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Abstract 

The basaltic rocks in NW Thailand belong to part of giant Southeast Asian 

igneous zone that delineates the extension of the Paleotethyan Ocean from SW 

China into NW Thailand. The Chiang Mai basaltic samples from the Chiang Dao, 

Fang, Lamphun and Ban Sahakorn sections are divisible into two groups of 

high-iron basalt. Group 1 has SiO2 of 38.30-49.18 wt. %, FeOt of 13.09-25.37 wt.%, 

MgO of 8.38-1.60 wt.%, TiO2 of 3.92-6.30 wt.%, which is rarely observed in nature. 

Group 2 shows SiO2=44.71-49.21 wt. %, FeOt=10.88-14.34 wt. %, MgO= 

5.24-16.11 wt.%, TiO2= 2.22-3.07 wt.% and mg
#
=44-70. Olivine and pyroxene are 

responsible for the fractionation of the Group 2 magma whereas low oxygen fugacity 

during the late-stage differentiation of the Group 1 magma prolonged fractionation 

of ilmenite and magnetite. The onset of ilmenite and magnetite fractionations 

controls the distinct differentiation commencing at MgO = ~7 wt.%. Both groups 

show similar REE and primitive mantle-normalized patterns with insignificant Eu, 

Nb-Ta and Zr-Hf anomalies. They have similar Nd isotopic compositions with εNd(t) 

values ranging from +2.8 to +3.7 and similar Nb/La, Nb/U, Th/La, Zr/Nb, Th/Ta, 

La/Yb, Nb/Th, Nb/Y and Zr/Y, resembling those of OIB-like rocks. The 

representative basaltic sample yields the argon plateau age of 282.3 ± 1.4 Ma, 

suggestive of early Permian origin. Our data argue for Group 1 and Group 2 are 

coeval in the intra-oceanic seamount setting within the Paleotethyan Ocean, which at 

least continued till 283 Ma. These data, along with other observations, suggest that 

the Inthanon zone defines the main Paleotethyan suture zone, which northerly links 
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with the Changning-Menglian zone in SW China.  

Keywords Early Permian; magma differentiation trend; OIB-like seamount basalt; 

Paleotethyan Ocean; NW Thailand 

 

1. Introduction 

The Paleotethys is the ocean basin that lay off northern Gondwana and its 

consumption resulted in the transfer and accretion of crustal blocks from Gondwana 

to the cratons of Asia (e.g., Sengör, 1984; Sone and Metcalfe, 2008; Metcalfe, 1996, 

2006, 2013). Remnants of the oceanic track extend from the Alps through the Middle 

East to SW China and Peninsular Malaysia in SE Asia (e.g., Bullard et al., 1965; 

Acharyya, 1998; Metcalfe, 1998, 2002, 2006, 2013). The eastern Paleotethys, which 

runs from Nepal-India and South Tibet through SW Yunnan and NW Thailand to 

Malay Peninsula (Fig. 1a), records subduction leading to collision of the South 

Qiangtang/Sibumasu with North Qiangtang/Indochina/South China blocks (e.g., 

Hodges, 2000; Yin and Harrison, 2000; Searle et al., 2011; Sone and Metcalfe, 2008; 

Metcalfe, 1996, 2006, 2013). In Tibet and SW Yunnan, the Longmucuo-Shuanghu and 

Changning-Menglian suture zones mark the remnants of the eastern Paleotethyan 

Ocean (e.g., Zhong, 1998; Li et al., 2005; Feng et al., 2002, 2004, 2008; Wang et al., 

2010; Fan et al., 2015). However, the southward extension of the Paleotethyan ocean 

in NW Thailand is not well defined, and the Mae Yuam Fault, the Chiang Rai Fault 

and Nan suture zone have all been proposed as ocean remnant in the region (Fig. 1b; 

e.g., Caridroit, 1993; Feng et al., 2002, 2004, 2008; Bunopas, 1994; Hada et al., 1997; 
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Mantajit, 1999; Barr and MacDonald, 1991; Ueno, 1999, 2003; Ferrari et al., 2008; 

Hara et al., 2009; Yang wt al., 2016).  

