isoproterenol hydrochloride 2 0 0 0
L-AP4 0 0 0 0
LPS 0 0 0 0
LY 354740 hydrate 0 0 0 0
muscimol 0 0 0 0
PD 168077 maleate 0 1 0 0
PDGF-BB 0 0 0 0
phencyclidine hydrochloride 1 2 0 0
PS 48 0 0 0 0
quetiapine 0 0 0 0
SEB 0 0 1 0
SKF 83822 hydrobromide 10 1 0 0
sumanirole maleate 0 0 0 0
TCB-2 1 0 0 0
TNF alpha 0 0 0 0
valproic acid 0 0 4 0
WAY 161503 hydrochloride 0 0 1 0
WAY 208466 dihydrochloride 0 0 0 0
xanomeline oxalate 0 0 0 0
Total 97 146 211 228
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Epitope 1 min 5 min 15 min 30 min

4EBP1 (pT36/pT45) 0 9 9 10
GSK-3β (pSer9)  8 9 8 9
MEK1 (pS298) 5 5 9 9

3 4 7 7
1 2 5 7
0 0 3 6
1 3 4 6
5 3 5 6
1 3 5 6
2 5 6 6
1 2 3 5
4 4 4 5
1 5 6 5
0 0 4 5
5 3 13 5
0 2 5 5
0 1 2 5
0 0 2 4
2 4 1 4
5 5 3 4
0 3 4 4
1 3 5 4
1 3 4 4
1 2 3 4
5 4 4 4
3 1 4 4
2 4 4 4
2 6 4 4
2 4 2 3
3 3 4 3
0 0 2 3
0 2 3 3
2 4 5 3
0 2 2 3
0 0 2 3
0 1 4 3
0 1 2 3
8 6 5 3
2 3 4 3
1 2 3 3
0 0 1 3
2 3 4 3
2 2 2 3
1 0 1 2
1 2 2 2
0 0 2 2
0 0 3 2
1 2 2 2
0 0 0 2
0 0 1 2
0 0 2 2
0 1 2 2
2 3 3 2
0 0 1 2
0 0 1 1
0 1 0 1
0 1 1 1
1 2 1 1
1 2 2 1
1 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
2 3 3 1
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
2 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
2 0 0 0
0 0 0 0

stat1 (pY701) 
stat3 (pS727) 
c-Cbl (pY774) 
Smad2 (pS465/pS467)/Smad3 (pS423/pS425) 
stat3 (pY705) 
stat4 (pY693) 
stat5 (pY694) 
c-Cbl (pY700) 
CD221 (pY1131) 
CREB (pS133) / ATF-1 (pS63) 
IkBα
S6 (pS240) 
stat1 (pS727) 
Stat3 
4EBP1 (pT69) 
BLNK (pY84) 
CrkL (pY207) 
NF-κB p65 (pS529) 
p38 MAPK (pT180/pY182) 
PDPK1 (pS241) 
PKC theta 
PLC-γ2 (pY759) 
Pyk2 (pY402) 
stat6 (pY641) 
WIP (pS488) 
Akt (pS473) 
AKT (pT308) 
elF4E (pS209) 
IRF-7 (pS477/pS479) 
MAPKAPK-2 (pT334) 
p120 Catenin (pS268) 
p120 Catenin (pS879) 
p120 Catenin (pT310) 
p53 (pS37) 
PKA RII-α (pS99) 
PKA RII-β (pS114) 
PKC-α
PLC-γ1 
S6 (pS235/pS236) 
Src (pY418) 
Bcl-2 (pS70) 
ERK1/2 (pT202/pY204) 
FAK (pS910) 
GSK-3β (pThr390) 
Lck (pY505) 
p53 (acK382) 
PKC-θ (pT538) 
Rb (pS780) 
SHP2 (pY542) 
SLP-76 (pY128) 
stat1 (N-Terminus) 
Akt1 
DARPP32(pThr34) 
GSK-3β (pTyr216) 
IRAK4 
MEK1 (pS218)/MEK2 (pS222) 
PKC-α (pT497) 
PKC-α/βII (pThr638/641)
PKC-δ (pThr505) 
PLC-γ2 
Zap70 (pY292) 
β-Catenin (pS45) 
Btk (pY551) & Itk (pY511) 
CD140b (pY857) 
DARPP32 
DARPP32(pThr75)
Ezrin (pY353) 
GSK-3α/β
IRS-1 (pY896) 
JNK (pT183/pY185) 
LAT (pY226) 
PKC-β1/2(pThr500) 
PLC-γ1 (pY783) 
PKC-θ (pSer695) 
Zap-70 (pY319)/Syk (pY352) 2 0 0 0
Total 97 146 211 228

Table 3.2 Activity of epitopes across the time course. Shows the number of significant responses 
(Wilcoxon p < 0.05) with a minimum fold change of 10% relative to the vehicle, across 1, 5, 15 and 30 
min time points. Epitopes are ranked in ascending order of activity at 30 min. Data represents 
median of eight PBMC donors.
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Figure 3.8 Stain index of antibody clones against T cell signalling epitopes used in the time course. Shows 
the median MFI of the stained samples/ median MFI of the unstained samples in the vehicle 
condition across eight PBMC donors for each epitope. Stain indices are ranked per functional fluorescence 
detection channel as labelled with a representative fluorochrome: Alexa Fluor 488 (AF 488) (a), 
Phycoerythrin (PE) (b) and Alexa Fluor 647 (AF 647) (c). Dotted line marks a threshold stain index of two.
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Figure 3.9 Reproducibility across time and independent PBMC cohorts. CVs for each T cell signalling node 
in the same quality control PBMC sample from a healthy donor measured across six days in the 
antipsychotic intervention study (AI) (a) and nine days in the differential diagnosis study (DD) (b). Single 
measurements each day were taken for the AI study and duplicate measurements were taken for all except 
two days of the DD study (on which single measurements were taken instead). Spearman’s rank correlation 
of stain indices (n = 66 epitopes) (c) and fold change signalling responses (n = 197 nodes) (d) in healthy 
control PBMC donors for nodes which were active in the time course (TC) at 30min (n = 8 donors) and 
validated in the same direction in the AI study (n = 12 donors).  Three nodes (Akt (pT308)/calyculin, S6 
(pS235/pS236)/calyculin, S6 (pS235/pS236)/PMA-ionomycin) with fold changes above 40 were removed 
from (d) for representation, however rs and p values are reported for the full data set.
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Figure 3.10 Dynamic regulation of JAK/STAT T cell signalling across time course. (a) Specific responses 
across STAT isotypes were observed for different cytokines. Kinetic induction of phosphorylation at activation 
sites (STAT1 (pY701), STAT3 (pY705), STAT4 (pY693), STAT5 (pY694) and STAT6 (pY641)) and regulatory sites 
(STAT1 (pS727) and STAT3 (pS727)) was followed by decreases in total protein epitope availability (STAT1 and 
STAT3). Black dots at 30 min time points represent replication in an independent PBMC cohort (n =12). 
Arrows represent regulatory activity between sites. Legend shows fold change in epitope expression, 
calculated as median MFI of the ligand treatment/ median MFI of the vehicle treatment, with labels 
distributed evenly across the quantile range. Only significant responses (Wilcoxon p < 0.05) are shown. 
Dynamic regulation of all three sites on STAT1 (b) and STAT3 (c) in response to IFN-α2c. All data represents 
median across eight PBMC donors.
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Figure 3.11 Responses to CNS ligands in T cells. Only significant responses (Wilcoxon p < 0.05) which 
were sustained in the same direction for a minimum of two consecutive time points are shown. Legend 
shows mean fold change in epitope expression across active time points, calculated as median MFI of the 
ligand treatment/ median MFI of the vehicle treatment, with labels distributed evenly across the 
quantile range. Data represents median across eight PBMC donors. Targets of the compounds include 
phencyclidine (NMDA receptor antagonist/ s receptor agonist), NECA (adenosine A1/2A/3 receptor 
agonist), SR 57227 (5-HT3 receptor agonist), AS 19 (5-HT7 receptor agonist) and 7-OH-DPAT (D3 receptor 
agonist).
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Figure 3.12 Responses to neuropsychiatric treatments in T cells. Only significant responses (Wilcoxon p < 
0.05) which were sustained in the same direction for a minimum of two consecutive time points are 
shown. Legend shows mean fold change in epitope expression across active time points, calculated as 
(MFI of the ligand treatment/ MFI of the vehicle treatment), with labels distributed evenly across the 
quantile range. Data represents median across eight PBMC donors. Clinical indications of the compounds 
include desipramine and fluoxetine (antidepressant), lithium and valproic acid (mood stabilizer) and 
clozapine, risperidone, aripiprazole and haloperidol (antipsychotics). 
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Fig. 3.13 Kinetic exploration of neuropsychiatric treatments and novel inhibitors of the Akt/GSK-3β pathway in T cells. 
(a) Kinetic induction of responses (left) at key Akt/GSK-3β pathway epitopes (right) for positive controls (calyculin A, PMA/
ionomycin, staurosporine and GSK 690693) as compared to neuropsychiatric treatments (fluoxetine, desipramine,
risperidone, lithium and aripiprazole) and specific novel inhibitors (rapamycin, CHIR 99021 and JB1121). Only significant
responses (p<0.05, Wilcoxon rank-sum test; n=8 healthy control PBMC donors) are shown. Black dots at 30 min time
points represent replication in an independent PBMC cohort (n=12). Legend shows fold change in epitope expression
(calculated as median MFI of the ligand treatment/median MFI of the vehicle treatment across PBMC donors), with labels
distributed evenly across the quantile range for negative and positive fold changes separately. Fold change is converted to
-1/fold change for downregulated epitopes. Proteins are coloured with respect to their cellular function: blue (kinase), red
(translation) and green (transcription). The position of mammalian target of rapamycin complex 1 (mTORC1) is shown for
mechanistic interpretation although no epitopes were measured on this protein. The epitopes which form the Akt/GSK-3β
pathway (right) represent a small subset of the possible cell signalling protein interactions in PBMCs. They are selected
based on prior hypotheses of signalling alterations and drug treatment effects in neuropsychiatric disorders as opposed to
emergent properties of the experimental data. (b) Inhibition potency and selectivity across all 70 ligands used in the time
course for targets GSK-3β (pS9) and (c) 4EBP1 (pT36/pT45) at 30 min. Potency reflects % inhibition of phosphorylation at
target site calculated as (1 – MFI of the ligand treatment/mean MFI of the vehicle treatment)*100%, averaged across
PBMC donors (n=8). Selectivity reflects the ratio of % inhibition of phosphorylation at the target site to mean % inhibition
across Akt (pS473), Akt (pT308), GSK-3β (pS9) and 4EBP1 (pT36/pT45) sites, averaged across 8 donors. Only ligands with
>10% potency are shown. MFI - median fluorescence intensity.
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3.3 DISCUSSION 

Three main types of results have been presented in this chapter. The first set of results focuses on 

the establishment of a platform capable of high content functional screening of T cell responses ex 

vivo. The second set relates to an application of the platform for detection of responses at CNS 

receptors. Exploration of the activities of approved and novel neuropsychiatric treatments 

comprises the third set of results. This discussion will focus on the third set of results (Fig. 3.12 and 

3.13), due to the direct clinical implications for treatment response prediction and novel drug 

discovery. 

The results showed heterogeneity with respect to the pharmacological profile of neuropsychiatric 

treatments. This is consistent with clinical findings in which even compounds which are almost 

structurally identical can have very different clinical properties and efficacies. For example 

clozapine is more effective in treating psychosis and suicidality in schizophrenia, and yet is uniquely 

associated with the potentially fatal side effect of agranulocytosis, compared to its close structural 

relative olanzapine21,149. Furthermore patients with the same diagnoses do not always respond in 

the same way to similar treatment9,14,15. Thus the heterogeneity which we observe in this ex vivo 

assay lies at the heart of one of the most pressing unmet medical needs in neuropsychiatry, that of 

personalized medicine. Consequently there are two primary objectives in the interpretation of this 

data. The first is to identify core functional signalling motifs, which are common to different drugs, 

and assess their potential as a scaffold for novel drug discovery across disease indications. The 

second is to identify divergent functional signalling motifs for drugs within the same indication and 

explore their potential for targeting subpopulations of treatment resistant patients. In line with 

these objectives we also seek to address the persistent question of whether ex vivo responses in T 

lymphocytes can be correlated to existing or plausible mechanisms of CNS drug efficacy or side 

effects? First the main differences between the current system and published research in 

neuropsychiatric drug effects on cell signalling will be discussed. Subsequently we examine the 

relevance of convergent activity detected at 4EBP1 across drugs with different indications. Finally 

we explore the functional signatures unique to each indication or specific drugs and the potential 

for novel combinatorial treatment strategies. 
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3.3.1 COMPARISON OF THE PRESENT EX VIVO METHODOLOGY TO THE STATE OF THE ART

Clinical response to the majority of approved neuropsychiatric treatments is only apparent after 

several weeks of administration8,14. This corresponds to the time necessary for changes in synaptic 

plasticity and neurogenesis, which are thought to mediate clinical efficacy, to occur9,19,144. In line 

with this the majority of research into the cell signalling changes evoked by neuropsychiatric 

medications has been conducted through chronic drug administration (2-6 weeks) in animal 

models150–154. Leaving aside the controversies surrounding the behavioural correlates of cell 

signalling changes in these animals, these in vivo systems at least investigate the neuronal 

infrastructure which is thought to be fundamental to clinical efficacy. The importance of the 

physiological environment is evident from the heterogeneous results obtained through in vitro cell 

culture experiments. For example the majority of neuropsychiatric treatments across different drug 

classes increase the phosphorylation of GSK-3β at the (pS9) residue and therefore inhibit GSK-3β 

activity90,144. However while this trend is relatively well replicated across animal administration 

paradigms, the results in cell culture are more contradictory across drug classes and different cell 

lineages90,144. This is not to mention the likely proportion of negative findings which have remained 

unpublished as they do not subscribe to the current dogma. Nevertheless the majority of these in 

vitro studies have used primary neurons, such as cerebellar granule cells, or neuronal cell lines, such 

as SH-SY5Y139,155–158. These cell cultures at least benefit from the confirmed expression and 

downstream coupling of cell surface receptors, for example 5-HT, dopamine and glutamate 

receptors, which are traditionally implicated in neuropsychiatric treatment response. In contrast 

there is scarce published data on the cell signalling effects of neuropsychiatric treatments in blood 

cells. Furthermore these neuronal in vitro studies, like their in vivo counterparts, have also focused 

on chronic drug administration protocols. For example the majority of in vitro studies relating to 

the putative neuroprotective functions of mood stabilizers and second generation antipsychotics 

have measured changes in GSK-3β or Akt1 phosphorylation status following 2 – 96 h of drug 

incubation139,155–158. Even high throughput screening of novel compounds such as CHIR 99021 and 

JB1121 against GSK-3β activity involved overnight drug incubations159. The current data, on the 

other hand, reflects an acute drug response within 30 min. 

The present ex vivo system is therefore substantially different from the current state of the art. 

Firstly we are devoid of the surrounding neuronal infrastructure which is essential to putative 

clinical effects in humans and animal models. Secondly we are operating in a completely different 

cell lineage in which it is still not clear to what extent traditional CNS receptors are expressed or 

functionally coupled. Thirdly we are looking at kinetic effects on much shorter time scale than the 

majority of published data. Thus we are looking for changes at the most basic common denominator 
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of immediate and direct drug interactions with cell signalling epitopes under the premise that some 

of these are shared at a systemic level in vivo. Also as the drugs are tested here individually, without 

exogenous stimulants, it is likely that we are manipulating constitutive phosphorylation 

mechanisms.  

A final consideration is that, independently of which model system is used, the cell signalling 

mechanisms which underlie the clinical efficacy of neuropsychiatric treatments are still not 

thoroughly defined. As discussed in the introduction their molecular mechanisms of action have 

emerged several decades after their incorporation into clinical practice1. For example, while the 

discovery that lithium can inhibit GSK-3β ostensibly revolutionized our understanding of cell 

signalling in neuropsychiatry, the precise mechanism which mediates its clinical effect is still a 

matter of intense debate and controversy88. Likewise the interaction between D2 receptor 

antagonism, considered central to antipsychotic efficacy, and the range of other putative molecular 

disease targets suggested by recent GWAS studies is scarcely understood24,160. Therefore while we 

seek to relate the present ex vivo findings to known drug or disease mechanisms it is also possible 

that some of the observed effects have not yet been characterized.  

3.3.2 MODULATION OF CONSTITUTIVE ACTIVITY 

The phosphorylation status of many cell signalling epitopes does not represent a binary switch, for 

which the respective protein function is either on or off, but instead a dynamic equilibrium in which 

a certain level of basal phosphorylation and activity is always present. This homeostatic control is 

maintained through auto-phosphorylation and the activity of regulatory kinases and 

phosphatases88,117,161. It is possible that enrichment of neuropsychiatric drug activity at certain 

epitopes, without exogenous stimulants present, is due to the fact that these proteins show higher 

levels of constitutive activity. Nevertheless the modulation of constitutive activity could provide a 

valuable surrogate measurement of the therapeutic window of pathway inhibitors. 

This is exemplified by two opposing mechanisms of action in the well characterized 

neuropsychiatric drug target GSK-3β: pseudo-substrate inhibition and auto-activation88. Pseudo-

substrate inhibition refers to the competitive blocking of the primed substrate recognition site by 

GSK-3β’s own N-terminal tail when phosphorylated at pS9. Auto-activation refers to the inhibition 

of upstream Akt kinase and activation of protein phosphatase 1 (PP1) which provides a feed-

forward mechanism for GSK-3β to reduce its own inhibitory S9 phosphorylation. In neuropsychiatric 
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diseases this auto-activation mechanism has been suggested to amplify the effects of an initial insult 

towards pathological manifestations88.  

In contrast the mood stabilizer lithium is thought to achieve clinical efficacy by dampening these 

self-activating mechanisms and promoting pseudo-substrate association88,90. The vital feature of 

this interaction is that lithium does not completely abrogate the activity of GSK-3β. Instead it 

establishes a new steady state in which the constitutive activity of the enzyme is reduced but it is 

still able to execute its wide range of cellular functions, hence avoiding toxicity. Therefore, in 

manipulating the constitutive activity and phosphorylation status of key proteins ex vivo, it is 

possible that we are probing the same mechanisms which determine the therapeutic window of 

pathway inhibitors in vivo. This is supported by the observation that changes in phosphorylation at 

most epitopes, in response to neuropsychiatric ligands, were not maximal compared to the positive 

controls (calyculin, PMA/ionomycin and staurosporine). This suggests that these changes are still 

within the dynamic range of phosphorylation for these site and consequently subject to regulatory 

control. 

 

3.3.3 CONVERGENT INHIBITION OF 4EBP1 (PT36/PT45) ACROSS NEUROPSYCHIATRIC 

DRUG INDICATIONS  

The convergent inhibition of phosphorylation at 4EBP1 (pT36/pT45) in T cells, across several drugs 

with different clinical indications, is one of the prominent findings revealed by the ex vivo assay (Fig. 

3.12 and 3.13). These drugs included fluoxetine and desipramine (antidepressants), lithium (mood 

stabilizer) and risperidone (antipsychotic). 4EBP1 (pT36/pT45), along with p70S6K, is directly 

phosphorylated by mTORC1 to promote mRNA translation. The direction, magnitude and kinetic 

profile of the responses observed at 4EBP1 (pT36/pT45) for these neuropsychiatric drugs closely 

resembled that of the highly specific mTORC1 inhibitor rapamycin. This suggests that inhibition of 

phosphorylation at 4EBP1 (pT36/pT45) by these drugs potentially represents inhibition of mTORC1 

directly upstream. 

mTORC1 is a cell signalling hub and a well characterized mediator of long-term potentiation/ 

depression in the synaptic milieu162–164. For example it has been shown to mediate defining aspects 

of the pathogenesis of depression, such as stress susceptibility and early life mood 

disturbances165,166. It has also been implicated as a convergent target of classical antidepressants, 

such as fluoxetine and desipramine, and experimental antidepressants, such as ketamine or 

mGlu2/3 receptor antagonists167–171. However there are no reports of direct mTORC1 inhibition by 
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these neuropsychiatric drugs outside the synaptic environment where the appropriate 

neurotransmitter receptors are expressed. This raises the intriguing possibility that these drugs are 

interacting with cell signalling protein complexes such as mTORC1, which lie downstream of their 

traditional targets, via completely different mechanisms. Whether this inhibition of mTORC1 

reflects collateral efficacy or a side effect is an intriguing question172.  

mTORC1 inhibition has two well characterized physiological effects, immuno-suppression and 

induction of autophagy, which could represent as yet underappreciated facets of the efficacy of 

these neuropsychiatric drugs162,173. Immune activation has been implicated in the pathogenesis of 

several disorders including schizophrenia, bipolar disorder, major depression and autism. The drugs 

which display putative mTORC1 inhibition activity in the present study, have all been attributed 

with immunosuppressive properties. For example, fluoxetine, desipramine and lithium have all 

been shown to protect mice against an otherwise lethal dose of lipopolysaccharide-induced sepsis 

with efficacy comparable to prednisolone174,175. Fluoxetine has also been shown to reduce 

transplant rejection via T cell immuno-suppression and induce apoptosis in Burkitt lymphoma B 

cells176–178. These results are consistent with an alternative application of our platform in which 

fluoxetine suppressed the inflammatory burst capacity in T cells and increased the expression of 

pro-apoptotic markers Annexin V and DAPI in B cells following 72hr incubation with T cell mitogenic 

cocktail SEB (1ug/ml)/anti-CD28 (0.1ug/ml). Interestingly, risperidone has also distinguished itself 

from other antipsychotics in lymphoblastoid growth inhibition assays179.   

The immuno-modulatory potential of these drugs could be related to collateral efficacy in several 

ways. Firstly immuno-suppression could potentially reduce the secretion by peripheral immune 

cells of proinflammatory cytokines such as IL-6, TNF-α, IFN-γ, MCP-1, IL-12 and IL-1β, which are able 

to cross the blood brain barrier and exacerbate neuropsychiatric symptoms132,180. Secondly it could 

suppress aberrant pruning of dendritic spines and production of reactive oxygen species by M1-

activated microglia in the brain181,182. Finally the pro-apoptotic propensities of these drugs in specific 

cell subtypes could regulate the relative proportions of different immune cell subsets, both in the 

brain and periphery, to mitigate the effects of the pathogenic subtypes56,183.  

Autophagy, the second potential mechanism of collateral efficacy suggested by the current study, 

has been extensively studied in neurodegenerative disorders184,185. Autophagy (meaning ‘self 

eating’) is the regulated digestion of damaged cellular components for their subsequent recycling 

as functional biomolecules. It lies at the crossroads of apoptosis and cellular resilience186,187. It 

prevents neuronal toxicity in the early stages of Alzheimer’s, Huntington’s and Parkinson’s diseases 

by reducing the accumulation of phosphorylated tau, huntingtin or a-synuclein protein aggregates 

respectively162,184. Very recently autophagy has also been implicated in the pathophysiology of 
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neuropsychiatric disorders. For example mRNA expression of the autophagic regulator beclin-1 was 

reduced in post-mortem brains of schizophrenia patients relative to controls suggesting an impaired 

autophagic response in these patients188. In animal models of major depression, the induction of 

autophagy via FKBP51 has been shown to mediate antidepressant efficacy189,190.  Promotion of 

autophagy has also been associated to the therapeutic efficacy of lithium in bipolar disorder191. This 

raises the possibility that the shared inhibition of mTORC1 by drugs from different indications in the 

ex vivo assay reflects the initial stages of an autophagic response which could be related to their 

clinical efficacy in vivo.  

If it is the case that the immuno-modulatory and pro-autophagic effects of these drugs are related 

to their therapeutic profile, it would support the utility of rapamycin as a potential novel treatment 

candidate for neuropsychiatric disorders, either alone or as an add-on therapy. There are several 

features which make rapamycin attractive in this respect. Firstly it is an FDA approved medication 

(sirolimus) with a well documented pharmacokinetic and safety profile, consistent with the focus 

on drug repurposing in the current work. Secondly it has shown promising results in the treatment 

of different aspects of neurodegenerative disorders which share many of the pathological hallmarks 

of neuropsychiatric disorders192. These include normalization of neuronal stem cell quiescence, 

neuronal migration, cortical patterning, synaptic plasticity and aberrant inflammasome activation 

and reactive oxygen species production in microglia162,192. Furthermore it has also shown clinical 

efficacy in the reduction of epileptic seizures associated with ‘mTORopathies’ such as tuberous 

sclerosis193. Not only do these mTORopathies have high comorbidity with neuropsychiatric 

disorders; but there is also a shared heritage of drug discovery between anticonvulsant and mood 

stabilizing drug classes194,195. Thirdly the correlation of rapamycin’s in vivo efficacy with the 

phosphorylation status of mTORC1 substrates, such as p70S6K, in lymphocytes using flow 

cytometry is well established in other indications, expediting a similar application in 

neuropsychiatry196. Finally mTORC1 activity in lymphocytes has been shown to correlate with 

cognitive impairment suggesting that systemic alterations in mTORC1 activity can reflect core 

neuropsychiatric symptoms197. The utility of compounds, such as rapamycin, are likely to have very 

different effects depending on the stage of the disease at which they are implemented and the 

chronicity of the treatment162.  

However if we are to propose rapamycin or related ‘rapalogs’ as viable therapeutic strategies in 

neuropsychiatry, we also have to propose a model in which its mTORC1 inhibition does not 

functionally antagonize the mTORC1 activation necessary for synaptic plasticity and treatment 

response. One such model could involve a low level of systemic mTORC1 inhibition, which promotes 

neuronal ‘housekeeping’ through autophagy, neurogenesis and stabilization of microglial reactivity, 
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and at the same time does not exceed the threshold for localized and activity-dependent mTORC1 

activation in response to stimulation through neurotransmitter receptors. Preliminary studies 

suggest that this is feasible198.  

3.3.4 EX VIVO CORRELATES FOR BIPOLAR DISORDER TREATMENTS 

Divergent ex vivo cell signalling signatures, consistent with known differences in their 

pharmacological profiles, were observed for mood stabilizers lithium and valproic acid (Fig. 3.12). 

Neither of the mood stabilizers displayed the expected increase in GSK-3β (pS9) phosphorylation. 

