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Abstract

Combinatorialists often consider a balanced incomplete-block
design to consist of a set of points, a set of blocks, and an inci-
dence relation between them which satisfies certain conditions. To
a statistician, such a design is a set of experimental units with two
partitions, one into blocks and the other into treatments; it is the
relation between these two partitions which gives the design its prop-
erties. The most common binary relations between partitions that
occur in statistics are refinement, orthogonality and balance. When
there are more than two partitions, the binary relations may not
suffice to give all the properties of the system. I shall survey work
in this area, including designs such as double Youden rectangles.

1 Introduction

Many combinatorialists think of a balanced incomplete-block design
(BIBD) as a set P of points together with a collection B of subsets of
P, called blocks, which satisfy various conditions. For example, see [52].
Some papers, such as [16, 65, 199], call a BIBD simply a design. Others
think of it as the pair of sets P and B with a binary incidence relation
between their elements. These views are both rather different from that
of a statistician who is involved in designing experiments. The following
examples introduce the statistical point of view, as well as serving as a
basis for the combinatorial ideas in this paper.

Example 1.1 A horticultural enthusiast wants to compare three varieties
of lettuce for people to grow in their own gardens. He enlists twelve peo-
ple in his neighbourhood. Each of these prepares three patches in their
vegetable garden, and grows one of the lettuce varieties on each patch, so
that each gardener grows all three varieties.

Here the patches of land are experimental units. There may be some
differences between the gardeners, so the three patches in a single garden
form what is called a block . Each variety occurs just once in each block,
and so the blocks are said to be complete. Complete-block designs were
advocated by Fisher in [78], and are frequently used in practice.

Example 1.2 Now suppose that the number of lettuce varieties is in-
creased to nine. It is not reasonable to expect an amateur gardener to
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Figure 1: Balanced incomplete-block design in Example 1.2: columns rep-
resent blocks and letters represent varieties

grow nine different varieties, so each gardener still uses only three patches
of ground, and thus can grow only three varieties. The blocks are now
incomplete, in the terminology of Yates [225].

One possible layout is shown in Figure 1. This incomplete-block design
has the property that each pair of distinct varieties concur in the same
number of blocks (here, exactly one). Yates originally called incomplete-
block designs with this property symmetrical , but the adjective had been
changed to balanced within a few years [46, 80].

To a statistician, the partition of the set of experimental units into
blocks is inherent and is known before the decision is taken about which
variety to allocate to each unit. This allocation gives another partition
of the set of experimental units, and it is the relation between these two
partitions that is regarded as balance. It is not a symmetric relation,
in general. In Example 1.2 the varieties are balanced with respect to
the blocks, but the blocks are not balanced with respect to the varieties
because some pairs of blocks have one variety in common while others have
none. This relation is discussed in more detail in Section 5.

In fact, statisticians usually call these partitions factors, because the
names of the parts are relevant. In Example 1.2 the names of the varieties
are not interchangeable; we probably want to find out which one does
best. Thus a factor is typically regarded as a function from the set of
experimental units to a finite set: if B and L denote the factors for blocks
and lettuce varieties respectively and ω is a vegetable patch then B(ω)
is the block (garden) containing ω and L(ω) is the variety grown on ω.
Furthermore, |B(ω)| is the size of the block containing ω, while |L(ω)| is
the number of patches with the same variety as that grown on ω.

A response Yω, such as total yield of edible lettuce in kilograms, is
measured on each patch ω. It is usually assumed that Yω is a random
variable and that there are constants τi and βj such that

Yω = τL(ω) + βB(ω) + εω, (1.1)

where the final terms εω are independent random variables with zero mean
and the same variance σ2; often they are assumed to be normally dis-
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Figure 2: Resolved balanced incomplete-block design in Example 1.3:
columns represent blocks, rectangles represent districts and letters rep-
resent varieties

tributed. The purpose of the experiment is to estimate the constants τi.
Of course, this is impossible, because equation (1.1) is unchanged if a con-
stant is added to every τi and subtracted from every βj , but we aim to
estimate differences such as τ1 − τ2, that is, to estimate the τi up to an
additive constant.

Thus the two partitions have different roles. One (the partition B) is
inherent, and we are usually not interested in the effects βj of the different
parts. The other (the partition L) has its parts allocated by the experi-
menter, and the purpose of the experiment is to find out what differences
there are between its parts. Nonetheless, this paper will concentrate on
the combinatorial relation between them. Before doing so, we give some
examples with three partitions.

Example 1.3 Suppose that the twelve gardeners in Example 1.2 do not
all live in the same neighbourhood. Instead, they are spread over four dif-
ferent districts, with three per district. If the first three blocks in Figure 1
represent the gardens in the first district, and so on, then each variety is
grown once in each district, as shown in Figure 2. This is convenient if
other people want to look at the different varieties during the course of
the experiment.

Each block is contained within a single district, so the partition into
blocks is a refinement of the partition into districts. Section 3 discusses
refinement in more detail. On the other hand, the partitions into districts
and into varieties have the property that each part of one (a district) meets
each part of the other (a variety) in a single experimental unit. This is a
special case of strict orthogonality , which is explained in Section 4.

The assumption about Yω might remain as in (1.1) or it might be

Yω = τL(ω) + βB(ω) + γD(ω) + εω, (1.2)

where D(ω) is the district containing ω. Of course, if the βj and γk are
all constants then they are not estimable, because we can add a constant
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Figure 3: Row–column design in Example 1.4: rows represent months,
columns represent people and letters represent exercise regimes

to γ1 and subtract it from βj for all blocks j in district 1. However, it
is sometimes assumed that the βj are independent random variables with
zero mean and the same variance σ2

B . Section 6.2 discusses further the
potential difficulty in an assumption like (1.2) when one partition is a
refinement of another.

An incomplete-block design whose blocks can be grouped into collec-
tions each of which contains each variety just once, as in Example 1.3, is
called resolvable. Section 15 gives more information about such designs.

Example 1.4 In order to assess the benefits of different exercise regimes,
a health scientist asks seven healthy people to participate in an experiment
over four months. Each month each person will be allocated one of seven
exercise regimes. At the end of each month, the change in some measure
of fitness, such as heart rate, will be recorded for each person.

Now each experimental unit is one person for one month. The parti-
tions into months and into people are inherent, but the scientist chooses
the partition into exercise regimes. Figure 3 shows one possible design for
this experiment. The partitions into months and into people are strictly
orthogonal to each other, as are the partitions into months and into ex-
ercise regimes. The partitions into people and into exercise regimes are
both balanced with respect to each other.

Example 1.5 A small modification of Example 1.4 has five months, six
people and ten exercise regimes. One possible design is shown in Fig-
ure 4, where rows represent months, columns respresent people and letters
represent exercise regimes.

Example 1.6 A modification of Example 1.2 has ten gardens of three
vegetable patches each, and six varieties of lettuce. In addition, there are
are five possible watering regimes. Each patch must have one variety of
lettuce and one watering regime. The design in Figure 4 can be used, but
now rows represent watering regimes, columns represent lettuce varieties
and letters represent gardens.



Relations among partitions 5

H J I G F E
J I H C B D
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Figure 4: Combinatorial design used in Examples 1.5 and 1.6

Denote by R, C and L the partitions into rows, columns and letters
in the design in Figure 4. From the point of view of the statistician, the
uses of this design in Examples 1.5 and 1.6 are quite different. In the
former, the partitions R and C are inherent while L is at the choice of the
experimenter; in the latter, L is inherent while the experimenter chooses
R and C. However, in both cases it may be assumed that

Yω = αR(ω) + φC(ω) + τL(ω) + εω. (1.3)

From a combinatorial point of view, Figure 4 simply shows a set with
three partitions. The partitions R and C are strictly orthogonal to each
other, while each of R and C is balanced with respect to letters. In fact,
there is a third property, called adjusted orthogonality , that will be defined
in Section 8.

For further explanation of how combinatorial design problems arise
from statistically designed experiments, see [22, 33, 177, 202].

The remainder of this paper treats a combinatorial design as a collec-
tion of partitions of a finite set. Section 2 establishes some notation for
partitions and their associated matrices and subspaces. Sections 3–5 dis-
cuss the three most important binary relations between partitions, all of
which have been seen in the examples so far. Section 6 explains more about
the background to equations (1.1)–(1.3). Section 7 discusses the relations
between the subspaces defined by partitions, and shows that sometimes
there is a need for a ternary relation. Sections 8 and 9 give more details of
two important non-binary relations. These are used in Section 10, which
considers possibilities for three partitions. This leads to several different
types of combinatorial design, considered in the remaining sections. Each
type is defined by three partitions, or is a simple generalization with more
partitions but no need for any further non-binary relations.

2 Partitions on a finite set

Let Ω be a finite set of size e, where e > 1. The elements of Ω will be
called experimental units, or just units. The rest of this paper deals with
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partitions of Ω.
If F is such a partition, denote by nF its number of parts. The e×nF

incidence matrix XF has (ω, i)-entry equal to 1 if unit ω is in part i of F ;
otherwise, this entry is zero. Thus XFX

>
F is the e× e relation matrix for

F , with (ω1, ω2)-entry equal to 1 if ω1 and ω2 are in the same part of F ,
and equal to 0 otherwise. The nF × nF matrix X>FXF is diagonal, with
(i, i)-entry equal to the size of the i-th part of F .

Definition A partition is uniform if all of its parts have the same size.

Many statisticians, including Tjur [206, 207], call uniform partitions
balanced, but this conflicts with the notion of balance introduced in Sec-
tion 1. This terminology is discussed again in Section 9. Preece reviewed
the overuse of the word balance in design of experiments in [155]. The
adjectives homogeneous [44], proper [151] and regular [66] are also used.

If F is uniform, denote the size of all its parts by kF . Then nF kF = e
and X>FXF = kF InF

, where In is the identity matrix of order n.
Denote by RΩ the real vector space of dimension e whose coordinates

are labelled by the elements of Ω, so that each vector may be regarded as a
function from Ω to R. If F is a partition of Ω, denote by VF the subspace
of RΩ consisting of vectors which are constant on each part of F . Then
dim(VF ) = nF .

We assume the standard inner product on RΩ. Denote by PF the
matrix of orthogonal projection onto VF . Then PF replaces the coordinate
yω of any vector y by the average value of yν for ν in F (ω), which is the

part of F containing ω. In fact, PF = XF

(
X>FXF

)−1
X>F . If F is uniform

then XFX
>
F = kFPF .

Equations (1.1)–(1.3) all have the form

Y =
∑
F∈F

XFψF + ε, (2.1)

where Y and ε are random vectors of length e, F is a set of partitions of Ω,
and, for F in F , ψF is a real vector of length nF . Thus the expectation
E(Y ) of Y is in the subspace

∑
F∈F VF .

There are two trivial partitions on Ω, which are different when e > 1.
The parts of the equality partition E are singletons, so kE = 1, nE = e
and XE = Ie = PE . At the other extreme, the universal partition U has
a single part, so nU = 1, kU = e, XUX

>
U = Jee and PU = e−1Jee, where

Jnm denotes the n×m matrix with all entries equal to 1. Moreover, VE is
the whole space RΩ, while VU is the 1-dimensional subspace of constant
vectors.
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If F and G are two partitions of Ω, their nF×nG incidence matrix NFG
is defined by NFG = X>FXG. The (i, j)-entry is the size of the intersection
of the i-th part of F with the j-th part of G. In particular, NEF = XF .

Given a set F of partitions of Ω, denote by AF the algebra of e×e real
matrices generated by the projection matrices PF for F in F , and denote
by JF the algebra generated by the relation matrices XFX

>
F for F in F .

These are the same if all partitions in F are uniform. James called JF the
relationship algebra of F in [99], but it was shown in [100, 115] that AF is
more useful for understanding the properties of F relevant to a designed
experiment.

3 Refinement

Definition If F and G are partitions of Ω, then F is finer than G (equiv-
alently, G is coarser than F ) if every part of F is contained in a single
part of G but at least one part of G is not a part of F . This relation is
denoted F ≺ G or G � F .

In Example 1.3, B ≺ D. If F ≺ G then nF > nG and VG < VF .

Write F 4 G (or G < F ) to mean that either F ≺ G or F = G. Then
4 is a partial order. For every partition F , it is true that E 4 F 4 U and
VU ≤ VF ≤ VE .

Proposition 3.1 Let F and G be partitions of Ω. If F 4 G then PFPG =
PGPF = PG.

As with any partial order, there is a choice about which of the two
objects should be considered ‘smaller’. Some statisticians write the refine-
ment partial order in the opposite way to that used here. For example,
see [31, 206, 207].

Since there are only a finite number of partitions of Ω, there is no
difficulty with the next definition.

Definition Let F and G be partitions of Ω. The infimum F ∧ G of
F and G is the coarsest partition H satisfying H 4 F and H 4 G; its
parts are the non-empty intersections of a part of F and a part of G.
Thus F ∧ G = E if and only if no part of F intersects any part of G
in more than one unit. The supremum F ∨ G of F and G is the finest
partition K satisfying F 4 K and G 4 K; its parts are the connected
components of the graph with vertex-set Ω and an edge between ω1 and
ω2 if F (ω1) = F (ω2) or G(ω1) = G(ω2).
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Thus if F 4 G then F ∧ G = F and F ∨ G = G. In the design in
Figure 4, R ∧ C = R ∧ L = C ∧ L = E and R ∨ C = R ∨ L = C ∨ L = U .

Proposition 3.2 If F and G are partitions of Ω then VF ∩ VG = VF∨G.

4 Orthogonality

4.1 Definitions

As Preece noted in [154], the word orthogonal has many different mean-
ings in the statistical literature. Here I use the terminology in [23, 25, 32,
206].

Proposition 3.2 shows that subspaces VF and VG can never be orthog-
onal to each other. This motivates the following definition, from [206].

Definition Let V and W be subspaces of RΩ. Then V and W are
geometrically orthogonal to each other if the subspaces V ∩ (V ∩W )⊥ and
W ∩ (V ∩W )⊥ are orthogonal to each other.

Proposition 4.1 Let F and G be partitions of Ω. The following state-
ments are equivalent:

(i) VF is geometrically orthogonal to VG;

(ii) PFPG = PGPF ;

(iii) PFPG = PF∨G;

(iv) for every unit ω, we have |F (ω)| |G(ω)| = |(F ∧G)(ω)| |(F ∨G)(ω)| .

The second statement above is sometimes called ‘projectors commute’, and
the fourth ‘proportional meeting within each class of the supremum’.

Definition Let F and G be partitions of Ω. Then F is orthogonal to
G, written F ⊥ G, if PFPG = PGPF ; and F is strictly orthogonal to G,
written F⊥G, if PFPG = PGPF = PU .

Duquenne calls these two concepts local orthogonality and orthogonality
respectively in [66]; the latter agrees with Gilliland’s definition of orthog-
onality in [83]. Some authors split the definitions further according to
whether or not F ∧G is uniform.

Proposition 3.1 shows that if F 4 G then F ⊥ G. In particular,
all partitions are orthogonal to both E and U , and every partition is
orthogonal to itself.
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A B B C A C
C A B

Figure 5: A 2 × 3 row–column design with nine units and three letters,
giving mutually orthogonal partitions into rows, columns and letters

Figure 6: Two blocks, each of which is a 3× 4 rectangle, so that there are
6 rows and 8 columns

In the design in Figure 4, R⊥C. If R, C and L denote the partitions
into rows, columns and letters in Figure 5, then R⊥C, R⊥L and C⊥L even
though R, R ∧ C and R ∧ L are not uniform, because the ‘proportional
meeting’ condition in Proposition 4.1(iv) is satisfied for all pairs and all
pairwise suprema are equal to U . If B, R and C denote the partitions into
blocks, rows and columns in Figure 6, then R ⊥ C but R is not strictly
orthogonal to C because R ∨ C = B 6= U .

Proposition 4.2 Let F and G be partitions of Ω. Then F⊥G if and only
if NFG = e−1(X>FXF )JnFnG

(X>GXG).

4.2 Orthogonal arrays

Definition An orthogonal array of strength two on Ω is a collection
F of at least two uniform partitions of Ω with the property that every
pair of distinct partitions is strictly orthogonal. Inductively, for m ≥ 3,
a collection F of at least m partitions of Ω is an orthogonal array of
strength m if it is an orthogonal array of strength m − 1 and, whenever
F1, . . . , Fm are distinct partitions in F , the infimum F1 ∧F2 ∧ · · · ∧Fm−1

is strictly orthogonal to Fm.

Figure 7 shows an orthogonal array of strength two with e = 12, |F| =
11, and nF = 2 for all F in F . It is equivalent to that given by Plackett
and Burman [142]. Replacing each 0 by −1 and adjoining a row of 1s
gives a Hadamard matrix of order 12. The paper [142] inspired Rao to
define orthogonal arrays and begin to develop a general theory of them in
[179, 180].
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F1 0 0 1 0 0 0 1 1 1 0 1 1
F2 1 0 0 1 0 0 0 1 1 1 0 1
F3 0 1 0 0 1 0 0 0 1 1 1 1
F4 1 0 1 0 0 1 0 0 0 1 1 1
F5 1 1 0 1 0 0 1 0 0 0 1 1
F6 1 1 1 0 1 0 0 1 0 0 0 1
F7 0 1 1 1 0 1 0 0 1 0 0 1
F8 0 0 1 1 1 0 1 0 0 1 0 1
F9 0 0 0 1 1 1 0 1 0 0 1 1
F10 1 0 0 0 1 1 1 0 1 0 0 1
F11 0 1 0 0 0 1 1 1 0 1 0 1

Figure 7: Orthogonal array of strength two, consisting of 11 partitions of
a set of size 12 into two parts: columns represent elements of the set, and
each row shows one partition

For n ≥ 2, the rows, columns and letters of any Latin square of order n
give an orthogonal array of strength two on a set of size n2, with three
partitions into parts of size n. See [95] for many uses and constructions of
orthogonal arrays, as well as more theory. Eendebak and Schoen maintain
a catalogue on the web page [76].