In NW Thailand, mafic volcanic rocks are preserved in the following four belts 

from west to east: Chiang Rai-Chiang Mai, Chiang Khong-Tak, Phaisali-Chanthaburi 

and Loei-Phetchabun-Phai Sali belts (Fig. 2a). The mafic rocks could provide 

important information for constraining the mantle source and probing the tectonic 

setting. However, so far only limited study has been conducted in this field. The 

Chiang Mai-Chiang Rai volcanic belt lies within the Inthanon zone of NW Thailand, 

which is considered to be part of a giant igneous belt linking the Changning-Menglian 

volcanic zone to the north (SW Yunnan), and the Bentong-Raub zone to the south 

(Malay Peninsula), as shown in Figs. 1-2 (e.g., Sone and Metcalfe, 2008; Metcalfe, 

1996, 1998, 2002, 2006, 2013; Barr et al., 2000; Wang et al., 2010). Abundant basaltic 

rocks in the belt are preserved and thus can provide important constraints on the 

tectonic evolution of the eastern Paleotethyan Ocean.  

The general lithofacies and lithochemistry of the Chiang Rai-Chiang Mai 

volcanic belt have been illustrated by Baum and Hahn (1977), Hess and Koch (1979), 

Macdonald and Barr (1978), Barr et al. (1990) and Panjasawatwong (1999). However, 

no consensus has been reached on the nature of the rock association within the belt, 

which has been variously described as basic volcanic rocks with intermediate 

tufferous interlayer, "uncertain ophiolite" or pillow basalt (e.g., Hutchison, 1975, 1989; 

Baum and Hahn 1977; Ridd et al., 2011). The eruption timing for these rocks remains 

unresolved (Carboniferous vs. Permian vs. Permo-Triassic). Their tectonic setting 
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including subduction, within-plate, ocean and back-arc basin has been proposed (e.g., 

Bunopas et al., 1981, 1994; Hutchison, 1989; Barr et al., 1990; Caridroit, 1993; 

Panjasawatwong et al., 1995; Panjasawatwong, 1999; Ueno 1999, 2003; Charusiri et 

al., 2002; Metcalfe, 2002, 2013; Phajuy et al., 2005). These uncertainties existing in 

age, petrogenesis and tectonic setting are mainly due to the lack of detailed 

geochronological and geochemical data.  

In this paper, a set of new geochronological, elemental and Sr-Nd isotopic data 

are presented for thirty-six basaltic samples, from the Chiang Dao, Fang, Lamphun 

and Ban Sahakorn volcanic profiles at the Chiang Mai-Chiang Rai area in NW 

Thailand (Fig. 2b). According to our study, our basaltic rocks are early Permian in age 

and different differentiation trends are showed. They have an OIB-like geochemical 

affinity, which indicates a within-plate seamount setting of the NW Thailand 

Paleotethyan Ocean. 

 

2. Geological background  

NW Thailand is bounded by the Bentong-Raub suture zone in Malaysia and the 

Changning-Menglian suture zone in SW China (Fig. 1a; e.g., Sone and Metcalfe, 

2008; Metcalfe, 1998, 2006, 2013). From west to east, the region is divided into the 

Sibumasu block, the Inthanon and Sukhothai zones and the Indochina block, which 

are separated by the Mae Yuan Fault, the Chiang Rai Fault and the Nan suture zone 

(Figs. 1b and 2a-b；Barr and Macdonald, 1991).  

The Sibumasu block lies between the Mogok metamorphic belt in Myanmar and 
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the Inthanon zone in NW Thailand. It extends southwards into western Malay 

Peninsula (Fig. 1a), and is believed to be a part of the peri-Gondwanan Cimmerian 

continent that lay along the northeastern margin from the late Carboniferous to early 

Permian (e.g., Sengör, 1984; Metcalfe, 1996, 1998, 2006, 2013; Barber and Crow, 

2003; Sevastjanova et al., 2011). It is also considered to be equivalent as the South 

Qiangtang block in Tibet, and the Baoshan and Tengchong blocks in SW China. 