This is likely due to the fact that the majority of evidence for this effect has been derived from 

chronic administration (4-8 weeks) in vivo in either humans or animal models as discussed earlier. 

However in the control PBMC samples used in the antipsychotic intervention study, activity was 

detected at 30min for lithium at Akt (pT308).This is relevant as a recent study suggests that 

destabilization of the Akt- βarrestin 2- protein phosphatase 2A (Akt-Barr2-PP2A) complex, which 

promotes the accumulation of active Akt phosphorylated at key regulatory site pT308, is the 

primary mechanism of action of lithium87,94. This is supported by an elegant recent study using 

strains of mice which differ in their responsiveness to lithium in behavioural tasks94. Specific Akt 

inhibition (using AKTI-17) abolished lithium sensitivity in the responsive mouse strain (C57BL/6J). 

Meanwhile viral-mediated over-expression of Akt restored sensitivity in the unresponsive mouse 

strain (DBA/2J). Lithium response was also correlated with levels of Akt (pT308) in the striatum. 

Thus while we do not detect the downstream GSK-3β (pS9) phosphorylation for lithium there is 

preliminary evidence that the preceding and fundamental Akt (pT308) phosphorylation is 

detectable in the current time frame ex vivo. 

Furthermore lithium was active at putative downstream partners of Akt/ GSK-3β including 4EBP1 

(pT36/pT45) (discussed earlier), Smad2 (pS465/pS467)/Smad3 (pS423/pS425) and STAT3. The 

reduction in phosphorylation at Smad2 (pS465/pS467)/Smad3 (pS423/pS425) is consistent with a 

direct interaction of Smad 3 within a complex with GSK-3β and Axin. Furthermore lithium has been 

shown to mediate the transcriptional activities of Smad proteins in response to TGF-β signalling199.  

A poignant recent study showed that TGF-B signalling was the principle mediator of gene expression 

changes related to antidepressant responses in mice. Moreover genetic polymorphisms in TGF-B 

signalling pathway members (including Smad 3) were found to predict antidepressant response 

latency in a large longitudinal cohort of patients (n=575) with major depression200. This raises the 

intriguing possibility that the effects on Smad 3 detected in the current ex vivo system could 

underlie the antidepressant aspect of lithium’s concurrent anti-manic and antidepressive profile201. 
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If that is the case this ex vivo interaction could be used to predict response to lithium in bipolar 

patients with more prominent depressive symptomatology. The inhibition of STAT3 by lithium has 

also been reported in primary astrocytes, microglia and neural progenitor cells from rodents 

suggesting potentially clinically relevant mediation of neuro-inflammation and 

astrogliogenesis202,203. 

Valproic acid showed an ex vivo signature which was very different to that of lithium. It displayed 

exquisite specificity for increasing retinoblastoma - Rb (pS780) phosphorylation. This is consistent 

with its role as a histone deacetylase (HDAC) inhibitor, a feature which prominently distinguishes 

its mechanism of action from that of lithium 204–206. Phosphorylation at Rb (pS780) disrupts the 

HDAC-Rb complex which allows chromatin acetylation and gene transcription to occur 207 . Thus we 

are potentially witnessing in this 15-30 min kinetic window the initial stages of epigenetic 

reprogramming associated with the therapeutic profile of valproic acid. HDACs are thought to 

mediate the epigenetic memory of stressful early life events contributing to the pathogenesis of 

mood disorders in subsets of patients204. For example suicide victims with a history of child abuse, 

compared to those without, showed epigenetic downregulation of the glucocorticoid receptor in 

the hippocampus post mortem208. Altered HDAC mRNA expression in peripheral leukocytes has also 

been implicated as a state marker for depressive symptomatology in BD and MDD209. Taken 

together these findings illustrate the role of HDACs as dynamic epigenetic sensors of adverse 

environmental stressors with clinically relevant expression in PBMCs. This raises the exciting 

possibility that the ex vivo response of Rb (pS780) to valproic acid could be used to predict 

treatment response in bipolar patients with different disease aetiologies. For example it is possible 

that patients with a higher environmental stress loading (e.g. comorbid post-traumatic stress 

syndrome210) respond better to valproic acid than those with a dominant congenital loading. To our 

knowledge, there is no treatment response prediction assay in neuropsychiatry which links direct 

drug interactions with environmental aetiology.  The same ex vivo response, in light of Rb's role in 

mediating cell cycle progression, could also be used to predict potential side effects of valproic acid 

such as teratogenicity or polycystic ovarian syndrome211.  

Potent novel GSK-3β inhibitors, CHIR 99021 and JB 1121, distinguished themselves in the ex vivo 

assay from lithium and valproic acid in several ways. This is important as their alternative 

mechanism of action has been proposed as a potential solution for treatment resistant patients 

with bipolar disorder. The first difference relates to their specificity towards GSK-3β. Whereas 

lithium and valproic acid collectively displayed effects at several epitopes related to GSK-3β, CHIR 

99021 and JB 1121 showed activity specifically at GSK-3β (pS9) (Fig. 3.12 and 3.13). This is consistent 

with their provenance in drug discovery. CHIR 99021 was originally discovered for type II diabetes, 
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where it was shown to restore insulin sensitivity in insulin-resistant ZDF rats212. It has an IC50 of 0.1 

µM for glycogen synthase stimulation in cell culture and is over 500 times more selective for GSK 

compared to closely related kinases212. JB 1121 was discovered following a large-scale drug library 

(320,000 compounds) screen followed by optimization using co-crystal structure with GSK-3β. It 

preserves the potency of CHIR 99021, while inhibiting a smaller fraction of the kinome (2.3% vs. 

6.8% of >300 kinases respectively)159. Correspondingly both inhibitors were highly selective with 

respect to the 78 epitopes tested ex vivo. While JB1121 showed no additional activity outside GSK-

3β (pS9), CHIR 99021 additionally inhibited only STAT1 (p727). 

The second difference is that CHIR 99021 and JB 1121 showed a sustained decrease in inhibitory 

GSK-3β (pS9) phosphorylation, whereas the prevailing model for therapeutic efficacy of mood 

stabilizers, at least in vivo, stipulates an increase in inhibitory GSK-3β (pS9) phosphorylation90. How 

then do we reconcile the decrease in inhibitory GSK-3β (pS9) phosphorylation observed ex vivo with 

the known inhibitory effects of CHIR 99021 and JB 1121? One possible explanation relates to their 

role as ATP-competitive inhibitors of GSK-3β213. It is possible that their binding at the ATP site, in 

close proximity to the binding site of the N-terminal (pS9) pseudosubstrate, stabilizes the pseudo-

substrate within the substrate association pocket. This would have the potential to deactivate the 

enzyme, by outcompeting endogenous primed substrates, and at the same time make the pS9 

residue inaccessible for antibody detection due to steric hindrance of the binding pocket or the 

drug itself. The activity of these inhibitors is so quick that it would suggest direct chemical 

interactions, as opposed to inhibition via regulatory kinases (e.g. Akt in the case of lithium), which 

would have a longer kinetic profile, in line with other nodes in the time course study and published 

data. By extension it would imply that the oscillation of the N-terminal (pS9) pseudo-substrate in 

and out of the binding pocket is rapid and continuous. This could have important implications for 

the design of future inhibitors.  

Alternative explanations could involve stabilization of the GSK-3β-Axin complex in which the (pS9) 

residue is notoriously inaccessible or changes in the subcellular localization of GSK-3β. However as 

only 10% of cellular GSK-3β is estimated to be associated with Axin88 and the sequestration profiles 

observed for other proteins had a higher latency, it is unlikely that these factors are decisive. A final 

possibility is that these compounds display a biphasic phosphorylation response as has been 

observed for several neuropsychiatric compounds139,144. In this case the initial decrease in GSK-3β 

(pS9), for example during the first two hours of exposure, might be succeeded by an increase, for 

example at 24 - 96hrs. Taken together, these findings allow us to re-evaluate the role of GSK-3β 

(pS9) phosphorylation in the development of enhanced inhibitors of this pathway. 
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The different mechanisms of action of CHIR 99021 and JB 1121 relative to lithium and valproic acid 

have vital implications for the clinical potential of these novel compounds. While compounds like 

lithium exert their effect on GSK-3β via interacting proteins such as Akt, CHIR 99021 and JB 1121 

can bypass this requirement and act directly on GSK-3β. This direct action on GSK-3β by CHIR 99021 

was sufficient to provide putative mood stabilizing effects in a lithium insensitive mouse strain 

(DBA/2J). Furthermore CHIR 99021 normalized the behaviour of this mouse strain in paradigms 

used to model both manic and depressive symptoms94. This suggests the CHIR 99021, and by 

extension JB 1121, could provide a much needed therapeutic intervention for bipolar patients who 

don’t respond to or don’t tolerate standard lithium treatment. It is particularly interesting that the 

lithium insensitive DBA/2J mice responded even better to CHIR 99021 compared to their lithium 

responsive CB57BL/6J murine counterparts94. This mirrors a feature observed across several 

neuropsychiatric disorders, which is that often the patients with the most severe symptoms show 

the greatest response to treatment68. Thus if we are able to target these resistant phenotypes 

correctly at the cell signalling level, using novel compounds such as CHIR 99021 and JB1121, these 

patients could potentially show the highest therapeutic response.  

The dependence on Akt for lithium’s mechanism of action could explain why, despite atypical 

antipsychotics being used for the treatment of acute mania and psychosis in bipolar disorder, 

lithium is ineffective against psychotic symptoms in schizophrenia55. Reduced Akt and phospho-Akt 

has been reported in post mortem brains, lymphocytes and lymphoblastoid cell lines from patients 

with schizophrenia84,214. This could explain why they are non-responsive to lithium. At the same 

time it raises the possibility the inhibitors such as CHIR 99021 and JB 1121 could have future 

indications in schizophrenia. Introduction of these inhibitors to the clinic will depend on their 

pharmacokinetic and safety profiles which are still being characterized.  Nevertheless, in the ex vivo 

assay they provide a mechanistic scaffold for Akt-independent modulation of GSK-3β which could 

drive a much needed new generation of neuropsychiatric medications with a radically different 

mechanism of action.  

3.3.5 EX VIVO CORRELATES FOR ANTIPSYCHOTIC TREATMENTS 

Convergent activity was detected at consecutive time points for typical (haloperidol) and atypical 

(clozapine) antipsychotics at v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL) (pY207) 

(mean FC=1.12 and 1.11 for 1-5 min, respectively; Fig. 3.12). Olanzapine also showed activity at this 

epitope (FC 1.13) at 30 min. CrkL is not an established target of these medications. However several 

recent lines of evidence strongly support its involvement in schizophrenia. The largest genome wide 
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association study performed in schizophrenia to date (36,989 cases vs. 113,075 controls) revealed 

micro RNA-137 as one of two genes in the second most significant locus24. A parallel study found 

CrkL to be one of the top four genes whose expression was regulated by micro RNA-137 in human 

neural progenitor cells215. A third study which contrasted the results of available GWAS data with a 

meta-analysis of genes which were disrupted by copy number variations (CNVs) in schizophrenia 

also identified CrkL as one of the top candidates29. Interestingly in this study CrkL was highly 

connected using network analysis with other identified risk genes including ERBB3, ERBB4, NPAS3 

and ANK3. Furthermore it has been linked to schizophrenia and ASD in large exome sequencing 

studies which reported de novo and rare disruptive mutations106,107,216. Finally it is one of the key 

genes, within the schizophrenia-associated 22q11.2 microdeletion locus, which affect embryonic 

retinoic acid homeostasis, reelin signalling and neuronal migration217–220. Despite indications that 

clozapine and haloperidol modulate reelin levels in the rat brain221, CrkL itself has not yet been 

implicated as a primary target of existing antipsychotics. Taken together these findings suggest that 

the activity detected at CrkL (pY207) in the ex vivo assay represents a potentially novel mechanism 

of action of approved antipsychotic medications. Moreover this putative target is shared by both 

typical and atypical antipsychotic drug classes and phencyclidine (Fig. 3.11) which induces psychosis 

like symptoms in humans. Finally its involvement in neurodevelopmental pathogenesis raises the 

exciting possibility that it could be used as response predictor ex vivo in early intervention strategies 

for patients with more prominent neurodevelopmental disease aetiology or ASD comorbidity.  

The progressive induction of phosphorylation at 3-phosphoinositide dependent protein kinase-1 

(PDPK1) (pS241) at 5 -30 min specifically by aripiprazole is the second main finding within the 

antipsychotic drug class. PDPK1 is considered a master upstream kinase in metabolic signalling as it 

phosphorylates several substrates, including Akt, PKC and p70S6K, in response to insulin and 

insulin-like growth factor-1 (IGF-1)222,223. The activation of PDPK1 at (pS241) by aripiprazole 

corresponds to a putative insulin sensitizing effect. In contrast antagonistic dephosphorylation of 

insulin and IGF-1 signalling epitopes, AKT (pT308), CD221 (pY1131) and GSK-3β (S9), was observed 

at 30 min suggesting compensatory mechanisms in response to the initial PDPK1 activation. While 

the direction of these changes requires further investigation across a longer kinetic course, it is 

notable that aripiprazole was the only antipsychotic to produce this effect. Compared to other 

atypical antipsychotics, aripiprazole is associated with a relatively lower risk of weight gain and 

metabolic side effects224. This has been conventionally explained by a lower relative affinity for 

histamine 1 (H1) receptors in the CNS225. However the present results suggest that it might also 

have a differential interaction directly with insulin signalling in the periphery.  This interaction ex 

vivo could potentially be used to predict which patients would benefit from reduced metabolic side 

effects if treated with aripiprazole as compared to other atypical antipsychotics. This would 
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represent a significant innovation as the adverse metabolic effects of many atypical antipsychotic 

drugs currently result in serious morbidity and mortality13.  

Risperidone showed a divergent profile with respect to the other active antipsychotics (clozapine, 

haloperidol and aripiprazole). It is noteworthy that while potentiation of CrkL (pY207) was shared 

across individual members of both the atypical and typical antipsychotic drug classes, this effect 

was not shared by risperidone. While risperidone shows an intermediate effect, relative to other 

antipsychotic drugs, in meta-analyses of clinical efficacy and side effects (extrapyramidal symptoms, 

weight gain, prolactin release, sedation and cardiac arrhythmias)17, several in vitro and biochemical 

studies suggest that it has a divergent molecular activity profile. Risperidone has been shown to 

have a differential  effects on the secretion of Th1 vs. Th2 cytokines from dendritic cells, relative to 

haloperidol226, and in terms of growth inhibition in lymphoblastoid cell lines, relative to other 

antipsychotics179. The latter is concurrent with a differential expression of cell proliferation related 

proteins in the rat cerebral cortex following chronic in vivo administration of risperidone, relative 

to clozapine227. The evidence of an anti-proliferative and anti-inflammatory profile of risperidone is 

concurrent with its unique inhibition of the mTORC1 pathway at 4EBP1 (pT36/pT45) in the current 

results. Receptor binding affinity studies have also indicated differences in the affinity of 

risperidone to 5HT2C and 5HT2A receptors, relative to other antipsychotics225. These divergent 

molecular activities are supported by the relatively different chemical structure of risperidone 

(Tanimoto 2D similarity score of <0.68, PubChem; Chapter 5 Fig 5.6) in comparison with other 

antipsychotics.  

Taken together, these findings suggest that, although the divergent cell signalling profile of 

risperidone does not equate to drastically biased activity in clinical meta-analyses, its divergent 

molecular profile may contribute to variable responses, in terms of efficacy or side effects, observed 

between individuals. By extension the data also suggests that the commonly adopted experimental 

design, in which the molecular profiles of single members of either typical or atypical antipsychotic 

drug classes are generalized to represent that of other class derivatives, potentially obscures 

divergent molecular profiles with significant clinical impact. This is compounded by a biased 

distribution of specific class derivatives across previous clinical trials of comparative efficacy, which 

are dominated by haloperidol, risperidone and olanzapine17. The direct comparison of multiple class 

relatives, at both the molecular and clinical level, in future studies would serve to elucidate the 

divergent profiles of antipsychotic medications, beyond the current paradigm for typicality, and 

address the vital question of interpersonal variation in treatment response.  
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3.3.6 EX VIVO CORRELATES OF ANTIDEPRESSANT TREATMENTS 

The induction of MEK1 (pS298) at 15-30min (1.5 - 3.3 FC) by desipramine and at 30min by fluoxetine 

(1.25 FC) represented the highest positive fold changes in phosphorylation status across all the 

neuropsychiatric treatments measured ex vivo (Fig. 3.12). Decreases in MEK1 phosphorylation and 

catalytic activity have been found in the hippocampus and prefrontal cortex brain regions of suicide 

victims post mortem228. In two separate studies pharmacological inhibition of MEK, using 

PD184161, produced depressive-like behaviour in mice and blocked the ability of either 

desipramine or ketamine to reverse this phenotype229,230. Potentiation of the MEK signalling 

cascade, downstream of 5-HT1A and 5-HT4 receptors, has also been shown to improve emotional 

memory in rat models of depression231. Thus the potentiation of MEK (pS298) in the presence 

desipramine and fluoxetine ex vivo represents a direct functional antagonism of the putative 

disease process. These findings also suggest that MEK is a convergent target of conventional and 

novel antidepressant mechanisms of action consistent with its role in synaptic plasticity. 

Furthermore its implication in restoring emotional memory suggests that it could be a valuable drug 

target for ameliorating cognitive deficits, which are common to several neuropsychiatric disorders, 

and are notoriously difficult to treat using current psychiatric medications. Taken together these 

findings indicate that MEK (pS298) could be a valuable treatment response predictor for major 

depression and a surrogate drug target for screening of novel compounds. Interestingly IL-2, anti-

CD3/CD28 and D3 agonist (7-OH-DPAT) shared the MEK1 (pS298) potentiation signal. This suggests 

that convergent cell signalling mechanisms could be involved in T cell survival and proliferation and 

also the neurotrophic effects of neurotransmitters and antidepressants. Fluoxetine and 

desipramine also shared inhibition of both GSK-3β (pS9) and 4EBP1 (pT36/pT45). This will be 

discussed below in the wider context of functional coupling across neuropsychiatric medications. 

3.3.7 FUNCTIONAL COUPLING AS A NOVEL THERAPEUTIC STRATEGY 

In the pathway structure investigated (Fig. 3.13) the relationships between signalling proteins are 

depicted as unidirectional for clarity. Signals are shown travelling from receptors at the cell surface, 

down the canonical signalling pathway to proteins involved in gene transcription and translation. In 

fact many bidirectional relationships have been reported. For example GSK-3β can regulate Akt 

activity in several ways including phosphorylation of the inhibitory site Akt (pT312), activation of 

protein phosphatase 1 (PP1) which dephosphorylates the activation site Akt (pS473), or by 

promoting the Akt-Barr2-PP2A complex which dephosphorylates the regulatory site Akt (pT308)88. 

This bidirectionality is not limited to adjacent proteins but can also occur across several proteins in 
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the signalling hierarchy. For example GSK-3β can regulate mTORC2 ‘downstream’ and mTORC2 can 

phosphorylate Akt (pS473) several levels ‘upstream’108. There are likely to be countless other 

bidirectional relationships between proteins shown which will help to redefine the concept of the 

canonical signalling pathway towards an interconnected network.   

This concept allows us to assess whether the off-target effects at 4EBP1 (pT36/pT45), for drugs 

which are known to modulate GSK-3β (pS9), indicate functional coupling between these two 

epitopes. The fact that the specific GSK-3β and mTORC1 inhibitors, CHIR 99021 and rapamycin 

respectively, do not reciprocally interact with both epitopes suggests that the two epitopes are not 

directly coupled in a compulsory manner. This is supported by differential kinetics between the two 

epitopes for compounds which interact with both, such as fluoxetine and desipramine. In addition, 

the causality of the relationship between GSK-3β and mTORC1 is likely to vary across compounds. 

However it is possible that enrichment of these two epitopes in the activity profile of 

neuropsychiatric treatments represents parallel targeting of a holistic disease process.  

A pertinent recent oncology study showed that specific inhibition of GSK-3β, using 3 µM CHIR 

99021, affected the sensitivity of cancer cell lines to a range of FDA approved antineoplastic drugs 

(NCI Approved Oncology Drug Set II, n=89)108. GSK-3β inhibition altered the apoptotic profile of 

nearly half of the library compounds with the highest variation observed for kinase inhibitors. 

Notably CHIR 99021 completely desensitized the cells to rapamycin, and its closely related analogue 

everolimus, suggesting a strong mechanistic interaction between their respective drug targets. 

Interestingly the mechanism of action was independent of the conventional target of rapamycin 

(mTORC1). This interaction also explained why many colorectal cancer cells, with reduced GSK-3β 

activity, are resistant to rapamycin treatment relative to healthy epithelial cells. On the other hand 

the combination of GSK-3β inhibition with a different compound, polo-like kinase 1 (PLK1) inhibitor, 

was able to overcome cellular resistance to apoptosis.  

This study taken from the field of oncology has several vital implications for the current results. 

Firstly that compounds which are active at these two sites, mTORC1 and GSK-3β, can have a 

profound mechanistic relationship which is not immediately apparent in the traditional framework 

of canonical signalling. Secondly that combined targeting of these two sites, with precisely the same 

inhibitors which showed ex vivo activity in the present study (CHIR 99021 and rapamycin), can 

reveal the molecular basis of resistant cellular phenotypes. Conversely combinatorial drug 

treatment can be used to overcome cellular resistance or mitigate toxicity. For example while the 

interaction between CHIR 99021 and rapamycin reduces the desired apoptotic effect in cancer, it 

could provide precisely the neuroprotective qualities sought in a neuropsychiatric medication.  The 
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shared pattern of cellular response between CHIR 99021, rapamycin and the efficacious 

neuropsychiatric medications in the current studies suggests that this interaction could be positive 

in neuropsychiatry. Interestingly synergistic effects on Akt/ GSK-3β signalling have been reported 

for fluoxetine and risperidone, which shared 4EBP1 activity in the current system, and are known 

to modulate GSK-3β82. Moderate GSK-3β inhibition has also been shown to potentiate the effects 

of a subthreshold dose of ketamine on mTORC1 dependent behavioural responses in animal models 

of treatment resistant depression232. 

The authors of the oncology study also raise an interesting point about the ultimate specificity of 

the inhibitors. Using a kinome-wide RNAi screen, they showed that selective GSK-3β inhibition 

modulates the activity of 50% of the kinases targeted by drugs which are FDA-approved or in clinical 

trials. Many of these kinases are likely to be shared targets of neuropsychiatric medications thus 

supporting the exploration of these interactive relationships between specific inhibitors and 

approved neuropsychiatric treatments. Furthermore, as kinases represent the largest class of 

protein drug targets after GPCRs, the potential of specific GSK-3β modulation to affect drug 

sensitivity extends beyond neuropsychiatric indications.  However it also raises the question of 

whether specific inhibition of pleiotropic kinases, such as GSK-3β and mTORC1, represents a 

feasible drug target given the likelihood of toxicity and non-specific side effects. The safe 

therapeutic use of GSK-3β inhibitor lithium for over 60 years in the clinic suggests that this is 

possible in neuropsychiatry201. Furthermore many of these pleiotropic kinases require their 

substrates to be pre-phosphorylated or complexed by other regulatory proteins for 

phosphorylation to occur88. Therefore a low level of specific inhibition by compounds such as CHIR 

99021, JB 1121 or rapamycin might not necessarily evoke the cellular cataclysm predicted by a 

promiscuous kinome-interaction profile. Instead the threshold at which master cellular regulators, 

such as GSK-3β and mTORC1, compute intervening signals might be modified leading to a 

normalization of aberrant responses only when they occur.  

Many approved chemical entities in neuropsychiatry have been described as ‘magic shotguns’112. In 

other words this relates to drugs which have effects on multiple targets, many of which are poorly 

understood, yet their combined effect is essential to clinical efficacy. The present ex vivo results 

allow us to dissect the individual targets, such as mTORC1 and GSK-3β, of these ‘magic shotgun’ 

treatments. We can then use specific inhibitors against these targets, such as CHIR 99021, JB 1121 

and rapamycin, to individually modulate their behaviour. As the targets themselves are 

promiscuous, this in turn could normalize a variety of cellular processes. However the vital 

distinction is that the input to the therapeutic system is specific and controlled. To extend the 

shotgun treatment metaphor, this would constitute parallel ‘silver bullets’. Moreover if the efficacy 
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of these so called ‘silver bullets’ can be correlated ex vivo to clinical outcomes it would allow the 

selection and combination of specific inhibitors to be tailored to specific patient groups. The in vivo 

potential of this strategy has been demonstrated using CHIR 99021 to improve the behavioural 

profile of lithium treatment resistant mice in an animal model of BD, as described earlier94. The 

current results have applied this strategy using only a handful of specific inhibitors and their 

similarity to the cell signalling patterns of approved treatments as the clinical correlate. Expanding 

this strategy to see how the approved medications behave in the signalling milieu of patient cells 

ex vivo, as compared to controls, and using whole libraries of specific inhibitors will potentially 

provide a wealth of novel pharmacophores. 
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CHAPTER 4 

CLINICAL DRUG TARGET DISCOVERY FOR

SCHIZOPHRENIA

 CHAPTER 4: CLINICAL DRUG TARGET DISCOVERY FOR 

SCHIZOPHRENIA 

4.1 INTRODUCTION 

To determine whether the functional cytomic platform is capable of identifying changes in cell 

signalling that constitute novel drug targets for schizophrenia, we applied the most active ligand-

epitope combinations from the time course study (as outlined in Chapter 3) to patient and control 

PBMCs ex vivo. This was conducted in two separate, discovery and validation, stages. The discovery 

stage involved the identification of cell signalling responses which were altered in PBMCs from 

individuals with schizophrenia, relative to healthy controls, and subsequently normalized by in vivo 

antipsychotic therapy (antipsychotic intervention study- ‘AI’; Chapter 1 Fig. 1.3c). The validation 

stage involved the replication of these findings in an independent cohort of schizophrenia patients 

and assessment of their relative specificity for schizophrenia as compared to other major 

neuropsychiatric disorders including bipolar disorder, autism spectrum disorder and major 

depressive disorder (differential diagnosis study –‘DD’; Chapter 1 Fig. 1.3d). By combining these 

two types of clinical exploration (AI and DD) we sought to extend the findings of the time course 

study by defining which cell signalling responses correlate to therapeutic efficacy on a clinically 

relevant timescale (six weeks) in vivo and moreover whether these responses represent potentially 

specific drug targets or treatment response predictors for schizophrenia relative to related 

neuropsychiatric disorders. 
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4.2 RESULTS 

4.2.1 DRUG TARGET DISCOVERY USING AN IN VIVO ANTIPSYCHOTIC INTERVENTION

STUDY DESIGN 

We compared PBMC cell signalling responses obtained from a cohort of male healthy controls 

(n=12) to drug-naive male schizophrenia patients before (T0) (n=12) and after six weeks (T6) (n=10) 

of mono-therapy with the atypical antipsychotic medication olanzapine. The patient and control 

samples were matched for age, gender, BMI, ethnicity, cannabis use, blood pressure and hip vs. 

waist circumference but not for smoking or alcohol consumption (Table 4.1). Comparison of PBMC 

responses in samples from schizophrenia patients before treatment to responses from controls 

allowed the identification of putative signalling mechanisms altered in the disease state. 