From Finney [77] onwards, finite Abelian groups have been a fruitful
source of orthogonal arrays, under the name fractional factorial designs.
For i = 1, . . . , s let Gi be an Abelian group of order ni, where ni ≥ 2.
Let G be the product group G1 × G2 × · · · × Gs. Every complex irre-
ducible character χ of G has the form χ = (χ1, χ2, . . . , χs) where χi is an
irreducible character of Gi and χ(g1, g2, . . . , gs) = χ1(g1)χ2(g2) · · ·χs(gs).
Let H be a subgroup of G, and let Fi be the partition of H defined by the
values of the i-th coordinate. Then {F1, . . . , Fs} forms an orthogonal array
of strength m on H if and only if the only non-trivial characters χ on G
whose restriction to H is trivial have non-trivial components χi for at least
m + 1 values of i. For example, if s = 3, n1 = n2 = n3 = 7 and Gi is Z7

written additively for i = 1, 2 and 3 then {F1, F2, F3} forms an orthogonal
array of strength two on the subgroup H = {(g1, g2, g3) : g1 +g2 +g3 = 0}.
Up to isotopism (permutations of the names of the parts of each partition),
this is the Latin square obtained as the Cayley table of Z7.

Some papers, such as [61, 112, 141, 213], call an orthogonal array reg-
ular if and only if it is made from an Abelian group in this way. There
are two problems with this. The first is that, in each experiment, the
parts of Fi (such as varieties of lettuce) are unlikely to be labelled by the
elements of a finite Abelian group. How is the statistician analysing the
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A B C D E
E A B C D
D E A B C
C D E A B
B C D E A

A B C D E
B A D E C
E D A C B
C E B A D
D C E B A

(a) (b)

Figure 8: Two Latin squares of order five: square (a) is isotopic to the
Cayley table of Z5, but square (b) is not

data to know whether or not the orthogonal array was constructed from
Abelian groups? In any case, this derivation makes no difference to the
data analysis. The second problem is that, for an experiment designed
using a Latin square, it is usually of no practical importance whether or
not the square is isotopic to the Cayley table of an Abelian group. As n
increases, so does the proportion of Latin squares of order n which are not
isotopic to such Cayley tables. Figure 8 shows two Latin squares of order
five: only one of them is isotopic to a Cayley table.

The definitions in this section show that, in an orthogonal array F
of strength two, PF commutes with PG for all F and G in F . Propo-
sition 4.1 shows that commutativity cannot be destroyed by inclusion of
suprema. Thus Grömping and Bailey, in their paper [86] giving some more
lenient definitions of regularity, proposed calling an orthogonal array geo-
metrically regular if PG1∧···∧Gr

commutes with PH1∧···∧Hs
for all subsets

{G1, . . . , Gr} and {H1, . . . ,Hs} of F . Thus the two orthogonal arrays in
Figure 8 are geometrically regular, while the one in Figure 7 is not, because
F1 ∧ F2 is not orthogonal to F3.

4.3 Tjur block structures and orthogonal block structures

Proposition 4.1 leads to these definitions, given in [23], building on the
work in [206].

Definition Let F be a set of partitions on a finite set Ω. Then F is
a Tjur block structure if F is closed under taking suprema, every pair of
partitions in F is orthogonal, and E ∈ F . If, in addition, F is closed under
taking infima, every partition in F is uniform, and U ∈ F , then F is an
orthogonal block structure.

For example, if F is an orthogonal array of strength two then F∪{E,U}
is a Tjur block structure.
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For F in F , define a further subspace WF of RΩ by

WF = VF ∩
⋂

F≺G∈F
V ⊥G = VF ∩

( ∑
F≺G∈F

VG

)⊥
.

Theorem 4.3 If F is a Tjur block structure then the subspaces WF , for
F in F , are mutually orthogonal and their sum is RΩ.

It follows that the dimensions of the subspaces WF , and the matrices
of orthogonal projection onto them, can be calculated recursively, starting
with the coarsest partition in F . Moreover, the algebra AF is commuta-
tive, and consists of all real linear combinations of the matrices PF , for
F in F . The subspaces WF are the mutual eigenspaces of AF . For any
partition in F which is uniform, its relation matrix is also in AF .

Tjur block structures are used widely in statistics, in two different
contexts, which are explained more in Section 6. One concerns covariance,
and the other expectation.

The covariance cov(Yα, Yβ) of responses Yα and Yβ is defined to be
E[(Yα − E(Yα))(Yβ − E(Yβ))]. The variance-covariance matrix Cov(Y ) of
the random vector Y in equation (2.1) is the e× e matrix whose entry in
row α and column β is cov(Yα, Yβ). It is often assumed that Cov(Y ) is an
unknown matrix in JH for a specified Tjur block structure H with H ⊆ F .
If the partitions are all uniform then JH = AH and so the eigenspaces of
Cov(Y ) are known. Then closure under suprema ensures that there is
no pre-determined linear dependence among the eigenvalues, which avoids
complications in estimating their values: see [35].

The other use is to give a collection of models for the expectation E(Y )
of Y . It is assumed, as in equations (1.1)–(1.3), that there is a subset G
of F such that E(Y ) ∈

∑
G∈G VG, and we would like to find the smallest

such G: see [28]. Closure under suprema is essential for the existence of
such a smallest subset.

The set of partitions {E,R,C,L, U} in any Latin square forms an or-
thogonal block structure. Apart from Latin squares, and sets of mutually
orthogonal Latin squares, most orthogonal block structures in common
use are poset block structures, described in the next subsection.

4.4 Poset block structures

Apart from Großmann’s AutomaticAnova [87], and the package re-
cently introduced by Bate and Chatfield [42, 43], most statistical software
cannot currently recognise the 4 relation, unless the names of the parti-
tions contain a clue. For example, if R, C and L denote the partitions of
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a Latin square into rows, columns and letters respectively, then standard
analysis of variance in the popular statistical software R [175] can recog-
nise that R ∧ C 4 R and R ∧ C 4 C but not that R ∧ C 4 L; nor can
it recognise that H 4 R if H is another name for the partition R ∧ C.
Each software has its own symbol for the binary operator “∧”, usually
something like “.” or “:” that is available on standard keyboards. The
usual rule seems to be that A1 ∧ A2 ∧ · · · ∧ An is recognised to be finer
than B1 ∧B2 ∧ · · · ∧Bm if and only if {B1, B2, . . . , Bm} is a proper subset
of {A1, A2, . . . , An}. This rule is true for so-called poset block structures
when their partitions are named canonically.

The definition of poset block structures needs another partial order,
which I shall write as v. If (P,v) is a partially ordered set (poset for
short), a subset Q of P is defined to be ancestral , or an up-set , if whenever
i ∈ Q and j ∈ P with i < j then j ∈ Q.

Definition Let P = {1, . . . , s} be a finite set with a partial order v.
For i = 1, . . . , s, let Ωi be a finite set of size ni, where ni ≥ 2. Put
Ω = Ω1×Ω2×· · ·×Ωs. Let Fi be the partition of Ω defined by the values
of the i-th coordinate, for i = 1, . . . , s. If Q ⊆ P, define the partition FQ
of Ω by FQ =

∧
i∈Q Fi. The poset block structure on Ω defined by (P,v)

is {FQ : Q is an ancestral subset of P}.

Example 4.4 If P = {1, 2, 3} with 1 = 2 and 1 = 3 then the correspond-
ing poset block structure may be visualized as n1 rectangles (parts of F{1})
each defined by n2 rows (parts of F{1,2}) and n3 columns (parts of F{1,3}).
Figure 6 shows an example with n1 = 2, n2 = 3 and n3 = 4.

Example 4.5 Extend Example 1.4 so that there are 14 people, of whom
seven are men and seven are women. If we ignore the partition into exercise
regimes, we have the poset block structure defined by {1, 2, 3} with n1 = 2,
n2 = 7, n3 = 4 and 2 < 1. The parts of F{1} are the genders; the parts of
F{1,2} are the people; the parts of F{3} are the months; each part of F{1,3}
is one gender for one month; and the parts of F{1,2,3} are the units.

Theorem 4.6 The following statements hold for any poset block structure
defined by a poset (P,v).

(i) If Q is an ancestral subset of P, then FQ is uniform, with all parts
of size

∏
i∈P\Q ni.

(ii) The subsets ∅ and P are both ancestral. Moreover, F∅ = U and
FP = E.
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(iii) If Q and R are both ancestral subsets of P, then FQ ⊥ FR, FQ∨FR =
FQ∩R and FQ ∧ FR = FQ∪R.

It follows that every poset block structure is an orthogonal block struc-
ture. Latin squares show that the converse is not true.

Poset block structures were investigated extensively (but not so named)
by Yates [224] and later by Kempthorne and his colleagues [107, 205, 232],
but these authors did not manage to completely distinguish between the
two partial orders involved. By restricting himself to series-parallel posets,
Nelder was able to provide recursive definitions and constructions in [126]
for what he called simple orthogonal block structures. This approach led
to algorithms that underlie many different programs used today for the
analysis of variance. Speed and Bailey pointed out in [197, 198] that
Nelder’s approach can be used for arbitrary finite posets. Further details
and examples are in [23, 26, 30].

5 Balance

In this section we denote by B and L two partitions of Ω whose parts
will be called blocks and letters respectively.

Definition The relationship between L and B is binary if L∧B = E; this
means that each letter occurs at most once in each block. It is generalized
binary if no two intersections of a part of L with a part of B differ in size
by more than one.

Confusion alert! The first of these really is a binary relation whose
name is ‘binary’.

An n× n matrix is called completely symmetric if it is a linear combi-
nation of In and Jnn.

5.1 Combinatorial notions of balance

Let i and j be two letters, not necessarily distinct. The number of
ordered pairs (ω1, ω2) in Ω × Ω with the properties that B(ω1) = B(ω2),
L(ω1) = i and L(ω2) = j is equal to the (i, j)-entry of NLBNBL. It is
called the concurrence of i and j in blocks.

The classical definition of balance, given by Yates in [225], follows.

Definition If the partition B is uniform and L ∧B = E then the parti-
tion L is balanced with respect toB if the off-diagonal elements ofNLBNBL
are all the same but not zero.
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For a binary design, a counting argument shows that if L is balanced
with respect to B then L is also uniform and hence that NLBNBL is
completely symmetric. This definition of balance includes as a special case
complete-block designs. In these, L is uniform, nBnL = e, NLBNBL =
nBJnLnL

and L⊥B. For all other designs which are balanced according to
this definition, the coefficient of InL

in NLBNBL is non-zero and therefore
NLBNBL has rank nL.

Fisher proved his famous inequality in [79]: if L∧B = E, B is uniform,
and L is balanced with respect to B but not orthogonal to B, then nL ≤
nB . There are now many proofs of this result. One of the simplest is the
observation that the rank of NLBNBL cannot be greater than the number
of columns of NLB . Conversely, if NLBNBL has rank nL and nL = nB , it
follows that NLB is invertible: hence if NLBNBL is completely symmetric
then so is NBLNLB and therefore B is also balanced with respect to L.
See [52, Chapter 1] and [202, Chapter 2].

How should this definition be generalized if B is not uniform or the
relationship between L and B is not binary? Relaxing the uniformity
of B gives pairwise balanced designs, introduced in [110]. Now a counting
argument shows that the entries on the diagonal of NLBNBL are all strictly
bigger than the common off-diagonal entry, and so NLBNBL is positive
definite; therefore it has rank nL, and Fisher’s inequality follows as before.
As [223] shows, pairwise balanced designs have been a very fruitful field of
research, which includes results about the existence of BIBDs. However,
as we show in the next subsection, this notion of balance does not match
what is needed from the statistical point of view.

5.2 Statistical notions of balance

The vector form of equation (1.1) is Y = XBβ+XLτ + ε. To estimate
the vector τ up to an additive constant, it is necessary to project the
data vector onto the subspace (VL + VB)∩ V ⊥B . The nL × nL information
matrix CLB is defined by CLB = X>L (Ie − PB)XL. Note that Ie − PB is
the matrix of orthogonal projection onto V ⊥B . Also, if B is uniform then
X>L PBXL = k−1

B NLBNBL.
The matrix CLB is symmetric, with row-sums zero, so it is singular.

If B 4 L then it is impossible to estimate any difference τi − τj . In this
case, CLB = 0, and the block design is not considered to be balanced. If
CLB has rank nL−1 then all differences τi− τj can be estimated and CLB
has a Moore–Penrose generalized inverse C−LB . Under the assumption that
Cov(Y ) = σ2Ie, standard linear model theory shows that the variance of
the estimator of τi − τj is

(C−LB(i, i) + C−LB(j, j)− C−LB(i, j)− C−LB(j, i))σ2.
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Figure 9: Two variance-balanced block designs: columns represent blocks

See [33] for further explanation for cominatorialists. Thus a block design
is called variance-balanced if CLB is completely symmetric but not zero:
this terminology was introduced by Tocher in [208]. In this case both CLB
and C−LB are scalar multiples of nLInL

− JnLnL
.

Figure 9 shows two block designs which are variance-balanced but are
not BIBDs. In the design in Figure 9(a), taken from [33, 208], B is uniform
but the relationship between L and B is not binary, even though kB =
3 < 5 = nL. In the design in Figure 9(b), B is not uniform.

If a block design is variance-balanced then the off-diagonal entries of
X>L PBXL are all equal. If L is not orthogonal to B, a counting argument
similar to that used for pairwise balanced designs shows that every diago-
nal entry is strictly bigger than this common value, and so X>L PBXL has
rank nL. Since PB has rank nB , this shows that nB ≥ nL, so that Fisher’s
inequality holds for variance-balanced designs. If, in a variance-balanced
design, B is also uniform and nB = nL, then the argument in Section 5.1
shows that the design obtained by interchanging the roles of B and L is
also variance-balanced.

Hedayat and Federer [92] gave examples to show that neither of pair-
wise balance and variance balance implies the other.

If the experimenter is more interested in estimating some differences
of the form τi − τj than others, the experiment may well be designed so
that L is not uniform. If there are no blocks, then the information matrix
is CLU , defined by CLU = X>L (Ie − PU )XL = X>LXL − e−1X>L JeeXL. In
a block design, the efficiency for the estimation of τi − τj is the ratio of
the variance in an unblocked design, in which each part of L has the same
size as it does in the block design, to that in the block design, assuming
that the value of σ2 is unchanged: see [135]. The block design is said to be
efficiency-balanced if CLB is a scalar multiple of CLU . This concept was
introduced by Jones in [105], but not named until later. In the terminology
of [100], the partition L has first order balance with respect to B.

One easy construction of an efficiency-balanced block design is to take
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Figure 10: Two efficiency-balanced designs: columns represent blocks

a BIBD and identify two letters. For example, this gives the non-binary
design in Figure 10(a). Figure 10(b) shows an binary efficiency-balanced
block design where B is not uniform; it is taken from [219].

If L is not orthogonal to B, the information matrices CLB and CLU
cannot be equal. Hence, if one is a scalar multiple of the other then X>LXL

is a linear combination of X>L PBXL and X>L PUXL. The diagonal matrix
X>LXL has rank nL, while the rank of any linear combination of X>L PBXL

and X>L PUXL is bounded above by nB , so, once again, Fisher’s inequality
holds.

5.3 Balance between partitions

As Figures 9 and 10 show, block designs which are variance-balanced
or efficiency-balanced tend to have either one or both of the partitions L
and B being non-uniform. In fact, if L is uniform then variance balance
is equivalent to efficiency balance; otherwise, it is impossible for a design
to have both properties. On the other hand, adjoining two BIBDs with
different block sizes gives a design which is pairwise balanced, variance-
balanced and efficiency-balanced but has non-uniform partition B.

These considerations motivate the following definition.

Definition Let L and B be uniform partitions of Ω. Then L is balanced
with respect to B if X>L (Ie − PB)XL is completely symmetric but not
zero. It is strictly balanced if it is balanced and the relationship between
L and B is generalized binary.

The second part of this definition follows [25]. Strict balance is called
balance by Kiefer, who showed in [108] that strictly balanced block designs
are optimal in the sense, described more fully in [33, 191], that the average
variance of the estimators of differences like τi − τj is minimized. Binary
balance is called total balance in [98, 134, 145, 147]. If L⊥B and L ∧ B
is uniform then L is balanced with respect to B and B is balanced with
respect to L.
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Figure 11: Two block designs in which letters are balanced with respect
to blocks, which are represented by columns

In general, balance is not a symmetric relation, unlike orthogonality.
To emphasize this, here we write L I B or B J L to indicate that L is
balanced with respect to B but not strictly orthogonal to B, with I and
J replaced by B and C for strict balance. If L and B are both strictly
balanced with respect to each other but not orthogonal to each other, we
write L ./ B.

Example 5.1 Suppose that e = 56 and nB = nL = 7. Figure 11 shows
two block designs in which L I B. Neither is binary. The one in Fig-
ure 11(a) has strict balance, but the one in Figure 11(b) does not.

The results in Section 5.2 show that if L I B then nL ≤ nB , and that
if, in addition, nL = nB , then B I L.

6 Linear Models

6.1 Fixed effects and random effects

As explained briefly in equation (2.1), in an experiment whose design
is defined by a set F of partitions, it is usually assumed that the response
data, which form a vector in Re, give a realization of a random vector Y
which satisfies

Y =
∑
F∈F

XFψF + ε. (6.1)

Here ε, which can be regarded as ψE , is a random vector of length e with
zero mean, and Cov(ε) = σ2Ie. For some partitions F we assume that
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ψF is a real vector of length nF . Then F is said to have fixed effects.
The other possibility is that ψF is a random vector with zero mean and
Cov(ψF ) = σ2

F InF
. Then F is said to have random effects.