To the east of the Chiang Rai Fault is a continental terrane, variously referred to 

as the Sukhothai zone (used herein), Sukhothai Arc, or Sukhothai fold belt (Figs. 1b 

and 2; e.g., Bunopas et al., 1981; Barr and Macdonald, 1991). It is separated from the 

Indochina block by the Nan suture zone (e.g., Ueno and Hisada, 2001; 

Panjasawatwong et al., 2003; Sone and Metcalfe, 2008; Qian et al., 2013, 2015; Yang 

et al., 2016). The zone consists of Paleozoic greywackes, shales, limestones and 

schists, and Carboniferous-Permian volcanoclastic rocks, radiolarian cherts and 

quartzites, along with small amount of granites (e.g., Fang et al., 1994; Ueno and 

Hisada, 2001; Sone and Metcalfe, 2008; Metcalfe, 2006, 2013; Ridd et al., 2011). In 

this zone, the pre-Mesozoic strata are uncomfortably overlain by the middle/upper 

Triassic molasse and Jurassic epicontinental sedimentary sequences.  

The Indochina block is separated from the South China block by the Ailaoshan- 

Song Ma suture zone and from the Sukhothai zone by the Nan suture zone (e.g., 

Metcalfe, 1998, 2013; Morley, 2001; Lepvrier et al., 2008; Fan et al., 2010). In the 

block, the Proterozoic basement and Paleozoic-Triassic package are similar to those 

of the Yangtze block (e.g., Zhong, 1998; Peng et al., 2008, 2013; Wongwanich and 
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Boucot, 2011). Upper Mesozoic strata are characterized by a continental red bed 

package, such as that in the Khorat Plateau Basin (Ridd et al., 2011).  

The Inthanon zone is bounded by the Mae Yuam and Chiang Rai faults and 

consists of a metamorphic assemblage exposed at Doi Inthanon and Doi Suthep, 

Cambro-Ordovician and Devonian limestones and sandstones, scattered 

Carboniferous-Permian carbonates, shales, sandstones and basalts, and upper 

Triassic-Jurassic volcanoclastic rocks, as well as Permo-Triassic granites and 

granodiorites (Fig. 2b-c; e.g., Feng et al., 2002, 2004, 2008; Ueno and Hisada, 2001; 

Wonganan et al., 2007; Hara et al., 2009; Ridd et al., 2011, 2015). It has been 

alternatively proposed as part of the Sibumasu block (e.g., Cobbing et al., 1992; 

Charusiri et al., 1993; Sone and Metcalfe, 2008; Metcalfe, 1996, 2002, 2013) or as a 

Paleotethyan suture zone separating the Sukhothai zone to the east from the Sibumasu 

block to the west (e.g., Ueno and Hisada, 2001; Hara et al., 2009).  

Carboniferous–Permian limestones, sandstones, shales, and basaltic rocks (Fig. 

2b; e.g., Ridd et al., 2011, 2015) characterize the Inthanon zone. The basaltic rocks 

defined the Chiang Rai–Chiang Mai volcanic zone and composed of basalts, basaltic 

andesites, hyaloclastites and pillow breccias (e.g., Bunopas et al., 1981, 1994; 

Chuaviroj et al., 1980; Phajuy et al., 2005; Ridd et al., 2011, 2015). They have 

previously been inferred to be uncomfortably underlain by the Carboniferous 

sedimentary rocks and overlain by Permian/Triassic limestones, cherts and shales. In 

addition, late Carboniferous to early Middle Permian fusulinid fragments occurred in 

the carbonate cement of the pillow breccias (e.g., Ridd et al., 2011). Thus, these 
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basaltic rocks have been assigned to be of Carboniferous, Carboniferous– Permian, 

Permian or Permian-Triassic origin (e.g., Macdonald and Barr, 1978; Barr et al., 1990; 

Panjasawatwong, 1999). In the Chiang Dao and Kae Noi areas, massive and vesicular 

basalts characterize the volcanic sequences and are overlain by tuffaceous limestones, 

and dolomites and dolomitic limestones of the Dan Lan Hoi Group (Fig. 2b-c, Feng et 

al., 2002, 2004). Bunopas (1981) and Chuaviroj et al. (1980) considered that the Dan 