Comparison of PBMC responses in samples from schizophrenia patients before and after treatment 

allowed the determination of surrogate markers of drug efficacy in vivo (Fig. 4.1). Finally the overlap 

between these two data sets allowed the prioritization of putative drug targets. 

We incubated PBMCs from each of the clinical groups (CTRL, T0 and T6) for 30 min with the 56 most 

active ligands (and 8 vehicle controls) identified in the time course screening (Chapter 3 Fig. 3.5d 

and Table 3.1). The ligands included a variety of CNS receptor agonists, neuropsychiatric 

medications, cytokines, hormones/ growth factors, antigens and intracellular signalling modulators 

(Chapter 2: Table 2.1). Subsequently we measured changes in T cell signalling evoked by the ligands 

using the 66 most active cell signalling epitopes determined in the time course (Chapter 3 Fig. 3.5d 

and Table 3.2). The epitopes spanned a wide variety of cell signalling pathways broadly including 

Akt/GSK-3β, PKA, PKC, MAPK, JAK/STAT, IL1R/TLR and TCR/BCR pathways (Chapter 2; Table 2.3). 

This produced a total of 3696 cell signalling responses, in addition to basal expression levels of the 

66 epitopes, which were measured in T cells for each PBMC donor (Chapter 1: Fig. 1.4b). As in the 

time course study, fluorescent cell barcoding was used to multiplex the different ligand and vehicle 

conditions, followed by T cell subtyping using anti-CD3 and functional analysis using antibodies 

specific for different cell signalling epitopes (Fig. 4.2). Additionally the PBMC samples were 

immunophenotyped prior to ligand stimulation to establish the relative abundance of helper (CD4+) 

and cytotoxic (CD8+) T cell subsets and assure that the samples had sufficient viability for functional 

analysis (Fig. 4.3).   

93



Two types of cell signalling changes, ligand response and basal epitope expression, were identified 

across the clinical group comparisons. Ligand response alterations relate to ligand-epitope 

combinations or ‘signalling nodes’ in which there was a statistical interaction between clinical group 

status and the response to ligand. In other words PBMCs from different clinical groups showed 

different epitope responses to a specific ligand. Basal epitope alterations relate to nodes in which 

there was a statistical association between clinical group status and epitope expression, which was 

independent of the ligand activity. In other words PBMCs from different clinical groups showed 

different levels of epitope expression in the resting unstimulated state. Epitopes for which over 30% 

of the nodes satisfied this condition were categorized as displaying differences in basal epitope 

expression (Chapter 2: Statistical analysis).  

4.2.2 SIGNATURE FOR ALTERED CELL SIGNALLING AND CLINICAL ANTIPSYCHOTIC

TREATMENT RESPONSE IN SCHIZOPHRENIA

In total, across both group comparisons (SCZ T0 vs. CTRL and SCZ T0 vs. SCZ T6), 27 ligand responses 

and 19 basal epitope levels were found to be significantly altered representing 1% of the conditions 

screened (46/ 3762 nodes). Unsupervised hierarchical clustering of these 46 nodes and the PBMC 

sample IDs revealed three distinct clusters, corresponding to the three clinical groups (with the 

exception of three healthy control samples in the schizophrenia T6 group; Fig. 4.4). The fact that 

these clinical groups can be separated based on their cell signalling profiles suggests that there is a 

significant clinical representation of schizophrenia pathology and antipsychotic treatment effects 

within the T cell signalling repertoire. The order of the clinical groups within the clustering 

hierarchy, with schizophrenia T0 and healthy controls at opposite ends of the tree and 

schizophrenia T6 samples in the middle and adjacent to healthy controls, suggests a normalization 

of the altered T signalling repertoires over the course of olanzapine treatment. This is concurrent 

with an overall improvement of symptoms in the schizophrenia T6 group (Fig. 4.1). Conversely, 

clustering of the cell signalling nodes revealed two main groups. The upper group consisted 

primarily of ligand responses (19 responses vs. 3 basal epitopes), including several CNS ligands and 

neuropsychiatric treatments, and appeared to drive the separation of the schizophrenia T0 group 

from the rest. In contrast the lower group was comprised mostly of basal epitope expression levels 

(16) relative to ligand responses (8) and appeared to drive the separation of schizophrenia T6 from

T0 and healthy controls. This indicates a dichotomy between disease and clinical treatment effects

at the level of T cell signalling.
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To investigate this further we prioritized the ligand responses obtained from the interaction testing 

by selecting only ligands which produced a significant (unpaired Wilcoxon p<0.05 adjusted for 

background fluorescence) fold change over 5% compared to the vehicle in at least one of the 

comparison groups (Table 4.2). Basal epitopes with a minimum stain index of two, relative to the 

unstained sample, were also prioritized (Table 4.3). 

The prioritized ligand responses and epitopes with altered basal expression derived from the 

schizophrenia T0 vs. CTRL group comparison revealed several cell signalling alterations already 

associated with schizophrenia (Fig. 4.5a). Altered basal epitopes included decreased Akt1 and IRF-

7 (pS477/pS479) and increased STAT3 (pY705).  Ligand responses in schizophrenia T cells were 

attenuated at PLC-γ1, in response to the calcium flux inducer (thapsigargin), and at PKA RII-α (pS99), 

in response to the adenosine agonist (NECA). Conversely the response to cyclic adenosine 

monophosphate (cAMP) inducer (forskolin) was potentiated at Src (pY418). Finally the glutamate 

receptor antagonist (phencyclidine), known to induce psychosis-like symptoms in humans and 

animal models, provoked a different direction of response at PLC-γ1 in each of the clinical groups.  

Comparison of the prioritized ligand responses and basal epitope levels between schizophrenia T0 

and T6 groups revealed cell signalling alterations associated with the six week olanzapine treatment 

course (Fig. 4.5b).  Basal expression was altered for 14 epitopes across mechanistically diverse 

signalling pathways including Akt/GSK3-β (5 epitopes), PKC (1 epitope), MAPK (2 epitopes), 

JAK/STAT (3 epitopes), IL1R/TLR (1 epitope) and TCR/BCR (3 epitopes). All of these changes 

represented increased epitope levels, except for STAT3 (pY705) which was decreased, following in 

vivo olanzapine treatment. Several ligand responses were also modified by in vivo olanzapine 

treatment. These included attenuated responses to D3 receptor agonist (7-OH-DPAT) and sex 

hormone (17 β-estradiol) at PKA RII-α (pS99), forskolin at Src (pY418) and antidepressant 

medication (desipramine) at CrkL (pY207). Responses which were potentiated included thapsigargin 

at PLC-γ1, STAT5 (pY694) and CrkL (pY207) and PKC/ calcium flux activator (PMA/ ionomycin) at WIP 

(pS488). 
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4.2.3 PRIORITIZATION OF PUTATIVE DRUG TARGETS BASED ON NORMALIZATION OF

DISEASE SIGNALLING NODES FOLLOWING CLINICAL ANTIPSYCHOTIC TREATMENT 

In order to identify which of the prioritized nodes represented potential drug targets for 

schizophrenia we assessed which of the cell signalling alterations, present in schizophrenia T0 

samples relative to controls, were reversed over the course of clinical olanzapine treatment (Fig. 

4.6). Four nodes were found to be reversed (‘reversal nodes’) which represented 15% (4/26) of the 

total prioritized nodes. These included basal epitope expression at Akt1 and STAT3 (pY705) and 

ligand responses for thapsigargin at PLC-γ1 and forskolin at Src (pY418) (Fig. 4.7). Considering that 

the number of prioritized nodes was 0.2% (7/ 3762 nodes) and 0.6% (23/ 3762 nodes) of the total 

nodes assayed, for schizophrenia and olanzapine treatment comparisons respectively, this 

represents a significant enrichment of nodes for which the signalling profile was reversed. It is 

notable that all of the nodes which overlapped between schizophrenia vs. control and treatment 

follow up comparisons reflected reversal or ‘normalization’ of aberrant responses and not 

potentiation. The combined likelihood of the enrichment and unanimous reversal patterns 

observed at these nodes occurring by chance was extremely low (p = 1.8x10-8).  

Thapsigargin-PLC-γ1 was especially noteworthy as it was the most significant ligand response 

altered in schizophrenia T0 vs. control by a factor of 20 fold (p=0.001). PLC-γ1 was also the only 

epitope to show multiple ligand interactions in the schizophrenia vs. control comparison, one of 

which involved the known psychosis-inducing compound phencyclidine. Moreover thapsigargin 

was the only ligand to induce multiple changes across different epitopes (PLC-γ1, STAT5 (pY694) 

and CrkL (pY207)) in either of the clinical group comparisons. Taken together these results clearly 

implicate the thapsigargin- PLC-γ1 response as the top drug target to emerge from the clinical stage 

of the study.  

4.2.4 Symptom subscale segregation of cell signalling responses 

To better characterize the putative drug targets and determine whether specific schizophrenia 

symptoms can be linked to altered cellular responses, we correlated changes in the four normalized 

nodes (described above) to changes (δ) in positive and negative syndrome scale (PANSS) scores 

across the olanzapine treatment course. Syndrome subscales included PANSS positive (PANSSp), 

PANSS negative (PANSSn), PANSS general (PANSSg) and PANSS total (PANSSt). Basal STAT3 (pY705) 

expression was the only reversal node which correlated to a syndrome subscale and showed a 
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significant reduction associated with an improvement in negative symptoms (δ−PANSSn; ANCOVA: 

p = 0.010, Spearman: p = 0.001, rho= -0.93, n= 9 samples). This raised the possibility that different 

cell signalling pathways reflect changes in the different symptom subscales. Despite low sample 

numbers (n = 6-9) for many nodes, we conducted an exploratory analysis to determine which 

epitopes were independently linked to positive or negative syndrome subscales. Epitopes for which 

at least 25% of the nodes showed an association to δ−PANSSp or δ−PANSSn, independently of their 

respective ligand activities, included S6 (pS240), PDPK1 (pS241) and NF-κB p65 (pS529) for 

δ−PANSSp (Fig. 4.8a) and STAT3 (pY705), STAT3 (pS727), NF-kb p65 (pS529) and Zap-70 (pY319)/Syk 

(pY352) for δ−PANSSn (Fig. 4.8b). NF-κB p65 (pS529) was the only epitope to meet this criteria for 

both symptom subscales, yet was correlated in opposite directions in δ−PANSSp vs. δ−PANSSn. The 

direction of change and epitopes implicated across the rest of the array further suggested distinct 

cell signalling patterns associated to changes in each symptom subscale. 

4.2.5 Comparison of ex vivo and in vivo effects of olanzapine on cell 

signalling epitopes 

The profound imprint of in vivo olanzapine treatment on the T cell signalling repertoire raised the 

question of whether these cell signalling changes represented direct effects of the drug or complex 

changes in patient physiology. To address this we examined the direct effects on signalling epitope 

expression of olanzapine 10 µM at 30 min in each of the clinical comparison groups. Potentiation 

of epitope expression was observed for Src (pY418), PKC-α, CrkL (pY207) and PKA RII-α (pS99) in 

the CTRL group and Akt1 in the SCZ T0 group (Fig. 4.9). In the case of Src (pY418), CrkL (pY207) and 

Akt1 these rapid (30 min) ex vivo effects of olanzapine were mirrored by similar increases in basal 

epitope expression after six weeks of clinical olanzapine administration. Notably the normalization 

of response to forskolin at Src (pY418), identified as one of the primary drug activities of clinical 

olanzapine treatment, involved an increase in basal Src (pY418) similar to that observed after 30 

min of olanzapine exposure ex vivo. The only epitopes which displayed multiple ligand interactions 

in the schizophrenia T0 vs. T6 comparison were CrkL (pY207) and PKA RII- α (pS99). The ex vivo 

responses of these epitopes to olanzapine at 30 min were correlated to changes in positive (p 

ANCOVA = 0.017, n= 6 samples) and negative (p ANCOVA = 0.011, n= 6 samples) symptoms 

respectively following in vivo drug administration. Overall the epitopes which were responsive to 

acute olanzapine exposure ex vivo comprised 27% (7/26) of the nodes altered by olanzapine in vivo. 

This represented a significant enrichment considering that only 0.6% of the total nodes assayed 
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(23/ 3762) were altered following in vivo olanzapine treatment. Conversely no ex vivo effects of 

olanzapine were observed in the SCZ T6 group.  

4.2.6 VALIDATION OF PUTATIVE SCHIZOPHRENIA DRUG TARGET SPECIFICITIES USING A

DIFFERENTIAL DIAGNOSIS STUDY DESIGN

We compared four neuropsychiatric disease cohorts, including drug-naive schizophrenia (SCZ, 

n=25), bipolar disorder (BD, n=25), major depressive disorder (MDD, n=25) and autism spectrum 

disorder (ASD, n=25), in parallel to healthy control samples collected at their respective clinical 

centres (n=25 each). Each cohort was matched for age, gender and BMI to their respective controls 

and also to the schizophrenia cohort. The only clinical parameters for which matching was not 

possible were age and BMI in the MDD cohort relative to SCZ (Table 4.4).  Comparison of the SCZ 

samples to controls allowed independent validation of the four prioritized drug targets from the 

antipsychotic intervention (AI) study to be tested (basal Akt1 and STAT3 (pY705) and ligand 

responses for thapsigargin at PLC-γ1 and forskolin at Src (pY418)). Furthermore exploration of these 

drug targets in the other neuropsychiatric disease cohorts allowed us to determine their specificity 

towards schizophrenia.  

The experimental protocol used for the differential diagnosis (DD) study was similar to that 

described above for the AI study with three primary modifications. Firstly a subset of 14 ligands 

(and two vehicle controls) was used for incubation with PBMCs. These ligands included two 

additional cocktails, anti-BCR/FcR-XL/CD40L and anti-CD3/CD28-XL, which were not examined 

previously and provided enhanced activation of T and B cell receptors. (Chapter 2: Table 2.1). 

Secondly a subset of 42 epitopes was used relative to the AI study. The epitopes spanned a wide 

variety of cell signalling pathways broadly including Akt/GSK-3β, PKA, PKC, MAPK, JAK/STAT, 

IL1R/TLR and TCR/BCR pathways (Chapter 2: Table 2.3). Finally whereas the AI study examined cell 

signalling changes in T cells alone the DD study examined changes in subtypes of T cells, CD4+ (T 

helper) and CD4- (predominantly T cytotoxic-CD8+) cells, in addition to B cells. This produced a total 

of 1764 PBMC subtype-resolved cell signalling responses and 126 basal epitope expression levels 

measured in each PBMC donor (Chapter 1: Fig. 1.4c).  
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4.2.7 VALIDATION OF ALTERED BASAL EPITOPE EXPRESSION IDENTIFIED IN THE AI STUDY 

Both Akt1 and STAT3 (pY705), which were altered in schizophrenia and reversed by in vivo 

olanzapine treatment in T cells in the AI study, were also altered in the SCZ vs. CTRL comparison of 

the DD study (Table 4.5). These alterations were further resolved in the DD study to CD4- (Akt1) 

and CD4+ (STAT3 (pY705)) T cell subtypes in addition to B cells (Akt1 and STAT3 (pY705) (Fig. 4.10a-

d). Notably the association of AKt1 to schizophrenia was several orders of magnitude more 

significant (p=0.0001 vs. p=0.0430) with a greater fold change (-1.60 vs. -1.06) in B cells relative to 

CD4- cells.  While Akt1 was reduced in both the AI and DD studies, in the associated cell subtypes, 

STAT3 (pY705) was increased in the AI study (1.22 fold for T cells) and decreased in the DD study (-

1.13 fold for CD4+ T cells and -1.08 fold for B cells). To expand the scope of analysis and take 

advantage of the power provided by increased sample numbers in the DD study we investigated 

possible associations to schizophrenia, or any of the other neuropsychiatric diseases, at all of the 

measured sites on Akt1 and STAT3 proteins. These included the activation sites pT308 and pS473 

on Akt, and regulatory pS727 and non-phosphorylated total protein detection sites on STAT3. The 

only additional indication of altered basal epitope expression, at any of the Akt1 or STAT3 sites 

across the diseases, was decreased STAT3 (pS727) in CD4+ T cells for MDD. This confirms the 

specificity of changes in total Akt1 and STAT3 (pY705) epitopes to schizophrenia. However it also 

raises the possibility that schizophrenia and MDD converge mechanistically on STAT3, albeit at 

different epitopes. 

4.2.8 EXPLORATION OF LIGAND RESPONSES AT EPITOPES WHICH WERE NORMALIZED BY

ANTIPSYCHOTIC THERAPY IN THE AI STUDY 

A total of ten ligand responses were significantly altered in PBMCs across the neuropsychiatric 

cohorts relative to CTRLs at the four normalized epitopes from the AI study (Akt1, STAT3 (pY705), 

PLC-γ1 and Src (pY418)). PLC-γ2 was also included in this comparison as it shares 99.9% sequence 

homology and similar biological activity to PLC-γ1(UniProt P19174 vs. P16885)233,234 (Table 4.6). 

Responses at these epitopes were all specific to schizophrenia with no significant interactions 

detected in any of the other disease groups. Responses at the PLC-γ1/2 isotypes accounted for 60% 

of the abnormal ligand responses in schizophrenia supporting the implication of altered PLC-γ 

signalling as the top drug target to emerge from the AI study. Interestingly the response to 

thapsigargin in T cell subsets was not detected at PLC-γ1, as in the AI study, but instead at PLC-γ2 

(Fig. 4.10e). This can be attributed to the fact that the responses at PLC-γ1 for thapsigargin were 

likely saturated in the DD study due to a more potent batch of the stock ligand despite similar 
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concentrations. This is supported by the fact that the maximal group response in the AI study was 

1.25 whereas in the DD study it was 1.46 across all the clinical groups, corresponding to the maximal 

plateau of the thapsigargin/ PLC-γ1 dose response curve (Chapter 5 Fig. 5.2). However it is 

remarkable in the DD study that the only schizophrenia-associated response to thapsigargin, 

despite widespread activity at over 30% of the epitopes, was specifically at the close functional and 

structural homologue of PLC-γ1 (PLC-γ2). Furthermore the direction and magnitude of the fold 

changes at PLC-γ2 in DD study (-1.23 CTRL vs. -1.05 SCZ) closely matches those observed at PLC-γ1 

in the AI study (-1.25 CTRL vs. -1.09 SCZ). Thus both studies suggest that schizophrenia patient 

PBMCs, relative to controls, show a blunted response to thapsigargin at PLC-γ isotypes. Moreover 

this attenuated response was specific to schizophrenia (Fig. 4.11).   

The attenuated PLC-γ1/2 response was also detected in the DD study using other ligands and in 

other cell types for example IL-10 in CD4+ and CD4- T cells and calyculin, PMA/ionomycin and anti-

CD3/CD28-XL in B cells. Interestingly while the effect of these ligands relative to the vehicle in T cell 

subsets was to reduce PLC-γ isotype expression, in B cells they served to increase PLC-γ isotype 

expression, in both clinical groups (Fig. 4.10f). However while the absolute directions of the ligand 

responses were different in T and B cell subsets the attenuation of response, independently of the 

direction, was a consistent feature of the schizophrenia PBMCs relative to controls (Fig.4.10e,f). 

Depending on the cell subtype and ligand this attenuation in schizophrenia PBMCs ranged from -

2.47 to -10.28 fold. This suggests that PLC-γ signalling is not simply increased or decreased in the 

disease state but instead is dysregulated across a varied response range. Interestingly one of the 

affected PLC-γ isotype responses in B cells was evoked by the T cell receptor (TCR) stimulant anti-

CD3/CD28-XL. While it is impossible to rule out direct effects of this ligand cocktail on B cells, it is 

possible that the response represents communication between different cell subsets following the 

initial T cell stimulation. This is consistent with the rapid kinetic profile of cell signalling changes 

downstream of the T cell receptor (1-5 min) and also published reports of cell-to-cell 

communication with similar assay systems135,137. 

No interaction was detected between clinical group status and the response to forskolin at Src 

(pY418) in T cell subsets in the DD study. An interaction was detected at Src (pY418) in response to 

staurosporine in B cells. However it is likely that this was due to reduced basal epitope expression 

in schizophrenia, as was the case for the interaction in B cells of the response to calyculin at Akt1. 

In contrast while basal expression of STAT3 (pY705) in CD4+ T cells was reduced in schizophrenia (-

1.13 fold, discussed earlier), the cells from this subset nevertheless showed an enhanced 

phosphorylation response (1.32 fold) specifically to the cognate STAT3 (pY705) inducer IL-6. Notably 
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levels of the STAT3 total protein were not changed in schizophrenia. This raises the intriguing 

possibility that while constitutive levels of STAT3 (pY705) phosphorylation may be reduced in 

schizophrenia patients they paradoxically show a hyper-sensitive response to proinflammatory 

cytokine stimulation.  
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Table 4.1 Demographic characteristics and matching of PBMC donors used in the antipsychotic 
intervention study. Matching was achieved for male drug-naive schizophrenia (SCZ) vs. male 
control (CTRL) samples for all demographic variables except smoking and alcohol consumption. 
Statistical tests included Mann-Whitney U test (*) and Fisher’s exact test (**). Table shows mean 
values ± standard deviation.

SCZ CTRL p SCZ-CTRL

N 12 12 na

Age (years)* 26.4 ± 6.2 27.0 ± 6.5 1.000

Gender (male/female) 12/0 12/0 na

BMI (kg/m2)* 24.0 ± 4.8 23.5 ± 1.6 0.419

Ethnicity (white/other)** 8/4 11/1 0.317

Smoking (y/n)** 8/4 2/10 0.036

Cannabis (y/n)** 2/10 4/8 0.640

Alcohol (y/n)** 4/8 11/1 0.009

Blood pressure systolic (mmHg)* 131.3 ± 11.0 124.8 ± 14.0 0.203

Blood pressure diastolic (mmHg)* 78.4 ± 10.3 76.7 ± 9.2 0.908

Hip (cm)* 95.9 ± 9.5 92.5 ± 5.7 0.435

Waist (cm)* 86.8 ± 10.5 88.2 ± 5.6 0.339
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PANSS positive negative general total
Drug-naive 20.5 + 5.3 22.1 + 5.4 39.6 + 6.0 82.2 + 13.9

6 weeks olanzapine 13.7 + 4.8 19.8 + 5.1 33.7 + 8.6 67.2 + 15.4

δ 6.8 + 5.5 2.3 + 4.3 5.9 + 9.2 15.0 + 14.2

Figure 4.1 Clinical response to antipsychotic treatment with olanzapine in schizophrenia patients 
at 6 weeks. Ten out of the twelve schizophrenia patients were measured after 6 weeks of treatment 
(T6) with atypical antipsychotic medication olanzapine. 70% of these patients were classed as 
responders showing overall improvements in psychopathological symptoms, as measured by total 
Positive and Negative Syndrome Scale scores (dPANSSt), relative to before treatment initiation (T0). 
Concurrently symptom improvements for these patients were also observed for positive, negative 
and general PANSS subscales. Table shows mean values ± standard deviation. dPANSS refers to 
(PANSS T0-PANSS T6) with positive values indicating symptom improvement.
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Figure 4.2 Gating strategies for functional analysis of 64 barcoded T cell populations. (a) Viable cells
were gated (FSC-A vs. SSC-A), followed by single cell discrimination (SSC-A vs. SSC-W and FSC-A vs. FSC-W) 
and T vs. B lymphocyte cell subtyping using anti-CD3 PE-Cy7. (b) 64 populations, each corresponding to 
a different ligand or vehicle condition, were resolved within the T lymphocyte gate following fluorescent cell 
barcoding using DL 800, CBD 450 and CBD 500 dyes. T cells were gated first for DL 800 populations (DL 1-4) 
and subsequently for CBD 450 vs. CBD 500 populations (V1-16). (c) Within each barcoded T cell population 
functional analysis of intracellular signalling epitopes (n=66) was conducted across AF 488, PE and AF 647 
channels. Induction of STAT3 (pY705) phosphorylation in response to 15 min stimulation with IL-6 50 ng/ml 
is shown as an example. Data represents one PBMC sample.
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Morphology 
and viability