Equation (6.1), together with the assumptions about fixed and random
effects, are called the linear model for the data.

When all effects (apart from E) are fixed, the main step in estimating
the vector ψF (up to an additive constant) is the projection of the data
vector onto the subspace

∑
H∈F

VH ∩

 ∑
G∈F\{F}

VG

⊥ .
Section 7 gives more details about the subspaces involved. Sections 8 and 9
discuss combinatorial conditions necessary for the projections to have good
properties.

6.2 Partitions related by refinement

In the discussion of equation (1.2) in Section 1, we saw that if F ≺ G
then there is a potential difficulty in including both XFψF and XGψG in
the linear model, because VG < VF . Here is an explanation of how this is
handled in three common situations.

6.2.1 Nested block designs If F and G are both inherent and F ≺ G
then we have a situation like that in Example 1.3. In the notation used
there, B ≺ D and the parts of B and D can be thought of as small blocks
and large blocks respectively. Some people say that the small blocks are
nested in the large blocks. A third partition, L, is the one in which the
experimenter is actually interested. Put τ = ψL.

It is common to assume that L and D have fixed effects while B has
random effects, because if B has fixed effects then the relation between L
and D is immaterial. Then one simple estimate of τ , up to an additive
constant, can be obtained by projecting the data vector onto V ⊥B . If L is
not orthogonal to B, another can be obtained by projecting the data onto
VB ∩ V ⊥D . The variances of these estimators are proportional to σ2 and
σ2+kBσ

2
B respectively. Once the quantities σ2 and σ2

B have been estimated
from the data, an appropriate linear combination of these two estimates
of τ gives a better estimate: see [24, 128].

In a variant of this, D is also assumed to have random effects. If L is
not orthogonal to D, a third estimate of τ is obtained by projecting the
data onto VD, and then all three estimates are combined.
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6.2.2 Split-plot designs There are some circumstances where F is in-
herent andG is not, but practical constraints force F ≺ G. In Example 1.6,
the gardeners might object that it is too cumbersome for any of them to
use more than one watering regime. If the parts of B and R are gar-
dens and watering regimes respectively, then B is inherent, R is not, and
B ≺ R. Now we assume that B has random effects and R has fixed effects.
The vector ψR is estimated from the projection of the data onto VB .

To understand the common name for these designs, rename the gar-
dens as plots. There is only one watering regime on each plot but, in
Example 1.6, each plot is split up into three patches, and different lettuce
varieties are grown on each patch.

6.2.3 Simpler models If F is allocated by the experimenter and G is
an innate grouping of the parts of F , then there is no avoiding the relation
F ≺ G even when F and G both have fixed effects. For example, suppose
that the parts of F are the exercise regimes in Example 1.5. If five of these
have individual exercise while five involve activity with other people, this
gives a partition G which groups the parts of F into two groups of five.

Now the linear model which includes XGψG but not XFψF is a sub-
model of the one that includes XFψF but not XGψG. Using the former
gives an estimate of ψG from the data, while using the latter gives an
estimate of ψF . Because VG < VF , the projection of the data vector onto
VF is no further from the original data than the projection onto VG, and
so it is clear that the model which includes XFψF provides a better fit to
the data. However, the improvement might be no more than could easily
happen by chance. The subtle statistical business of hypothesis testing
addresses the question “Can we attribute the different effects of different
exercise regimes to the simple distinction between communal activity and
solo activity?”

7 Subspaces

In this section we examine the subspaces derived from two or more
subspaces of a real vector space with an inner product. The theory applies
to subspaces of any sort, but we shall present it for subspaces defined by
partitions as in Section 2.

7.1 Two subspaces

In [100], James and Wilkinson examined the further subspaces defined
by VF and VG for any pair of partitions F and G of Ω, building on the
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algebra in [99]. The subscript notation that follows is my own responsi-
bility. Put VF−G = VF ∩ V ⊥G . Since VF∨G = VF ∩ VG by Proposition 3.2,
the subspaces VF−G and VF∨G are orthogonal to each other, and both are
subspaces of VF . Put VFG = VF ∩ (VF−G)⊥ ∩ V ⊥F∨G. Denote by VF`G the
image of the projection of VF onto V ⊥G , which is (VF + VG) ∩ V ⊥G . Define
VG−F , VGF and VG`F analogously.

If E(Y ) = XFψF +XGψG then, in order to estimate the vector ψF (up
to addition of a vector in VF∨G), it is necessary to project the data onto
VF`G.

Put QF = PF − PF∨G, which is the matrix of orthogonal projection
onto VF ∩ V ⊥F∨G, and QG = PG − PF∨G. The following results are in
[25, 99, 100].

Theorem 7.1 (i) VF is the orthgonal direct sum of VF∨G, VF−G and
VFG. Hence nF = dim(VF ) = nF∨G + dim(VF−G) + dim(VFG).

(ii) The column space of QFQG is VFG and the column space of QGQF
is VGF . Hence dim(VFG) = dim(VGF ).

(iii) If F ⊥ G then the subspaces VFG and VGF are both zero.

(iv) Let x be an eigenvector of QFQGQF with non-zero eigenvalue λ, and
let θ be the angle between x and QGx. Then cos2 θ = λ. Moreover,
the projection of x onto VF`G is x − QGx, the angle between this
and x is π/2 − θ, and x is an eigenvector of QF (Ie − QG)QF with
eigenvalue 1− λ.

(v) If F is balanced with respect to G then F ∨G = U and every vector
in VF ∩ V ⊥U is an eigenvector of QFQGQF . Hence either F⊥G and
VF−G = VF ∩ V ⊥U or F is not orthogonal to G and VF−G = {0}. In
the second case, the unique eigenvalue λ is in (0, 1), QFQGQF =
λQF , and the matrix of orthogonal projection onto (VF + VG) ∩ V ⊥U
is

QG + (1− λ)−1(QF −QGQF −QFQG +QGQFQG), (7.1)

which simplifies to

(1− λ)−1(QF +QG −QFQG −QGQF ) (7.2)

if nF = nG; moreover, if F∧G = E then λ = (nF−kG)/[(nF−1)kG].

(vi) The column space of (Ie −QG)QF is VF`G.

(vii) VF−G ≤ VF`G, and the orthogonal complement of VF−G in VF`G is
(VFG + VGF ) ∩ V ⊥G , which has dimension equal to dim(VFG).
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Parts (i), (ii) and (v) give yet another proof of Fisher’s inequality. If
F I G then nF − 1 = dim(VFG) = dim(VGF ) ≤ nG − 1.

7.2 Three subspaces but no refinement relation

When there are three or more partitions, the statistical issues are more
affected by which are inherent and which are of interest. This has been
discussed in Section 6.2 for the case that one partition is finer than another.
Here we assume that the partitions are R, C and L, with no relation of
refinement among them. For simplicity of exposition, assume that R∨C =
L ∨ R = L ∨ C = U , so that VR ∩ VC = VL ∩ VR = VL ∩ VC = VU . Then
the design in Figure 4 provides a working example.

Now Equation (6.1) becomes

Y = XRα+XCφ+XLτ + ε. (7.3)

Put QR = PR−PU , QC = PC −PU and QL = PL−PU , which are the
matrices of orthogonal projection onto VR ∩ V ⊥U , VC ∩ V ⊥U and VL ∩ V ⊥U .

7.2.1 Row–column designs In the most common use of such a design
in experiments, rows and columns are inherent, with R∧C = E and R⊥C.
The experimenter chooses the partition into letters and wants to estimate
τ up to an additive constant.

If rows, columns and letters all have fixed effects and we want to esti-
mate τ , then we have to project the data onto (VR + VC)⊥. Since R⊥C,
the matrix of this projection is Ie −QR −QC − PU . If L I R and L I C
then VLR = VLC = VL ∩ V ⊥U and QL(Ie − QR − QC − PU )QL is a scalar
multiple of QL. Unless the scalar is zero, this implies that this design has
variance balance for the estimation of τ .

On the other hand, if rows and columns both have random effects then
further estimates of τ can be obtained by projecting the data onto VR∩V ⊥U
and VC ∩ V ⊥U . If L I R and L I C then, again, QLQRQL and QLQCQL
are both non-zero scalar multiples of QL, and so the combined estimates
of τ still have variance balance.

In this case, QLQRQL commutes with QLQCQL. This property is
called general balance by Nelder in [127]. There is not room here for a full
discussion of general balance, but I will mention another special case that
is very useful if it is not possible for L to be orthogonal to or balanced
with respect to both R and C, for example if nL > nR and nL > nC .

Suppose that VLR ⊥ VLC . If x ∈ VLR then x ∈ V ⊥C and so the linear
combination x>XLτ can be estimated in (VR + VC)⊥ and in VR ∩ V ⊥U but
not in VC ∩ V ⊥U . There is an analogous conclusion if x ∈ VCR. On the
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other hand, if x ∈ VL ∩ (VU +VLR +VLC)⊥ then x>XLτ is estimated only
in (VR+VC)⊥. Thus each linear combination is estimated by combining at
most two simple estimates, which is sometimes considered an advantage.
This property is discussed further in Section 8.

7.2.2 Block designs for two non-interacting sets of treatments In
the other main use of a design like the one in Figure 4, the partition
into letters is inherent (and letters are called ‘blocks’), the experimenter
chooses the other two partitions and wants to estimate α and φ up to
additive constants. It is desirable that R⊥C, so that every part of R
occurs with every part of C equally often.

Usually it is assumed that R, C and L all have fixed effects. If we
ignore C, a simplistic method of estimating α is to project the data onto
VR`L. If this subspace is not orthogonal to VC`L then this estimate of α
is contaminated by the actual value of φ. Thus it is desirable for these two
subspaces to be orthogonal to each other. The formal definition is given
in the next section.

8 Adjusted orthogonality

8.1 Definition and results

The definition of orthogonality in Section 4 seems surprising at first,
because the vector subspaces VF and VG corresponding to two partitions F
and G can never be orthogonal to each other. If F is strictly orthogonal to
G then it is the projections of VF and VG onto the orthogonal complement
of VU that are orthogonal to each other; equivalently, X>F (Ie−PU )XG = 0.
It is tempting to say that F and G are orthogonal to each other after
adjusting for U . More generally, F is orthogonal to G if and only if
X>F (Ie − PF∨G)XG = 0, which could be considered to be orthogonality
after adjusting for F ∨G.

These comments lead to the notion of two partitions having adjusted
orthogonality with respect to a third partition. For continuity with Sec-
tion 7, we define what it means for partitions R and C to have adjusted
orthogonality with respect to partition L.

Definition Partitions R and C have adjusted orthogonality with respect
to partition L if X>R (Ie − PL)XC = 0.

Lemma 8.1 Partitions R and C have adjusted orthogonality with respect
to partition L if and only if

NRL(X>LXL)−1NLC = NRC . (8.1)
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If L is uniform, this is equivalent to

NRLNLC = kLNRC . (8.2)

Theorem 8.2 Partitions R and C have adjusted orthogonality with re-
spect to partition L if and only if

QRQLQC = QRQC , (8.3)

where QF = PF − PU for F in {R,C,L}.

Proof Since PFPU = PUPF = PU for every partition F , equation (8.3)
is equivalent to

PRPLPC = PRPC . (8.4)

Pre-multiplying both sides of this by X>R and post-multiplying both sides
by XC gives X>RPLXC = X>RXC . Conversely, pre-multiplying both sides
of equation (8.1) by XR(X>RXR)−1 and post-multiplying both sides by
(X>CXC)−1X>C gives equation (8.4). �

Note that this result does not require any of R, C and L to be uniform,
nor does it need orthogonality between R and C.

If R⊥C and R∧C is uniform then the entries in NRC are all the same.
Then condition (8.2) becomes

NRLNLC is a scalar multiple of JnRnC
. (8.5)

This has a clean combinatorial interpretation: the subset of letters in any
row has a constant number of letters in common with every column (as
usual, this needs a more precise explanation if the ‘subset’ is actually a
multiset).

In the design in Figure 4, every row has three letters in common with
every column. Therefore rows and columns have adjusted orthogonality
with respect to letters.

Example 8.3 The design in Figure 12 is taken from [157], rearranged
to show the partitions R and C as rows and columns. Here R ∧ C is not
uniform, because some parts ofR∧C have size one and others have size two.
Moreover, R is not orthogonal to C, because NRC = I5 +J5 when the rows
and columns are labelled in the obvious way. However, NRLNLC = 3NRC ,
so rows and columns have adjusted orthogonality with respect to letters
even though rows are not orthogonal to columns. Expressed in another
way, row i has six letters in common with column j if i = j but only three
letters in common if i 6= j.
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A F D G J C
D B G E H F
G E C H A I
J H A D I B
C F I B E J

Figure 12: A design for 30 units, with partitions into rows, columns and
letters

8.2 Link with subspaces

Some observations from Section 7 are gathered here.

Proposition 8.4 Let R, C and L be partitions of Ω. Put QF = PF −PU
for F in {R,C,L}. If R∨C = L∨R = L∨C = U then the following hold.

(i) VLR ⊥ VLC if and only if QRQLQC = 0.

(ii) If VLR ⊥ VLC then dim(VLR) + dim(VLC) ≤ nL − 1.

(iii) If R I L, C I L and VLR ⊥ VLC then nR + nC − 1 ≤ nL.

(iv) VR`L ⊥ VC`L if and only if QR(Ie −QL)QC = 0.

(v) If R⊥C then QRQC = 0 and therefore VLR ⊥ VLC if and only if
VR`L ⊥ VC`L.

This shows that an alternative characterization of R and C having
adjusted orthogonality with respect to L is that the subspaces VR`L and
VC`L are orthogonal to each other. Moreover, if, in addition, R⊥C, then
the subspaces VLR and VLC are orthogonal to each other. Then part (iii)
gives the following result.

Theorem 8.5 If R⊥C, R I L, C I L, and R and C have adjusted
orthogonality with respect to L then nR + nC − 1 ≤ nL.

8.3 A little history

It seems that Potthoff [143] was the first to notice the importance
of conditions like (8.2) for experiments with three partitions under the
assumption of model (7.3). Preece also gave condition (8.2) in [145, 147]
in the situation where R⊥C, L B R and L B C. Since they both assumed
that R⊥C and R ∧ C = E, they stated the condition in the form (8.5).
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Preece spent the year 1974–1975 in Australia: see [29]. At the end of
his stay, he presented work on these designs at the Australian Conference
on Combinatorial Mathematics in Adelaide: see [151]. This led Sterling
and Wormald to give some constructions for such designs in [201] and
Seberry and Street to take the ideas further in [187, 203].

Meanwhile, Eccleston and Russell had independently invented the idea
of adjusted orthogonality, which they wrote as R(L) ⊥ C(L) in [72], where
they proved Lemma 8.1. They introduced the name ‘adjusted orthogonal-
ity’ in [73]. Papers [12, 19, 68, 69, 70, 74, 102, 184, 189, 190] followed, and
the book [191] also had a section on adjusted orthogonality, but none of
these mentioned the work of Preece.

Preece, Eccleston and Russell were all working in Statistics at univer-
sities in Sydney during the last four months of 1974. They met for discus-
sions during this time, and Preece was external examiner for Russell’s 1977
PhD thesis [183], whose Chapter 4 was devoted to adjusted orthogonality.
Eccleston and Russell both report on Preece’s very thorough reading of
this1. Nonetheless, when Preece cited [72] in his 1977 paper [154] it was
only to say that this concept of orthogonality was not related to anyone
else’s. However, his article [157] for the Genstat Newsletter did use the
phrase ‘adjusted orthogonality’, and explained it very clearly in the con-
text of Example 8.3. I have not found an instance of his using the phrase
‘adjusted orthogonality’ in the mainstream literature before [164].

Bagchi listed authors who had constructed designs with adjusted or-
thogonality in [17], again with no mention of the many designs given by
Preece in [147], and proved Theorem 8.5 in [18].

Eccleston and McGilchrist extended the ideas of [100] to three sub-
spaces in [71] and applied their results to row–column designs. In particu-
lar, they proved that the average variance of estimators of differences like
τi − τj is bounded below by a known function of the average variances in
the two block designs obtained when one of the partitions into rows and
columns is ignored, and that this bound is achieved if rows and columns
have adjusted orthogonality with respect to letters. Bagchi and Shah gen-
eralized this to a stronger notion of optimality in [21], but with no mention
of [71].

Independently of Eccleston, Russell, and their co-authors, but building
on the work of Preece in [145, 147, 151], Morgan and Uddin in [123] defined
a block design for two non-interacting treatment factors F and G to be
an orthogonal BIBD if F B B, G B B and kBNFG = NFBNBG; this last
condition is precisely adjusted orthogonality. The terminology OBIBD is
also used in [1, 85, 120]; the first two of these state that the third condition

1Personal communications from JAE and KGR.
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is the same as adjusted orthogonality. Rees presented [1] at the British
Combinatorial Conference in Sussex (2001).

8.4 Adjusting for more than one partition

In [72], Eccleston and Russell proposed a more general version of ad-
justed orthogonality. If L is a set of partitions of Ω, put VL =

∑
L∈L VL,

and let PL be the matrix of orthogonal projection onto VL. By conven-
tion, P∅ = P{U} = PU = e−1Jee. In the notation of [72], R(L) ⊥ C(L) if

(VR + VL) ∩ V ⊥L is orthogonal to (VC + VL) ∩ V ⊥L ; equivalently,

X>R (Ie − PL)XC = 0.