Lan Hoi Group may be middle Permian to Triassic in age. Phajuy et al., (2005) argued 

that its origin could be between Late Carboniferous and early Middle Permian. The 

fossils with the indicator of the Carboniferous -early Triassic origin are also reported 

in the limestones in NW Thailand by Caridroitet al. (1993); Ueno (1999, 2003); Feng 

et al. (2004, 2008), Wonganan et al. (2005), Fontaine et al. (2005) and Miyahigashi et 

al.(2009). 

In this study, samples were collected from four representative volcanic profiles 

at Chiang Dao (19°23'09.85"N, 98°55'37.54"E), southwwest of Fang (19° 

38'03.71"N, 99°07'37.99"E), east of Ban Sahakorn (19°06'29.95"N, 99°27' 18.03"E) 

and east of Chiang Mai (18°49'45.29"N’, 99°15'36.69"E), as shown in Figure 2b. 

Their mineral assemblage is mainly characterized by feldspar (30–60 % by volume), 

pyroxene (15–40 %), magnetite and ilmenite (1-16 %) and amphibole (~2 %), with 

minor amounts of biotite, zircon, titanite and apatite (Fig. 3a-d). Olivine (~5%) is 

also observed in several samples. 

 

3. Analytical methods 
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Any altered surfaces on rock samples were removed prior to crushing to chips. 

Fresh chips were cleaned in an ultrasonic bath using de-ionized water. Chips from 

sample TG-4A were handpicked under a binocular microscope, and crushed to 

40-60-mesh for 
40

Ar/
39

Ar analyses. Chips from other samples were crushed to 

200-mesh in an agate mill for major oxide, trace element, and Sr-Nd isotopic 

analyses.  

Laser 
40

Ar/
39

Ar step-heating measurements on sample TG-4A were carried out 

using the GV-5400 mass spectrometer at the Guangzhou Institute of Geochemistry 

(GIG), the Chinese Academy of Sciences (CAS). Sample and monitoring standard 

ZBH-2506 were irradiated at the 49-2 reactor for 54 h along with the biotite monitor 

ZBH-25 under the standard age of 132.7 ± 1.2 Ma. Correction factors for interfering 

argon isotopes derived from Ca and K involve (
39

Ar/
37

Ar)Ca, (
36

Ar/
37

Ar)Ca and 

(
40

Ar/
39

Ar)K of 8.984×10
−4

, 2.673×10
−4

 and 5.97×10
−3

, respectively. The crusher 

consists of a 210 mm long, 28 mm bore diameter high temperature resistant stainless 

steel tube (Tmax~1200°C). The extraction and purification lines were baked out for ca. 

10 h at 150 °C with heating tape and the crusher at 250 °C with an external tube 

furnace. The blanks are: 
36

Ar (0.002-0.004) mV, 
37

Ar (0.0002-0.0006) mV, 
38

Ar 

(0.0004-0.0015) mV, 
39

Ar (0.0025-0.0051) mV and 
40

Ar (0.51-1.3) mV. The 
40

Ar/
39

Ar 

dating results and errors were calculated using the ArArCALC software (Koppers, 

2002).  

Major element oxides were analyzed at GIG, CAS using a Rigaku RIX 2000 

X-ray fluorescence spectrometer on fused glass beads. The relative standard 
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derivations are kept within 5%, and totals are 100 ± 1 wt.%. Details of the procedures 

are described by Li et al. (2005). Trace element contents were performed at GIG, CAS 

by inductively coupled plasma mass spectrometry (ICP-MS). Approximately 100 mg 

samples were digested with 1 ml of HF and 0.5 ml HNO3 in screw top PTFE-lined 

stainless steel bombs at 190 °C for 12 h. Insoluble residues are dissolved using 8 ml 

of 40 % HNO3 (v/v) heated to 110 °C for 3 h. Its detailed analytical procedure is 

described by Wei et al. (2002). Sample powders for Sr and Nd isotopic analyses were 

spiked with mixed isotope tracers, dissolved in Teflon beakers with HF+HNO3 acids, 

and separated by a conventional cation exchange technique and run on single Wand 

Ta–Re double filaments, respectively (Liang et al., 2003). Sr and Nd isotopic analyses 

were performed on a Micromass Isoprobe multi-collector ICPMS at the GIG, CAS. 