Immunophenotypingba

Figure 4.3 Gating strategy for cell viability and immunophenotyping. (a) PBMCs were gated (FSC-A 
vs. SSC-A), followed by single cell discrimination (SSC-A vs. SSC-W and FSC-A vs. FSC-W) and viability 
measurement (DAPI-A vs. SSC-A). (b) Within the live cell gate relative proportions of T cells, B 
cells and monocytes were quantified using anti-CD3 PE-Cy7 and anti-CD14 V500. Within the 
T cell gate relative proportions of CD4+, CD8+ and CD4-/CD8- cells were quantified using anti-CD4 
PerCP-eF710 and anti-CD8 APC-eF780.
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Figure 4.4 Hierarchical clustering of clinically associated T cell signalling nodes (AI study). Cell signalling 
nodes (defined as individual ligand-epitope combinations) (n=46) which displayed a significant interaction 
between clinical group status and either ligand response (n=27) or basal epitope expression (n=19), for either 
of the group comparisons (CTRL vs. SCZ T0 (drug-naive) or SCZ T0 (drug-naive) vs. T6 (olanzapine 6 weeks)), 
were subjected to unsupervised hierarchical clustering. Clustering of PBMC samples (x axis) revealed 
segregation of the three clinical groups (SCZ T0, SCZ T6 and CTRL) suggesting that the T cell signalling 
repertoire is indicative of clinical status. The position of the SCZ T6 group predominantly between the SCZ T0 
and CTRL groups suggests a normalization of aberrant cell signalling following treatment with olanzapine. 
Clustering of cell signalling nodes (y axis) revealed that abnormal ligand responses primarily drive the 
separation of SCZ T0 samples from the rest while alterations in basal epitope expression primarily drive the 
separation of SCZ T6 samples. Legend reflects ratio of MFI of the ligand treatment to mean MFI of the vehicle 
treatment (for ligand responses) or ratio of mean MFI of the vehicle condition to mean MFI of the vehicle 
condition in the control group (for basal epitope expression) per condition and sample, scaled across all 
nodes. MFI - median fluorescence intensity. Total PBMC sample numbers in each group include CTRL (n=12), 
SCZ T0 (n=12) and SCZ T6 (n=10).
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Figure 4.5 Altered T cell signalling nodes in SCZ T0 vs. CTRL and SCZ T0 vs. T6 comparisons (AI study). Shows 
significant differences between clinical groups, in either SCZ T0 (drug-naive) vs. CTRL (a) or SCZ T0 (drug-
naive) vs. T6 (olanzapine 6 weeks) (b) comparisons, for cell signalling epitope expression under basal 
conditions or in response to ligand exposure. Significantly altered basal epitopes were defined as those in 
which over 30% of the nodes displayed an association between clinical group status and epitope expression, 
independently of ligand activity (‘node count (p group<0.05)’). The vehicle condition is used for 
representation of altered basal epitopes. Significantly altered ligand responses were defined as nodes for 
which there was a statistical interaction between clinical group status and the response to ligand (‘p 
interaction’<0.05). Only nodes which displayed a significant ‘ligand response’, defined as median (MFI of the 
ligand treatment/ MFI of the vehicle treatment) (p<0.05, fold change >5%) after adjusting for background 
fluorescence, in either clinical group are shown. The arrows denote the direction of the ‘ligand response’ 
relative to vehicle (↓↑ ). A single arrow represents a similar ligand response direction in both clinical groups, 
while double arrows represent different directions of ligand response in each clinical group. Node is defined 
as a single ligand-epitope combination. The legend shows relative ‘potentiation (yellow) or attenuation 
(blue) fold change’ of basal epitope expression or ligand response. Terms in ‘italics’ represent column 
headings in Tables 4.2 and 4.3 for referencing of absolute values. Total PBMC sample numbers in each 
group include CTRL (n=12), SCZ T0 (n=12) and SCZ T6 (n=10). MFI = median fluorescence intensity.
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Figure 4.6 Overlay of T cell signalling nodes altered in schizophrenia and following clinical 
antipsychotic therapy (AI study). Overlay of data from Fig. 6a and b. Shows significant differences 
between clinical groups for cell signalling epitope expression under basal conditions or in response 
to ligand exposure (as defined in Fig. 4.5a, b). Nodes (individual ligand-epitope combinations) 
altered in the SCZ T0 (drug-naive) vs. CTRL comparison are pink and nodes altered in the SCZ T0 
(drug-naive) vs. T6 (olanzapine 6 weeks) comparison are blue. Nodes altered in both comparisons in 
opposite directions (i.e. ‘reversed’) are yellow. These yellow nodes represent putative normalization 
of schizophrenia cell signalling alterations and form the basis for drug target selection. Total PBMC 
sample numbers in each group include CTRL (n=12), SCZ T0 (n=12) and SCZ T6 (n=10). 
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Figure 4.7 T cell signalling nodes altered in schizophrenia and normalized following clinical 
antipsychotic therapy (AI study). Shows the four T cell signalling nodes identified in Fig. 4.6 
as ‘normalized’ (i.e. altered in the SCZ T0 (drug-naive) vs. CTRL comparison and subsequently 
reversed in SCZ T0 (drug-naive) vs. T6 (olanzapine 6 weeks) comparison). Normalized nodes 
include basal epitope expression (a, b) and ligand responses (c, d) as defined for Fig. 4.5. The 
vehicle condition is used for representation of basal epitope expression. Statistical 
interactions between ligand responses and clinical group status (p) are shown for SCZ T0 
(drug-naive) vs. CTRL and SCZ T0 (drug-naive) vs. T6 (olanzapine 6 weeks) comparisons. Total 
PBMC sample numbers in each group include CTRL (n=12), SCZ T0 (n=12) and SCZ T6 (n=10). MFI = 
median fluorescence intensity.
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Figure 4.8 Correlation of changes in T cell signalling nodes to changes in schizophrenia 
symptom subscales following clinical antipsychotic therapy in vivo (AI study). Shows regression 
analysis of changes in median fluorescence intensity (MFI) for T cell signalling nodes 
(individual ligand-epitope combinations) (dNode) with changes in positive (a) and negative (b) 
syndrome subscales (dPANSSp and dPANSSn respectively) following 6 week olanzapine 
treatment. Legend represents regression estimate. Only nodes which showed a significant 
(p<0.05) correlation between dNode and dPANSSp or dPANSSn are coloured. Epitopes (x axis) 
for which over 25% of nodes showed a significant correlation are marked with white vertical 
bands and labelled above. Total PBMC sample numbers in each group include CTRL (n=12), SCZ T0 
(n=12) and SCZ T6 (n=10). Continued overleaf.
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sub-scales following clinical antipsychotic therapy in vivo (AI study) continued.
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Figure 4.9 T cell signalling epitopes respond to olanzapine after 30 min incubation ex vivo (AI 
study). Shows T cell signalling epitopes which displayed a significant response, defined as median 
MFI of the ligand treatment/ median MFI of the vehicle treatment (p<0.05, fold change 
>5%) after adjusting for background fluorescence, to 30 min incubation with olanzapine 10 µM in
either CTRL or SCZ T0 groups. No responses were detected to olanzapine in the SCZ T6 group.
Total PBMC sample numbers in each group include CTRL (n=12), SCZ T0 (n=12) and SCZ T6 (n=10).
MFI = median fluorescence intensity.
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Figure 4.10 Validation of normalization nodes derived from the AI study in an independent cohort 
of drug-naive schizophrenia patients and controls (DD study). Shows PBMC subtypes (CD4+ T cells, 
CD4- T cells or B cells) for which basal (vehicle condition) epitope expression of Akt1 (a, b) or STAT3 
(pY705) (c, d) was significantly (‘p group’ <0.05) altered in drug-naive SCZ vs. CTRL. 
Significantly altered responses (‘p interaction’) to calcium flux ligands in drug-naive SCZ relative to 
CTRL PBMC subtypes, including thapsigargin (TG) at PLC-g2 in CD4+ T cells (e) and  PMA/ 
ionomycin at PLC-g1 in B cells (f). Terms in ‘italics’ represent column headings in Tables 4.5 and 4.6 
for referencing of absolute values. Total PBMC sample numbers in each group include CTRL (n=25) 
and SCZ (n=25). MFI = median fluorescence intensity.
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Figure 4.11 Altered response to thapsigargin at PLC-γ2 in CD4+ T cells is specific to schizophrenia 
relative to other major neuropsychiatric disorders. Shows response to thapsigargin at PLC-g2 in 
CD4+ T cells in SCZ (drug-naive) (a), BD (b), MDD (c) and ASD (d) patient cohorts relative to CTRL. A 
significantly altered response (‘p interaction’) was observed only for SCZ. Absolute values provided 
in Table 4.6. Total PBMC sample numbers in each group include CTRL (n=25) and PATIENT (n=25). 
MFI = median fluorescence intensity. 
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Figure 14.12 Impaired regulatory response at PLC-g1/2 to calcium release from the endoplasmic 
reticulum in schizophrenia. Figure shows proposed mechanism of action in neuronal cells based on the 
altered response to thapsigargin (TG) at phospholipase C g1/2 (PLC-g1/2) in T cells from schizophrenia 
patients and controls in the AI and DD studies. (a) In resting neurons low calcium concentration is 
maintained in the cytosol (~100nM), relative to the endoplasmic reticulum (ER ~ 0.5 mM) and 
extracellular space (~1 mM), by active calcium transporter  sarco-endoplasmic reticulum Ca2+-ATPase 
(SERCA). (b) 1) Receptor tyrosine kinase (RTK) ligand activation by cytokines, hormones or growth 
factors (selected examples shown) activates PLC-g1/2. 2) PLC-g1/2 catalyzes the degradation of 
phosphatidylinositol 4,5-biphosphate into intracellular second messengers inositol 1,4,5-triphosphate 
(IP3) and 1,2 diacylglycerol (DAG), which induce the release of calcium stored in the endoplasmic 
reticulum (ER), via IP3 receptors (IP3Rs), and the activation of protein kinase C (PKC) respectively. 
Analogous depletion of ER calcium stores is achieved by SERCA blockade using TG 1 µM. 3) Reduction 
of ER calcium is sensed by stromal interaction molecule 1 (STIM1) which subsequently promotes the 
influx of extracellular calcium via the ORAI1 plasma membrane channel. 4) Elevated cytosolic calcium 
activates gene transcription via Ca2+/calmodulin-dependent protein kinase II/IV (CaMKII/IV) and 
transcription factor cAMP response element-binding protein (CREB). 5) Elevated cytosolic calcium 
causes the downregulation or sequestration of PLC-g1/2 to desensitize RTK signal transduction. In 
schizophrenia either the initial calcium flux from the ER or the negative feedback regulation of PLC-g1/2 
is proposed to be disrupted and restored by clinical treatment with olanzapine 6 weeks (Fig. 4.7d). 
Voltage-gated calcium channels (e.g. L-type Cav 1.2) are included based on the association of calcium 
channel subunits (e.g. CACNA1C, CACNB2 and CACNA1I) to schizophrenia in GWAS studies and their 
role in neuronal excitation-transcription coupling. Their contribution to the altered TG-PLC-γ1/2 
response and reported interactions with STIM1 remain to be defined (?). 
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4.3 DISCUSSION 

The discussion will focus specifically on the four cell signalling nodes which were altered in T cells 

from schizophrenia patients relative to healthy controls, and subsequently normalized by clinical 

antipsychotic therapy with olanzapine in the AI study (Fig. 4.6 and 4.7). These include the altered 

responses to thapsigargin at PLC-γ1and to forskolin at Src (pY418) and altered basal expression of 

Akt1 and STAT3 (pY705). Firstly we will assess the altered response to thapsigargin at PLC-γ1 as the 

primary novel drug target to emerge from the clinical screening phase of the project and the 

substrate of the subsequent drug discovery phase. Subsequently we will consider altered basal 

expression of Akt1, as a positive control for previously reported cell signalling abnormalities in 

schizophrenia PBMCs, and STAT3 (pY705) as a potentially novel mediator of inflammatory activation 

in the brain and periphery. Next we will consider Src (pY418) as a potential denominator of 

mechanistic interaction between these targets. Finally we will assess whether cell signalling changes 

induced by olanzapine during acute ex vivo exposure are relevant to its clinical effects in vivo. In 

assessing these findings we seek to answer several pertinent questions. Firstly are these cell 

signalling changes plausibly related to known pathogenic mechanisms or genetic risk factors within 

the CNS in schizophrenia? Secondly are the responses preferentially associated with specific 

symptom subscales (e.g. positive or negative symptoms) or side effect profiles? Thirdly what is the 

potential of these cell signalling targets to improve treatment response prediction and novel drug 

discovery? Finally, what is the specificity of the observed cell signalling changes for schizophrenia 

relative to related major neuropsychiatric disorders including major depression, bipolar disorder 

and autism spectrum disorder? 

4.3.1 ALTERED PLC-γ1- THAPSIGARGIN RESPONSE AS THE PRIMARY DRUG TARGET

IDENTIFIED BY FUNCTIONAL CYTOMIC SCREENING IN SCHIZOPHRENIA PBMCS 

The attenuated response of phospholipase C γ1 (PLC-γ1) to thapsigargin (TG) in T cells of drug-naive 

schizophrenia patients, relative to controls, was the most significant finding in the AI study 

(p=0.001) (Table 4.2, Fig. 4.7d). It is also in many ways the archetypal drug target sought by the 

current platform. First, basal expression of PLC-γ1 was not altered between the two clinical groups. 

This demonstrates the added value of functional testing, in the presence of an active ligand, to 

reveal clinically significant associations which would be otherwise undetectable by quantification 

of the signalling proteins alone. Second, the altered cellular response, in this case calcium signalling 
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induced by TG, is empirically measured in live cells from patients as opposed to imputed through in 

silico pathway analysis. Thirdly, the aberrant response was normalized over the course of 

efficacious clinical treatment with olanzapine in schizophrenia patients, suggesting that the ex vivo 

response in blood cells can be correlated to physiological changes in active CNS pathology (δPANSS). 

Fourth, the components of the functional response, TG and PLC-γ1, are known to be mechanistically 

coupled and relate to high profile CNS drug targets suggested by previous studies. Finally, the 

response appears specific to schizophrenia relative to other neuropsychiatric diseases. For all of 

these reasons combined the TG-PLC-γ1 response was selected as the substrate of the subsequent 

drug library screening stage of the project (Chapter 5).   

4.3.2 PLC-γ1- THAPSIGARGIN MECHANISM OF ACTION 

PLC-γ1 serves as signal transducer for receptor tyrosine kinase (RTK) activation234–236. The RTK family 

responds to a wide range of neurotrophins, hormones, cytokines and growth factors which are 

relevant to neuropsychiatric pathogenesis. This includes BDNF and NT 3/4 at the TrkB receptor, NGF 

at the TrkA receptor, TGF-a and NRG 1-4 at ErbB 1-4 receptors, FGF at the FGF receptor and insulin/ 

IGF-1/2 at the insulin and IGF receptors 233,235–239. Ligand binding to RTKs provokes the 

autophosphorylation of the intracellular loop of the receptor which allows PLC-γ1 to bind using its 

Src homology 2 (SH-2) domain. The activation of PLC-γ1 catalyzes the degradation of 

phosphatidylinositol 4,5-biphosphate into intracellular second messengers inositol 1,4,5-

triphosphate (IP3) and 1,2 diacylglycerol (DAG), which induce the release of calcium stored in the 

endoplasmic reticulum (ER) and the activation of PKC respectively. Reduction of ER calcium is 

sensed by stromal interaction molecule 1 (STIM1) which subsequently promotes the influx of 

extracellular calcium via the ORAI1 plasma membrane channel233,235–240. TG (1 µM) drastically 

elevates the intracellular calcium concentration by non-competitively blocking the ability of the 

sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) to pump calcium back into the endoplasmic 

reticulum241. Thus its effect on increasing cytosolic calcium concentration is analogous to that of 

PLC-γ1-mediated RTK signalling.   

It is possible therefore that the decrease in PLC-γ1, observed in response to TG in the current assay, 

represents negative feedback regulation designed to desensitize the cellular response to sustained 

RTK activation in a physiological environment. Desensitization of receptor transduction is a 

common feature of several signalling networks to ensure that cell signals are both spatially and 

temporally resolved172,242. If we extrapolate this cellular phenotype to neuronal cells in 
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schizophrenia it would suggest that they are potentially incapable of adequately switching off 

signalling events in response to neurotrophic, hormonal or cytokine ligands. It is also possible that 

the cells from schizophrenia patients display a reduced calcium flux in response to TG and that the 

reduced PLC-γ1 response is simply proportional. While the application of a near maximal 

concentration (Fig. 5.2) of TG (1 µM) for 30 min suggests that this is unlikely, this possibility cannot 

be excluded without parallel measurement of calcium release. The fact that ionomycin, which 

causes calcium influx from the extracellular space, did not elicit a clinically distinct phenotype in T 

cells suggests that the dysregulation of PLC-γ1 in this cell subtype in schizophrenia is specific to 

calcium release from the internal stores. However this would have to be confirmed in the absence 

of PMA, which was administered as part of a cocktail with ionomycin.  Interestingly neither of the 

PKC isoforms, which have been repeatedly linked to neuropsychiatric disorders and are immediate 

downstream targets of PLC-γ1 (via DAG), were found to be dysregulated despite sensitivity to TG (-

1.11 and –1.68 FC for PKC-θ and PKC-α)77,243. This suggests that the pathological phenotype is 

focused on the IP3-mediated branch of PLC-γ1 signalling. Finally the fact that expression of the 

phosphorylated activation site (pY783) on PLC-γ1  was not altered in patients relative to controls 

following TG exposure suggests that the dysregulated response involves sequestration of the total 

PLC-γ1 protein or binding to regulatory partners as opposed to changes in enzymatic activity. Taken 

together these findings suggest that there is an impaired regulatory response to calcium release 

from internal stores evident at PLC-γ1 in schizophrenia which is normalized following clinical 

treatment with olanzapine (Fig. 4.12).  

4.3.3 VOLTAGE-GATED CALCIUM CHANNELS AS PUTATIVE MEDIATORS OF THE PLC-γ1-

THAPSIGARGIN RESPONSE IN SCHIZOPHRENIA

To further refine this hypothesis and understand which functional variants might contribute to the 

altered calcium response in schizophrenia we examined the disease-associated genes from the 

largest schizophrenia GWAS analysis to date (36,989 cases vs. 113,075 controls)24. The study found 

a total of 108 significant disease-associated genomic loci including three of which contain genes 

encoding voltage-gated calcium channel (Cav) subunits (CACNA1C, CACNB2 and CACNA1I). 

CACNA1C and CACNB2 encode L-type calcium channel subunits and CACNA1I encodes a T-type 

calcium channel subunit. These genes are among the most significant hits to emerge from this study 

for several reasons. Firstly they are ranked among the top risk loci which attained genome wide 

significance CACNA1C (4th) CACNB2 (19th) and CACNA1I (39th). Secondly they are the only genes 

within their respective risk loci, whereas the majority (60%) of loci contain multiple genes. Thirdly 
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the primary risk single nucleotide polymorphism (SNP) for each gene is within the gene itself and 

not in a nearby genomic region. These features mean that they are readily identifiable as 

schizophrenia target genes as opposed to simply being in linkage disequilibrium with other alleles 

which are in fact the true causative variants.  

The implication of voltage-gated calcium channel subunits in schizophrenia is supported by 

complementary results from the largest whole exome sequencing study in schizophrenia to date 

(2,536 cases vs. 2,543 controls)244. This study, looking for rare protein-coding mutations, found that 

the disruptive alleles associated with schizophrenia were enriched for voltage-gated calcium 

channel subunit genes (26 in total) including CACNA1B, CACNA1C, CACNA1H, CACNA1S, CACNB2/4 

and CACNA2D1-4. The L-type calcium channel subunits were the most highly represented especially 

the CACNA1C (Cav 1.2) cited as the most significantly associated calcium channel hit in the 

previously described GWAS study. These mutations represent putative partial or complete loss of 

function27. Moreover a combined subset of ultra-rare calcium channel mutations (12 cases vs. 1 

control) yielded a striking odds ratio of 8.4 (p=0.002) suggesting that when exon mutations in these 

genes occur they can have a profound impact on the risk of developing schizophrenia244. Several 

studies, focusing on carriers of the risk allele (rs1006737) within Cav 1.2 L-type calcium channel have 

shown alterations in CACNA1C expression in the brain (cerebellum and dorsolateral prefrontal 

cortex) and in neurons induced from fibroblast cells27,245. Furthermore this risk allele has been 

associated to alterations in fMRI brain activation and connectivity of key schizophrenia associated 

brain regions in healthy volunteers and schizophrenia patients during working memory and 

emotional and reward response tasks27,245. Taken together these findings suggest that voltage-

gated calcium channels, especially L and T-subtypes, represent some of the strongest known genetic 

risk factors with corresponding influences on higher order cognitive processes associated with 

schizophrenia. In light of this evidence we propose that these L- and/or T-type voltage-gated 

calcium channels are potentially involved, or at least have the therapeutic potential to mitigate, the 

altered response to thapsigargin at PLC-γ1 in schizophrenia (Fig. 4.12). 

In support of this hypothesis there is evidence that these voltage-gated calcium channels play 

important roles in non-excitable blood cells in which calcium signalling is necessary for 

development, survival, activation, differentiation and cytokine production240. For example 

expression of all the subunits of Cav 1.1-4 L-type calcium channels has been demonstrated in T 

lymphocytes at levels comparable to excitable cells such as neurons240. Furthermore the expression 

of subtypes of L-type calcium channels is linked to the naive vs. effector activation status of different 

T cell subtypes and the balance between Th1 and Th2 T cell phenotypes240. For example the Cav 1.2 

L-type channel, which contains the CACNA1C subunit described above as prominently linked to
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schizophrenia, is specifically expressed in Th2 CD4+ effector cells240. Considering the repeated 

association of altered Th2 cell function in schizophrenia it is possible that the Cav 1.2 channel 

represents a convergent drug target between both CNS and peripheral disease aetiologies72. This is 

supported by the fact that both antipsychotic drugs and antihypertensive dihydropyridine (DHP) L-

type calcium channel blockers can specifically mitigate over-activation of Th2 cells240,246. Finally with 

specific relevance to the mechanism of action of thapsigargin, peripheral naive and memory T cells 

from Cav 1.4 L-type calcium channel knockout mice showed significantly impaired calcium flux 

responses when exposed to thapsigargin and corresponding reductions in nuclear factor of 

activated T-cells (NFAT) activation and cytokine production240. Taken together these findings 

suggest that the altered response to thapsigargin in T cells from schizophrenia patients in the 

current study is plausibly mediated by L-type calcium channels. Furthermore these L-type calcium 

channels represent a convergent drug target for both CNS and peripheral schizophrenia disease 

mechanisms with the potential for drug repurposing.  

4.3.4 PLC ISOTYPES IN SCHIZOPHRENIA AND RELATED NEUROPSYCHIATRIC DISORDERS 

There is considerable evidence for the involvement of PLC isotypes in schizophrenia and related 

neuropsychiatric disorders. The genes coding for several PLC isotypes (PLCB2, PLCL1, PLCH2) were 

within the set of 108 loci associated with an increased risk of disease in the largest schizophrenia 

GWAS to date24. While these specific isotypes were not measured in the current study there is 

considerable overlap between their respective sequence homologies and functional repertoires 

with respect to PLC-γ1 and PLC-γ2233 (UniProt). PLC-β1 is the most widely studied of the isotypes in 

schizophrenia247,248. PLC-β1 has a similar role to the PLC-γ isotypes in terms of producing IP3/calcium 

and DAG/PKC signals in response to cell surface receptor activation. However, PLC-β1 responds 

primarily to GPCR receptor activation including mGluR 1/5, MR 1/3, 5-HT2A/C and D1/2/5235,249,250. 

PLC-β1 expression is altered in the prefrontal and superior temporal cortex of post mortem brains 

from individuals with schizophrenia247. Furthermore PLC-β1 knockout mice show several 

behavioural correlates of schizophrenia including hyperactivity, sensorimotor gating deficits and 

cognitive impairment. Notably these behavioural abnormalities are normalized by treatment with 

the antipsychotic clozapine, but not haloperidol250. This raises the possibility that the normalization 

of the related PLC-γ1 activity observed in the present study is specific to atypical antipsychotics, 

especially structurally related olanzapine and clozapine. Conversely PLC-γ1, which is expressed 

throughout the body and enriched in the brain (especially the cortex and hippocampus), has been 

frequently associated to a range of neurological disorders including major depression, bipolar 
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disorder, epilepsy, Alzheimer’s and Huntington’s disease235,247. For example PLC-γ1 represents a 

susceptibility locus for bipolar disorder and polymorphisms within this gene have been linked to 

lithium response in bipolar patients251,252. It has also been implicated in the response to 

antidepressant therapy in MDD253 . Taken together these findings suggest that multiple PLC isotypes 

are affected across neuropsychiatric disorders including schizophrenia.  

The fact that that the PLC isotype (PLC-γ1) detected in the AI study differs from the isotypes 

associated previously to schizophrenia (PLCB1, PLCB2, PLCL1, PLCH2), suggests that a convergent 

up- or downstream regulatory mechanism, which is shared between different PLC isotypes, might 

underlie the altered TG-PLC-γ1 response as opposed to altered function of the PLC-γ1 isotype itself. 

In other words PLC-γ1 is a surrogate marker for a more complex and integrated signalling response 

that affects different isotypes depending on the tissue type and ligand in question. This would also 

explain the emergence of a similar phenotype uniquely in response to TG at PLC-γ2 in the 

differential diagnosis study. PLC-γ2, which is primarily expressed in cells of the haematopoietic 

lineage, shares (99.9%) sequence homology and a similar functional repertoire to PLC-γ1 (UniProt 

P19174 vs. P16885)233,235,236. This suggests that both PLC-γ1 and PLC-γ2 have largely redundant roles 

in cell signalling. Therefore although they have a different dynamic range in relation to the potency 

of the TG response, as observed in the AI vs. DD studies, they nevertheless might serve as surrogate 

markers of the same fundamental signalling dysregulation in schizophrenia.  

4.3.5 PLC-γ1/2- THAPSIGARGIN AS A FUNCTIONAL ENDOPHENOTYPE IN

SCHIZOPHRENIA- SUMMARIZING COMPLEX GENETIC RISK 

While the evidence provided for calcium channel and PLC isotype dysfunction in schizophrenia 

supports the validity of the putative drug target obtained in the AI and DD studies, it also serves to 

elucidate ways in which functional cytomic exploration can overcome specific limitations in the 

state of the art. Firstly the risk alleles in both voltage-gated calcium channels and PLC isotypes, 

described in some of the GWAS studies above, are relatively common (e.g. CACNA1C rs1006737 has 

a frequency of 33% in the general population) and are individually associated with a small 

incremental risk (OR <1.2)23,27,254. Conversely the highly penetrant mutations described above are 

rare27,244. Thus it is likely that the schizophrenia samples used in the AI and DD studies 

heterogeneously carry multiple common but weak risk alleles at these loci and possibly rare 

penetrant alleles in a minority of cases. In addition each patient will likely have been exposed to 

different environmental stressors and have different developmental trajectories. Nevertheless the 
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attenuated TG-PLC-γ isotype response is significant across the patient groups and shows the 

common feature of normalization by efficacious olanzapine treatment. This highlights the 

possibility that the functional cytomic platform summarizes different combinations of risk alleles 

and environmental insults in individual patients as common functional endophenotypes. It is 

intriguing in this respect that the abnormal TG-PLC-γ isotype cellular response was identified in 

small cohorts of patient samples (AI n=12 and DD n=25) while the detection of the plausibly related 

GWAS risk loci required tens of thousands of samples23. Clearly the cytomic analysis requires 

replication in larger sample cohorts to draw firm conclusions. However the striking coincidence that 

the top cytomic hits in the present study derived from a non-hypothesis driven functional screening 

approach, directly relate to some of the most significant and widely reproduced GWAS findings, 

suggests that the functional cellular endophenotype strategy could potentially provide advantages 

in terms of lower statistical power or at least be complementary. Furthermore the current best 

practice for validating the significance of GWAS risk loci in neuropsychiatry is to demonstrate a 

differential expression of the risk alleles in the brain, using expression quantitative trait loci (eQTL) 

mapping, and subsequently predict their mutual interaction in silico31. While this approach can 

provide valuable insight it is far from being a functional model against which the activity of novel 

drugs can be empirically tested. In other words the molecular networks discovered by these 

approaches subsequently have to be engineered into an in vitro drug screening assay. In contrast 

the functional endophenotypes derived from the present cytomic methodology constitute a 

screenable disease model by definition from their inception. 