In words, R and C have adjusted orthogonality with respect to L.

In an important special case of this, F is a Tjur block structure and
L = F \ {E}. Then R and C have adjusted orthogonality with respect to
L if and only if the projections of VR and VC onto WE are orthogonal to
each other, where WE is the subspace defined in Section 4.3.

9 Adjusted balance

9.1 Terminology

Section 8 discussed adjusted orthogonality, which is a possible relation
between partitions F and G when everything is projected onto the orthog-
onal complement V ⊥H of VH for some other partition H. What happens
when F = G? In this case, for clarity, we write F = G = L and H = B.

Recall from Section 2 that X>LXL is a diagonal matrix whose diagonal
entries are the sizes of the parts of L. Thus L is unform if and only ifX>LXL

is completely symmetric. Some authors say that L is balanced. Following
on from Section 8, it would be natural to say that L has adjusted balance
with respect to B if X>L (Ie − PB)XL is completely symmetric. This is
always true when nL ≤ 2, because the nL × nL matrix X>L (Ie −PB)XL is
symmetric and has zero row-sums.

The requirement that X>L (Ie−PB)XL be completely symmetric is the
main part of the definition of balance in Section 5.3. For consistency
with Section 5, I shall continue to say ‘is balanced with respect to’ rather
than ‘has adjusted balance with respect to’, but this discussion does show
that the ideas in Sections 5 and 8 are closely related. However, there is
one twist. In Section 5, we required X>L (Ie − PB)XL to be completely
symmetric but not zero. Since X>LXL itself cannot be zero, it is not
unreasonable to include ‘not zero’ in the definition of balance.
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A B H F
B H F A

B C I G
C I G B

C D A H
D A H C

D E B I
E B I D

E F C A
F C A E

F G D B
G D B F

G H E C
H E C G

H I F D
I F D H

I A G E
A G E I

Figure 13: Design in Example 9.1: there are nine letters in nine blocks,
each of which is a 2× 4 rectangle

This twist shows a difference between orthogonality and balance. If
F 4 G then F ⊥ G, so we regard refinement as a special case of orthog-
onality. However, if F 4 G then X>F (Ie − PG)XF = 0, so that F is not
balanced with respect to G, as noted in Section 5.2.

9.2 General definition

We can now define balance with respect to a set of partitions in a way
that is analogous to the more general definition of adjusted orthogonality
in Section 8.4.

Definition Let G be a set of partitions of Ω, and let L be a partition
of Ω. Then L is balanced with respect to G if X>L (Ie−PG)XL is completely
symmetric but not zero.

It is immediate that L cannot be balanced with respect to G if there is
any G in G for which G 4 L. As in Section 8.4, an important special case
occurs when G = F \ {E} for some Tjur block structure F . In this case,
L is balanced with respect to G if it is balanced with respect to G for all
in G and X>L (Ie − PG)XL is not zero. The following example shows that
it is possible to achieve balance with respect to G without having balance
with respect to all G in G.

Example 9.1 The design in Figure 13 has 72 units, in nine blocks, each
of which is a 2×4 rectangle. Nine letters have been allocated to the units.
Denote by B, R, C and L the partitions into blocks, rows, columns and
letters respectively. Then PR,C,B = PR + PC − PB and so

X>L (Ie − PR,C,B)XL = X>L (Ie − PC)XL −X>L (PR − PB)XL.

In this design, the two rows in each block have exactly the same set
of letters, with the result that X>L (PR − PB)XL = 0. It follows that
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D E F G H I
H I G C A B
C A B E F D
B H E I C F
F C I D G A
G D A B E H

Figure 14: Row–column design in which letters are balanced with respect
to {R,C} while rows and columns have adjusted orthogonality with respect
to letters

X>L (Ie − PR,C,B)XL = X>L (Ie − PC)XL, which is completely symmet-
ric and nonzero, because L B C. Hence L is balanced with respect to
{R,C,B}, even though it is not balanced with respect to either R or B.
In fact, in this example PR,C,B = PR,C because R ≺ B, and so L is also
balanced with respect to {R,C}.

9.3 Balance with respect to a pair of partitions

The most common use of this more general concept of balance is for
the case that G = {R,C} and R ∨ C = U , so that we are interested in
the projection of the data onto (VR + VC)⊥. Let QRC be the matrix of
orthogonal projection onto (VR + VC) ∩ V ⊥U ; and put QR = PR − PU and
QC = PC − PU . Then L is balanced with respect to the pair {R,C} if
X>L (Ie −QRC − PU )XL is completely symmetric but not zero.

This terminology is consistent with that in [25], but it is not ideal,
because ‘L is balanced with respect to R and C’ might mean ‘L I R and
L I C’ or it might mean ‘L is balanced with respect to {R,C}’. In [151],
Preece calls it ‘L has overall total balance with respect to the rest of the
design’; in later papers this becomes ‘L is fully balanced . . . ’.

If R I C then equation (7.1) gives X>LQRCXL. If, additionally, either
L⊥R or L⊥C then X>LQRCXL is a scalar multiple of one of X>LQRXL

and X>LQCXL, so the properties of X>LQRCXL follow from those of the
binary relations between L and R and between L and C.

If R⊥C then QRC = QR + QC and so the properties of X>LQRCXL

are derivable from those of X>LQRXL and X>LQCXL considered together.
It may be possible for their sum to be completely symmetric even though
neither is. For example, in a resolvable BIBD in which nB = 2kB it may
be possible to allocate the letters to the cells of a kB × kB square in such
a way that the rows form half of the original blocks and the columns form
the others. Figure 14 shows an example with nL = 9, nB = 12 and kB = 6
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(the blocks are the complements of those in Figure 1). In this design, it is
also true that rows and columns have adjusted orthogonality with respect
to letters. Many more examples are given in [113, 134]. Preece found
345 species (that is, merging isomorphism classes obtainable from each
other by interchanging rows and columns) of designs with these parameters
and properties in [149, 153], while McSorley and Phillips completed the
enumeration to 348 by a computer search reported in [117].

9.4 Three-way balance with pairwise balance

Suppose that C I R. Equation (7.1) shows that the condition for L
to be balanced with respect to {R,C} is that the matrix

(1− λ)X>LXL − (1− λ)X>L PUXL − (1− λ)X>LQRXL −X>LQCXL

+X>LQRQCXL +X>LQCQRXL −X>LQRQCQRXL

is completely symmetric but not zero. If L I R and L I C then the first
four terms are completely symmetric, and so the first part of this condition
becomes

kR(NLRNRCNCL +NLCNCRNRL)−NLRNRCNCRNRL
is completely symmetric. (9.1)

Condition (9.1) is given explicitly in [151].

If, in addition, C and L have adjusted orthogonality with respect to
R, then Lemma 8.1 shows that NCRNRL is a scalar multiple of NCL.
Therefore the matrix in (9.1) is a multiple of NLCNCL, which is completely
symmetric because L I C. Thus adjusted orthogonality gives a special
case of this type of three-way balance.

In [147], Preece gave 59 designs with three partitions R, C and L
satisfying nR = nC < nL, R B L, C B L, R ./ C and NRLNLC =
kLNRC . It follows that R and C have adjusted orthogonality with respect
to letters, that R is balanced with respect to {C,L}, and that C is balanced
with respect to {R,L}. Figure 15 shows an example. Street generalized
his constructions in [203] to give infinite families of designs, and widened
the scope by relaxing the final condition to allow NRLNLC to be any
completely symmetric matrix. Agrawal and Sharma gave further designs
of this type in [10].

On the other hand, if nL ≤ nC = nR then equation (7.2) gives the
following (ignoring the possibility that X>L (Ie − QRC − PU )XL might be
zero).
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L I F J G D A
E M J G K A B
B F N K A L C
M C G H L B D
C N D A I M E
N D H E B J F
K H E I F C G
H I J K L M N

Figure 15: A design for 56 units, with partitions into rows, columns and
letters: blank cells indicate empty row-column intersections

Proposition 9.2 Suppose that R ./ C, L I R and L I C. Then L is
balanced with respect to {R,C} if and only if

NLRNRCNCL +NLCNCRNRL is completely symmetric. (9.2)

A stronger condition is

NLRNRC is a linear combination of NLC and JnLnC
. (9.3)

Proofs of the following are in [25].

Proposition 9.3 If R ./ C, L I R and L I C then the following hold.

(i) Condition (9.3) implies condition (9.2).

(ii) If nL = nC and condition (9.2) is satisfied for the ordered triple
(L,R,C) then it is satisfied for any permutation of {L,R,C}.

(iii) If nL = nC and condition (9.3) is satisfied for the ordered triple
(L,R,C) then it is satisfied for any permutation of {L,R,C}.

Figure 16 shows two designs for 28 units with three partitions having
seven parts of size four. In both designs, all the pairwise relations between
partitions are strict balance in both directions. However, in the design in
Figure 16(a), taken from [98], none of these partitions is balanced with
respect to the other pair, whereas in the design in Figure 16(b), taken
from [145], every one of these partitions is balanced with respect to the
other pair.
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A B C D
E A B F

D A F G
C E A G

B G D E
F C G B

E F D C

A E B C
B F C D

C G D E
F D A E

G E B F
G A F C
D A B G

(a) (b)

Figure 16: Two designs for 28 units, with partitions into rows, columns
and letters: blank cells indicate empty row-column intersections

10 Three partitions

10.1 Supreme sets of uniform partitions

For simplicity, from now on we confine our interest to uniform parti-
tions on Ω. The following definition is taken from [32].

Definition A set F of partitions on Ω is supreme if F ∪ {U} is closed
under taking suprema.

We shall examine supreme sets F of uniform non-trivial partitions of Ω
with the property that if F and G are in F then at least one of the following
holds: (i) F is orthogonal to G (this includes F ≺ G and G ≺ F ); (ii) at
least one of F and G is strictly balanced with respect to the other.

Pearce and co-authors discussed sets of (usually) uniform partitions
in [98, 134] and introduced notation for various binary relations between
them. Preece augmented the notation in [145] and displayed the relations
in a matrix whose rows and columns are labelled by the partitions. The
diagonal is empty. If F 6= G then the (F,G)-entry is O (for ‘orthogonal’)
if F is strictly orthogonal to G and F ∧ G is uniform; it is T (for ‘total
balance’) if F is binary balanced with respect to G but not orthogonal to
G; it is T ′ (with the connotation that the transpose indicates the reverse
relationship) if F is neither orthogonal nor binary balanced with respect
to G but G is binary balanced with respect to F .

For example, denote by R, C and L the partitions into rows, columns
and letters in Figures 3 and 4. In this notation, the matrices for these
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row–column designs are

R C L
R
C
L

 − O O
O − T
O T −

 and

R C L
R
C
L

 − O T
O − T
T ′ T ′ −


respectively.

In [32], Bailey and Cameron convey the same information by showing
each partition as a vertex of a directed graph and labelling the edges with
symbols to show the relationships. Here we shall simply use the symbols
⊥, ⊥, ≺, �, C, B and ./.

10.2 Two partitions

Suppose that F = {F,G}, where F and G are distinct uniform non-
trivial partitions. If F is supreme, then, up to renaming, either F ≺ G or
F ∨G = U . The first case gives a poset block structure with P = {1, 2, 3}
and 3 < 2 < 1, where F = F{1,2} and G = F{1}.

If F ∨ G = U and F ⊥ G then F⊥G and all parts of F ∧ G have
the same size, by Proposition 4.1. Then F and G can be regarded as the
partitions of a rectangle into rows and columns, with each row-column
intersection containing the same number of units. If F ∧G = E this is the
poset block structure defined by P = {1, 2} with trivial partial order.

If F ∨ G = U but F is not orthogonal to G then, up to renaming,
F B G. Altogether, we have these possible structures.

A.1 The poset block structure defined by P = {1, 2, 3} and 3 < 2 < 1,
with F = {F{1}, F{1,2}}.

A.2 The poset block structure defined by P = {1, 2} with trivial partial
order, with F = {F{1}, F{2}}.

A.3 The poset block structure defined by P = {1, 2, 3}, 3 < 1 and 3 < 2,
with F = {F{1}, F{2}}.

A.4 F B G but G is not balanced with respect to F , so that nF < nG.

A.5 F ./ G, so that nF = nG.

10.3 Three partitions: three orthogonal relations

Suppose that F = {F,G,H}, where F , G and H are distinct uniform
non-trivial partitions and all the pairwise relations are orthogonality. If
F is supreme but no supremum is U then, up to renaming, either F ≺
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G ≺ H or F ∨ G = H. The first case gives a poset block structure with
P = {1, 2, 3, 4} and 4 < 3 < 2 < 1, where F = F{1,2,3}, G = F{1,2}
and H = F{1}. In the second case, the parts of H can be considered
as rectangles, each of which is partitioned into rows and columns as in
structures A.2 or A.3: the first of these gives Example 4.4. Because F , G
and H are all uniform, Proposition 4.1 shows that F ∧G is uniform.

If only one supremum is U , suppose that it is G∨H. Then F ≺ G and
F ≺ H, so F 4 G∧H. This gives two cases: F = G∧H and F ≺ G∧H.
If precisely two suprema are U , suppose that they are F ∨H and G ∨H.
Then either F ≺ G or G ≺ F , and we obtain a poset block structure
like the one in Example 4.5. If all three suprema are U then we have an
orthogonal array of strength two. This is not necessarily derived from a
poset block structure: for example, F , G and H could be three of the
partitions in Figure 7.

This gives the following possible structures.

B.1 The poset block structure defined by P = {1, 2, 3, 4} and 4 < 3 <

2 < 1, with F = {F{1}, F{1,2}, F{1,2,3}}.

B.2 The poset block structure defined by P = {1, 2, 3}, 2 < 1 and 3 < 1,
with F = {F{1}, F{1,2}, F{1,3}}.

B.3 The poset block structure defined by P = {1, 2, 3, 4}, 4 < 3 < 1 and
4 < 2 < 1, with F = {F{1}, F{1,2}, F{1,3}}.

B.4 The poset block structure defined by P = {1, 2, 3}, 3 < 1 and 3 < 2,
with F = {F{1}, F{2}, F{1,2}}.

B.5 The poset block structure defined by P = {1, 2, 3, 4}, 4 < 3 < 1 and
4 < 3 < 2, with F = {F{1}, F{2}, F{1,2,3}}.

B.6 The poset block structure defined by P = {1, 2, 3} and 2 < 1, with
F = {F{1}, F{1,2}, F{3}}.

B.7 An orthogonal array of strength two containing three partitions.

10.4 Three partitions: two relations of orthogonality and one of
balance

Suppose that F = {F,G,H}, where F , G and H are distinct uniform
non-trivial partitions, F is supreme, F B G, F ⊥ H and G ⊥ H. Since
F ∨G = U , we cannot have H � F and H � G, because that implies that
H < F ∨G.

If H ≺ F and H ≺ G then E 6= H 4 F ∧ G and so the relationship
between F and G cannot be binary. If it is generalized binary then the
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parts of F ∧G have size differing by one, but this cannot happen, because
H is uniform.

Because F and G are not related by ≺, H cannot be finer than one
and coarser than the other. If H⊥G then every part of H meets every
part of G in kHkG/e units. If, in addition, H ≺ F , then every part of F
meets every part of G in a constant number of units, so F⊥G, contrary to
the assumptions. We get a similar contradiction if H⊥F and H ≺ G.

If G ≺ H and H⊥F then the parts of G are grouped into parts of H,
each of which has m units in common with every part of F , where m =
kHkF /e. With the parts of F and G considered as letters and blocks
respectively, this is called an m-resolvable design. When m = 1, this is
just a resolvable design, as in Example 1.3. Bose proved a generalization
of Fisher’s inequality in [47]: in such a design, nG − nH ≥ nF − 1. This
can be proved by using parts (i), (ii) and (v) of Theorem 7.1 and noting
that VG−F ≥ VH ∩ V ⊥U . Hence G cannot be balanced with respect to F .

On the other hand, if F ≺ H and H⊥G then a short counting argument
shows that the average concurrence (in parts of G) of parts of F within the
same part of H is kF (kG − nH)/(nF − nH) while the average concurrence
between other parts of F is kF kG/nF . These cannot be the same unless
nF = kG, which is impossible when F B G.

In the remaining case, H⊥F and H⊥G. To aid thought, rename H as
R, G as C and F as L, so that the parts of R and C are the rows and
columns of a rectangle. Either R∧C = E or E ≺ R∧C. Moreover, L⊥R,
L B C, and either L ./ C or not.

First suppose that R ∧ C = E. If nL = nC then Hall’s Marriage
Theorem shows that any strictly balanced block design can have the letters
allocated to the units in the rectangle in such a way that the columns are
blocks and every letter comes exactly once in each row. When nR < nL
this is called a Youden square. Figure 3 shows an example.

The usage of generalized Youden design in [4, 192, 204] relaxes the
condition that nL = nC . There seems little to lose if the condition that
nR < nL is also relaxed. For example, putting two copies of the design in
Figure 3 side by side and putting two Latin squares of order 7 underneath
them gives a design with nR = 11, nC = 14 and nL = 7 in which R⊥C,
R⊥L, R ∧ C = R ∧ L = E and L B C. This is not the only method
of construction. For example, start with the design in Figure 1, glue the
blocks together to make a 3 × 12 rectangle, make two further copies by
permuting whole rows by a cycle of order 3, and then place all of these
side by side to obtain a design with nR = 3, nC = 36 and nL = 9.