Total procedure blanks were in the range of 200-500 pg for Sr and ≤ 50 pg for Nd. 

87
Rb/

86
Sr and 

147
Sm/

144
Nd were calculated using the Rb, Sr, Sm and Nd contents 

measured by ICP-MS and the 
87

Sr/
86

Sr of the (NIST) SRM 987 standard and 

143
Nd/

144
Nd of the La Jolla standard are 0.710265 ± 12 (2σ) and 0.511862 ± 10 (2σ), 

respectively.  

 

4. Analytical results 

4.1 Whole-rock Ar-Ar geochronology 

Sample TG-4A is taken from the site of 19° 38'03.71"N and 99°07'37.99"E (Fig. 

2b). The analytical results and age spectra are in Supplementary Dataset 1 and Figure 

4, respectively. The whole-rock grains give 
40

Ar/
39

Ar apparent age of 280.6–287.1 Ma 
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during the eighth to nineteen continuous heating steps and yield a plateau age of 282.3 

± 1.4 Ma with MSWD = 1.0. This plateau age is defined by > 80% of total 
39

Ar 

released gas with invariability for a 2 level of uncertainty. The corresponding normal 

and inverse isochron ages are 283.5 ± 2.7 Ma and 286.3 ± 2.8 Ma, respectively, 

consistent within error to the plateau age. The initial 
40

Ar/
36

Ar of 294.1 is similar to 

the present atmospheric 
40

Ar/
36

Ar (295.5), indicating that excess argon is insignificant. 

This suggests the plateau age of 284 Ma being reliable. Thus, it is inferred that the 

Chiang Dao basalt in NW Thailand erupted at early Permian period, also evidenced 

by the development of the early Permian fusulinids in the Chiang Dao stratigraphic 

sequence (e.g., Ratanasthien et al., 1999; Feng et al., 2002, 2004, 2008). 

 

4.2 Geochemical results 

Whole-rock major oxides, trace element, and Sr-Nd isotopic analyses are listed 

in Supplementary Dataset 2. Loss-on-ignition values for the 36 analyzed samples 

range from 0.98 to 5.18 wt.%. SiO2 content ranges from 38.30 wt.% to 49.21 wt.% 

(volatile-free) and MgO content from 16.11 wt.% to 1.60 wt.%. Taking into account 

the mobility of alkaline elements, Zr/Ti and Nb/Y are selected for lithological 

classification. In Fig. 5a, these samples show an alkaline affinity and fall in the 

alkaline basalt field. However, these samples have variable FeOt and TiO2 contents 

with values as high as 25.37 wt.% and 6.30 wt.%, respectively. On the SiO2 vs FeOt 

and MgO vs TiO2 diagrams (Fig. 5b-c), our samples plot along different magma 

evolved trends, which are herein referred to as Group 1 and Group 2 (e.g., Brooks et 
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al., 1991; Toplis and Carroll, 1995; Jang et al., 2001; Xu et al., 2003). Such distinct 

differentiation trends are also shown in the plots of MgO and other major oxides (Fig. 

6a-f).  

Group 1, represented by the 18 samples mainly from the Chiang Dao and Fang 

profiles (Fig. 2b-c), shows high FeOt (>13 wt%) and TiO2 (>3.5wt%) contents (Fig. 

5b-c) with SiO2 ranging from 38.30 to 49.18 wt.%. FeOt linearly increases from 

13.09 wt.% to 25.37 wt.% and TiO2 from 3.92 wt.% to 6.30 wt.%, when MgO 

decreases from 8.38 wt.% to 1.60 wt.% (Supplementary Dataset w and Fig. 5b-c). 