4.3.6 PLC-γ1/2- THAPSIGARGIN AS A FUNCTIONAL ENDOPHENOTYPE IN

SCHIZOPHRENIA- INVESTIGATING DISEASE SPECIFICITY WITHIN THE NEUROPSYCHIATRIC

SPECTRUM

Many of the genetic variants described above are common to several neuropsychiatric diseases. 

For example Cav channel subunits CACNA1C and CACNB2, in addition to being highly significant in 

the largest schizophrenia GWAS, were also two of the four top loci associated in a combined cohort 

of five different neuropsychiatric diseases (BD, MDD, SCZ, ASD and ADHD) relative to controls in the 

largest cross disorder GWAS24,34. Furthermore 20 of the 67 loci derived from the cross disorder 

GWAS at a lower significance threshold (p<0.001) corresponded to voltage-gated calcium channel 

subunits34. This suggests that altered calcium signalling could be a profoundly shared mechanism in 

several major neuropsychiatric diseases. In contrast the functional endophenotype represented by 

126



the TG-PLC-γ isotype response in the present study was unique to schizophrenia. If indeed the 

aforementioned Cav channel subunits are involved in this response, there are several possible 

explanations for this specificity. The different Cav channels are associated to a greater or lesser 

extent to different neuropsychiatric diseases. For example whereas the other major 

neuropsychiatric diseases, aside from schizophrenia, show a highly heterogeneous rank order of 

association to CACNA1C and CACNB2 Cav subunits, schizophrenia is second at both loci suggesting 

that it is perhaps the most prominently associated to L-type channels overall34. In other words, the 

subsets of Cav channel alleles, which are collectively more likely in schizophrenia, interact to 

produce the specific TG-PLC-γ isotype response. Another plausible explanation is that the 

interaction of shared risk between Cav channels and PLC-γ isotypes defines the specificity of the TG-

PLC-γ1/2 response in schizophrenia. This is supported by the fact that while TG was broadly active 

across all the disease groups (60% of epitopes) it is only clinically associated to PLC-γ isotypes in 

schizophrenia. In either case, the potential for deriving disease specific functional endophenotypes 

amidst overlapping neuropsychiatric genetic backgrounds is an invaluable feature for drug 

discovery. 

4.3.7 FUNCTIONAL EXPLORATION OF PLC-γ ISOTYPE RESPONSES IN HETEROGENEOUS

PRIMARY CELL POPULATIONS EX VIVO

The DD study revealed the importance of high content screening in heterogeneous primary cell 

populations. Whereas in the AI study clinical interactions of PLC-γ isotypes were analyzed only in T 

cells, in the DD study they were assessed in CD4+ T cells, CD4- T cells and B cells. This revealed a 

range of attenuated responses at PLC-γ isotypes in schizophrenia in different PBMC subsets in 

response to different ligands (Table 4.6). While the increased sample number in the DD study (SCZ/ 

CTRL DD n=25 each vs. SCZ/ CTRL AI n=12 each) likely contributed to this feature, it is also possible 

that some of these cell type specific effects were not detectable when analyzing total T cells alone.  

Notably a much greater attenuation of response at PLC-γ1 in schizophrenia was observed in B cells 

following PMA/ ionomycin treatment in the DD study (Fig. 4.10f, -10.3 fold change) relative to T 

cells following TG treatment in the AI study (Fig. 4.7d, -2.6 fold change). The direction of the ligand 

response was also different between cell types (TG decreased PLC-γ1 while PMA/ ionomycin 

increased PLC-γ1). Both of these ligands induce cytosolic calcium flux although their mechanisms 

are different. Ionomycin induces extracellular calcium flux across the plasma membrane whereas 

as TG initially induces intracellular calcium flux via depletion of ER stores. While the end result of 
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each mechanism is similar, the fact that each one induces the schizophrenia-associated phenotype 

in different cell types highlights the fact that the same putative abnormality in cell signalling 

regulation can have divergent presentations in different cell lineages.  

At the level of drug target discovery this is advantageous in terms of increasing the number of 

models for detecting pathological variants in cell signalling. It is also beneficial at the level of 

screening for novel drugs where pathway selectivity and cell type specificity are vital to the balance 

between therapeutic ‘on –target’ and toxic ‘off-target’ effects127. For example this feature would 

allow the targeting of anti-inflammatory drugs specifically to Th17 T helper cells, which have been 

proposed to cross the blood brain barrier and exacerbate neuroinflammation in schizophrenia, 

whilst avoiding toxicity to other immune cell subsets71. Interestingly the SNPs associated with 

schizophrenia in the largest GWAS study were differentially prevalent in gene expression-enhancer 

regions corresponding to different cell and tissue types. Notably the B cell lineage (CD19/ CD20) 

was the most enriched tissue type outside the brain24. This lends support to the prominent 

attenuation in PLC-γ1 signalling observed in B cells in the DD study. It also advocates the inclusion 

of this PBMC subset in future functional cytomic screens in neuropsychiatry. However the 

enrichment of schizophrenia risk-associated SNPs was also present in other PBMC lineages including 

T cells. Taken together these findings suggest that different functional endophenotypes, which 

represent different aspects of altered brain pathology, are likely to be identifiable in different 

peripheral cell types. Therefore the inclusion of heterogeneous cell populations which can be 

discretely resolved affords a powerful contribution to drug target discovery and novel drug 

screening strategies using functional cytomics. 

 

4.3.8 ALTERED AKT1 EXPRESSION AS A POSITIVE CONTROL IN SCHIZOPHRENIA 

The finding that basal Akt1 was decreased in drug-naive first-onset schizophrenia patients relative 

to controls in both the AI and DD studies serves as a vital positive control for the validity of this 

novel functional cytomics platform (Table 4.3 and 4.5). Decreased total Akt levels is the most widely 

replicated finding in studies which have assessed altered cell signalling protein expression in the 

PBMCs from schizophrenia patients. The first study214 to make this link showed a decrease in both 

Akt1 protein level and the phosphorylation of its substrate GSK-3β (pS9) in lymphoblastoid cell lines 

derived from schizophrenia patients (n=28) relative to controls (n=28). Similar changes were 

confirmed by the same authors in the frontal cortex of post-mortem brains from schizophrenia 

patients in two independent cohorts (cohort 1: SCZ/CTRL n=10 each; cohort 2: SCZ/CTRL n=15 each). 
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They also showed that reduced Akt1 levels correlated to a putative disease haplotype in the Akt1 

gene and that Akt1-/- mice showed disrupted sensory-motor gating reminiscent of perceptual 

alterations in schizophrenia. Finally they showed an increase in phosphorylation of Akt1 at (pS473) 

and (pT308), in addition to GSK-3β (pS9), but not total AKt1 levels in wild- type mice treated with 

antipsychotic haloperidol. These finding have subsequently been confirmed in multiple 

independent studies across patients from different ethnic backgrounds255–259. Notably several of 

these studies have associated the Akt1 risk haplotypes with alterations in executive function and 

fMRI responses during attentional processing148,260.  

The results obtained in the AI and DD studies support these findings in terms of the direction and 

magnitude of fold change across different PBMC subtypes in schizophrenia vs. controls (Tables 4.3 

and 4.5). For example the initial study by Emamian et al. found a -3.13 fold reduction in Akt1 protein 

expression in B lymphoblastoid cell lines (Western blot) whereas a recent publication by van 

Beveren et al. found a -1.20 fold reduction in total PBMCs (2.0 Gene Chip microarray)84. The present 

results similarly suggest a more pronounced reduction in B cells (DD -1.60 fold) relative to T cells 

(AI -1.07 and DD -1.08), with total PBMCs representing an intermediate value of -1.29 fold 

(estimated from DD data assuming an average 4.5 : 1 ratio of T : B cells261 and excluding monocytes 

which were not measured).  

In terms of the effect of antipsychotic treatment on Akt1 expression, the current results are in 

contrast to certain aspects of published data. Several reports suggest that antipsychotic treatment 

is associated with increases in Akt1 phosphorylation but not total levels of Akt192. However, our ex 

vivo results suggest that antipsychotic treatment, at least with atypical olanzapine for six weeks, 

does provoke an increase in total Akt1 (1.12 fold) and that this increase is proportional to that of 

Akt (pS473) (1.14 fold) and regulatory PDPK1 (pS241) (1.12 fold). This discrepancy between the 

current results and published data is likely due to the predominant use of animal brain tissue vs. 

human PBMCs, use of different antipsychotics (usually typical antipsychotic haloperidol) and the 

dose and/or duration of treatment before sample collection. However closer examination of the 

aforementioned study from van Beveren et al. 84, which investigated human PBMCs, suggests that 

previous conclusions about total Akt1 levels following antipsychotic treatment could be 

compromised by a lack of assay sensitivity. This study showed that Akt1 mRNA in PBMCs is 

significantly reduced in the combined group of treated and untreated schizophrenia patients (n=41) 

relative to controls (n=29). At the same time there was no significant difference between 

antipsychotic drug-naive and treated patients. However there was an active-dose dependent trend 

towards increased mean Akt1 mRNA (log-transformed relative intensity –‘RI’) across antipsychotic 

naive (RI=482), antipsychotic free for over two weeks (RI=493), and medicated (RI=527) patients 
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relative to controls (RI=580)84. Interpretation of this in light of the AI and DD studies raises the 

possibility that normalization of total Akt1 following antipsychotic treatment is detectable 

specifically in T cells, where the initial disease perturbation is more moderate, and that this effect 

is diluted in analyses of total PBMCs by the presence of more extremely perturbed cellular subsets, 

such as B cells, which are potentially refractory to treatment. These conclusions require validation 

in larger cohorts with the vital correlation to changes in active symptomatology (δPANSS) across 

different antipsychotic classes. However the results highlight the potential of previously unexplored 

parallel assessments of individual cell subtypes, within heterogeneous PBMC populations, to derive 

clinically more accurate markers of disease progression. It is also notable that while the majority of 

studies, including this one, detect alterations in total levels of Akt1 in case/control comparisons, 

they do not detect alterations in the total level of phosphorylated epitopes such as Akt (pS473) and 

Akt (pT308). This would suggest that the proportion of phosphorylated, relative to 

unphosphorylated, Akt1 is higher in the disease samples under basal conditions, indicating a 

potential constitutive compensatory mechanism which is often overlooked.   

4.3.9 AKT1 AS A SHARED CELL SIGNALLING SUBSTRATE FOR EFFICACY AND SIDE-EFFECTS

OF CLINICAL ANTIPSYCHOTIC TREATMENT

As a key intracellular mediator of neurotransmission (notably D2 receptor signalling) and synaptic 

plasticity, altered Akt1 expression has potentially profound implications for schizophrenia 

pathogenesis and has been extensively reviewed as a drug target elsewhere80,87,92,145,214,262–264. 

However the relative importance of Akt signalling specifically with respect to positive and negative 

symptom subscales and metabolic side effects is less well documented. Data in the current AI study 

suggests that there is considerable segregation of the cell signalling repertoires which are 

associated with changes in positive vs. negative symptoms (Fig. 4.8). Interestingly PDPK1 (pS241) 

and S6 (pS240), which lie at proximal and distal ends of the canonical Akt pathway respectively, 

showed associations to positive but not negative symptoms. Metabolic side effects of atypical 

antipsychotic therapy, such as weight gain and insulin resistance, have traditionally been explained 

by the relative orexigenic potential of these drugs via CNS H1 receptor antagonism225. However 

recent data suggests that they also have direct effects on insulin signalling through the Akt pathway 

at peripheral sites including liver and adipose tissue265,266. This raises the possibility that while 

changes in the Akt pathway following olanzapine treatment in the AI study are associated with 

improvements in positive symptoms, they might also be associated with the metabolic side effects 

of the drug. This is concurrent with the concept that the D2 receptor, which is the main target of 
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drugs which are efficacious against positive symptoms, and insulin signalling converge on Akt. Thus 

efficacy and toxicity might share a common cell signalling substrate. Improved definition of this 

putative overlap in future applications of the ex vivo platform, with concurrent measurement of 

positive symptom changes and metabolic disturbances across different antipsychotic drug classes, 

potentially represents a valuable application for toxicity counter-screening in the development of 

novel drugs.  

4.3.10 IMPLICATION OF ALTERED STAT3 ACTIVATION IN SCHIZOPHRENIA 

 In contrast to Akt which has an established association with schizophrenia, STAT3 is a novel cell 

signalling node which has scarcely been implicated in the disease. The best characterized 

mechanism of STAT3 function is as a mediator of cytokine signalling including IL-2, IL-5, IL-6, IL-10, 

IL-17A, IL-22, IFN-α/β 133,267–269(Chapter 3 Fig. 3.10). However it also responds to hormones, such as 

leptin, and growth factors, such as leukaemia inhibitory factor (LIF), epidermal growth factor (EGF), 

hepatocyte growth factor (HGF) and bone morphogenetic protein 2 (BMP-2)269,270. It controls a 

variety of cellular responses including proliferation, survival, differentiation and motility and has a 

central role in immune response, embryonic development (including CNS) and cancer267,269,270. 

Briefly its principal mechanism of activation, following cytokines or growth factor receptor binding, 

involves phosphorylation at pY705 by Janus kinases (JAKs), SRC family kinases (SRCs), growth factor 

receptors or other tyrosine kinases. This leads to dimerization and nuclear translocation where it 

acts as a transcription factor for a variety of genes. Phosphorylation at the pS727 regulatory site, by 

Akt and ERK1/2 kinases is also important for transcriptional activation. Downregulation of STAT3 

signalling is mediated by suppressors of cytokine signalling (SOCS) and protein tyrosine 

phosphatases (PTPs) including SHP-2267,269,271,272. Below, two alternative hypotheses for alterations 

in the STAT3 (pY705) activation site in schizophrenia are discussed. The first is that altered STAT3 

(pY705) phosphorylation is the effect of increased levels of circulating cytokines. The second is that 

STAT3 (pY705) phosphorylation represents a systemic alteration in cell signalling which is intrinsic 

to both immune and neuronal cells. Finally we compare alterations in STAT3 activation to similar 

cell signalling changes in MDD to propose a shared molecular substrate between MDD and the 

negative symptoms in schizophrenia.   
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4.3.11 STAT3 (PY705) ACTIVATION STATUS IS A REFLECTION OF ALTERED

CIRCULATING CYTOKINES IN SCHIZOPHRENIA

Altered activation of STAT3 at pY705 in schizophrenia PBMCs, observed in the AI and DD studies, is 

potentially a reflection of altered circulating cytokine levels in patients. In a recent metanalysis (40 

studies) the proinflammatory cytokine IL-6, which is the prototypical ligand for STAT3 (pY705) 

activation, was found to be the most prominently increased cytokine in drug-naive first-episode and 

acute relapse psychosis patients relative to controls. Furthermore IL-6 levels were normalized by 

antipsychotic therapy132. Therefore in the AI study it is possible that increased STAT3 (pY705) 

activation in drug-naive first-episode patients, with subsequent normalization following olanzapine 

treatment (Table 4.3 and Fig. 4.7b), directly reflects changes in circulating IL-6 levels. In contrast in 

the DD study STAT3 (pY705) was found to be decreased in drug-naive first-episode patients relative 

to controls (Table 4.5 and Fig. 4.10c, d). This could be explained by desensitization of STAT3 (pY705) 

following chronic stimulation by elevated circulating IL-6. In the DD study it is notable that while 

expression of STAT3 (pY705) was reduced, the response to IL-6 at this epitope ex vivo was enhanced 

in patients relative to controls. This raises the possibility that while basal regulation of STAT3 

(pY705) phosphorylation is desensitized the rest of the cell signalling network up-/downstream of 

STAT3 (pY705) remains hyper-sensitive to ligand stimulation. This type of regulatory uncoupling, 

which could prove to be a key pathogenic mechanism, warrants further investigation.  

Therefore despite the difference in the directionality of basal STAT3 (pY705) activation between the 

AI and DD, it is possible that both studies represent a common functional endpoint in the form of 

either increased inflammatory set-point or increased inflammatory response respectively as a result 

of sustained circulating IL-6 stimulation. It is also possible that differences in the proportion of 

monocytes secreting IL-6 in the ex vivo PBMC culture (as a result of PBMC isolation or donor 

variability) or the collection medium (sodium heparin vs. ACD) could influence the directionality 

between AI and DD studies. Standardization of these variables and correlation of STAT3 (pY705) to 

circulating and ex vivo IL-6 concentrations will help to clarify the influence of altered secreted 

cytokines on this epitope. Nevertheless these results extend our current knowledge on 

inflammatory alterations in schizophrenia by providing a putative link between altered circulating 

cytokines and T cell activation status. While IL-6 is presented by means of example, as the foremost 

inflammatory cytokine associated with schizophrenia and normalized following antipsychotic 

therapy, it is also worth considering that responses to anti-inflammatory cytokine IL-10, which is 

associated with acute psychotic relapse, are also mediated by STAT3 (pY705). Furthermore altered 

responses to IL-10 were observed at PLC-γ2 in CD4- and CD4+ T cells in the DD study. The 

132



implications of altered STAT3 (pY705) activation status in future studies would therefore be best 

interpreted in conjunction with a full circulatory cytokine concentration profile which considers not 

only absolute levels but also relative cytokine ratios. 

4.3.12 STAT3 (PY705) ACTIVATION STATUS REFLECTS AN INTRINSIC CELLULAR

PHENOTYPE COMMON TO BOTH IMMUNE AND NEURONAL CELLS IN SCHIZOPHRENIA

It is possible that intrinsic dysregulation of STAT3 (pY705) activation in immune cells precedes and 

even provokes physiological alterations in cytokine ratios in schizophrenia. STAT3 mediates the 

transcription of a range of cytokines273. Intrinsic alterations in STAT3 transcriptional activation could 

therefore alter the secreted cytokine profile of specific immune cell subsets, which could in turn 

alter their relative proliferation or differentiation and further skew the circulatory cytokine profile. 

For example knock-out and knock-in studies of the related STAT1 protein have been shown to alter 

the balance between Th1, Th2 and Th17 T cell subsets all of which have been implicated in 

schizophrenia71,226,262. Likewise STAT3 affects the transcription of several cytokines which have been 

associated with schizophrenia pathogenesis even before the onset of overt psychological symptoms 

including circulating IL-8, IL-10 and matrix metalloproteinase 7 (MMP-7)50,54,274. Thus STAT3 (pY705) 

might be the cause of widely reported alterations in immune cell subtype ratios and cytokine 

secretion in schizophrenia, as opposed to the effect. 

STAT3 has been implicated as a vital mediator of microglial activation in the brain. It is the only 

transcription factor currently reported to be involved in the phenotypic switching between resting 

microglia and both M1 and M2 microglia activation phenotypes275. M1 activation, mediated by IL-

6-STAT3 signalling, results in proinflammatory microglial activity including release of inducible nitric

oxide synthase (iNOS) and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-12 and IL-23). M2

activation, mediated by IL-10-STAT3 signalling, results in restorative microglial activity including

debris clearance, resolution of inflammation (via IL1R antagonist, IL-10 and chitinase-like protein

secretion) and trophic factor release (TGF-β)275. Several studies using positron emission

tomography (PET) in vivo, or immunocytochemistry and inflammatory cytokine mRNA expression

post mortem, have suggested that increased M1 microglial activity in the brain might mediate the

deleterious effects of schizophrenia in terms of cognition, negative symptoms and regional brain

volume alterations in specific subgroups of patients56,57,276. Importantly subgroups of patients who

suffer from these deleterious effects show concurrent elevation in the expression of

proinflammatory cytokines in peripheral blood cells57. It is noteworthy that in the AI study there
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was a heterogeneous expression of STAT3 (pY705) before treatment (Fig. 4.7b) suggesting the 

presence of potential subgroups of patients with more prominent STAT3 (pY705) activation. 

Furthermore STAT3 (pY705) expression was correlated to improvement in negative symptoms 

(δPANSSn) following olanzapine treatment (Fig. 4.8b).  Taken together these findings raise the 

possibility that the altered STAT3 (pY705) activation observed ex vivo could be associated with 

changes in brain microglial activation with consequent negative symptomatology in a subgroup of 

schizophrenia patients. In accordance with this hypothesis we have shown, in a parallel application 

of the functional cytomic platform, that serum from a subset of first-onset drug-naive schizophrenia 

patients (n=60) relative to controls (n=79) can induce STAT3 (pY705) activation in the SV-40 human 

microglial cell line (manuscript in preparation).  

STAT3 also plays an important role in neuronal cells which is independent of its effects in 

neighbouring microglia. STAT3 has a uniquely high expression in the brain relative to the seven 

other STAT isotypes and is strongly upregulated in postnatal week one consistent with its role in 

neurogenesis, astrogliogenesis and axonal remodelling271,277. It is also reported to respond directly 

to neuronal depolarization and modulate the expression and function of key GPCRs including 5HT-

2A, β-adreno, GABA, mAch, NMDA and AMPA receptors271,277. In addition it is a principal mediator 

of hypofunction at NMDA receptor synapses via effects on long-term depression and IL-6 mediated 

oxidative stress278,279. This is particularly relevant to schizophrenia as NMDA receptor hypofunction 

on GABAergic interneurons is thought to be a key pathogenic mechanism25,280. Interestingly several 

of these effects appear to be independent of STAT3 transcriptional activity, suggesting it is also 

involved in direct protein-protein interactions in the cytoplasm. Finally with relevance to the AI 

study, olanzapine has been shown to desensitize 5HT-2A receptors via induction of STAT3 (pS727) 

phosphorylation and transcription of regulators of G protein signalling 7 (RGS7) in rodent cortical 

cell lines and frontal cortex in vivo 281,282. Taken together these findings suggest that STAT3 is a key 

mediator of neuronal processes which are known to be altered in schizophrenia and linked to 

antipsychotic response. Therefore it is possible that putative alterations in STAT3 activation status 

ex vivo, which would conventionally be confined to immunological interpretations of schizophrenia, 

could also reflect pathogenic mechanisms in neuronal cells. 
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4.3.13 STAT3 PHOSPHORYLATION REPRESENTS A SHARED CELL SIGNALLING

SUBSTRATE BETWEEN NEGATIVE SYMPTOMS IN SCHIZOPHRENIA AND MAJOR DEPRESSIVE 

DISORDER

Altered IL-6-STAT3 signal transduction has been extensively implicated in the pathogenesis of MDD 

by several lines of investigation. Firstly elevated IL-6 in response to infection produces symptoms, 

such as low mood, lack of motivation and social withdrawal, similar to those which are characteristic 

of MDD283. Secondly IL-6 is elevated in response to acute stress in animals and humans and has 

been shown to mediate the social defeat phenotype in chronic mild stress animal models of 

MDD153,284,285. Concurrently maladaptive responses to stress via altered hypothalamic–pituitary–

adrenal (HPA) axis function and deleterious effects of stress hormones on synaptic plasticity have 

also been shown to involve IL-6 in humans286,287. Thirdly, simulation of prenatal viral infection in 

rodents using polyinosinic: polycytidylic phosphate causes elevation of maternal IL-6 and 

consequently a reduction in hippocampal LTP, neurogenesis and neuronal survival with depressive-

like symptoms and cognitive deficits in adult offspring288. Finally STAT3 has been shown to bind to 

the promoter of the serotonin transporter (SERT) in response to IL-6 and decrease the expression 

of SERT resulting in depressive like behaviour in rodents289. Polymorphisms in the STAT3 gene have 

also been associated with antidepressant response in humans290. Taken together these findings 

suggest a prominent role for IL-6-STAT3 signalling in both core symptomatology and the aetiology 

of MDD.  

Several studies have suggested that IL-6-STAT3 signalling might play a similar role in the aetiology 

of negative symptoms and cognitive deficits in schizophrenia notably in terms of putative maternal 

viral infection and a maladaptive HPA-axis response to stress10,288,291. This is exemplified 

mechanistically by the association of increased blood cell and brain proinflammatory cytokine 

expression with microglial activation, brain volume changes and cognitive deficits in schizophrenia 

(described earlier)56,57. In the current study ex vivo changes in STAT3 (pY705) and STAT3 (pS727) 

were specifically correlated to improvements in negative symptoms (δPANSSn) following 

olanzapine treatment in the AI study (Fig. 4.8b). STAT3 (pY705) also had the largest dynamic range 

of any epitope in terms of the change in expression following treatment (-1.16 fold) compared to 

the initial difference with controls (1.22 fold) (Table 4.3). Furthermore MDD was the only other 

neuropsychiatric disorder, in addition to SCZ, to show altered STAT3 phosphorylation in the DD 

study (Table 4.5). Finally the decreased basal STAT3 (pS727) expression (-1.09 fold) in MDD directly 

contrasts with the prominent increase in basal STAT3 (pS727) expression (1.21 fold), which 

accompanied a group-wide improvement in negative symptoms, following olanzapine treatment in 
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SCZ. Taken together these ex vivo findings, in conjunction with the well documented role of IL-6-

STAT3 signalling in MDD, suggest that STAT3 signalling is a convergent target of negative 

symptomatology in both SCZ and MDD. Interestingly there seem to be different relative 

contributions of the two STAT3 activation sites, pY705 and pS727, in each of the diseases. This raises 

the possibility that different parallel pathways converge on STAT3 in MDD and SCZ respectively. 