Finally suppose that E ≺ R ∧ C. Because R ∧ C is not in F , there is
no constraint on the relationship between L and R ∧ C. For example, in
the designs in Figures 17(a) and 18 letters are balanced with respect to
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A B C D E F G
B C D E F G A
G A B C D E F
C D E F G A B
D E F G A B C
F G A B C D E

A B C D E F G
B C D E F G A
C D E F G A B
D E F G A B C
E F G A B C D
F G A B C D E

(a) (b)

Figure 17: Two 3 × 7 row–column designs in which letters and columns
are strictly balanced with respect to each other and strictly orthogonal to
rows

A A A A A B C D E F C D E F B
B C D E F C D E F B E F B C D
C D E F B A A A A A D E F B C
D E F B C E F B C D F B C D E

Figure 18: A 2×15 row–column design in which letters are strictly balanced
with respect columns, but not vice versa, and both are strictly orthogonal
to rows

R ∧ C, whereas in the designs in Figures 17(b) and 19 they are not. As
with orthogonal arrays of strength two, we ignore this distinction here. In
both designs in Figure 17, and in the design in Figure 19, L ./ C. This is
not true in the design in Figure 18.

Thus we have the following possible structures.

C.1 An m-resolved strictly balanced block design, for m ≥ 1, with parti-
tions into letters (L), blocks (B) and districts (D) as in Example 1.3.
Then F = {L,B,D}. See Section 15.

C.2 A Youden square: a row–column design in which R∧C = C∧L = E,
letters and columns are both strictly orthogonal to rows and L ./ C,
or the generalization that does not demand that C ∧ L = E. Here
F = {R,C,L}. See Section 11.

C.3 A row–column design in which R ∧ C = E, rows are strictly or-
thogonal to both columns and letters, L B C and nC > nL. Here
F = {R,C,L}.

C.4 A row–column design in which R ∧C 6= E, rows are strictly orthog-
onal to both columns and letters, and L ./ C. Here F = {R,C,L}.
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B A D C F E H G J I L K N M P O
E F G H A B C D M N O P I J K L
C D A B G H E F K L I J P O N M
I J K L M N O P E F G H A B C D
D C B A H G F E L K J I O P M N
M N O P I J K L A B C D E F G H

Figure 19: A 3× 16 row–column design in which letters and columns are
strictly balanced with respect to each other and strictly orthogonal to rows

C.5 A row–column design in which R ∧ C 6= E, rows are strictly or-
thogonal to both columns and letters, L B C and nC > nL. Here
F = {R,C,L}.

10.5 Three partitions: one relation of orthogonality and two of
balance

Suppose that F = {F,G,H} where F ⊥ G and the relation between
H and each of the others is non-orthogonal strict balance in at least one
direction. If F is supreme then, up to renaming, either F ≺ G or F⊥G.

If F ≺ G it is convenient to rename F , G and H as B, D and L
respectively, as in Example 1.3. If L is strictly balanced with respect to
both B and D then F is a nested balanced block design. If, in addition,
L ∧ D = E, then F is a nested BIBD : see Section 12. If L ∧ D 6= E
then L∧B may or may not be E. Possible linear models, and consequent
methods of estimation, are given in Section 6.2.1.

In this case, Fisher’s inequality gives nB > nD ≥ nL. Thus it is
possible to have L ./ D but not to have L ./ B.

On the other hand, if nL ≥ nB > nD then it may be possible to
have both B B L and D B L. Figure 20 shows an example. Then every
pair of blocks concur in at least one part of L, and so L ∧ D 6= E. In
Figure 20, nB = nL and so B ./ L. If each letter in Figure 20 is replaced
by two letters, so that kB = 6 and nL = 8, then we have an example with
nL > nB > nD.

The third possibility is nB > nL > nD with D B L B B. Figure 21
shows such a design with nD = 2, nL = 6 and nB = 10.

If F⊥G then, for clarity, rename F , G and H as R, C and L so that the
parts of R and C can be visualized as the rows and columns of a rectangle.
It may or may not be the case that R ∧ C = E.

Since kR = nCkR∧C , if nL divides nC then the relationship between L
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A
B
C

A
B
D

A
C
D

B
C
D

Figure 20: A nested block design in which blocks (shown as columns) and
districts (shown as rectangles) are both strictly balanced with respect to
letters

A
B
F

A
E
F

B
D
E

B
C
E

C
D
F

A
B
D

A
C
D

A
C
E

B
C
F

D
E
F

Figure 21: A nested block design in which districts (shown as rectangles)
are strictly balanced with respect to letters and letters are strictly balanced
with respect to blocks (shown as columns)

and R cannot be generalized binary unless L⊥R, which is contrary to our
assumptions. Hence nL 6= nC . Similarly, nL 6= nR.

Since both relations involving L are not orthogonality, Section 7.2
shows that we need to consider adjusted orthogonality. If L B R then
VLR = VL ∩ V ⊥U , so Proposition 8.4 shows that it is impossible for R
and C to have adjusted orthogonality with respect to L. The same is
true if L B C. Thus adjusted orthogonality requires R B L, C B L and
nR + nC − 1 ≤ nL.

A B C D A B
B C D A A D
C D A B B C
D A B C C A
A B C D C D
B C D A D B

A D C B A D
B B D A C C
D C B C D A
C A D A B B
C C B D A A
B D A D B C

A B C D A B
B A D C B C
C D A B C D
D C B A D A
A C B D A C
C B D A B D

(a) (b) (c)

Figure 22: Three non-isomorphic row–column designs in which letters are
strictly balanced with respect to both rows and columns
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A H G F J E
F A I C H D
I B J G D A
G F B D E C
E J C H I B

Figure 23: Combinatorial design in which rows and columns are both
balanced with respect to letters but do not have adjusted orthogonality
with respect to letters

C A B B A C F D E B A C D E F
E F C D F A E C B D F A E C B
D E A F B E C A D F E B C A D
F B D E C D B F A C D E B F A

Figure 24: A 4×15 row–column design in which rows are strictly balanced
with respect to letters, which are in turn strictly balanced with respect to
columns

If nL < nR and nL < nC then it may be possible to have L B R
and L B C. Figure 22 shows three non-isomorphic such designs with
R ∧ C = E, nL = 4 and nR = nC = 6. The one in Figure 22(a) was
given in [136]; that in Figure 22(b), which was used for an experiment
on strawberries, was given in [134]. A complete enumeration of species
for such designs of this size is in [166], which was presented by Côté at
the BCC in Surrey (1991). In such a design, every vector in VL ∩ V ⊥U
makes the same angle with (VR + VC)⊥, with the result that estimates of
all differences like τi − τj have the same variance. Such a design cannot
have adjusted orthogonality. Some authors include designs like this in
generalized Youden designs if R ∧ C = E: see [108, 109].

If nL > nR and nL > nC then it may be possible to have R B L and
C B L. This occurs in the design in Figure 4, which does have adjusted
orthogonality. Figure 23 shows a design with all the same properties except
that it does not have adjusted orthogonality. These designs are called
double arrays in [116, 118].

The third possibility is, up to interchanging rows and colunms, that
nR < nL < nC and R B L and L B C. Again, adjusted orthogonality is
impossible. Figure 24 shows an example.

Therefore, we have the following possibilities.

D.1 A nested balanced incomplete-block design with small blocks (B)
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nested in large blocks (D), in which letters (L) satisfy L B B, L B D
and L ∧ D = E, where nD > nL so that D is not balanced with
respect to L. Here F = {B,D,L}.

D.2 A nested balanced incomplete-block design with small blocks (B)
nested in large blocks (D), in which letters (L) satisfy L B B, L B D
and L∧D = E, where nD = nL so that L ./ D. Here F = {B,D,L}.

D.3 A nested balanced block design with small blocks (B) nested in large
blocks (D), in which letters (L) satisfy L B B, L B D, L ∧D 6= E
but L ∧ B = E, where nD > nL so that D is not balanced with
respect to L. Here F = {B,D,L}.

D.4 A nested balanced block design with small blocks (B) nested in large
blocks (D), in which letters (L) satisfy L B B, L B D and L∧B 6= E,
where nD > nL so that D is not balanced with respect to L. Here
F = {B,D,L}.

D.5 A nested balanced block design with small blocks (B) nested in large
blocks (D), in which letters (L) satisfy L B B, L B D, L ∧D 6= E
but L∧B = E, where nD = nL so that L ./ D. Here F = {B,D,L}.

D.6 A nested balanced block design with small blocks (B) nested in large
blocks (D), in which letters (L) satisfy L B B, L B D and L∧B 6= E,
where nD = nL so that L ./ D. Here F = {B,D,L}.

D.7 Small blocks (B) are nested in large blocks (D), and letters (L) are
arranged so that B B L and D B L. Also, nL = nB , so that B ./ L.
Here F = {B,D,L}.

D.8 Small blocks (B) are nested in large blocks (D), and letters (L) are
arranged so that B B L and D B L. Also, nL > nB , so that L is
not balanced with respect to B. Here F = {B,D,L}.

D.9 Small blocks (B) are nested in large blocks (D), and letters (L) are
arranged so that D B L B B, where nB > nL > nD, so that B is
not balanced with respect to L, and L is not balanced with respect
to D. Here F = {B,D,L}.

D.10 A row–column design in which letters (L) are arranged so that L B R
and L B C, nL < nR and nL < nC . Here F = {R,C,L}.

D.11 A row–column design in which letters (L) are arranged so that
R B L, C B L, and adjusted orthogonality is achieved. Here
F = {R,C,L}. This is called triple array when R ∧ C = L ∧ C =
L ∧R = E. See Section 13.
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A B A B C
A C B C A
B C C A B
A B C A B
C A B A C
B C A B C

Figure 25: A design for 30 units, with partitions F , G and H into letters,
rows and columns, in which G ./ H, F B G, F B H and F is balanced
with respect to {G,H}: blank cells denote empty row-column intersections

D.12 A row–column design in which letters (L) are arranged so that R B
L, C B L, and adjusted orthogonality is not achieved, even though
nL ≥ nR + nC − 1. Here F = {R,C,L}.

D.13 A row–column design in which letters (L) are arranged so that R B
L, C B L, and adjusted orthogonality cannot be achieved, because
nL < nR + nC − 1. Here F = {R,C,L}.

D.14 A row–column design in which letters (L) are arranged so that R B
L B C. Here F = {R,C,L}.

10.6 Three partitions: three relations of balance

Suppose that F = {F,G,H} and all the pairwise relations are non-
orthogonal strict balance in at least one direction. Then F is supreme.
There is no loss of generality in assuming that nF ≤ nG ≤ nH .

If nF = nG = nH then F ./ G, F ./ H and G ./ H. As Section 9.4
shows, either each partition is balanced with respect to the other pair, or
none is.

If nF = nG < nH then it can happen that F and G have adjusted or-
thogonality with respect to H, in which case each is balanced with respect
to the other pair, as shown in Section 9.4. Figure 15 shows an example.
Such designs were called pergolas in [181], which was presented by Preece
at the 1997 BCC at Queen Mary University of London. It may be possible
to have such balance without adjusted orthogonality.

If nF < nG = nH then F may or may not be balanced with respect to
{G,H}. Figure 25 shows an example in which NFGNGHNHF is completely
symmetric because NGH is completely symmetric and NFG = NFH . In
fact, the triple (F,G,H) satisfies condition (9.3). However, neither G nor
H is balanced with respect to the other pair.
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In a real experiment, it is unlikely that two inherent partitions would
have a non-orthogonal relation of strict balance. If partition L is of interest
and partition R is not then the desirability of variance balance means that
it is more usual to have L B R than R B L. If R is inherent then there is
usually no need for it to be balanced with respect to any subset of other
partitions. Thus statisticians have not investigated the other possibilities.

Therefore, we have the following list of possible structures, which is
not divided as finely as the lists in previous subsections. In every case,
F = {F,G,H}.

E.1 F ./ G, F ./ H and G ./ H, and each partition is balanced with
respect to the other pair. See Section 14.

E.2 F ./ G, F ./ H and G ./ H, but no partition is balanced with
respect to the other pair.

E.3 F ./ G, F B H, G B H, nF < nH , and F and G have adjusted
orthogonality with respect to H, which forces each of F and G to be
balanced with respect to the other pair.

E.4 F ./ G, F B H, G B H, nF < nH , and F and G do not have
adjusted orthogonality with respect to H, but nonetheless each of F
and G is balanced with respect to the other pair.

E.5 F ./ G, F B H, G B H, nF < nH , and neither of F and G is
balanced with respect to the other pair.

E.6 F B G, F B H, G ./ H, nF < nH and F is balanced with respect
to {G,H}.

E.7 F B G, F B H, G ./ H, nF < nH and F is not balanced with
respect to {G,H}.

E.8 F B G B H and nF < nG < nH .

11 Youden squares and their generalizations

11.1 A rectangle with one set of letters

Definition An incomplete-block design is symmetric if both partitions
are uniform and they have the same number of parts.

This word ‘symmetric’ is standard, but it is unfortunate, because it
does not imply that the incidence matrix is symmetric or that there is an
automorphism interchanging the two partitions. The adjective square is
also used: see [45, 52].
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A B C D E F G
B D F E G A C
C F E A B G D

1 3 2
2 1 3
3 1 2

2 1 3
3 2 1

3 2 1
2 3 1

(a) (b)

Figure 26: Different representations of the same 3× 7 Youden square

Definition An n × m Youden square is an n × m rectangle in which
R∧C = E and R⊥C, so that there is exactly one cell in each row-column
intersection, with one of m letters allocated to each cell, in such a way that
(i) each letter occurs once in each row and (ii) the allocation of letters to
columns forms a balanced binary incomplete-block design. Thus n < m.

These designs were introduced by Youden in [230]. His first example,
with n = 3 and m = 7, is shown in Figure 26(a). If the roles of letters
and columns are interchanged, the design can be represented as an m×m
square with m(m−n) empty cells, as in Figure 26(b). This representation
led to the confusing name ‘Youden square’, which has been used since [80].

Deletion of any row of an m ×m Latin square gives an (m − 1) ×m
Youden square. Yates had recommended these in [226]. How can they be
constructed if n < m− 1?

In [230], Youden wrote that ‘some patience is required to obtain’ the
rectangular layout from the incomplete-block design. In [196], Smith and
Hartley proved that this is always possible, whether or not the incomplete-
block design is balanced. In fact, this follows from Hall’s Marriage Theo-
rem [89], as shown in [28, Chapter 11]. There is a greedy algorithm, where
one row is constructed at a time as a ‘system of distinct representatives’
of the columns; then induction is used. This argument generalizes easily
to situations where condition (i) is weakened to ‘all letters appear equally
often in each row’ and/or the words ‘binary incomplete’ in condition (ii)
are weakened to ‘generalized binary but not orthogonal’, in which case n
may be greater than m.

Relaxing condition (ii) allows a design such as that in Figure 27, given
in [98]. Condition (i) was weakened as above in [4, 192]. Doing both gives
what Kiefer called regular generalized Youden designs in [109].

However, when both conditions are weakened to ‘strictly balanced but
not orthogonal’ then the method of constructing transversals by using
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A C C B D B D
D A B C C D A
B D D A A C B
C B A D B A C

Figure 27: A regular generalized Youden square, relaxing condition (ii),
shown with rows and columns interchanged

Hall’s Marriage Theorem is no longer guaranteed to work, and so Kiefer
had to give many explicit constructions in [109]. Further non-regular gen-
eralized Youden designs are in [15, 188].

Preece gave many direct constructions of Youden squares, and classified
them up to various notions of isomorphism, in [146, 158, 160, 165]. The
review in [158] was presented to the 1989 BCC in Norwich.

11.2 Double Youden rectangles

If a Youden square is a poor man’s Latin square, what should a poor
man’s Graeco-Latin square be? We already have partitions R, C and L
with nR < nC = nL. Should the new partition G have nG = nR or
nG = nC? If nG = nC then we have three partitions with pairwise strict
balance. In this case, as we saw in Section 9, we need to consider their
ternary relation as well, so we defer this to Section 14.3.

Definition An n × m double Youden rectangle is an n × m rectangle
with partitions R (rows), C (columns), L (Latin letters) and G (Greek
letters) such that nR = nG = n < m, nC = nL = m, R⊥C, R⊥L, G⊥C,
G⊥L, R ./ G and C ./ L, and R ∧ C = R ∧ L = G ∧ C = G ∧ L = E.
This means that every row meets every column and every Latin letter in
exactly one cell, every Greek letter meets every Latin letter and every
column in exactly one cell, the relation between Latin letters and columns
is a symmetric binary balanced block design, while the relation between
Greek letters and rows is a symmetric generalized binary balanced block
design.

Thus removal of G leaves a Youden square, while removal of L leaves
one of the weak generalizations of Youden squares. This name was given
in [22], but the concept was not new. Clarke had given the 4 × 5 double
Youden rectangle in Figure 28 in [59], and Preece had given the 4 × 13
double Youden rectangle in Figure 29 in [156]. Clarke also gave a 5 × 6
double Youden rectangle in [59] and a 4×7 one in [60], while Freeman gave
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B α E α D δ A β C γ
C β A γ E β B δ D α
D γ C δ A α E γ B β
E δ D β B γ C α A δ

Figure 28: A 4× 5 double Youden rectangle

A ♠ 3 ♣ 4 ♥ 7 ♥ 8 ♣ 2 ♣ 10 ♦ J ♠ 5 ♠ 6 ♦ Q ♦ K ♠ 9 ♥
2 ♦ 5 ♥ 3 ♦ 4 ♠ 6 ♠ 7 ♦ 8 ♠ 9 ♣ 10 ♣ K ♥ J ♥ Q ♣ A ♦
4 ♣ J ♦ 6 ♣ K ♦ 5 ♦ 9 ♠ 7 ♣ 8 ♥ Q ♥ 10 ♠ A ♣ 2 ♥ 3 ♠
10 ♥ 2 ♠ Q ♠ 5 ♣ A ♥ 6 ♥ 3 ♥ 4 ♦ 9 ♦ J ♣ 7 ♠ 8 ♦ K ♣

Figure 29: A 4× 13 double Youden rectangle

some designs in [82] which Preece was able to interpret in [150] as double
Youden rectangles, including one of size 6× 7. This is useful because this
size is excluded from the construction by Hedayat, Parker and Federer in
[93], which uses an (m−1)×(m−1) Graeco-Latin square with a transversal
to build an (m − 1) ×m double Youden rectangle. Saha and Das gave a
construction for size (m − 1) ×m when m is odd in [186]. Some of these
small double Youden rectangles are also given in [145]. Several of size
5× 11 are in [152].