The Group 1samples fall into the field of the proposed Fenner evolved trends of the 

Skaergaard intrusion and the Emeishan large igneous province (Fig. 5b-c; e.g., 

Brooks and Nielsen, 1978; Brooks et al., 1991; McBirney, 1996; Tegner, 1997; Jang 

et al., 2001; Xu et al., 2003; Thy, et al., 2006, 2009). They have Al2O3 ranging from 

13.90 to 17.84 wt.%, K2O+Na2O from 3.74 to 6.97 wt.% and CaO from 1.16 to 8.58 

wt.%. P2O5 and MnO are in the range of 0.12-1.40 wt.% and 0.07- 0.18 wt.%, 

respectively. On Harker diagrams (Fig. 6a-f), Al2O3, TiO2, FeOt and K2O+Na2O 

increase whereas SiO2, CaO and MnO decrease with decreasing MgO. The 

mg-number ranges from 12 to 50, Ni from 14 to 123 ppm, and Cr from 12 to 223 

ppm, V from 257 to 584 ppm and Sc from 24.7 to 32.3 ppm, respectively 

(Supplementary Dataset 2 and Fig. 7a-e). 

Group 2, consists of 18 samples mostly from the Ban Sahakorn and Chiang 

Mai profiles (Fig. 2b), and generally fall into the range of the Bowen evolution 

magma defined by the Skaergaard intrusion and the Emeishan large igneous 
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province (e.g., Brooks and Nielsen, 1978; Brooks et al., 1991; McBirney, 1996; 

Tegner, 1997; Jang et al., 2001; Xu et al., 2003; Thy, et al., 2006, 2009). The Group 

2 samples have relatively lower FeOt (<14.5 wt%) and TiO2 (<3.50 wt.%) contents 

than those of Group 1 samples (Fig. 5b-c). SiO2 contents of the Group 2 samples 

range from 44.71 to 49.21 wt.%, MgO from 5.24 to 16.11 wt.%, Al2O3 from 8.73 to 

15.29 wt.%, CaO from 7.95 to 12.94 wt.%, K2O+Na2O from 1.20 to 4.79 wt.%, and 

P2O5 from 0.13 to 0.41 wt.% (Supplementary Dataset 2 and Fig. 6a–f). They have 

higher mg-number (44-70), Ni (59-718 ppm), Cr (44-723 ppm) but lower Sc 

(18.5-29.6 ppm) and V (236-361 ppm) contents in comparison with those of the 

Group 1 samples (Fig. 7a-d). TiO2, CaO, FeOt and MnO contents are slightly various 

irrespective of MgO but Al2O3 and K2O+Na2O increase and Co, Cr and Ni sharply 

decrease with decreasing MgO (Figs. 5d and 6-7). Group 2 shows distinct 

differentiation trends from Group 1 in Fig. 6a-f.  

On plots of Zr vs immobile elements (e.g., Y, Nb, La and Th), both groups are 

positively correlated (Fig. 7f-i). However, Zr content does not show systematic 

correlation with mobile elements (e.g., Rb, Sr and K; Fig. 7j). Group 1 has higher 

incompatible element contents but identical Zr/La, Zr/Nb, Zr/Y and Zr/Th compared 

to those of Group 2 (Fig. 7f-i). In Figure 8a, both groups have similar 

chondrite-normalized REE pattern with high (La/Yb)cn (5.28-14.20), (Gd/Yb)cn 

(2.04-3.91) and insignificant europium anomalies (Eu=0.83-1.27), generally similar 

to those of ocean island basalts (OIB) in spite that Group 1 have higher contents of 

incompatible elements than Group 2. In Figure 8b, both groups generally lack Nb-Ta 
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and Zr-Hf anomalies, consistent with average OIB, with the exception of slightly 

positive Ti and negative Y anomalies.  