Thus further elucidation of the relative upstream mechanisms of pY705 and pS727 activation, could 

provide vital insights into the cell signalling aetiology of MDD and SCZ. 

The significance of being able to isolate a discrete cell signalling substrate for negative symptoms 

in schizophrenia is manifold. Firstly negative symptoms are notoriously difficult to ameliorate using 

current medications16,292–294. For example a recent meta-analysis on the comparative efficacy and 

tolerability of major antipsychotic medications excluded patients with predominant negative 

symptoms altogether17. Thus STAT3 (pY705) could represent a much needed drug target for the 

development of a novel drug series which specifically targets negative symptoms. To this end 

several mechanistically distinct potential STAT3 inhibitors have recently been described in the 

context of drug discovery including small molecule dimerization disruptors (SMDDs), tyrosine kinase 

inhibitors (TKis), decoy oligodeoxynucleotides (ODNs) and protein tyrosine phosphatase (PTP) 

inducers. There are over 40 compounds or biological molecules which are currently under 

investigation as potential STAT3 targeted therapies267. Many of these derive from natural products 

such as sanguarine (Sanguinaria canadensis- ‘blood root’), berbamine (Berberis amurensis), 

resveratrol (Vitis vinifera), honokiol (Magnolia officinalis), withaferin A (Withania somnifera) or 

curcumin (Curcuma longa). Notably the latter two compounds, which are STAT3 phosphorylation 

inhibitors, are in early stage (phase I/II) clinical trials for schizophrenia267. FDA approved 

medications which are phosphorylation inhibitors of other STAT family proteins, including 

pravastatin (STAT1) and pimozide (STAT5), and are also in clinical trials for schizophrenia ranging 

from phase II-IV267. Interestingly a decreased STAT5 (pY694) phosphorylation response to TG 

emerged specifically following clinical olanzapine treatment in the AI study, supporting the validity 

of this target. Furthermore the tetracycline antibiotic minocycline, which directly reduces STAT3 

(pY705) phosphorylation, has been shown to mitigate microglial activation and improve negative 

symptoms when administered early in the course of schizophrenia295–298. Taken together this 

evidence suggests that there is substantial scope for novel drug discovery and drug repurposing 

targeted towards STAT isotypes for the amelioration of negative symptoms in schizophrenia. 

Moreover subgroups of patients with predominant negative symptoms often have worse prognoses 

and lesser responses to treatment16,293,299. Thus being able to identify these individuals early in the 

course of the disease could allow the best available treatments for negative symptoms to be applied 
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in time to avoid many of the deleterious effects on neuronal function (described earlier). Finally, 

the implication of STAT3 in stress susceptibility could mean that it provides a valuable prophylactic 

drug target for prodromal conversion to schizophrenia.  

4.3.14 SRC & FUNCTIONAL INTEGRATION OF NODES NORMALIZED IN THE AI STUDY

Despite being one of the four nodes which was associated to schizophrenia and normalized by 

antipsychotic therapy in the AI study (Table 4.2, Fig. 4.7c), the response to forskolin at Src (pY418) 

in T cells was not replicated in schizophrenia patients relative to controls in the DD study. Instead 

Src (pY418) was altered in B cells in response to staurosporine in the DD study (Table 4.6). The 

heterogeneity of the response at this epitope combined with the higher overall significance of the 

TG-PLC-γ1 response meant that it was not selected for the drug discovery phase of the study. 

However its identification raises the intriguing concept that the four normalized epitopes (Akt1, 

STAT3 (pY705), Src (pY418) and PLC-γ1) might interact mechanistically. Src has been reported to 

activate Akt1, STAT3 and PLC-γ1 in cell signalling processes which are central to 

schizophrenia235,236,271,300. For example inhibition of Src prevents phosphorylation of Akt and 

downstream GSK-3β in response to D2 and D3 receptor stimulation in Chinese hamster ovary (CHO) 

cells300. At glutamatergic synapses coincident calcium waves, mediated by NMDA receptors and L-

type calcium channels, cause Src to activate STAT3, at pY705 (via Jak3) and pS727 (via Akt), hence 

contributing to neuronal excitation-transcription coupling, a process in which PLC-γ1 has a well-

documented role235,271,301. Interestingly STAT3 is one of the few transcription factors known to 

regulate Akt1 expression suggesting a feedback loop between these two proteins302. Recently Src 

has also been proposed as a mediator of neuregulin 1β-ErbB4 (NRG1β-ErbB4) inhibition of NMDA 

receptor transduction, therefore potentially implicating Src and its transcription coupling partners 

(Akt, STAT3 and PLC-γ1) in NMDA receptor hypofunction239,303. Finally many of the main interactions 

of STAT3 and PLC-γ1 with other proteins are mediated by their respective Src-homology (SH) 

domains236,267. This might explain reciprocal interactions between PLC-γ1, STAT3 and Src, in addition 

to interactions with their common regulatory partners such as SHP-1 and SHP-2304–309. While there 

is considerable evidence for the interaction of these reversal nodes it is notable that in the AI study 

no single ligand induced changes in all of the four reversal epitopes simultaneously. Thus it seems 

that they are not obligate signalling partners in the canonical sense. Instead they are best viewed 

as disease-associated stress points within the cell signalling network that can contribute under 

varying physiological conditions to an integrated phenotype. 
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4.3.15 EX VIVO TREATMENT RESPONSE PREDICTION 

The previous chapter highlighted the kinetic interaction of several neuropsychiatric medications 

with emergent drug targets in T cells from healthy donors following a 1-30 min drug incubation 

protocol ex vivo (TC study). However one of the major pending questions was whether these acute 

interactions would be reproduced in patient samples following chronic clinical drug administration. 

The AI study allowed this to be assessed with reference to six weeks of clinical olanzapine 

treatment. Among the cell signalling nodes changed after six weeks of olanzapine treatment in vivo 

(0.6% of the total nodes assayed; Fig. 4.5b), 27% of these involved epitopes which were altered by 

30 min olanzapine incubation ex vivo in either CTRL or SCZ T0 groups (Src (pY418), PKC-α, CrkL 

(pY207), PKA RII-α (pS99) and Akt1, Fig. 4.9). This enrichment suggests that many of the clinical 

effects of olanzapine treatment are observable following acute ex vivo administration.  Moreover 

the fact that no ex vivo effects of olanzapine were observed at the aforementioned epitopes in the 

SCZ T6 group suggests that in vivo administration of the drug potentially saturated the response 

capacity of these epitopes to olanzapine. 

Notably changes in the acute ex vivo responses of PKA RII-α (pS99) and CrkL (pY207) to olanzapine 

were correlated to changes in positive (δPANSSp) and negative (δPANSSn) symptoms respectively 

across the clinical treatment course. The fact that these two epitopes were the only ones to display 

multiple alterations in ligand responses in the SCZ T0 vs. T6 comparison, suggests that epitopes 

which interact with olanzapine ex vivo are also those which show more profoundly altered 

functionality following treatment in vivo. This raises the exciting possibility, pending correlation of 

symptom changes (δPANSS) in larger patient cohorts, that these acute ex vivo olanzapine responses 

(30 min) could predict clinical response to chronic olanzapine treatment with positive and negative 

symptom subscale resolution. The implication of PKA RII-α (pS99) as a potential response prediction 

epitope is consistent with its role as a downstream signalling substrate (via cAMP) of D1-5 receptors 

in the CNS, which are known to mediate both clinical efficacy and extrapyramidal side effects of 

antipsychotic treatment. Conversely the implication of CrkL (pY207) is important as this protein has 

been strongly associated with schizophrenia via multiple genetic analyses (described in Chapter 3), 

but has not yet been implicated as a therapeutic target of current antipsychotic drugs. Moreover it 

was the only epitope to display a kinetic activation profile in response to both typical and atypical 

antipsychotic drug classes (Chapter 3 Fig. 3.12) in the TC study. Taken together these findings 

suggest that CrkL (pY207) has strong potential as a treatment predictor across antipsychotic drug 

classes and also as a novel drug target. 
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CHAPTER 5

DRUG REPURPOSING FOR SCHIZOPHRENIA 

CHAPTER 5: DRUG REPURPOSING FOR SCHIZOPHRENIA 

5.1 INTRODUCTION 
To determine whether the putative drug targets discovered in schizophrenia patient PBMCs relative 

to controls in the clinical stages of the project could be translated into viable drug candidates, we 

modelled the abnormal cell signalling response to thapsigargin (TG) at PLC-γ1 (Chapter 4 Fig. 4.7d) 

in control PBMCs and screened the extended FDA approved drug library for compounds capable of 

normalizing this response (FDA library screening- ‘FDA’; Chapter 1 Fig. 1.3e). As the response to TG 

at PLC-γ1 was attenuated in drug-naive schizophrenia patients and restored following the clinical 

antipsychotic treatment course (six weeks) with olanzapine we sought to identify compounds 

capable of recapitulating this in vivo effect, in other words potentiating the response to TG at PLC-

γ1. Moreover as no alteration in basal expression was observed for PLC-γ1 between schizophrenia 

patients and controls or following antipsychotic intervention in vivo, we further defined the desired 

compound profile as drugs which potentiated the PLC-γ1 response only in the presence of TG and 

were inactive at this epitope by themselves (Fig. 5.1). Thus the desired profile is broadly analogous 

to that of an allosteric modulator, a compound capable of modifying the response selectively in the 

presence of the primary ligand, by binding to an alternative site outside the orthosteric activation 

site, but which by itself is inactive310,311. This term is usually used to define alternative sites on the 

same protein as the primary orthosteric ligand binding domain. However as the molecular target 

responsible for the altered response in schizophrenia is unknown, we extend this concept to include 

ligands which selectively enhance the activity of TG via potentially alternative mechanisms 

(‘functional allosteric modulation’). 
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5.2 RESULTS 

5.2.1 DRUG DISCOVERY AND REPURPOSING FOR SCHIZOPHRENIA 

The FDA approved compound library (786 compounds) was extended to include experimental drugs 

with putative activity against CNS targets, nutraceuticals and positive controls related to the TG-

PLC-γ1 response (160 compounds) (Chapter 2 Table 2.2). We preincubated PBMCs from control 

donors (n=6-12) with the extended FDA compound library (compounds at 20 µM final concentration 

unless stated otherwise and negative controls DMSO 0.2%) for 45min. Subsequently we stimulated 

the cells with TG 0.5 µM (circa half maximal concentration (EC50) Fig. 5.2) or vehicle (stRPMI DMSO 

0.01%) for 30 min. From this point onwards the samples were processed in the same way as the 

clinical samples in previous chapters with two exceptions. First the cells were barcoded with four 

concentrations of DL800. This allowed stimulant and vehicle wells with the same drug to be 

multiplexed for simultaneous staining hence removing the potentially confounding variation in cell 

counts between wells. Second the cells were stained only with CD3-APC and PLC-γ1 PE. This allowed 

the spectral isolation of the target response at PLC-γ1 (Fig. 5.3) (Chapter 1 Fig. 1.4d). Similar to the 

statistical test used to define the aberrant clinical phenotype, which identified interactions between 

clinical group status and stimulant response, the test used to identify significant screening 

compounds identified interactions between compound status (negative control or compound) and 

TG stimulant response. Subsequently we prioritized the significant compounds in terms of the ones 

which displayed a selective potentiation profile (i.e. compounds which were inactive alone but 

potentiated the PLC-γ1 response selectively in the presence of TG) (Fig. 5.1). These potentially 

selective compounds were explored using an extended 14-point two-fold dose response of the 

compound (0.024-200 µM) prepared from a fresh stock in vehicle and TG (0.5 µM) conditions. 

Members of the same therapeutic class as the candidate compounds (e.g. Ca channel blockers, 

corticosteroids, antibiotics and antipsychotic medications) were included at this stage to explore 

potential structure activity relationships. The therapeutic window of these compounds was 

determined in terms of the dose range of each compound which induced a PLC-γ1 response 

selectively in the presence of TG relative to vehicle. Finally the compounds which displayed a 

putative therapeutic window for selective potentiation were ranked in terms of their potency to 

shift the EC50 of TG-PLC-γ1 dose response curves. 

140



5.2.2 EXTENDED FDA LIBRARY SCREENING HITS

A total of 103 compounds from the extended FDA drug library were found to interact with the TG-

PLC-γ1 response (p<0.05) (Fig. 5.4b, d left panel). The top hits (p<0.0001, n=11) were enriched for 

positive controls (36% of hits; including calyculin, TG, staurosporine and PMA/ionomycin) and 

calcium channel blockers (36% of hits; including NNC 55-0396, penfluridol, loperamide and 

nisoldipine) (Fig. 5.5). This is consistent with the established functions of the positive controls as 

broad spectrum cell signalling modulators and the calcium channel blockers as mechanistic probes 

of calcium flux alterations. Furthermore the fact that TG (1 µM) was capable of further potentiating 

the PLC-γ1 response confirms that the background stimulation of TG (0.5 µM) was still within the 

dynamic range of the PLC-γ1 response. Therefore the potentiation effects of other compounds 

could be accurately determined. Other classes of compounds which were enriched among the 103 

hits (p<0.05) included cephalosporin antibiotics, steroids and steroid derivatives, retinoids and 

antipsychotic medications. Notable other hits included selective inhibitors for Akt1 (GSK 690693), 

GSK-3β (TC-G 24), mTORC1 (Everolimus) and STAT3 (cucurbitacin I) and three instances of 

sphingosine-1-phosphate receptor modulator (fingolimod) from different sources. The Z’ factor 

value, which accounts for the reproducibility and dynamic range of the assay134, was 0.3 for TG (1 

µM). 

5.2.3 SELECTIVE POTENTIATION OF THE TG-PLC-γ1 RESPONSE 

To refine the hits which interacted with the TG-PLC-γ1 response we identified a subset of 22 

compounds which displayed the selective potentiation profile described above (Fig. 5.4b; Table 

5.1). These included nisoldipine as the top hit (p=0.0002; 3.1-fold potentiation) and olanzapine 

(p=0.0087, ranked 7th; 2.9 fold potentiation) which was used clinically in the antipsychotic 

intervention study (Chapter 4). The hits were also enriched for cephalosporin antibiotics (23%), 

corticosteroids (18%) and retinoids (9%). Eight of the initial 22 hits were validated in preliminary 

dose response testing. These compounds were carried through to the extended dose response 

stage, alongside 14 other members of the same therapeutic classes which were included to explore 

potential structure activity relationships (Fig. 5.6). These therapeutic classes included calcium 

channel blockers (nimodipine, nilvadipine, nisoldipine, nifedipine, nicardipine, amlodipine, 

verampil and NNC 55-0396), antipsychotic medications (penfluridol, haloperidol, risperidone, 

aripiprazole, olanzapine and clozapine), corticosteroids (fluorometholone, methylprednisolone, 

loteprednol and flunisolide) and antibiotics (cefixime, cefoxitin, gemifloxacin and capreomycin). The 

compounds loperamide and ibutilide, which independently showed the desired profile in 
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preliminary dose response testing, were also included in extended dose response stage while the 

retinoid compound class was not pursued due to clinical contraindications in schizophrenia.  

In the extended dose response stage (Fig. 5.4d centre panel; 14-point two-fold dose response of 

the compound (0.024-200 µM) in vehicle and TG (0.5 µM) conditions) we identified 10 compounds 

which showed selective potentiation of the PLC-γ1 response in the presence of TG, at 

concentrations below those which were active in the vehicle condition alone, indicating a potential 

therapeutic window (1-25 µM, depending on the compound; Fig. 5.7). The selective TG-PLC-γ1 

potentiation profile of olanzapine was also shared by other atypical antipsychotic drugs 

(risperidone, aripiprazole and clozapine), but not typical antipsychotics (haloperidol and 

penfluridol). Selective potentiation was observed also for 1,4-dihydropyridine (DHP) L-type calcium 

channel blockers with extended ester substitutions at the 3-position of the pyridine ring 

(nimodipine, nisoldipine and nicardipine), but not for the other members of the DHP class (no effect 

for nilvadipine; potentiation without therapeutic window for nifedipine; opposing effects for 

amlodipine), the phenylalkylamine L-type calcium channel blocker (verapamil) or highly specific T-

type calcium channel blockers (NNC 55-0396 and penfluridol; Fig. 5.8). The last three compounds 

which showed the selective potentiation profile were the corticosteroids, methylprednisolone and 

flunisolide, and the potassium channel blocker, ibutilide. 

Finally, we ranked the compounds which showed the selective potentiation profile in terms of their 

potency to shift the half maximal effective concentration (EC50) of TG-PLC-γ1 dose response curves 

(Fig. 5.4d right panel). Consistent with the previous results, all 10 drugs decreased the EC50 of the 

TG-PLC-γ1 response compared to the vehicle condition (Fig. 5.4c). The second-generation atypical 

antipsychotics displayed a rank order of potency ranging from risperidone (EC50=223 nM) to 

aripiprazole (EC50=233 nM), olanzapine (EC50=270 nM) and clozapine (EC50=311 nM). Furthermore, 

three drugs, namely nicardipine (EC50=151 nM), nisoldipine (EC50=168 nM) and methylprednisolone 

(EC50=200 nM), showed stronger potentiation of the response than any of the measured 

antipsychotic medications. The effect of ibutilide (EC50=258 nM), flunisolide (EC50=286 nM) and 

nimodipine (EC50=290 nM) was within the range of the atypical antipsychotic medications. These 

results demonstrate the potential of the ex vivo platform to stratify current schizophrenia 

medications, in terms of their ability to ameliorate disease-associated cellular responses, and 

moreover identify novel drug indications (nicardipine, nisoldipine and methylprednisolone) with 

putative enhanced therapeutic potency. 
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Figure 5.1 Selective potentiation of PLC-g1 response in the presence of thapsigargin (TG). 
Compounds from the extended US Food and Drug Administration (FDA)-approved Iibrary were 
initially identified based on their interaction with the response to TG at PLC-g1 independently of 
the direction of change. Subsequently these hits were refined to compounds which showed 
the desired directionality (decrease in PLC-g1) specifically in the TG condition and were not 
active (at the concentration screened) in the vehicle condition. In other words these compounds 
showed no intrinsic activity but were capable of potentiating the PLC-g1 response when 
coadministered with TG. Figure shows a representative selective potentiation 
compound (PBMC samples n=6). Compounds were at 20 mM final concentration unless 
otherwise stated in DMSO 0.2%. Negative control (NC) = DMSO 0.2%. TG was at 0.5 mM DMSO 
0.01%. Vehicle= DMSO 0.01%. MFI = median fluorescence intensity. 
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Figure 5.2 Thapsigargin (TG) dose response at phospholipase C PLC- 1. TG provokes a dose-
dependent decrease in PLC-g1 expression. Y axis represents the median fluorescence 
intensity standardized as a proportion of minimum and maximum values. TG stimulation circa 
the EC50 concentration (0.5 µM) determined from the four-parameter logistic curve (red) 
was used as a background condition for the extended FDA-approved library screen. Data 
represents six healthy control (C) peripheral blood mononuclear cell (PBMC) samples 
coloured by donor.
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a    Morphology b    Subtyping

c  T cell barcode

d        Functional analysis

Figure 5.3 Gating strategies for the functional analysis of PLC-γ1 expression in four barcoded T cell 
populations. (a) Viable cells were gated (FSC-A vs. SSC-A), followed by single cell discrimination 
(SSC-A vs. SSC-W and FSC-A vs. FSC-W). (b) T vs. B lymphocyte cell subtyping using anti-CD3 APC. (c) 
Four populations, each corresponding to a different stimulation condition (TG or vehicle) and 
compound condition (compound or negative control), were resolved within the T lymphocyte gate 
following fluorescent cell barcoding using DL 800 (DL 1-4). (d) Within each barcoded T cell 
population functional analysis of intra-cellular signalling epitope PLC-g1 expression was conducted 
using anti-human PLC-g1-PE. Data represents one PBMC sample.
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Figure 5.4 Phenotypic drug repurposing based on cellular response. (A) Identification of functional cellular 
drug target. Attenuated response to thapsigargin at phospholipase C (PLC)-γ1 in T cells from drug-naïve 
schizophrenia (SCZ) patients (p=0.001, two-way ANOVA), relative to healthy controls, was reversed after 6 
weeks of clinical treatment with the atypical antipsychotic (AP) drug olanzapine in vivo (permuted P=0.041; 
n=12 healthy controls, n=12 drug-naïve SCZ patients and n=10 SCZ patients after antipsychotic treatment 
(SCZ+AP)). Box plots show interquartile range with the median (horizontal line) and the minimum and 
maximum values (whiskers), excluding outliers (dots). MFI - median fluorescence intensity. (B) Results of 
primary drug screen. Permuted P values from thapsigargin-drug interaction testing (two-way ANOVA; 
n=6-12 healthy PBMC donors) are shown across the combined FDA-approved (n=786) and experimental 
(n=160) compound libraries. Dashed line represents threshold P value of 0.05. Significant hits are shown in 
green (n=102) and compounds that additionally showed selective potentiation of the thapsigargin-PLC-γ1 
response (post-hoc one-way ANOVA tests; Fig. 5.1) are shown in magenta (n=22; Table 5.1). (C) Ranking of  
best selective potentiation candidates at 10 µM concentration in terms of EC50 shifts in the thapsigargin 
(TG)-PLC-γ1 dose response curve. Shows mean values from 6 healthy PBMC donors (points) with standard 
error of the mean (vertical bars) and fitted 4-parameter logistic curves. Y axis represents the MFI 
standardized as a proportion of minimum and maximum values. Legend shows the EC50 values with 95% 
confidence intervals (CI). Methylprednisolone is abbreviated as Methylpred. (D) Distribution of drug classes 
across repurposing stages. Extended FDA-approved library screening (left) refers to the primary compound 
screen at a single dose (20 µM unless otherwise specified in Materials and Methods Table 2.2 ) of 
compound (n=946; panel B). Validation and selectivity testing (centre) refers to dose response titration (24 
nM-200 µM) and validation of selective potentiation candidates and structural class relatives (n=24; Fig. 
5.7; n=6 healthy PBMC donors). Potentiation testing (right) refers to the titration of thapsigargin (12.5 
pM-20 µM) in the presence of 10 µM concentration of validated compounds (n=10; panel C). In vivo effect 
of olanzapine (panel A) was reproduced in vitro throughout.
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Figure 5.6 Tanimoto structural similarity clustering of (a) calcium channel blocker, (b) 
antipsychotic, (c) corticosteroid and (d) antibiotic compounds used in dose response 
validation and selectivity testing at the phospholipase C (PLC)-γ1 target. Compounds are clustered 
according to 2D structural Tanimoto similarity using the Single Linkage algorithm (PubChem). This 
grouping hierarchy is used to define the representation order of compounds in each class in Fig. 
5.7. A 2D similarity score of 0.68 (dashed line) is statistically significant at the 95% confidence 
interval (Kim et al., 2012).
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, corticosteroid, 
antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, 
corticosteroid, antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, corticosteroid, 
antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, 
corticosteroid, antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, corticosteroid, 
antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, corticosteroid, 
antibiotic and other drug classes at PLC−g1 continued.
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Figure 5.8 Structure-activity classification of voltage-gated calcium channel (Cav) blockers with 
respect to selective potentiation of the TG-PLC-γ1 response. Within the Cav blocker compound 

class, which was tested for selective potentiation of the TG-PLC-g1 response (Fig. 5.7), a 
putative therapeutic window of selective potentiation was confined to a subclass of 1,4-
dihydropyridine L-type Cav blockers with extended (yellow circles), relative to truncated 

(red circles), ester substitutions at the 3-position of the pyridine ring.

Figure 5.7 Validation and selectivity testing of calcium channel blocker, antipsychotic, corticosteroid, 
antibiotic and other drug classes at phospholipase C (PLC)−g1. Compounds for which at least one class 
member selectively potentiated the PLC-g1 response in the presence of thapsigargin (TG) in the 
extended FDA-approved library screen, were explored using a 14-point two-fold dose response of 
the compound (0.024-200 µM, DMSO 0.2%) in vehicle (VEH; DMSO 0.01%; black colour) and TG 
(0.5 µM, DMSO 0.01%; red colour) conditions. The lowest plotted concentration represents the 
negative control condition (DMSO 0.2%). Y axes represent the median fluorescence intensity 
standardized as a proportion of minimum and maximum values. For compounds which 
potentiated the PLC-g1 response in the presence of TG, vertical dashed lines mark the lowest 
concentration at which potentiation occurred. The difference between the lowest potentiation 
concentration of the TG curve and the lowest active concentration of the vehicle curve, 
respectively, represents the putative therapeutic window for selective potentiation in the 
presence of TG relative to vehicle. Compounds which showed the putative therapeutic window 
of selective potentiation and were chosen for the final repurposing stage (potentiation testing; 
Fig. 5.4c) are marked with a blue asterisk. Yellow circles indicate structural moieties which 
differentiate compounds with a selective therapeutic window compared to non-selective or 
inactive class relatives. Compounds are ordered according to structural similarity within 
each class using Tanimoto coefficient clustering (Fig. 5.6). Data represents 6 peripheral 
blood mononuclear cell (PBMC) samples (dots), 95% confidence intervals (vertical bars) and 
fitted 5-parameter logistic curves (lines). GOF = goodness-of-fit; IC50 = half maximal inhibitory 
concentration. Chemical structures are taken from PubChem.
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5.3 DISCUSSION 

5.3.1 STRUCTURE-ACTIVITY RELATIONSHIPS TO BRIDGE THE KNOWLEDGE GAP BETWEEN

GENOMIC SCHIZOPHRENIA RISK LOCI AND CLINICAL EFFICACY

The fact that the initial hits from the extended FDA library screen were reinforced by similar effects 

across structurally related (Fig. 5.6) class members suggests that these compound activities are 

genuine. Most of the compound classes identified are either currently used to treat schizophrenia 

(atypical antipsychotics) or have been tested in clinical trials for schizophrenia (calcium channel 

blockers and corticosteroids)14,312,313 with the notable exception of ibutilide. Furthermore in the 

case of the calcium channel blockers these therapeutic compounds interact with drug targets 

prominently associated with schizophrenia risk loci in GWAS and exome sequencing studies24,106,107. 