The review paper [158] seems to have spurred Preece and his collabo-
rators to find further double Youden rectangles. One of size 6×11 is given
in [159]. Preece gave several 7 × 15 double Youden rectangles in [160],
including the interesting one in Figure 30. Here the Youden square given
by ignoring the Greek letters can be obtained from projective geometry
using the methods of [75] and [97, Section 17.5]: it admits the alternating
group A7 as a group of automorphisms. An interesting connection with
Kirkman’s schoolgirls problem is in [88].

Christofi enumerated 4× 5 and 5× 6 double Youden rectangles in [57],
which was presented at the BCC in Surrey (1991), and those of size 6× 7
in [58]. Preece gave some double Youden rectangles of sizes 8× 15, 5× 11
and 6×11 in [161], [162] and [165] respectively. The last two were presented
at the BCCs in Surrey (1991) and Stirling (1995).

In [214], Vowden gave a construction for p × (2p + 1) double Youden
rectangles for all primes p congruent to 3 modulo 4, excluding the size
3 × 7, for which there is no such rectangle. This was augmented in [172]
by the results of a computer search to give double Youden rectangles of
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A α H α K δ M η E γ J ζ C β B ε I α O ζ N δ F γ L η G β D ε
B β C ζ H β L ε N α F δ K η D γ E ζ J β I η O ε G δ M α A γ
C γ E δ D η H γ M ζ O β G ε L α B δ F η K γ J α I ζ A ε N β
D δ M β F ε E α H δ N η I γ A ζ O γ C ε G α L δ K β J η B ζ
E ε B η N γ G ζ F β H ε O α J δ C η I δ D ζ A β M ε L γ K α
F ζ K ε C α O δ A η G γ H ζ I β L β D α J ε E η B γ N ζ M δ
G η J γ L ζ D β I ε B α A δ H η N ε M γ E β K ζ F α C δ O η

Figure 30: A 7× 15 double Youden rectangle

sizes p×(2p+1) and (p+1)×(2p+1) for p in {5, 7, 9, 11}. Vowden adapted
his construction to give p × (2p + 1) double Youden rectangles for prime
powers p congruent to 1 modulo 4, excluding p = 5, in [215]. Further
computer searches, described in [137], gave positive results for sizes 5×21,
6× 31 and 8× 57 in [173], and size 9× 37 in [138].

12 Nested balanced incomplete-block designs

12.1 Small blocks inside large blocks

In the original idea for nested BIBDs, there are two inherent uniform
parititions B and D of Ω. The parts of B are small blocks, and the parts
of D are large blocks, each comprising kD/kB small blocks. Given a set
of nL letters, the aim is to allocate letters to experimental units in such a
way that L and B form one BIBD and L and D form another.

Definition Uniform partitions B, D and L on a set Ω form a nested
balanced-incomplete block design if B ≺ D and L is binary balanced with
respect to each of B and D separately but not orthogonal to either.

Preece defined these designs in [148], where he cited two previous uses
[106, 111] in scientific experiments, and, as was usual for him, gave a table
of designs for small sizes, many of them made by cyclic development from
one or more initial small blocks (parts of B) and large blocks (parts of D).

Constructions based on finite fields were given in [64, 101]. Designs
with nD = nL, kD = nL − 1 and kB = 2 were given for all odd nL in [36].

Morgan included such designs in his survey chapter [119]. Preece talked
about them at the 1999 BCC in Kent, attended by Morgan. As a result,
they teamed up, and together with Rees, generalized the concept, first to
doubly nested BIBDs, and then to multiply nested BIBDs. The former
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have B ≺ D1 ≺ D2 with L binary balanced with respect to each of B,
D1 and D2, while the latter is the obvious generalization. Paper [170] is
about doubly nested BIBDS, while [121] is a much expanded and updated
survey, including the observation that most designs for whist tournaments
can be considered as nested BIBDS: see [14].

As discussed in Section 6.2.1, if B has fixed effects then there is no
benefit from having L balanced with respect to D. Preece was clear in
[148] that he was assuming random effects of small blocks. As the ratio
σ2
B/σ

2 increases, there is less need to have L balanced with respect to D.

12.2 Nested row–column designs

These ideas can be extended to the poset block structure in Exam-
ple 4.4, with partitions B, R and C into blocks, rows and columns. If B,
R and C all have fixed effects, then it is desirable to allocate letters in
such a way that L is balanced with respect to {R,C,B}. As shown in
Section 9.2, this is equivalent to L being balanced with respect to {R,C}.

Some nested row–column designs with this property and with L being
binary with respect to B are given in [8, 9, 56, 124, 194, 200, 203, 209,
210, 211, 212]. The lack of specified binary relations between L and B, L
and R, and L and C takes us somewhat outside the scope of this paper,
but there is an excellent survey in [119]. The square in Figure 14 gives an
example with nB = 1.

If nL < kB then it seems intuitive that the best designs should be
among those for which L is binary with respect to blocks. However, Bagchi,
Mukhopadhyay and Sinha [20] and Chang and Notz [55] showed indepen-
dently in 1990 that, under fixed effects, a design like the one in Figure 13,
in which, in every block, each row has the same set of letters, gives the
smallest average variance of the estimators of differences τi − τj .

On the other hand, if rows and columns have random effects with
small variances then the arguments in [24, 56] show that there is a reason
to allocate the parts of L in such a way that L B G for all G in {R,C,B}.
That is, letters should be allocated so that they form a BIBD in rectangles,
in rows and in columns separately. Several constructions for this are given
in [148]. One with seven letters in seven 2 × 3 rectangles is obtained by
developing

2 3 5
0 6 4

modulo 7. In [122], Morgan and Uddin gave an inequality involving σ2,
σ2
R, σ2

C and σ2
B which determines exactly when such a design is better

than one like that in Figure 13.
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13 Triple arrays

13.1 Definitions and examples

Definition Consider an n × m rectangle in which one of v letters is
allocated to each cell. This is a double array if the partitions R (rows),
C (columns) and L (letters) are all uniform with pairwise binary relations
such that R⊥C, R B L and C B L. It is a triple array if it is a double
array and, additionally, R and C have adjusted orthogonality with respect
to L. Thus we have an n × m rectangle with precisely one unit in each
row-column intersection. Letters are allocated to units, in such a way that
no letter is repeated in any row or column. It is a double array if it satisfies
the two conditions (i) every pair of rows has the same number of letters in
common, and (ii) every pair of columns has the same number of letters in
common. If, in addition, (iii) every row has nm/v letters in common with
every column, then it is a triple array.

Figure 4 shows a triple array with n = 5, m = 6 and v = 10.
These definitions were given by McSorley, Phillips, Wallis and Yucas

in [118], but without mentioning ‘adjusted orthogonality’. Instead, they
gave condition (8.5), as Preece had done in [145, 147]. They mentioned
one design given in [143] and one in [145], and referred to a table of design
parameters in [151]. Being unaware of the literature on adjusted orthogo-
nality, they did not realise that Anderson and Eccleston [12] and Bagchi
and Shah [21] had also written about such designs, and they proved The-
orem 8.5, which Bagchi had published in [18].

Preece became aware of [118] before publication. He began joint re-
search with its authors, adopted the name ‘triple arrays’ with enthusiasm,
and talked about them in the 2003 BCC in Bangor: see [139]. McSorley
also talked about related work there.

Triple arrays which meet the bound in Theorem 8.5 are very interest-
ing. They were called extremal in [37], which, being unpublished, had not
been seen by McSorley and his co-authors. The following two examples of
extremal triple arrays are taken from [37].

Example 13.1 Replacing the letters A–I in Figure 4 lexicographically by
the unordered pairs from {1, 2, 3, 4, 5} gives the design in Figure 31. The
rows can be labelled 1–5 and the columns labelled by six pentagons with
vertex-set {1, 2, 3, 4, 5} which form a single orbit under the action of the
alternating group A5. Then the unordered pair in row i and column j is
the edge opposite to vertex i in pentagon j.

Thus A5 acts as a group of automorphisms of the array in Figure 31
fixing each of the three partitions. In the action on ordered pairs from
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34 45 35 25 24 23
45 35 34 14 13 15
15 24 12 45 25 14
12 13 25 23 15 35
23 12 14 13 34 24

Figure 31: Relabelled version of Figure 4

123 124 125 126 134 135 136 145 146 156
456 356 346 345 256 246 245 236 235 234
23 24 25 26 34 35 36 45 46 56
13 14 15 16 56 46 45 36 35 34
12 56 46 45 14 15 16 26 25 24
56 12 36 35 13 26 25 15 16 23
46 36 12 34 26 13 24 14 23 16
45 35 34 12 25 24 13 23 14 15

Figure 32: An extremal triple array with n = 6, m = 10 and v = 15

{1, 2, 3, 4, 5}, the irreducible subspaces of this action have dimensions 1, 4
and 5. Because rows and columns are both balanced with respect to letters,
dim(VLR) = n − 1 = 4 and dim(VLC) = m − 1 = 5. Both subspaces are
fixed by the automorphisms, so they must be the two non-trivial irreducible
subspaces and so they are orthogonal to each other. The discussion in
Section 8.2 shows that this array has adjusted orthogonality. It is an
extremal triple array because n+m− 1 = 10 = v.

Example 13.2 Figure 32 shows an extremal triple array with n = 6,
m = 10 and v = 15. The letters are shown as unordered pairs from
{1, 2, 3, 4, 5, 6}; the rows are labelled 1–6 in natural order, and the columns
are labelled by the partitions of {1, 2, 3, 4, 5, 6} into two parts of size three.
The unordered pair in row i and column j consists of the two numbers in
the same part as i in partition j. The symmetric group S6 acts a group
of automorphisms of this design, and so a similar argument to that in
Example 13.1 shows that this is a triple array.

Sterling and Wormald gave extremal triple arrays of sizes 4× 9, 5× 16
and 6× 25 in [201].

Example 13.3 The non-extremal triple array shown in Figure 33 was
given by McSorley et al. in [118], thereby answering a question posed by
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e A R P G J E C D B g N S O L
Z f A B c d b T a K E h C H D
A Q M I C D U V F i Y E X B W
F a g b P M i d O J I Z L Q c
P L W f h U O g X V K J H Y T
U V b X Y S G N R c a W Z d e
K G H N M f T F h R S Q i e I

Figure 33: A non-extremal triple array with n = 7, m = 15 and v = 35

Preece at the 1973 BCC in Aberystwyth and listed in [151] as unresolved.
Here n = 7, m = 15 and v = 35. Phillips and Wallis described in [140]
how the design had been found by a computer search. Yucas showed in
[231] how it can be obtained from projective 3-space over GF(2), which
suggests an intriguing connection with the design in Figure 30.

13.2 The connection with symmetric BIBDs

Given an extremal triple array, construct a symmetric incomplete-block
design (in the usual combinatorialist’s sense) with v + 1 blocks of size n
as follows. The points are {u1, . . . , un, w1, . . . , wm}. Considered as a set
of points, block i is

{wj : letter i occurs in column j} ∪ {u` : letter i does not occur in row `}

for i = 1, . . . , v, and block v + 1 is {u1, . . . , un}.
The following, proved in [118] and [37], and was implicit in [6].

Theorem 13.4 The symmetric incomplete-block design made from an ex-
tremal triple array by the foregoing construction is balanced.

The common concurrence in this block design is n(v−m)/v, and so the
difference between the block size and this is nm/v, which is the number of
times that each letter occurs in the triple array, which I have been writing
as kL. As proved in [116], this is also the number of letters which any row
and column have in common.

Can we reverse the foregoing construction, and make the extremal
triple array from the symmetric BIBD? Here is another piece of interest-
ing history. In 1966, Agrawal published several papers in this area. Paper
[6] is particularly relevant: it constructs some of the same designs that
Preece was constructing, and it gives condition (8.5). It is not surprising
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that Preece and Agrawal were unaware of each other’s work published in
the same year, but Preece became aware of Agrawal’s work and cited it in
[151].

Given the symmetric BIBD, we label the rows of the n×m rectangle
by the points in the first block and label the columns by the other points.
Then ignore that block. For row i, write down the set of other blocks that
do not contain point i; for column j, write down the set of other blocks
that do contain point j. Put the block-names in column j in any order:
then it is simply a matter of re-arranging the names in each column in
such a way that each row has the correct set of names.

‘Simply’? This runs into exactly the same problem that we met for non-
regular generalized Youden designs in Section 11.1: the method of selecting
a system of distinct representatives used in Hall’s Marriage Theorem is no
longer guaranteed to work. In fact, when n = 3, m = 4 and v = 6 (so that
kL = 2) there is a symmetric BIBD but no triple array. This leads to the
following conjecture in [118].

Conjecture 13.5 If kL > 2 then the foregoing construction can be re-
versed to give an extremal triple array from the symmetric BIBD.

Agrawal wrote in [6] that ‘In the examples tried by the author it was
found that if kL > 2 such arrangement is always possible (we have no
mathematical proof for the above observation).’ (His notation has been
changed to match that used here.) In [125], Nageswara Rao says that the
fact that this ‘arrangement of symbols is always possible can be shown
with the help of generalized systems of distinct representatives’, yet does
not cite the earlier paper [178], of which he was apparently a co-author,
which claims to give a proof, not excluding the case kL = 2. The procedure
given in [178] finds a set of distinct representatives for each row, with no
check to ensure that there are no repeats in any column. Moreover, the
final paragraph gives a different short proof (with acknowledgement to the
referee) which gives a design which does not have adjusted orthogonality.
Wallis and Yucas pointed out flaws in this proof in [218].

Meanwhile, Anderson and Eccleston claimed in [12] that algorithms
implemented in software described in [104] and [185] always succeed in
creating the row–column design. More detail about the first is in [103].

Here is a way of thinking about the problem. We know the set Ri of
m letters that should go in row i, and we know the set Cj of n letters that
should go in column j. Write the set Ri ∩ Cj in cell (i, j) to give an array
like that in Figure 34. Can we choose just one letter in each cell (an array
of distinct representatives) in such a way that the chosen letters in each
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E H J F I J G H I E G J F G H E F I
D H J B I J C H I B C J B D H C D I
A D J A F J A C G C G J D F G C D F
A D E A B I A G I B E G B D G D E I
A E H A B F A C H B C E B F H C E F

Figure 34: Array of subsets to illustrate the problem of choosing distinct
representatives

row are distinct (and hence make up Ri) and similarly for columns? In
this particular case, the design in Figure 4 gives a solution.

Fon-Der-Flaass considered a more general version of this problem.
Given an n×m array, with a set Sij of letters in cell (i, j), can we choose
one letter from each cell in such a way that the chosen letters in each
row are all distinct, as are the chosen letters in each column? In [81], he
showed that this decision problem is NP-complete.

13.3 Paley triple arrays

If q is an odd prime power then there is a Hadamard matrix of or-
der 2(q + 1). Any Hadamard matrix can be normalized so that one row
has all of its entries equal to +1. If one column is also normalized, and
then that row and column are removed, the positions of the +1 entries in
the remaining (2q + 1) × (2q + 1) matrix form the incidence matrix of a
symmetric BIBD for 2q + 1 points in blocks of size q. These designs are
sometimes called Hadamard 2-designs: see [52, 96].

If the construction in Section 13.2 can be reversed, this design gives
an extremal q× (q+ 1) triple array. The triple arrays in Figures 4 and 31
are like this, as are many in [6, 143, 145, 151]. Preece pointed out in [151]
that a method given by Agrawal and Mishra in [7] could be used to give
an extremal 11× 12 triple array.

After Preece’s Adelaide talk in 1975, Seberry was motivated to find
such arrays. Her paper [187] originally showed Preece as a co-author,
but he was so furious at her submitting it without consulting him that
he wrote to the journal editor and asked for his name to be removed.2

That is why the paper starts with Preece’s explanation of the problem,
including condition (8.5), followed by the sentence ‘We thank D. A. Preece
for writing this introduction and now proceed to give our construction and

2Personal communication from JS.



Relations among partitions 53

some examples.’ The remainder of the paper gives constructions which
purport to prove the existence of an extremal q × (q + 1) triple array
whenever q is an odd prime power.

In [203], Street also proved this for odd prime powers q with q ≡ 3
(mod 4), constructing two series of designs not isomorphic to those given in
[187]. It was independently proved again for prime powers q ≡ 3 (mod 4)
in [37], this time explicitly excluding q = 3, for which it is not true.

In [18], Bagchi proved the result for odd prime powers q strictly greater
than 3, unless q ≡ 1 (mod 8).

Preece, Wallis and Yucas named these Paley triple arrays in [174], and
proved the following.

Theorem 13.6 If q is an odd prime power and q > 3, then there exists
an extremal q × (q + 1) triple array.

This is a very nice result, with explicit constructions given and verified.
However, the paper does not mention the results in [18] or [203], which
independently prove this for some congruence classes modulo 8. It does
cite [37, 187], but neither states their results nor finds fault with their
proofs. It does credit [10] with giving some ‘partial results’. Recently
Nilson showed in [129] that some of the constructions in [187] do not give
adjusted orthogonality, and Cameron3 has independently found similar
problems in [187].