Seven representative samples from Group 1 have 
87

Sr/
86

Sr of 0.70390- 0.72551 

and 
143

Nd/
144

Nd of 0.512702-0.512721 with 
147

Sm/
144

Nd of 0.134- 0.149. The 

corresponding 
87

Sr/
86

Sr(i) range from 0.70382 to 0.70510 and εNd(t) values from 

+3.1 to +3.7, respectively. Seven samples from Group 2 give initial 
87

Sr/
86

Sr of 

0.70355-0.70655 and εNd(t) values of +2.8~+3.7, respectively. Such Sr-Nd isotopic 

compositions are lower than those of Hawaii OIB but similar to those of Kenya, 

Samoa and Emeishan high-Ti basalts (Fig. 9).  

 

5. Discussion 

5.1 Magma differentiation  

It is important to assess whether or not the samples underwent low-temperature 

alteration and crustal contamination before speculating on their mantle source (e.g., 

DePaolo, 1981). Our samples might have been subjected to various degrees of 

alteration viewed from high loss on ignition (0.98-5.18 wt%) and greenschist-facies 

metamorphism. However, the consistency of the dataset in the REE- and primitive 

mantle-normalized patterns in Fig. 8a–b, as well as the lack of correlation among 

MgO, Nb, La, Zr and Nd isotopic ratios and LOI preclude the significant effects of 

low-temperature alteration and metamorphic on the almost major element, REE and 

HFSE, along with and Nd isotopic ratios. 

The Group 1 high-iron magma shows relatively constant Nd isotopic ratios 
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mg-number of 12-50, MgO of 1.60-8.38 wt.%. Such observations argue against the 

significant involvement of the crustal materials. It is usual that the crustal assimilation 

en route would sharply increase the oxygen fugacity of the magma (e.g., Xu et al., 

2003), which contradicts the lower oxygen fugacity condition for generating high-iron 

magma (e.g., Sparks et al., 1980; Brooks et al., 1991; Toplis and Carroll, 1995; Xu et 

al., 2003). Group 2 has high mg-number (44-70) and MgO content (5.24-16.11 wt.%), 

contradict to what would be expected for crustal contamination (e.g. DePaolo, 1981). 

In addition, both groups have higher TiO2 content and Ti/Y values than those of the 

bulk continental crust (Taylor and McLennan, 1995). They show TiO2 of more than 

1.70 wt.% and Nb/La from 0.99 to 1.31, and Zr/Nb from 6.5 to 9.6. Nb anomalies are 

insignificant (Fig. 8b). The synthesis of these observations suggests that high-iron 

basaltic magmas in Chiang Mai area of NW Thailand might have undergone poor 

crustal contamination during their ascent. 

In plots of Ni vs Th, and Yb vs La/Yb and Tb/Yb (Fig. 10a-c), the Group 1 and 

2 samples plot along the trends of fractionation crystallization rather than of partial 

melting or source heterogeneity. They give lower Th/Ta (1.1-2.1) than that of the 

primitive mantle (2.3), further suggesting a near closed-system fractional 

crystallization of the primary magma. For Group 2 samples, decreasing MgO and 

FeOt with increasing SiO2 suggests olivine and pyroxene fractionation (Figs. 5c and 

6b). The relations between MgO and CaO and Al2O3 indicate that the Group 2 magma 

also underwent clinopyroxene fractionation (Fig. 6). Such a differentiation process is 

further supported by the decreasing Ni, Cr, V and Co with decreasing MgO. The 
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constant P2O5 and TiO2 contents argue against the significant fractionation of apatite 

and ilmenite and magnetite. For Group 1 samples, FeOt and TiO2 contents increase 

with decreasing MgO, distinct from those in Group 2 (Fig. 5b-c). They contain small 

phenocrysts of ilmenite and magnetite, indicative of the high Fe-Ti contents 

impossibly resulting from ilmenite and magnetite accumulation (e.g., Brooks et al., 

1991; Jang et al., 2001; Xu et al., 2003). In contrast, the high FeO and TiO2 contents 

for these samples should be representative of the melt phase which eventually became 

the basalt whole-rocks (e.g., Tegner, 1997; Jang et al., 2001; Thy, et al., 2006, 2009). 