This supports the potential of the ex vivo functional cytomic pipeline for de novo identification of 

viable therapeutic candidates. However the truly differential feature of this platform is the 

provision of a tractable cellular model, or ‘functional endophenotype’, which can predict the 

relative therapeutic potential of different compound class members based on specific structural 

moieties. In this way it provides a model for translating generic drug targets implicated by genetic 

or other molecular profiling methodologies into specific therapeutic pharmacophores. For example 

L-type calcium channel blockers have been suggested as potential treatments for schizophrenia in

light of GWAS and exome sequencing associations of L-type calcium channel subunit genes (e.g.

CACNA1C and CACNA1B) with the disease24,106,107. However when applied in clinical trials for

schizophrenia L-type calcium channel blockers have shown heterogeneous outcomes312. For

example clinical trials with verampil improved positive symptoms in acute patients but showed no

effects in chronic patients. In contrast nilvadipine improved negative symptoms with no change in

positive symptoms. Finally nifedipine had no effect in chronic patients but improved cognitive

symptoms in patients with tardive dyskinesia312.

The heterogeneous results obtained from these clinical trials could in part be explained by small 

sample sizes, difficulties in controlling for clinical variables and divergent brain penetrance of these 

compounds312. However if the model of a selective therapeutic window proposed by the current 

study (Fig. 5.7) is correct it would suggest that these compounds are not the optimal class members 

for cellular efficacy. Both verampil and nilvadipine lack any potentiation effect on the TG-PLC-γ1 

response. Nifedipine does have a potentiation effect but it does not have a therapeutic window for 
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selective potentiation specifically in the presence of TG. In other words it is equally active in both 

vehicle and TG conditions. In contrast its close structural relative (Fig. 5.6) nisoldipine, which differs 

only in a longer ester substitution at the 3-position of the pyridine ring (Fig. 5.8), does have a 

potential selective therapeutic window as observed by the relative gradients of the dose response 

curves in TG and vehicle conditions and its identification as the most significant compound 

interaction with the desired profile in the primary compound screen (Table 5.1). Furthermore other 

DHP class members with extended ester substitutions at the 3-position of the pyridine ring 

(nimodipine and nicardipine) also showed a selective therapeutic window while DHPs amlodipine 

and nilvadipine, with truncated ester substitutions at the 3-position, did not (Fig. 5.8).  

It is notable also that while GWAS data has implicated T-type calcium channels as potential 

therapeutic targets24,106, the complete lack of potentiation efficacy observed for highly specific T-

type calcium channel blockers NNC 55-0396 and penfluridol would suggest otherwise. Thus it is 

possible that T-type calcium channels are altered in schizophrenia but that T-type calcium channel 

blockade is not a viable therapeutic strategy. This is supported by reports of psychotogenic effects 

and cognitive deficits provoked by clinical administration of T-type calcium channel blocker 

zonisamide312. Taken together these results allow us to refine the generic indications of T- and L-

type calcium channel blockade for schizophrenia, suggested by GWAS and exome sequencing 

analyses, to specifically the DHP class of L-type blockers, by exclusion of verapamil which is a 

phenylalkylamine, and specifically to those members within the DHP class which have extended 

ester substitutions at the 3-position of the pyridine ring (Fig. 5.8). Furthermore it provides a testable 

model of these hypotheses with respect to explaining the variable efficacies of these compounds in 

clinical trials and ranking the novel drug candidates for enhanced cellular potency relative to 

established antipsychotic medications (Fig. 5.4c). The potential of lead compounds (nisoldipine and 

nicardipine) is supported by initial studies of brain penetrance and complete abrogation of aberrant 

behaviour in phencyclidine animal models of schizophrenia314,315. Finally eight out of the ten lead 

compounds identified in the present study (Fig. 5.4c) are consistent with a recent computational 

analysis of drugs which target the extended protein interactome of schizophrenia genetic risk 

loci316. The remaining two lead compounds (methylprednisolone and flunisolide), which are not 

mapped to the schizophrenia protein interactome, emphasize the ability of the current approach 

to access mechanistically diverse potential therapeutic space which is not yet indexed by genomic 

analyses. 
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5.3.2 FUNCTIONAL CYTOMIC MODELLING OF COMPOUNDS WHICH TARGET TREATMENT

RESISTANT CLINICAL PHENOTYPES

Another important feature of the identification of specific DHP calcium channel blockers in the 

present study is that previous clinical trials have suggested the potential of this therapeutic class 

specifically for improvement of negative symptom subtypes, such as cognitive deficits, in 

schizophrenia. This raises the possibility that the functional cytomics platform might serve the much 

needed purpose of identifying compounds capable of targeting subtypes of symptoms which are 

refractory to conventional treatments. In this respect it will be informative to follow the results of 

the ongoing clinical trial of DHP calcium channel blocker isradipine for cognitive enhancement in 

schizophrenia and schizoaffective disorder (NCT01658150). Likewise it is possible that the 

heterogeneous results obtained in previous DHP calcium channel blocker clinical trials were in part 

due to the lack of stratification of the patient population. The ex vivo responses to DHP calcium 

channel blockers in the present study could constitute companion biomarkers for patient 

stratification in future clinical trials involving these compounds. This might ultimately increase the 

chances of successful clinical implementation through targeting of treatment sensitive patient 

subgroups 312,317.  

The corticosteroid drug class, for which a selective therapeutic potentiation window was also 

observed, have likewise been suggested as a therapeutic option for treating negative symptoms 

and cognitive deficits. Similarly to the structure activity relationships described for the DHP calcium 

channel blockers, these results specifically suggest methylprednisolone as the class candidate with 

the most selective cellular efficacy (Fig. 5.7). Clinical trials are currently underway for the parent 

compound prednisolone in recent-onset schizophrenia patients (University Medical Centre, 

Utrecht). This will be important for determining the prophylactic properties of this intervention with 

respect to long-term cognitive decline. In addition to the DHP calcium channel blockers and 

corticosteroids currently being tested in clinical trials, the functional cytomics platform also 

identified the structurally unrelated antiarrhythmic compound ibutilide, which has not yet been 

tested for efficacy in schizophrenia. The provision of a structurally and mechanistically diverse 

portfolio of novel compounds, at early stages of the drug discovery process, is key to addressing 

treatment resistance in complex disorders with heterogeneous molecular aetiologies such as 

schizophrenia. 
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5.3.3 CLINICAL IMPLICATIONS OF DIVERGENT CELLULAR RESPONSES TO TYPICAL AND

ATYPICAL ANTIPSYCHOTIC TREATMENTS 

There was a striking dichotomy between the interactions of typical and atypical antipsychotics with 

the TG-PLC-γ1 response. While the typical antipsychotics (haloperidol and penfluridol) did not 

display any potentiation in the presence of TG, the atypical antipsychotics (risperidone, aripiprazole, 

olanzapine and clozapine) were all selective potentiators of the response (Fig 5.7). This is consistent 

with multiple in vitro studies using neurons and microglia which indicate a differential effect of 

typical vs. atypical antipsychotics on TG-induced calcium mobilization from the endoplasmic 

reticulum318,319. Interestingly several of these studies characterized this differential effect in terms 

of ER stress and neuronal differentiation, suggesting that the current divergence in TG-PLC-γ1 

modulation between these drug classes may have profound implications on their therapeutic 

profile in the CNS318,319. Furthermore the similarity in the TG-PLC-γ1 ex vivo profile of the typical 

antipsychotics to specific T-type calcium channel blocker NNC 55-0396, and that of atypical 

antipsychotics to the L-type DHP calcium channel blockers, suggests that these differential clinical 

effects might in part be mediated by the relative specificities of these antipsychotic drug classes to 

T- and L-type calcium channels respectively320. Interestingly, efficacy in rescuing schizophrenia-like

behavioural abnormalities (sensorimotor gating deficits) in a PLC-β1 knockout animal model has

previously been shown to be restricted to the atypical antipsychotic class (clozapine vs.

haloperidol)250. Thus there is evidence that the mechanism of action of TG and the PLC isotypes

used for its detection in the current assay may synergistically contribute to the differential

sensitivity of the target response (TG-PLC-γ1) to atypical vs. typical antipsychotic drugs. Taken

together these findings suggest that, in addition to dissecting the potential effects of novel drug

candidates, the functional TG-PLC-γ1 ex vivo profile could potentially be used for treatment

response prediction between different classes of existing antipsychotic therapies in patients with

biased calcium channel subtype or PLC isotype functional repertoires. By extension, the rank order

of potency for different atypical antipsychotic compounds in shifting the TG EC50 at PLC-γ1 ex vivo

(Fig. 5.4c) could serve as a means to stratify schizophrenia patients with differential clinical

sensitivities to members of this drug class.

5.3.4 DIFFERENTIAL PHARMACOLOGY FOR DISSECTING DISEASE MECHANISMS 

In addition to providing clinical insight into potential therapeutic candidates, the differential effects 

of the library screening compounds on the phenotypic TG-PLC-γ1 response could provide insights 

into the mechanisms of altered cell signalling in the disease state. For example, in Chapter 4 voltage-
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gated L-type calcium channels (especially Cav1.2) were proposed to be involved in the mechanism 

of altered TG evoked ER calcium mobilization. However this was based solely on the association of 

Cav1.2 subunits to schizophrenia in genomic studies and the relative expression of Cav1.2 channels 

in lymphocytes24,240. The effects of specific DHP L-type calcium channel blockers in modulating this 

response in the compound library screen allows further dissection of the functional phenotype and 

lends support to the mechanistic model proposed. Furthermore the fact that Cav1.2 channels are 

implicated in leading hypotheses of schizophrenia pathogenesis supports the validity of the ex vivo 

TG-PLC-γ1 response as a surrogate drug screening model for CNS efficacy. This is supported by the 

role of Cav1.2 in mediating altered excitation-transcription coupling and NMDA receptor 

hypofunction of GABAergic interneurons in addition to altered microglial activation involving 

deramification and release of nitric oxide and pro-inflammatory cytokines. However the question 

still remains as to how the blockade of L-type calcium channels, traditionally associated with 

calcium influx down the concentration gradient from the extracellular space, is able to rescue the 

disease-associated phenotype. One possibility is that blockade of L-type calcium channels induces 

relative cellular starvation of calcium which triggers compensatory release mechanisms from the 

ER which are synergistic with the elevation of cytosolic calcium induced by TG. An alternative 

mechanism is that L-type calcium channel blockade inhibits the reuptake of calcium into the ER 

once the concentration gradient between cytosol and ER has been reversed by TG.  Interestingly 

recent data suggests that L-type calcium channels are constantly being trafficked around the cell 

and can promiscuously insert themselves into the membranes of different cellular organelles via 

swapping of membrane micro-domains and lipid rafts321. Thus elucidation of the mechanism of 

altered TG-PLC-γ1 response in schizophrenia would best be served by measurement of the 

subcellular localization and trafficking of L-type voltage-gated calcium channels (especially with 

respect to the mitochondria), their interactions with other proteins involved in calcium homeostasis 

(e.g. STIM1 and ORAI1) and changes in calcium concentration in subcellular compartments which 

accompany the kinetic response to TG.  

In addition to the mechanistic insight provided by DHP calcium channel blockers, it is notable that 

other compounds, such as fingolimod and retinoic acid, also interacted with the TG-PLC-γ1 response 

(Fig. 5.5). Fingolimod, one of the few compounds to provoke a dose-dependent increase in PLC-γ1 

expression in the TG condition, is a multiple sclerosis medication affecting lymph node T cell 

sequestration and is currently in clinical trials for schizophrenia (NCT01779700). On the other hand 

retinoic acid derivatives have known psychotogenic effects322. Interactions were also observed for 

specific inhibitors of key schizophrenia targets described previously in this study and by others, 

including Akt1 (GSK 690693), GSK-3β (TC-G 24), mTORC1 (Everolimus) and STAT3 (cucurbitacin 
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I)143,214. While these compounds did not fit the desired therapeutic profile in the current study, their

interactions nevertheless support the validity of the TG-PLC-γ1 response as a model for detecting

functional interactions with schizophrenia-associated targets through differential pharmacology ex

vivo.
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CHAPTER 6

CONCLUSION 

 CHAPTER 6: CONCLUSION 

To conclude this work we summarize the main findings and their significance to the field of 

neuropsychiatric drug discovery. Subsequently we discuss limitations of the current study and 

propose ways in which they might be overcome in future work.  

6.1 SUMMARY 

We have developed a novel high-content screening platform for the functional characterization of 

signalling network responses at the single-cell level in PBMCs ex vivo. These signalling network 

responses can be kinetically resolved to reveal regulatory interactions in specific cell subtypes 

within a heterogeneous primary cell population. The platform has been applied to characterize the 

effects of common neuropsychiatric medications ex vivo in terms of both established (e.g. GSK-3β) 

and emerging (e.g. CrkL) drug targets with putative CNS efficacy. Furthermore the platform has 

indicated mechanistic points of convergence between neuropsychiatric drugs with different 

indications (e.g. antidepressants, mood stabilizers and antipsychotics at 4EBP1 (pT36/pT45)) and 

also divergent activities of neuropsychiatric drugs within the same indication (e.g. mood stabilizers 

such as lithium at 4EBP1 (pT36/pT45) and valproic acid at Rb (pS780)). Finally we have used the cell 

signalling signature of these approved medications as a mechanistic scaffold to identify novel 

experimental or repurposed drugs (e.g. JB 1121 or rapamycin respectively) and potential treatment 

response predictors. 

Clinical application of the platform demonstrated functional alterations in the T cell signalling 

repertoire of drug-naive schizophrenia patients relative to controls. Several of these alterations 

were normalized following a clinical course of antipsychotic olanzapine treatment and subsequently 

prioritized as putative novel drug targets (thapsigargin-PLC-γ1, forskolin-Src (pY418), Akt1 and 
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STAT3 (pY705)). These targets were further characterized in terms of their correlation to changes 

in symptom subscales (e.g. STAT3 (pY705) and negative symptoms) and their specificity for 

schizophrenia relative to other major neuropsychiatric disorders (bipolar disorder, major 

depression and autism spectrum disorder). Finally we defined the attenuated response to 

thapsigargin at PLC-γ1 in schizophrenia patients relative to controls as the most significant drug 

target. 

A phenotypic drug library screen using the extended FDA library identified compounds with the 

potential to normalize the schizophrenia-associated cell signalling alteration in the same manner as 

achieved by in vivo olanzapine treatment. Dose-response validation and structure-activity analysis 

revealed a selective therapeutic window for corticosteroids (methylprednisolone and flunisolide), 

1,4-dihydropyridine (DHP) L-type calcium channel blockers with extended ester substitutions at the 

3-position of the pyridine ring (nicardipine, nisoldipine and nimodipine), atypical antipsychotics

(risperidone, aripiprazole, olanzapine and clozapine) and an anti-arrhythmic drug (ibutilide).

Furthermore these drug candidates allowed the characterization of the schizophrenia-associated

cell signalling abnormality in light of prominent schizophrenia GWAS loci including CACNA1C and

CACNB224.

6.2 SIGNIFICANCE 

The elucidation of convergent ex vivo cell signalling response phenotypes (‘functional 

endophenotypes’) between neuropsychiatric patients with potentially varied genetic risk factors 

and environmental trajectories is the foremost contribution of this work. It provides a tractable and 

accessible primary live cell model for de novo identification of structurally diverse drug candidates 

with novel mechanisms of action even before the pathological process is fully understood. 

Moreover these drug candidates can be compared within the model directly to established 

treatments to identify structural derivatives with putative enhanced target specificity or cellular 

potency. This model is amenable to drug repurposing such that candidates with therapeutic 

potential for treating refractory patients or symptom subtypes are expedited to the clinic. Examples 

include the 1,4-DHP L-type calcium channel blockers and STAT3 (pY705) phosphorylation 

modulators for the treatment of cognitive deficits and negative symptoms in schizophrenia 

respectively. These functional endophenotypes also provide a potential avenue for understanding 

the functional implications of interactions between multiple common but weak or rare but 
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penetrant genetic risk loci (e.g. CACNA1C, CACNB2 and PLCB2) at a time when the majority of 

heritable genetic risk has yet to be indexed (7%)24.  

The second most significant contribution of this work is the identification in PBMCs of differential 

interactions between neuropsychiatric medications and cell signalling targets plausibly related to 

CNS efficacy. The differential interactions of lithium at 4EBP1 (pT36/pT45) and valproic acid at Rb 

(pS780) serve as examples in the case of bipolar disorder. This raises the possibility of treatment 

response prediction by ex vivo testing of the same drugs that are administered clinically. This has 

the potential to circumvent the challenges of diagnostic uncertainty and identification of treatment 

resistant individuals early in the disease progression. The highly specific interaction at GSK-3β of 

ligands CHIR 99021 and JB1121, which have been proposed as alternative therapies for treatment 

resistant bipolar disorder, suggests that the ex vivo methodology might likewise be used to provide 

alternative treatments in the case of therapeutic resistance.   

The work also allows the re-evaluation of the widely accepted theory that neuropsychiatric 

disorders involve the composite dysregulation of whole cell signalling pathways32,33,91,323–325. While 

this is a useful concept it seems that the reality of the cell signalling environment is more complex. 

For example many molecular profiling studies synthesise a list of putative disease alterations using 

in silico pathway analysis. This is subsequently presented as a canonical model in which stimulation 

or inhibition of any one of the components will trigger the dysregulation of the rest32,33,91,323–325. In 

this respect one would expect any ligand which interacts with a protein in a proto-typical 

schizophrenia associated pathway, such as Akt/GSK-3β, to provoke dysregulation of the whole 

pathway observable at each of the proteins in the network91. The current data suggests that this is 

not the case.  Instead disease-associated cell signalling responses appear sporadically within the 

network even in the case of broad spectrum cell signalling activators. For example, although 

thapsigargin was active in the AI and DD studies presented here at over 30% of the epitopes, the 

only ones which showed abnormal responses to this ligand in schizophrenia were PLC-γ1 and the 

closely related PLC-γ2. However none of the proteins downstream of PLC-γ1/2 (e.g. PKC-α, PKC-θ 

or ERK1/2) showed similar dysregulation236,243,326. This highlights the fact that there are likely to be 

extensive regulatory mechanisms across the rest of the network which compensate for pathological 

responses at individual epitopes. It is more informative to replace the canonical concept of cell 

signalling with that of a tightly regulated network114.  By extension the ability of the methodology 

presented here to identify specific stress points in these networks might ultimately prove more 

relevant for drug target discovery as these are likely to be the sites which escape regulatory control. 
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Conversely in the present study the assessment of ligand responses across multiple cell signalling 

epitopes in parallel has revealed a remarkably promiscuous profile for many of the common 

neuropsychiatric treatments. While several of these interactions are known, for example at 

Akt/GSK-3β pathway epitopes, others such as the induction of phosphorylation at CrkL (pY207) in 

response to antipsychotic administration ex vivo and in vivo have not been documented87,90. 

Furthermore CrkL has been implicated by several studies as an emergent genetic risk factor29,215. 

This emphasises the importance of high-content cell signalling analysis for characterizing the 

therapeutic profile of drugs with multi-target interactions such as neuropsychiatric treatments. It is 

possible that these ‘off target’ effects may eventually be recognized as key components of 

therapeutic efficacy or alternatively toxicity. This is poignantly illustrated by the recent publication 

of the crystal structure of the TREK-2 potassium channel in complex with the active metabolite of 

fluoxetine (norfluoxetine)327. This inhibitory interaction is now recognized as a potentially important 

contribution to both the antidepressant efficacy and the cardiovascular side effects of this drug, 

traditionally known as a an inhibitor of the serotonin reuptake transporter (SERT)327–329. Finally the 

ability to resolve these off-target effects discretely at different sites in the cell signalling network 

raises the possibility of exploiting synergistic interactions between highly specific ligands such CHIR 

99021 (GSK-3β inhibitor) and rapamycin (mTORC1 inhibitor) to provide personalized combinatorial 

therapeutic options for neuropsychiatric disorders94,108. This is increasingly recognized as an 

important therapeutic strategy for overcoming treatment resistance due to molecular 

heterogeneity in cancer. Treatment resistance in heterogeneous neuropsychiatric disorders might 

likewise benefit from this novel strategy as opposed to standard monoaminergic augmentation 

approaches.  

6.3 LIMITATIONS AND FUTURE WORK 

6.3.1 CLINICAL SAMPLES 

Due to the challenges of obtaining well characterized viable PBMCs from neuropsychiatric patients 

the low sample numbers in this study are a major limitation. Tens of thousands of samples are 

necessary to resolve risk polymorphisms in major schizophrenia treatment targets such as DRD223. 

Moreover more prevalent disorders such as major depression are likely to require even larger 

sample cohorts30,34. Comparison to these figures would suggest that the present study is 

underpowered by several orders of magnitude and that future studies would benefit from 
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substantially increased sample numbers. In this respect many of the conclusions are best 

interpreted as speculative models which await further confirmation in larger sample sets. 

Nevertheless the fact that the most significant schizophrenia associated cellular response (TG-PLC-

γ1) was normalized by precisely that same drug class (L-type calcium channel blockers) as indicated 

by GWAS analysis of schizophrenia risk loci (CACNA1C and CACNB2) in much larger sample cohorts, 

raises the possibility that functional cytomics is able to summarize genetic risk data and 

consequently has a lower power requirement. Moreover the data described here is interactive by 

definition in the sense that it is correlated to active symptomatology, prioritized by reversal over 

the course of clinical treatment and contrasted across various ligand and epitope classes. Thus it is 

conceivable that is has different power requirements relative to GWAS data which is mostly 

confined to additive influences on variance at present24. Nevertheless this can only be confirmed 

by parallel application of the two technologies in the same samples.  

While the schizophrenia samples used were all from drug-naive first-onset patients, the sample 

donors from the other major neuropsychiatric cohorts in the DD study had varying histories of acute 

or chronic neuropsychiatric pharmacological intervention (particularly the BD and MDD cohorts). 

While it is very difficult to obtain drug-naive samples, alternative study designs, using PBMCs 

collected from high risk individuals (e.g. family history of neuropsychiatric disease) prior to disease 

manifestation or patient groups where the disease often remains undiagnosed (e.g. chronic 

caregivers with depression), might serve to address these limitations in future work. While the use 

of samples from prodromal individuals who subsequently convert to a major neuropsychiatric 

diagnosis has yielded fascinating recent results 54, it might be highly informative also to include 

prodromal patients which do not subsequently manifest disease. This would allow the identification 

not only of risk factors but also disease resilience factors. 

A final limitation in the clinical design is that, having emphasized the prevalence of diagnostic 

uncertainty and the limitations of rigid DSM-V and ICD-10  diagnostic categories, these are precisely 

the diagnostic tools which have been used to classify the current patient cohorts45,48. In addition 

schizophrenia has largely been referred to in the present work as a single disorder. In fact, it is now 

recognized a heterogeneous clinical syndrome in which a different constellations of symptoms can 

arise from distinct molecular aetiologies. Unfortunately the treatment of schizophrenia as a single 

defined disease in the present work is unavoidable given the existing diagnostic framework. 

However validation of the current methodology and other biomarker discovery efforts using these 

categories need not be considered as a static paradigm. Future studies would benefit from the 

redefinition of these diagnostic tools as emergent biomarker strategies become available. Thus 

iterative cycles of reciprocal redefinition between clinical and biological measures of disease could 
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potentially optimize the diagnostic efficiency of neuropsychiatric illness which in turn would 

facilitate novel drug discovery efforts. Likewise the application of this technology to larger sample 

cohorts is essential to determine which cellular responses are associated to specific subgroups of 

patients. For example the attenuated response to thapsigargin at PLC-γ1 might only be a feature of 

a subgroup of patients. This would explain its biased sensitivity to atypical vs. typical antipsychotic 

drugs known to be differentially efficacious in certain patient subgroups. Finally, future drug target 

discovery efforts, such as those described in the present work, would benefit from including other 

major diseases aside from neuropsychiatric disorders in the experimental design. This could serve 

to define the molecular features which overlap between major human diseases (e.g. 17% pleiotropy 

of genetic risk loci across disease domains) and also those that segregate (e.g. inverse correlation 

between schizophrenia and rheumatoid arthritis) to define a more relevant and integrated 

therapeutic landscape39,330. 

6.3.2 FURTHER CHARACTERIZATION OF CELL SIGNALLING NETWORKS 

In the current work we have proposed a heuristic model for phenotypic screening of the most 

‘druggable’ part of the genome. While this has the potential to expedite the identification of 

therapeutic compounds, the underlying disease mechanisms remain unknown. The disease-

associated phenotypes discovered by the current methodology (e.g. attenuated TG-PLC-γ1 

response in schizophrenia) require subsequent mechanistic dissection using parallel technologies. 

For example small interference RNA (siRNA) screens could be used to selectively knock down each 

of the known signal transduction proteins individually to understand which of these are involved in 

the TG-PLC-γ1 response. In this respect recently identified sequestration regulators of PLC-γ1, 

including Sprouty and Cish proteins, warrant further exploration331,332. Alternatively clustered 

regularly-interspaced short palindromic repeat (CRISPR) genome editing of each phosphorylation 

residue in the signalling network to an inactive amino acid (e.g. serine to alanine mutation) could 

further resolve these regulatory interactions to the level of individual cell signalling epitopes. This 

could also be addressed by counter-screening using libraries of specific phosphorylation inhibitors. 

The influence of L- type calcium channel blockers on the TG-PLC-γ1 response in the FDA screen 

supports this approach although the residual effects of promiscuous inhibitor profiles and 

incomplete compound annotation cannot be excluded using pharmacological dissection relative to 

genome editing or siRNA108. A powerful complementary strategy is to use fluorescence activated 

cell sorting (FACS) to sort cells from the same patient and same cell subtype which differentially 

express the putative pathological response. This allows characterization of the response using 
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genomic or proteomic means whereby the molecular variation between sample donors and cell 

lineages is controlled for. In other words cells which are identical aside from their target response 

profile are used as an internal control for characterizing single-cell signalling abnormalities. 

Validation of the specificity of the antibodies used to detect the changes in cell signalling epitope 

expression is also an essential subsequent step to this work. Despite the fact that the majority of 

antibodies used are monoclonal and raised in response to a single recombinant human antigen, it 

is nevertheless possible that they show varying degrees of cross reactivity. For example the anti-

Akt (pS473) antibody, exemplified in both the TC and AI phases of the project, was raised against 

phosphorylated Akt1 (pS473) peptide. Nevertheless, it cross-reacts with all Akt isoforms (Akt1-3). 