13.4 Recent work

In [131], Nilson and Heidtmann followed up on the connection between
extremal triple arrays and symmetric BIBDs. They defined a property of
symmetric BIBDs called inner balance, which is achieved by the symmetric
BIBDs with 11 points in blocks of either size five or size six. The ensuing
theory enables them to prove that there are no extremal triple arrays for
the parameter sets left as undecided in [118]. They gave an infinite fam-
ily of parameter sets for potential symmetric BIBDs with inner balance.
Broughton [48] proved that there are no other possiblities.

Nilson and Öhman show in [132] how some Youden squares may be
used to construct extremal triple arrays. In particular, all Paley triple
arrays may be constructed like this. They also give a construction using
difference sets. Further constructions from difference sets are in [130].

The recent survey paper [217] largely consists of material copied ver-
batim from [118, 174]. It mentions none of the literature on adjusted
orthogonality.

3Personal communication from PJC.
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14 Universal balance

14.1 Definitions and results

This section picks up the ideas of Section 9, while specializing them
to insist that every partition in the set is balanced with respect to every
subset of the others. It introduces the term ‘universal balance’ as well as
Theorem 14.2 and Conjecture 14.4, in an attempt to pull together some
different pieces of work into a single framework.

Recall that if L is a set of partitions of Ω then VL =
∑
L∈L VL and PL

denotes the matrix of orthogonal projection onto VL. Moreover, partition
F is balanced with respect to L if X>F (Ie−PL)XF is completely symmetric
but not zero. The insistence on ‘not zero’ ensures that dim(VL∪{F}) =
dim(VL) + nF − 1.

Definition Let F be a set of partitions of Ω. Then F has universal
balance if all pairwise relations between distinct partitions in F are gener-
alized binary and, whenever F ∈ F and L ⊆ F \ {F}, then F is balanced
with respect to L but VF is not geometrically orthogonal to VL.

Taking L to be ∅ in the above definition shows that if F has universal
balance and F ∈ F then F is uniform. Likewise, if F ∈ F , G ∈ F and
F 6= G then F ./ G and so nF = nG. Write m for the common value of
nF for F in F .

These remarks give an inductive proof of the following result, which is
stated in [13].

Theorem 14.1 If F has universal balance, |F| = s, and every partition
in F has m parts of size k, then 1 + s(m− 1) ≤ e = mk.

Write QL for PL − PU , simplifying Q{R} to QR and Q{R,C} to QRC
as in Section 9. Then the arguments used in Section 8.1 show that the
following are equivalent:

(i) F is balanced with respect to L but VF is not geometrically
orthogonal to VL;

(ii) there is some scalar µ in (0, 1) such that QFQLQF = µQF . (14.1)

When condition (14.1) is satisfied, the proof underlying Theorem 7.1(v)
shows that

QL∪{F} = QL + (1− µ)−1(QF −QLQF −QFQL +QLQFQL). (14.2)
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When L = {G} and F and G are partitions into m parts of size k
whose pairwise relation is generalized binary then the value of µ in condi-
tion (14.1) is determined by the values of m and k. Writing this common
value as µ1, expression (7.2) shows that

(1− µ1)QRC = QR +QC −QRQC −QCQR (14.3)

whenever F has universal balance and R and C are distinct partitions
in F .

Let L be a third such partition. Then there is a scalar µ2 in (0, 1) such
that

(1− µ1)−1QL(QR +QC −QRQC −QCQR)QL = µ2QL,

which implies that

2µ1QL −QLQRQCQL −QLQCQRQL = µ2(1− µ1)QL

and hence that

QLQRQCQL +QLQCQRQL = (2µ1 − µ2 + µ1µ2)QL. (14.4)

Pre- and post-multiplication of equation (14.4) by X>L and XL respectively
gives condition (9.2); pre- and post-multiplication by QR or QC prove a
stronger version of Proposition 9.3(ii) which includes the fact that the
value of µ2 does not depend on which one of {R,C,L} is distinguished.

However, when |L ∪ {F}| ≥ 4 then the value of µ in condition (14.1)
can be different for different choices of the distinguished partition. Exam-
ples of this were given in [11, 63, 145, 157].

After some manipulation, expression (7.2) and equations (14.1), (14.2),
(14.3) and (14.4) show that if {R,C,L} has universal balance then

(1− µ1)(1− µ2)QRCL = (1− µ1)(QR +QC +QL)

− (QRQC +QCQR +QRQL +QLQR +QCQL +QLQC)

+ (QRQCQL +QLQCQR +QCQLQR +QRQLQC

+QLQRQC +QCQRQL).

Hence induction gives the following.

Theorem 14.2 If F has universal balance then QF is a linear combina-
tion of products of the matrices QF for F in F .
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Corollary 14.3 If F has universal balance, L ⊂ F and F ∈ F \ L then
X>F QLXF is a sum of matrices of the form

NFL1
NL1L2

· · ·NLrF

where (L1, L2, . . . , Lr) is a sequence of partitions in L, possibly having
repeated entries.

Conjecture 14.4 If F has universal balance then QF is a linear combi-
nation of matrices of the form

QF1QF2 · · ·QFr +QFr · · ·QF2QF1

for sequences (F1, F2, . . . , Fr), with no repeated entries, of partitions in F .

Apart from the ‘non-zero’ check, this would imply that F has universal
balance if, whenever L ⊂ F and F ∈ F \ L and (L1, L2, . . . , Lr) is a
sequence of distinct partitions in L, then the matrix

NFL1
NL1L2

· · ·NLrF +NFLr
· · ·NL2L1

NL1F

is completely symmetric.

14.2 Sets of partitions with universal balance

Assume that s ≥ 3, so that condition (9.2) must be satisfied for all sets
of three partitions in F . We know only three families of incidence matrices
which satisfy this and the more general condition given at the end of
Section 14.1. Those in Section 14.2.1 have every pairwise incidence matrix
equal to Jmm − Im, and there is a direct construction of the partitions on
the set Ω. For those in Section 14.2.2, each pairwise incidence matrix is
one of only two possibilities, which are the transposes of each other and
commute with each other. The pairwise incidence matrices of those in
Section 14.2.3 satisfy the stronger condition (9.3). For these last two, we
defer the construction of the designs until Section 14.3.

14.2.1 Constructions from orthogonal Latin squares Probably the
earliest example of universal balance to be identified has nF = m = kF +1
for all F in F . The starting point is a set of s − 2 mutually orthogo-
nal m ×m Latin squares with a common transversal, where s ≥ 2. Use
the common transversal to label the rows, columns and letters of each
square. Then Ω consists of the m(m − 1) cells not in that transversal,
and F = {R,C,L1, . . . , Ls−2}, where the parts of R, C and Li are rows,
columns and the letters of the i-th square. The common labelling ensures
that all of the incidence matrices NFG for F 6= G with {F,G} ⊆ F satisfy
NFG = Jmm − Im. See [5, 13, 94, 176, 193].
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14.2.2 Constructions from doubly regular tournaments Many of the
designs in [11, 145, 147, 203] belong to another infinite family. The design
in Figure 16(b) gives an example. Here NRC = I7 +A and NCL = NLR =
I7 + A>, where A(i, j) = 1 if j − i is a non-zero square in GF(7) and
A(i, j) = 0 otherwise. These matrices satisfy condition (9.2) but not the
stronger condition (9.3), or the intermediate one that NLRNRCNCL is
completely symmetric.

Given a directed graph with m vertices, its adjacency matrix A is the
m×m matrix with A(i, j) = 1 if there is an edge from vertex i to vertex j
and A(i, j) = 0 otherwise. The directed graph is called a doubly regular
tournament if A+A> = Jmm − Im and

AA> =
m+ 1

4
Im +

m− 3

4
Jmm, (14.5)

from which it follows that

A2 =
m+ 1

4
(Jmm − Im)−A (14.6)

and m ≡ 3 (mod 4). See [182] for more details.
Many doubly regular tournaments come from finite fields. If m is power

of a prime and m ≡ 3 (mod 4) then make a directed graph whose vertices
are the elements of GF(m) with an edge from i to j if j − i is a non-zero
square.

Suppose that e = mk and every partition in F has m parts of size k.
If there is a doubly regular tournament of size m and the parts of every
partition in F can be labelled by its vertices in such a way that either
(i) k = (m + 1)/2 and every m × m incidence matrix is equal to either
I +A or I +A> or (ii) k = (m− 1)/2 and every m×m incidence matrix
is equal to either A or A>, then equations (14.5) and (14.6) show that if
M is any product of a sequence of such incidence matrices then M +M>

is completely symmetric. Thus Theorem 14.2 shows that F has universal
balance unless there is some F in F and subset L of F \ {F} such that
X>F (Ie − PL)XF is zero.

Unlike the straightforward situation in Section 14.2.1, the scalar µ in
condition (14.1) is not determined by the values of m and k when s ≥ 3.
Draw a directed graph with s vertices, one for each partition, and an edge
from F to G if NFG includes A rather than A>. The value of µ depends
on the isomorphism class of this directed graph. When s = 3 it may be
a cycle or a total order. There are more possibilities as s increases. See
[3, 5, 13, 40, 63, 145, 169].
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14.2.3 Constructions for powers of four As noted in Section 1, many
combinatorialists think of block designs as incidence relations between dif-
ferent sets. Working in this mode, Cameron and Seidel developed systems
of linked symmetric designs in [50, 53], using permutation groups, Steiner
systems and quadratic forms. The pairwise incidence matrices satisfy con-
dition (9.3), and so Theorem 14.2 shows that if these are the incidence
matrices of F then F has universal balance.

Here is one way of producing the incidence matrices. Start with the
Steiner system S(5, 8, 24): see [52, 114]. Let Q be an octad in this, and let
P be the remaining set of 16 points. If u, w are distinct points in Q then
there are precisely 16 octads whose intersection with Q is {u,w}: their
intersections with P give the blocks of a symmetric BIBD with 16 blocks
of size six. Call this set of blocks Quw, and denote the incidence matrix
between P and Quw as N0,uw.

Let x be a point in Q \ {u,w}. Then each block of Qux intersects six
blocks in Quw in one point, the remainder in three points. Define a block
in Quw to be incident with one in Qux if they intersect in one point. Then

Nuw,ux is a linear combination of Nuw,0N0,ux and J16,16. (14.7)

Hence Nuw,uxNux,uw is a linear combination of Nuw,0N0,uxNux,0N0,uw

and J16,16, which is completely symmetric because both N0,uxNux,0 and
Nuw,0N0,uw are. Therefore the relation between Qux and Quw is another
symmetric BIBD with 16 blocks of size six.

Moreover, equation (14.7) shows that the triple P, Qux, Quw satisfies
the strong condition (9.3), as does the triple Qux, Quw, Qxw and any triple
of the form Qux, Quw, Quv with v in Q \ {u,w, x}. Thus the relations
among {P,Qux,Quw,Qxw} have universal balance, as have those among
P and any collection of Quz for z in Q \ {u}.

Can any of these systems of linked symmetric designs be realised as
partitions of a single set of size 96? Theorem 14.1 shows that s ≤ 6, so the
whole of the second one cannot be realised without linear dependence. For
s = 2, the pair of partitions simply gives a BIBD. Here we show how to
deal with the case s = 3, and defer the more general case until Section 14.3.

If Φ is a block of Quw then there are six blocks of Qux which intersect
it in a single point; conversely each point in Φ occurs in exactly one such
intersection. Hence the set of triples (p,Φ,Ψ) for which p ∈ P, Φ is a
block of Quw, Ψ is a block of Qux and Φ∩Ψ = {p} has size 96 and admits
{P,Qux,Quw} as a set of partitions with universal balance.

This construction for m = 16 is rather special and does not generalize.
However, this family of incidence matrices can also be constructed by using
quadratic forms, and this approach does generalize to higher powers of 4:
see Section 14.3.
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It is interesting to note that the approach of Cameron and Seidel was
based on the idea of equal angles between subspaces, very much as in
Section 7. In fact, the definition of universal balance at the start of this
section can be interpreted as saying that every vector in VF makes the
same angle with VL (and this angle is neither zero nor π/2). There is
more about the link with equal angles in [49], while [67] shows the interest
of this topic to workers in quantum information.

14.3 Multi-stage Youden rectangles

Double Youden rectangles provide one generalization of Youden squares.
A different generalization, given in [2, 10, 13, 40, 51, 54, 144, 145, 147, 151,
169, 171, 195, 216], has a set F of partitions with universal balance, and
another partition G orthogonal to all of these. Vowden presented [171] at
the Keele BCC in 1993 and [216] at the Stirling BCC in 1995, but the
authors later admitted4 that the second paper has errors. Many different
names have been used: multi-stage or multi-letter, combined with Youden
designs or squares or rectangles, and even Freeman–Youden rectangles.
Here I choose a name that allows me to present this subsection and the
next in a unified way.

Definition Let n < m. A multi-stage n ×m Youden rectangle consists
of a set F of at least two partitions of a set Ω of size nm into m parts of
size n, such that F has universal balance, together with a partition G of Ω
into n parts of size m such that F ∧G = E and F⊥G for all F in F .

If s = 2 then this is just a Youden square. Most other examples in the
literature have s = 3.

Proposition 14.5 If n < m and there exists a multi-stage n×m Youden
rectangle with s partitions into m parts then s ≤ n.

The proof is similar to the proof of Theorem 14.1.
For the case that n = m − 1, if there exists a set of s − 1 mutually

orthogonal m×m Latin squares then use s−2 of these in the construction
in Section 14.2.1, taking the common transversal to be the positions of
one letter in the remaining Latin square. Then the n other letters of that
Latin square give the parts of a partition G orthogonal to all the other
partitions.

For most other known sets of partitions with universal balance, the
irony is that the simplest way to construct them is to make a multi-stage
Youden rectangle and then ignore the distinguished partition G.

4See Mathematical Reviews 1675100
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0 1 2 3 4 5 6
0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
1 1 2 4 2 3 5 3 4 6 4 5 0 5 6 1 6 0 2 0 1 3
2 2 4 1 3 5 2 4 6 3 5 0 4 6 1 5 0 2 6 1 3 0
4 4 1 2 5 2 3 6 3 4 0 4 5 1 5 6 2 6 0 3 0 1

Figure 35: A multi-stage 4 × 7 Youden rectangle with four stages: the
columns give one stage, the first number in each cell gives the second stage,
and the other two numbers in each cell give the remaining two stages

Here is a construction for n ×m multi-stage Youden rectangles when
m is an odd prime power q, q ≡ 3 (mod 4) and n is either (q − 1)/2 or
(q+ 1)/2. It uses the doubly regular tournament derived from the set S of
non-zero squares in GF(q). For n = (q+1)/2, label the rows of a rectangle
by the elements of {0}∪S, and label the columns by the elements of GF(q).
The rows form the parts of G. For u ∈ {0} ∪ S, define the partition Fu
to be the kernel of the function mapping cell (i, j) to ui + j. Thus F0 is
just the partition into columns. If we use all (q+ 1)/2 such partitions, the
bound in Proposition 14.5 is achieved.

For n = (q − 1)/2, remove row 0 from the previous construction. To
avoid linear dependence, at most (q − 1)/2 of the partitions Fu can be
used.

Many constructions of multi-stage Youden rectangles given in the liter-
ature use a version of the above method. Figure 35 shows the result when
m = q = 7 and n = 4 = (q + 1)/2.

What about the constructions for powers of 4? After Preece’s talk
to the 1973 BCC in Aberystwyth, Cameron told him about the results in
Section 14.2.3, and they pooled their ideas to produce the designs withm =
16 and k = 6 or 10 in [167]. These include the 6× 16 design in Figure 36,
where the columns and the letters in each of the three positions in each cell
give four partitions with the incidence structure of {P,Qux,Quw,Qxw}.
The rows form another partition orthogonal to all of these.

It turns out that the Cameron–Seidel construction also has a link with
coding theory. A set like {P,Qux,Quw,Qxw} gives a linear code and can
be realised as a set of partitions. One like {P,Qux,Quw,Quv, . . .} gives a
non-linear code (a Kerdock code) and cannot.

In spite of being a co-author of [167], Cameron was still not comfortable
thinking in terms of different partitions of a single set. When he finally
adjusted to this mindset, he generalized 16 to arbitrary powers 4t of 4,
with blocks of size 22t−1 − 2t−1 or 22t−1 + 2t−1, and produced the designs
in both forms—as a set of incidence relations satisfying (9.3) and as multi-
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A B C D E F G H I J K L M N O P
A B C D E F G H I J K L M N O P
A B C D E F G H I J K L M N O P
H G F E D C B A P O N M L K J I
G H E F C D A B O P M N K L I J
B A D C F E H G J I L K N M P O
K L I J O P M N C D A B G H E F
J I L K N M P O B A D C F E H G
D C B A H G F E L K J I P O N M
M N O P I J K L E F G H A B C D
I J K L M N O P A B C D E F G H
E F G H A B C D M N O P I J K L
O P M N K L I J G H E F C D A B
F E H G B A D C N M P O J I L K
L K J I P O N M D C B A H G F E
P O N M L K J I H G F E D C B A
C D A B G H E F K L I J O P M N
N M P O J I L K F E H G B A D C

Figure 36: A multi-stage 6 × 16 Youden rectangle with four stages: the
columns give one stage, the first letter in each cell gives the second stage,
the second and third letters give the other two stages
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stage Youden rectangles. He spoke about these results at the 2001 BCC
in Sussex: see [51].

There is also a link with another nice combinatorial object. The com-
plete graph K16 on 16 vertices can be decomposed into three strongly
regular graphs with valency five. Their edge-sets are disjoint, so their ad-
jacency matrices A1, A2 and A3 sum to J16,16 − I16. If {i, j, `} = {1, 2, 3}
then A2

i = 5I16+2(Aj+A`) and (I16+Ai)(I16+Aj) = 3J16,16−2(I16+A`).
The elements of each of P, Qux, Quw and Qxw can be labelled by the same
set of size 16 in such a way that the three incidence matrices involving any
one are I16 + A1, I16 + A2 and I16 + A3. Each of these strongly regu-
lar graphs contains no triangles, and so together they give a 3-colouring
of the edges of K16 with no monochromatic triangles. This shows that
the corresponding Ramsey number is at least 17, as was first observed by
Greenwood and Gleason in [84].

There is more! Replacing the 0 entries of Ai by 1 and the 1 en-
tries by −1 gives a Hadamard matrix Hi, and HiHj = 4H`. Therefore
{I16, 4

−1H1, 4
−1H2, 4

−1H3} forms an elementary Abelian 2-group. Higher
even powers of 2 give a similar group formed from Hadamard matrices, and
these lead to the multi-stage Youden rectangles in [51] and to the results
in [49].

14.4 Multi-layered Youden rectangles

An n×m double Youden rectangle has two sets, F and G, of partitions
of Ω. Those in F have m parts of size n, while those in G have n parts of
size m. If F ∈ F and G ∈ G then F⊥G. Each of F and G has universal
balance, and |F| = |G| = 2. Choose the labelling so that n < m.

Multi-stage Youden rectangles satisfy all the same conditions, except
that |F| ≥ 2 and |G| = 1. When |F| = 2 this is just a Youden square.

Preece introduced triple Youden rectangles in [163]. The naive reader
might think that these would be like double Youden rectangles with |F| =
|G| = 3. In fact, they have |F| = 2 and |G| = 3. He gave examples of size
4× 13 and 7× 15.

Preece and Morgan generalized this concept in [168] by allowing the size
of G to vary. They changed the name to multi-layered Youden rectangle.
Thus the partitions in F are regarded as stages, while those in G are
regarded as layers.

Definition An n ×m multi-layered Youden rectangle with s layers has
two sets, F and G, of partitions of a set Ω of size nm. Each partition in F
has m parts of size n, and each partition in G has n parts of size m, where
n < m. If F ∈ F and G ∈ G then F⊥G. Each of F and G has universal
balance, |F| = 2 and |G| = s.
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If s = 1 this is just a Youden square; if s = 2 it is a double Youden
rectangle.

Because |F| = 2, a multi-layered Youden rectangle can be shown as
an m ×m square with m − n empty cells in each row and column, as in
Figure 26(b). Each non-empty cell has s letters, one for each layer. When
s = 3, these are called triple Youden arrays, not to be confused with the
triple arrays in Section 13.

In fact, the definitions in [163, 168] do not specify universal balance.
For F , this is equivalent to pairwise balance, because |F| = 2. In all the
examples in [163, 168], m−1 is a multiple of n. Therefore pairwise balance
among the layers implies that they can all have their parts labelled by the
same set in such a way that each incidence matrix between layers is equal
to In + [(m− 1)/n]Jnn. Thus universal balance is guaranteed.

Preece and Morgan give an explicit construction which proves the fol-
lowing.

Theorem 14.6 If q is an odd prime power, m = 2q+1 and s ≤ q−4 then
there exists a q × (2q + 1) multi-layered Youden rectangle with s layers.

15 Resolved designs

So far, all designs have been described as collections of partitions of
the set Ω of experimental units. Now we change that viewpoint.

Statisticians usually call each tuple of values of the non-inherent par-
titions a treatment . Denote by Γ the set of treatments.

Definition A design is resolved is there is a partition D of Ω such that
every inherent non-trivial partition H of Ω satisfies H 4 D and every part
of D contains each treatment exactly once.

In a resolved design, it is useful to look at the partitions of Γ induced
within each part of D. In the next two subsections we do this for block
designs and for row–column designs.

15.1 Block designs

Let B be the partition of Ω into blocks in a resolved block design. For
i = 1, . . . , nD, let Bi be the partition of Γ induced by B in the i-th
part of D. Properties of {B1, . . . , BnD

} give information about the block
design.

Among the earliest examples of incomplete-block designs were the
square lattice designs of Yates [227]. In these, |Γ| = k2

B and B1, B2,
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. . . , BnD
form the partitions of a kB × kB square into rows, columns and

the letters of nD − 2 mutually orthogonal Latin squares. The design in
Figure 2 has this form, as do those made from it by removing one or two
parts of D.

In a square lattice design, the set of partitions {B1, . . . , BnD
} forms

an orthogonal array of strength two on Γ, with all parts of the same size.
In [47], Bose defined affine-resolvable designs. Orthogonal arrays had not
yet been invented, but now we can say that affine-resolved designs are
precisely those resolved incomplete-block designs for which {B1, . . . , BnD

}
forms an orthogonal array of strength two on Γ with all parts of the same
size.

For example, the first four rows of the orthogonal array in Figure 7
give an affine-resolved incomplete-block design for 12 treatments in eight
blocks of size six. More generally, if any row of a Hadamard matrix is
normalized to have all its entries the same, then the remaining rows form
an orthogonal array of strength two. If an affine-resolved design is made
by using each of these rows once, then the block design is balanced in
all the senses described in Section 5. Such designs are sometimes called
Hadamard 3-designs: see [52, 96].

Many constructions of affine-resolved incomplete-block designs appear
in [38], where it is proved that they are optimal among resolved designs.

If k2
B does not divide |Γ| then an affine-resolvable design is not possible.

In work [133] presented at the 1975 BCC in Aberdeen, Patterson and
Williams observed that if nD = 2 then {B1, B2} may be regarded as the
partitions B and L of an incomplete-block design with nB = nL. For
example, the partitions C and L of the set of size 28 in Figure 3 can
be used to give a resolved incomplete-block design for 28 treatments in
two districts of seven blocks of size four. It was proved in [221] that
the resolved design is optimal among resolved designs if and only if the
symmetric incomplete-block design is optimal among IBDs of that size.
This result gives a technique for finding other optimal resolved incomplete-
block designs when nD = 2: see [222].

If nD ≥ 3 and k2
B does not divide |Γ| then we run into the problem

discussed in Section 9: the pairwise relations among B1, B2, . . . , BnD
do

not suffice to give the overall properties of the design. Sets of partitions
with universal balance have been recommended. When |Γ| = kB(kB + 1),
the construction in Section 14.2.1 gives resolved IBDs called rectangular
lattice designs: see [41, 62, 90, 91, 220].

For other values of |Γ|, it may be possible to use a set of nD partitions
having a different type of universal balance. When nD = 3 these give the
families of resolved incomplete-block designs in [27].
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15.2 Nested row–column designs

In a nested row–column design each part of D is a rectangle with
partitions R and C into rows and columns, and R ∧ C = E. If it is
resolved then |Γ| = kRkC and we may consider the partitions R1, R2, . . . ,
RnD

and C1, C2, . . . , CnD
induced on Γ. Then Ri⊥Ci for i = 1, . . . , nD.

If kR = kC and nD is small enough then we may be able to arrange
for all of these partitions to be pairwise strictly orthogonal by using the
rows, columns and letters of 2(nD−1) mutually orthogonal kR×kR Latin
squares. These were called quasi-Latin squares when introduced by Yates
in [228] but the name soon changed to lattice square designs in [229].

Otherwise, we may be able to choose the partitions so that Ri⊥Cj ,
Ri ./ Rj and Ci ./ Cj for {i, j} ⊆ {1, . . . , nD} with i 6= j. When nD = 2
this gives a different use for double Youden rectangles, as explained in
[39], where it is proved that these are optimal among resolved nested
row–column designs. When nD ≥ 3 we need to consider the multi-way
relations among {R1, . . . , RnD

} and {C1, . . . , CnD
}, so some of the designs

in Section 14.3 may be suitable.

16 Factorial designs in blocks

An experiment is called factorial if more than one partition is of interest
and can have its parts allocated by the experimenter, as in Example 1.6
and Section 7.2.2. If the only inherent partition is the partition B into
blocks, and there are two treatment factors F and G, then it may be useful
to consider the set ∆ of all triples of values of F , G and B that occur. If we
show the parts of F and G as rows and columns, then usually F ∧G 6= E,
unlike in classical row–column designs.

Here we give two examples, considering B, F and G as partitions of ∆,
to show the effect of different practical constraints.

Example 16.1 Modify Example 1.6 so that there are still six varieties of
lettuce and five watering regimes, but now the ten gardens each have room
for six vegetable patches and there are no practical constraints. Using a
resolved design, as in Section 15.1, it is natural to think of the watering
regimes and lettuce varieties as the rows and columns of a 5× 6 rectangle,
with five of the blocks corresponding to letters of a Latin square with the
last column repeated, and the remaining five blocks corresponding to the
letters of a second Latin square, orthogonal to the first, also with the last
column repeated. This can give the design in Figure 37.

Here ∆ is the same as Ω. The design has F⊥G, B⊥G, and F B B.
Thus it is of type C.5 from Section 10.4.
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A F B G C H D I E J E J
E I A J B F C G D H D H
D G E H A I B J C F C F
C J D F E G A H B I B I
B H C I D J E F A G A G

Figure 37: Design in Example 16.1: rows represent watering regimes,
columns represent lettuce varieties, letters A–E represent the first five
blocks and letters F–J represent the other five blocks

A B A F A I F I B F B I
B C G J C G C J B G B J
C D D F C H C F F H D H
D E D G G I E I E G D I
A E A J A H E J E H H J

Figure 38: Design in Example 16.2: rows represent drugs, columns repre-
sent types of cancer and letters represent medical centres (blocks)

Example 16.2 Valerii Fedorov5 posed the problem of assigning cancer
types (C) and cancer drugs (R) to medical centres (B) in such a way
that no centre deals with very many types of drug or cancer, each centre
allocates drugs to patients in such a way that each of its drugs is tested
on each of its types of cancer, cancer types and drugs are both balanced
with respect to medical centres, and each drug is paired with each cancer
type at the same number of medical centres. Since we cannot foresee how
many patients will be included in the trial, it make sense to consider the
set ∆ of all triples of values of R, C and B that occur.

Figure 38 shows such a design for five drugs, six cancer types and ten
medical centres: rows represent drugs, columns represent cancer types,
and letters represent medical centres (also called ‘blocks’). It was made
by assigning a subset of two drugs and a subset of three cancer types to
each medical centre, and then giving each medical centre all six combina-
tions of its assigned drugs and cancer types. This method of construction
ensures that R and C have adjusted orthogonality with respect to blocks,
in addition to the requirements R⊥C, R I B and C I B. However, the
relationships between R and B, and C and B, are not generalized binary,
so the balance is not strict. More designs for this problem are in [34].

5Meeting at the Isaac Newton Institute in July 2015
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17 Some open problems

1. Divide the cases in list E in Section 10.6 as finely as those in the other
lists in Section 10. Prove that the resulting list gives all possibilities,
and give an example of each.

2. Is there an interesting connnection, using finite projective geometry
or group theory, between the double Youden rectangle in Figure 30
and the non-extremal triple array in Figure 33?

3. Prove Conjecture 13.5 or find a counter-example.

4. The (hopefully) more unified approach to adjusted balance presented
in Sections 9 and 14 is new, so may have errors or things that can
be done better. Improve it and take it further.

5. Are there any other families of square matrices, apart from those
given in Section 14.2, which can occur as the incidence matrices of
a set of partitions with universal balance?

6. Are there designs like those in Sections 14.3–14.4 in which both |F|
and |G| are greater than two?
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designs, Sankhā 6 (1942), 105–110.

[48] Wayne Broughton, Admissible parameters of symmetric designs sat-
isfying v = 4(k − λ) + 2 and symmetric designs with inner balance,
Designs, Codes and Cryptography 73 (2014), 77–83.

[49] A. R. Calderbank, P. J. Cameron, W. M. Kantor & J. J. Seidel,
Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-
sets, Proceedings of the London Mathematical Society, Series 3 75
(1997), 436–480.

[50] Peter J. Cameron, On groups with several doubly-transitive permu-
tation representations, Mathematische Zeitschrift 128 (1972), 1–14.

[51] P. J. Cameron, Multi-letter Youden rectangles from quadratic forms,
Discrete Mathematics 266 (2003), 143–151.

[52] P. J. Cameron & J. H. van Lint, Designs, Graphs, Codes and their
Links, London Mathematical Society Student Texts, 22, Cambridge
University Press, Cambridge (1991).



72 R. A. Bailey

[53] P. J. Cameron & J. J. Seidel, Quadratic forms over GF(2), Proceed-
ings of the Koninklijke Nederlandse Akademie van Wetenschappen,
Series A 76 (1973), 1–8.

[54] B. D. Causey, Some examples of multi-dimensional incomplete block
designs, Annals of Mathematical Statistics 39 (1968), 1577–1590.

[55] J. Y. Chang & W. I. Notz, A method for constructing universally
optimal block designs with nested rows and columns, Utilitas Math-
ematica 38 (1990), 263–276.

[56] C.-S. Cheng, A method for constructing balanced incomplete-block
designs with nested rows and columns, Biometrika 73 (1986), 695–
700.

[57] C. Christofi, Enumerating 4×5 and 5×6 double Youden rectangles,
Discrete Mathematics 125 (1994), 129–135.

[58] C. Christofi, On the number of 6× 7 double Youden rectangles, Ars
Combinatoria 47 (1997), 223–241.

[59] G. M. Clarke, A second set of treatments in a Youden square design,
Biometrics 19 (1963), 98–104.

[60] G. M. Clarke, Four-way balanced designs based on Youden squares
with 5, 6, or 7 treatments, Biometrics 23 (1967), 803–812.

[61] Dominique Collombier, Plans d’expérience factoriels, Mathémat-
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[86] Ulrike Grömping & R. A. Bailey, Regular fractions of factorial ar-
rays, in mODa 11—Advances in Model-Oriented Design and Analy-
sis (eds. Joachim Kunert, Christine H. Müller & Anthony C. Atkin-
son), Springer International Publishing, Switzerland (2016), pp.
143–151.

[87] Heiko Großmann, Automating the analysis of variance of orthogonal
designs, Computational Statistics and Data Analysis 70 (2014), 1–
18.

[88] J. I. Hall, On identifying PG(3, 2) and the complete 3-design on
seven points, Annals of Discrete Mathematics 7 (1980), 131–141.

[89] P. Hall, On representatives of subsets, Journal of the London Math-
ematical Society 10 (1935), 26–30.

[90] B. Harshbarger, Preliminary report on the rectangular lattices, Bio-
metrics 2 (1946), 115–119.

[91] B. Harshbarger, Triple rectangular lattices, Biometrics 5 (1949), 1–
13.

[92] A. Hedayat & W. T. Federer, Pairwise and variance balanced incom-
plete block designs, Annals of the Institute of Statistical Mathematics
26 (1974), 331–338.



Relations among partitions 75

[93] A. Hedayat, E. T. Parker & W. T. Federer, The existence and con-
struction of two families of designs for two successive experiments,
Biometrika 57 (1970), 351–355.

[94] A. Hedayat, E. Seiden & W. T. Federer, Some families of designs for
multistage experiments: mutually balanced Youden designs when
the number of treatments is a prime power or twin primes. I, Annals
of Mathematical Statistics 43 (1972), 1517–1527.

[95] A. S. Hedayat, N. J. A. Sloan & J. Stufken, Orthogonal Arrays,
Springer-Verlag, New York (1999).

[96] A. Hedayat & W. D. Wallis, Hadamard matrices and their applica-
tions, Annals of Statistics 6 (1978), 1184–1238.

[97] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions,
Oxford Mathematical Monographs, Oxford University Press, Oxford
(1985).

[98] T. N. Hoblyn, S. C. Pearce & G. H. Freeman, Some considerations in
the design of successive experiments in fruit plantations, Biometrics
10 (1954), 503–515.

[99] A. T. James, The relationship algebra of an experimental design,
Annals of Mathematical Statistics 28 (1957), 993–1002.

[100] A. T. James & G. N. Wilkinson, Factorization of the residual op-
erator and canonical decomposition of nonorthogonal factors in the
analysis of variance, Biometrika 58 (1971), 279–294.

[101] M. Jimbo & S. Kuriki, Construction of nested designs, Ars Combi-
natoria 16 (1983), 275–285.

[102] J. A. John & J. A Eccleston, Row–column α-designs, Biometrika 73
(1986), 301–306.

[103] Byron Jones, Algorithms to search for optimal row-and-column de-
signs, Journal of the Royal Statistical Society, Series B 41 (1979),
210–216.

[104] Byron Jones, Algorithm AS156: Combining two component designs
to form a row-and-column design, Applied Statistics 29 (1980), 334–
345.

[105] R. Morley Jones, On a property of incomplete blocks, Journal of the
Royal Statistical Society, Series B 21 (1959), 172–179.



76 R. A. Bailey

[106] B. Kassanis & A. Kleczkowski, Inactivation of a strain of tobacco
necrosis virus and of the RNA isolated from it, Photochemistry and
Photobiology 4 (1965), 209–214.

[107] O. Kempthorne, G. Zyskind, S. Addelman, T. N. Throckmorton
& R. N. White, Analysis of Variance Procedures, Aeronautical Re-
search Laboratory, Ohio, Report No. 149, 1961.

[108] J. Kiefer, On the nonrandomized optimality and randomized non-
optimality of symmetrical designs, Annals of Mathematical Statistics
29 (1958), 675–699.

[109] J. Kiefer, Balanced block designs and generalized Youden designs, I.
Construction (patchwork), Annals of Statistics 3 (1975), 109–118.

[110] K. Kishen, Symmetrical unequal block arrangements, Sankhyā 5
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