While members of the Akt kinase family are thought to have largely redundant functions, important 

variations in the tissue distribution, stimulus specificity, substrate recruitment and subcellular 

localization of these isoforms have been demonstrated in isoform specific Akt knockout animal 

models333. The question of specificity is particularly poignant with respect to the PLC-γ1 and PLC-γ2 

isotypes which share 99.9% sequence homology (UniProt P19174 vs. P16885). As the principal 

distinction between the two is their relative expression in different tissue types, the specificity of 

detection within the ex vivo assay has critical implications for extrapolation of the cell signalling 

mechanisms between PBMCs and neurons. In this case the manufacturer explicitly declared no 

cross-reactivity between PLC-γ1 and PLC-γ2 isotypes. 

However in the case of many of the antibodies used, the only evidence presented by the 

manufacturer is either response to broad spectrum positive controls (e.g. calyculin, 

PMA/ionomycin, pervanadate, staurosporine) or specific pathway activators/inhibitors (e.g. PDGF-

BB, IL-6, IGF-1, LY294002). While these ligands are useful to confirm antibody sensitivity in detection 

of a given functional response, they do not unequivocally confirm specificity as they can also affect 

the expression of multiple proteins up- or downstream. Moreover the cell type used for validation 

is often not of the same lineage as the target cell, thus the scope for cross-reactivity is not 

adequately modelled. This would be optimally addressed using a combination of the most specific 

ligand available and siRNA/ CRISPR knockdown of the isoform specific cell signalling epitope in the 

same cell lineage as used in the analysis334. The inclusion of the respective antibody isotype control 

would also be useful to quantify background fluorescence and confirm whether the knockdown 

simply reduces or completely ablates the observed staining profile. In addition, in the case of 

phosphorylation epitopes, parallel staining with a polyclonal antibody or one targeting a different 

epitope on the same protein, could be used to confirm that the knockdown is site specific. 

Validation using other methods, for example western blotting, ELISA or immunohistochemistry, 
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could also provide complimentary indications of abundance, molecular weight and cellular 

localization with which to interpret antibody specificity.   

A final consideration is whether the antibodies which target different sites on the same protein 

interfere with each other. This is largely controlled by the fact that the cells are paraformaldehyde 

fixed before staining, negating the possibility of conformational changes induced by antibody 

binding, and that the antibodies are used separately in small plexes of three. Nevertheless 

validation of the top screening hits with individual antibody stains would serve to exclude any 

residual interference. In conclusion, the relative specificity profiles of the ligand responses observed 

in the present study do not support an excessive promiscuity in the epitope recognition of the 

antibody array. However it is best to interpret the utility of the platform as an initial screening 

device which refines the scope of cell signalling alterations for subsequent validation of target 

phenotype specificity. 

The current study would also benefit from spatial resolution of changes in cell signalling protein 

distribution using super-resolution microscopy approaches122. This would help to resolve for 

example whether the observed decreases in epitope expression represent degradation or 

sequestration. Combination of this approach with technologies such as fluorescence resonance 

energy transfer (FRET) has the potential to resolve which proteins are interacting with putative 

disease targets in a live cell context. Concurrently more precise kinetic resolution of the responses 

within the spatio-temporal domain would help to define properties such as localized receptor-

signalling waves, the dynamics of which are increasingly recognized as important determinants of 

the ultimate cellular response242,335. In this respect the 1-30 min time window for cell signalling 

responses chosen in the present study could be extended to several hours or days with more 

intermediate time points to accurately define cell signalling peaks and multiphasic responses139.   

While the nature of the targets identified suggest that lymphocyte subsets can potentially provide 

relevant surrogate models for mechanisms of CNS drug efficacy this would need to be confirmed in 

future studies using brain cell lineages. In this respect induced pluripotent stem cells (iPSCs) derived 

from patient and control donors can be reprogrammed to provide different brain cells lineages 

including subtypes of neurons, oligodendrocytes, microglia and astrocytes. Two studies have 

demonstrated the utility of this methodology to explore therapeutic drug response profiles using 

iPSC-derived neurons from schizophrenia and bipolar patients relative to controls in addition to 

multiple studies in monogenic disorders336–339. While this methodology is limited by difficulties in 

the selection of the iPSC colonies, monitoring the karyotypic stability across passages and the 

specificity of end fate differentiation as evidenced by small sample sizes in existing publications, it 

remains one of the only available technologies to explore the effects of novel drugs in neuronal 
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tissue with the genomic background of neuropsychiatric patients336–339.  The recent application of 

this technology to neuropsychiatric samples with penetrant genetic mutations (e.g. CNVs) is 

noteworthy in terms of deriving accentuated cellular phenotypes for drug discovery340. Cells which 

share many of the characteristics of brain cell lineages can also be derived directly from primary 

neuropsychiatric patient tissue without the need for reprogramming. Examples include neuronal-

like cells induced from fibroblasts or microglial-like cells induced form peripheral monocytes27,341. It 

is also possible that expansion of the current assay design to other subtypes of blood cells could 

extend the catchment area for identifying surrogate models of altered CNS signalling (e.g. insulin 

signalling specific to monocytes). Likewise deeper immunophenotyping of PBMC subsets, for 

example further dissection of T cells into helper, cytotoxic, memory, regulatory, natural killer and 

γδ T cell subsets, could help answer the pending question of whether the altered responses in 

patient cells derive from differential cell signalling activities intrinsic to each cell or from different 

relative proportions of cell subtypes within the target lineage. Correlation between disease-

associated cellular responses and regional brain activity patterns using fMRI in patients and controls 

might also be valuable in terms of defining which cellular responses relate to altered brain 

connectivity10. 

Finally it is vital to emphasise that correlated epitope responses in the current work do not 

necessarily imply causal relationships in the cell signalling network342. Responses at cell signalling 

epitopes were measured individually or in small multiplexes of three, in succession. Thus all 

epitopes are not measured in the same cell. Technologies such as mass cytometry which are not 

constrained by spectral overlap and can simultaneously measure over 50 cell signalling epitopes in 

parallel provide an excellent opportunity to address this limitation and capitalize on the statistical 

power of epitope correlations across thousands of single-cells in primary samples135,136,343. To date 

this technology has mainly been applied to acquire depth in terms of lineage or pharmacological 

intervention due to the relative paucity of cell signalling antibodies conjugated to heavy metal 

isotopes135,136,343. However as the catalogue of available antibodies is extended, this technology in 

conjunction with bioinformatics platforms developed to interpret the resulting high content data 

(e.g. SPADE and viSNE), provides an unprecedented opportunity for the definition of cell signalling 

network abnormalities in neuropsychiatric disorders136,344–346. 
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6.3.3 COMPOUND LIBRARIES 

Expansion of the current technology using larger compound libraries for target identification and 

therapeutic drug discovery will provide a significant contribution to the utility of the platform. For 

example in the present study we have used 14 commonly prescribed neuropsychiatric medications 

which are representative of the major therapeutic drug classes. However repetition of the same 

protocol with all the available neuropsychiatric ligands (approximately 100) would allow increased 

resolution of the structure-activity relationship between these compounds across all cell signalling 

epitopes. This can further be summarized in high dimensional space as functional lineages of 

compound efficacy similar to classification of kinase inhibitors in other studies135. In the current 

study the majority of compounds were assayed individually. Recent data suggests that 

combinatorial drug screening can permit the identification of novel therapeutic strategies which 

exploit synergistic interactions between compounds, for example targeting specific neuronal 

subpopulations using GPCR heterodimers and oligomers (e.g. formed of NMDA and CB1 receptors). 

Compound libraries which could be useful for these combinatorial approaches in neuropsychiatry 

include the Torrey Pines, Sequoia, Spectrum, Prestwick and NIH Brain Bioactive Chemical libraries. 

Likewise the majority of compounds were screened at a single dose in both the drug target and 

drug candidate identification stages of this project. While this represents an attempt to capture  as 

many biologically relevant interactions as possible within the established experimental dimensions, 

subsequent iterations of both phases using multiple doses of each compound would serve to 

address the delicate balance between compound efficacy and toxicity. 

A final consideration is that despite the premise of identifying neuropsychiatric drug candidates 

with novel mechanisms of action, we have based our drug target identification on the clinical 

response to an established monoaminergic drug (olanzapine). The effect of this on the resulting 

drug candidates is evident as olanzapine, together with other atypical antipsychotic drugs, 

represented a significant proportion of the final drug selection. While this serves to validate the 

platform’s utility and provides a useful benchmark for the cellular performance of the novel drugs 

from other drug classes (calcium channel blockers, corticosteroids and the potassium channel 

blocker), it also suggests that the derivation of drug candidates with radically different mechanisms 

of action will need to be conducted in iterative cycles, similarly to the redefinition of diagnostic 

categories described earlier. Nevertheless the identification of compounds which achieve similar 

cellular effects through different pathways (e.g. methylprednisolone) is a useful therapeutic option 

for treatment resistance. Finally prioritization of the candidates in the present work is conducted 

solely on the basis of cellular response as a proof of principle. The application of these compounds 

to the clinic will require the consideration of their relative pharmacokinetic, biodistribution, toxicity 
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and side-effect profiles. For example nimodipine is the most likely of the L-type calcium channel 

blockers identified to achieve therapeutically relevant concentrations in the brain whilst minimizing 

the cardiovascular side-effects312,347,348. Recent improvements in brain targeted formulations and 

drug delivery systems are likely to further contribute to the ultimate utility of these compounds349–

351.
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GLOSSARY AND ABBREVIATIONS 

GLOSSARY AND ABBREVIATIONS 

TERM ABBREVIATIO
N 

DEFINITION 

1,4-
dihydropyridine 

1-4 DHP Subclass of L-type voltage-gated calcium channel blockers 
characterized by 1,4-dihydropyridine ring with ester 
substitutions at the 3,5 positions and a substituted benzene 
ring at the 4 position.    

alexa fluor 488 AF 488 Fluorochrome with peak excitation and peak emission 
wavelengths of 495 nm and 519 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

alexa fluor 647 AF 647 Fluorochrome with peak excitation and peak emission 
wavelengths of 650 nm and 668 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

allophycocyanin APC Fluorochrome with peak excitation and peak emission 
wavelengths of 650 nm and 660 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

antidepressant Drug class used to alleviate the symptoms of low mood 
associated with major depressive disorder. 

antipsychotic Drug class used to alleviate the symptoms of psychosis 
associated with schizophrenia. 

antipsychotic 
intervention study 

AI Substudy within the current project in which signalling 
profiles are compared between peripheral blood 
mononuclear cells from healthy control donors and 
antipsychotic drug-naive schizophrenia patients before and 
after six weeks of clinical treatment with the antipsychotic 
medication olanzapine.      

autism spectrum 
disorder 

ASD Neuropsychiatric disorder characterized by deficits in social 
communication and social interaction and repetitive or 
restrictive patterns of behaviour/ interests. 

B cell Subtype of white blood cell within the lymphocyte class 
involved in adaptive immune responses including antibody 
and cytokine secretion and antigen presentation.  

B cell receptor BCR Transmembrane receptor protein located on the outer 
surface of B cells responsible for antigen recognition. 
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basal epitope Expression level of a cell signalling epitope in the resting 
unstimulated state. For clinical comparisons, significantly 
altered basal epitopes were defined as those for which over 
30% of nodes displayed a statistical association between 
clinical group status and epitope expression, which was 
independent of the ligand activity. 

bipolar disorder BD Neuropsychiatric disorder, also known as manic-depressive 
illness, characterized by unusual shifts in mood (including 
alternating periods of elation and depression), energy, 
activity levels, and the ability to carry out day-to-day tasks. 

cell barcoding dye 
450 

CBD 450 Fluorochrome excited by 405 nm wavelength laser with peak 
emission wavelength of 450 nm, used at different 
concentrations to covalently label cellular amine groups for 
multiplexing and detection of different cell populations with 
fluorescence-based technologies. 

cell barcoding dye 
500 

CBD 500 Fluorochrome excited by 405 nm wavelength laser with peak 
emission wavelength of 500 nm, used at different 
concentrations to covalently label cellular amine groups for 
multiplexing and detection of different cell populations with 
fluorescence-based technologies. 

cluster of 
differentiation 

CD Cell surface molecule providing antigen target for 
immunophenotyping and lineage distinction of different cell 
types. 

cluster of 
differentiation 4 

CD4 Cell surface molecule providing antigen target for 
immunophenotyping of T helper lymphocytes. 

copy number 
variation 

CNV Variability between individual organisms of the same species 
in the number of repeats of a given DNA sequence at a 
specific genomic locus.  

Diagnostic and 
Statistical Manual 
of Mental 
Disorders-IV- Text 
Review  

DSM-IV-TR Diagnostic manual, produced by the American Psychiatric 
Association, which provides standard criteria and 
terminology for the classification of mental disorders. DSM-
IV was originally published in 1994 and updated subsequently 
to DSM-IV-TR (2000) and DSM-V (2013).  

differential 
diagnosis study 

DD Substudy within the current project in which signalling 
profiles of peripheral blood mononuclear cells are compared 
across donors from five different clinical groups: healthy 
controls, schizophrenia, bipolar disorder, major depressive 
disorder and autism spectrum disorder. 

dopamine D2 
receptor 

DRD2 Subtype of dopamine receptor expressed in the brain and 
peripheral tissue which is thought to be the principal target 
of existing antipsychotic medications. 

dylight 800 DL800 Fluorochrome with peak excitation and peak emission 
wavelengths of 770 nm and 794 nm respectively, used at 
different concentrations to covalently label cellular sulfhydryl 
groups for multiplexing and detection of different cell 
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populations with fluorescence-based technologies. 

endoplasmic 
reticulum 

ER Eukaryotic cellular organelle comprised of a network of 
membrane-enclosed sacs or tube-like structures, known as 
cisternae, which are continuous with the outer nuclear 
membrane. 

epitope Site on an antigen molecule to which an antibody binds. 

ex vivo Removed from a living organism to a viable external 
environment. Usually refers to viable primary tissue removed 
from a live organism for functional testing. 

expression 
quantitative trait 
locus  

eQTL Region of the genome containing DNA sequence variants 
which influence the expression level of one or more genes. 

flow cytometry Multiparametric bioanalytical methodology in which laminar 
flow is used to direct single cells in suspension through the 
narrow focus point of one of more laser beams. The 
combination of wavelength-specific optical filters and 
photomultiplier tube sensors then detect either scattering of 
the laser light (due to cell morphology) or the emission of 
specific fluorescence wavelengths (due to the fluorescent 
labelling of molecular targets within the cell). 

fluorescein 
isothiocyanate 

FITC Fluorochrome with peak excitation and peak emission 
wavelengths of 494 nm and 520 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

fluorescent cell 
barcoding 

FCB Staining of separate cell populations, each with a unique 
combination of fluorescent dyes at different concentrations, 
to allow multiplexing of the cell populations for simultaneous 
antibody staining . 

forward scatter- 
area 

FSC-A Laser light which is diffracted as it passes through the cell and 
propagates at an angle which is circa  0o to the direction of 
propagation of the incident wave. This is calculated as the 
area under the signal pulse curve. 

functional 
allosteric 
modulator 

Ligand which enhances or attenuates the activity of another 
ligand at its target, via an alternative mechanism, and is 
inactive at that target by itself. 

functional 
endophenotype 

Active biological phenotype which represents a point of 
mechanistic convergence between the potentially disparate 
and complex molecular pathways from which it arises. 

functional 
magnetic 
resonance imaging 

fMRI Magnetic resonance imaging that provides three-
dimensional images of the brain showing areas of increased 
blood flow that correlate with specific brain functions. 

genetic risk locus Genomic region in which specific sequence variants are 
associated with an increased risk of disease. Also known as 
genetic susceptibility locus. 
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genome wide 
association study 

GWAS Study which examines the association between a set of 
genetic variants, distributed across the genome (usually 
single-nucleotide polymorphisms), and the manifestation of 
different behavioural or biological traits across individuals in 
a population.  

glycogen synthase 
kinase 3-β 

GSK-3β Enzyme, encoded by the GSK3B gene, which is involved in 
energy metabolism, body pattern formation and neuronal 
cell development.  

G-protein coupled
receptor

GPCR Superfamily of seven-transmembrane domain protein 
receptors which transduce intracellular signals, following 
ligand binding to the receptor, via the exchange of guanosine 
diphosphate to guanosine triphosphate on an adjoining G-
protein. 

half maximal 
effective 
concentration 

EC50 Concentration of a ligand which induces a half-maximal 
response relative to the baseline at a given incubation time, 
commonly interpreted as a measure of drug potency. 

high content 
screening 

Methodology, used in biological research and drug discovery, 
which involves quantitative and simultaneous analysis of 
multiple cellular parameters, often in response to treatment 
with bioactive ligands. 

induced 
pluripotent stem 
cell 

iPSC Type of pluripotent stem cell which can be generated from 
the  reprogramming of adult cells. 

interleukin-1 
receptor 

IL1R Receptor which binds the proinflammatory cytokine 
interleukin-1. 

International 
Classification of 
Diseases 

ICD-10 Internationally recognized manual which describes standard 
criteria for the diagnostic classification of human diseases. 
First published in 1992 with updates in 2010, 2014, 2015 and 
2016 relevant to this study. 

Janus kinase JAK Family of intracellular, non-receptor tyrosine kinases which 
transduce signals from cytokine receptors and activate 
downstream signal transducer and activator of transcription 
proteins. 

kinase Enzyme which catalyzes the transfer of phosphate groups 
from phosphate-donating molecules to specific substrates. 

ligand In pharmacology, an ion or molecule which binds to a 
receptor. 

ligand response Change in the expression of a given epitope, relative to the 
vehicle treatment, following incubation of the cells with a 
ligand. Expressed as a fold change ratio: median MFI of the 
ligand treatment/ median MFI of the vehicle treatment 
across PBMC samples. Response ratios which are <1 (i.e. 
where the stimulant causes a decrease in MFI with respect to 
the vehicle) are reported as a negative fold changes (-1/ 
response ratio). 
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major depressive 
disorder 

MDD Neuropsychiatric disorder characterized by at least two 
weeks of low mood, that is present across most situations, 
and impaires energy and activity levels and the ability to carry 
out day-to-day tasks. 

mammalian target 
of rapamycin 
complex 1 

Cell signalling protein complex which regulates protein 
synthesis in response to a range of stimuli. Also known as 
mechanistic target of rapamycin complex 1. 

median 
fluorescence 
intensity 

MFI Median value for the area under the fluorescence pulse curve 
detected at a given wavelength interval across a population 
of single cells. 

mitogen-activated 
protein kinase 

MAPK Protein kinase which catalyzes the phosphorylation of serine, 
threonine and tyrosine residues on downstream proteins in 
response to mitogens and other cell signalling molecules. 

mood stabilizer Drug treatment class used to regulate the abnormal shifts in 
mood occurring in individuals affected by bipolar disorder. 

node Unique combination of a specific cellular treatment (ligand or 
vehicle) and the cell signalling epitope used to measure its 
effect. 

olanzapine Atypical antipsychotic drug used to treat schizophrenia and 
bipolar disorder. 

peridinin 
chlorophyll 

PerCP Fluorochrome with peak excitation and peak emission 
wavelengths of 482 nm and 678 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

peridinin 
chlorophyll-eFluor 
710 

PerCP-eF710 Tandem fluorochrome with peak excitation and peak 
emission wavelengths of 480 nm and 710 nm respectively, 
used to labelled antibodies for detection with fluorescence-
based technologies. 

peripheral blood 
mononuclear cell 

PBMC Peripheral blood cell with a round nucleus, including 
lymphocytes (T cells, B cells, NK cells) and monocytes. 

phosphatase Enzyme which catalyzes the removal of a phosphate group 
from its substrate by the hydrolysis of a phosphoric acid 
monoester into a molecule with a free hydroxyl group and a 
phosphate ion. 

phospho-flow 
cytometry 

Flow cytometry targeted towards the detection of 
phosphorylated epitopes on cell signalling proteins. 

phospholipase C-γ PLC-γ Enzyme class which catalyzes the formation of diacylglycerol 
and inositol 1,4,5-trisphosphate from phosphatidylinositol 
4,5-bisphosphate. Exists as two isoforms, PLC-γ1 and PLC-γ2, 
which share 99.9% sequence homology (UniProt P19174 vs. 
P16885) and similar biological activity. PLC-γ1 is expressed in 
all tissue types while PLC-γ2 is predominantly expressed in 
the lymphoid system. 
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phycoerythrin PE Fluorochrome with peak excitation and peak emission 
wavelengths of 496 nm and 578 nm respectively, used to 
labelled antibodies for detection with fluorescence-based 
technologies. 

phycoerythrin-
cyanine 7 

PE-Cy7 Tandem fluorochrome with peak excitation and peak 
emission wavelengths of 496 nm and 785 nm respectively, 
used to labelled antibodies for detection with fluorescence-
based technologies. 

Positive and 
Negative 
Syndrome Scale 

PANSS Medical rating scale used to measure the symptom severity 
of patients with schizophrenia. Scores from positive, negative 
and general psychopathology subscales are added together 
to provide the total PANSS score. 

positron emission 
tomography 

PET Functional in vivo imaging technique which detects pairs of 
gamma rays emitted indirectly by a positron-emitting 
radioisotope tracer coupled to a biologically active molecule. 

protein kinase A PKA Family of protein kinases functionally dependent on the 
cellular concentration of cyclic AMP. 

protein kinase B AKT Serine/threonine-specific protein kinase involved in multiple 
cellular processes including glucose metabolism, cell 
proliferation, transcription, apoptosis and cell migration. 

protein kinase C PKC Family of protein kinases which respond to elevated cellular 
concentrations of calcium and diacylglycerol. 

receptor tyrosine 
kinase 

RTK Transmembrane enzyme receptor for cytokines, hormones 
and growth factors which undergoes auto-phosphorylation 
of tyrosine residues following ligand binding. 

repurposing Identification of novel therapeutic indications for drugs 
which are already approved by regulatory agencies for the 
treatment of other diseases/disorders. 

response node Unique combination of an active ligand and the cell signalling 
epitope used to measure its effect. For clinical comparisons, 
significantly altered response nodes were defined as ligand-
epitope combinations in which there was a statistical 
interaction between clinical group status and the response to 
the ligand. 

reversal node Cell signalling node in which the direction of alteration in the 
disease state, relative to healthy controls, is reversed 
following clinical treatment in vivo.  

risk profile score RPS Measure of disease liability computed from the combined 
odds ratios of multiple genetic risk loci. 

schizophrenia SCZ Neuropsychiatric disorder characterized by psychotic 
symptoms (such as hallucinations, delusions and 
disorganized thoughts), negative symptoms (such as reduced 
emotional expression, anhedonia and decreased motivation) 
and cognitive symptoms (such as poor executive functioning, 
reduced attention span and problems with working 
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memory). 

schizophrenia 
time point zero 
weeks 

SCZ T0 Refers to clinical group within the antipsychotic intervention 
substudy, comprised of antipsychotic drug-naive 
schizophrenia patients before initiating the clinical course of 
treatment with antipsychotic medication olanzpaine (i.e. 
zero weeks of olanzapine treatment).  

schizophrenia 
time point six 
weeks 

SCZ T6 Refers to clinical group within the antipsychotic intervention 
substudy, comprised of schizophrenia patients after six 
weeks of clinical treatment with the antipsychotic medication 
olanzapine (i.e. six weeks of olanzapine treatment). 

selective 
potentiation 

Enhancement of the activity of a primary ligand at its target, 
by another ligand which alone is not active at that target for 
a given concentration. 

side scatter-area SSC-A Laser light which is diffracted as it passes through the cell and 
propagates at an angle that is circa 90o to the direction of 
propagation of the incident wave. This is calculated as the 
area under the signal pulse curve. 

signal transducer 
and activator of 
transcription 

STAT Protein family of transcription factors which are activated by 
Janus kinases in response to cytokine or growth factor 
receptor activation. 

stain index Median MFI of the antibody stained sample/ median MFI of 
the corresponding unstained control, in the vehicle 
condition, across PBMC samples. 

T cell Subtype of white blood cell within the lymphocyte class 
involved in adaptive immune responses including cytokine 
secretion, antigen presentation and destruction of virus-
infected or cancerous cells. 

T cell receptor TCR Transmembrane receptor protein located on the outer 
surface of T cells responsible for antigen recognition. 

thapsigargin TG Sesquiterpene lactone compound which is extracted from 
the Thapsia garganica plant. It is a non-competitive inhibitor 
of the sarco/endoplasmic reticulum calcium ion ATPase and 
causes an increase in the concetration of intracellular calcium 
ions. 

time course study TC Substudy within the current project in which responses to 
different ligands at a range of cell signalling epitopes are 
compared across different ligand incubation times. 

toll-like receptor TLR Transmembrane non-catalytic receptors, expressed primarily 
on innate immune cells such as monocytes, macrophages and 
dendritic cells, which recognize structurally conserved 
molecules derived from microbes. 

United States 
Food and Drug 
Administration 

FDA Federal executive agency of the United States Department of 
Health and Human Services responsible for the safety 
regulation of products for human or animal consumption 
including food, dietary supplements, pharmaceutical drugs, 
blood transfusions, vaccines, medical devices and cosmetics. 
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voltage-gated 
calcium channel 

CaV Membrane calcium channel found primarily in excitable cells 
which is closed at resting membrane potential and opens in 
response to membrane depolarization allowing the influx of 
calcium ions into the cells. Subtypes include long-lasting (L), 
Purkinje (P/Q), neural (N), residual (R) and transient (T) type 
channels. 

voltage-gated 
calcium channel 
auxiliary subunit 
β2 gene 

CACNB2 Gene coding for the  auxiliary subunit β2 of L, P/Q, N and R-
type voltage-gated calcium channels. 

voltage-gated 
calcium channel 
subunit α 1C gene 

CACNA1C Gene coding for the pore-forming α 1C subunit of the L-type 
voltage-gated calcium channel. The α 1C subunit is the 
binding site for dihydropyridine calcium channel blockers. 

voltage-gated 
calcium channel 
subunit α 1I gene 

CACNA1I Gene coding for the pore-forming α 1I subunit of the T-type 
voltage-gated calcium channel.  
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