Available data from the Skaergaard intrusion and Emeishan large igneous province 

show that high-iron magma usually crystallizes in a closed or nearly closed system 

(e.g., Brooks and Nielsen, 1978; Brooks et al., 1991; Xu et al., 2003). These data 

synthetically indicate the Group 1 and 2 magmas being coeval in a nearly closed 

system.  

On Harker diagrams, the Group 1 and Group 2 samples join at MgO = ~6-8 % 

(Figs. 5-6). The compositional divergence for Group 1 and 2 at MgO values of ~6-8 % 

is likely controlled by the onset of ilmenite and magnetite fractionations (e.g., Synder 

et al., 1993). For the Group 1 magma, V/Sc increases from 9.8-13.6 at MgO=~6-8 % 

to 20.8 at MgO of 2.15 wt.%. However, the ratio for Group 2 is relatively constant 

(from 10.0 to 13.2) irrespective of MgO. Such a change for both groups is marked by 

increasing in TiO2 and FeOt contents, reflective of the oxygen fugacity in the primary 

magma. Experimental data demonstrate that oxygen fugacity strongly influences the 

behavior of ilmenite and magnetite during the magma differentiation and oxygen 
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fugacity in strongly fractionated lavas will lower since ilmenite and magnetite 

fractionation decreases Fe
3+

 contents (e.g., Toplis and Carroll, 1995; Xu et al., 2003; 

Rutherford et al., 2006). Olivine and pyroxene are generally involved in the 

early-stage of magma fractionation Once MgO content in the residual magma is less 

than ~7 wt.%, the lowering oxygen fugacity will significantly delay the fractionation 

crystallization of ilmenite and magnetite (e.g., Osborn, 1959; Brooks et al., 1991; 

Toplis and Carroll, 1995; Jang et al., 2001). This process will result in the generation 

of the Group 1 magma that strongly rich in FeOt (~24%) and TiO2 (~6%) (Fig. 5b-c), 

as observed in the Skaergaard intrusion and the proposed Emeishan high-Ti lavas (e.g., 

Wager, 1960; McBirney, 1996; Xu et al., 2003).  

 

5.2 Origin of Permian OIB-like basalts in NW Thailand 

The Group 1 and Group 2 samples show different fractionation trends (Figs. 5c-d 

and 6a-f). However, they have similar chondrite-normalized REE and primitive 

mantle-normalized incompatible element patterns with insignificant Eu, Nb-Ta and 

Zr-Hf anomalies (Fig. 8a-b). Such characteristics are identical to those of OIB. Both 

groups have similar Nd isotopic compositions with εNd(t) values ranging from +2.8 to 

+3.7 (Fig. 9). Their Nb/La ranges from 0.95 to 1.31, Nb/U from 25 to 56 and Th/La 

from 0.08 to 0.14, Zr/Nb from 5.7 to 9.6 and Th/Ta from 1.1 to 2.0. La/Yb, Ce/Pb, 

Th/Ta, Nb/Th, Nb/Y and Zr/Y all fall in or near the range for OIB, distinct from those 

of N-MORB and arc volcanics (Fig. 7f-j, 8a-b and 11a-d; e.g., Sun and McDonough, 

1989). These signatures indicate a similar OIB-like origin for Group 1 and Group 2 
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when significant crustal contamination is precluded. On the Zr/Nb vs Ce/Y diagram 

(Deniel, 1998), both groups plot in a similar field indicating low degrees of melting of 

a garnet-bearing mantle source (Fig. 12a). The high La/Sm (2.75–4.12) and Sm/Yb 

(2.67–4.41) also argue for a low-degree melting product across the garnet–spinel 

lherzolite column (Fig. 12b; Lassiter and DePaolo, 1997).  

In the rock archive, high-iron magma is comparatively rare (e.g. Leybourne et 

al., 1999). Two petrogenetic models are used to understand their origination 

involving (1) lherzolite with Fe-rich eclogite/pyroxenite blobs/streaks and (2) mantle 

wedge metasomatized by slab melt/delaminated refractory slab (Hauri, 1996; 

Takahasi et al., 1998; Kerrich et al., 1999; Leybourne et al., 1999; Gibson et al., 

2000; Gibson, 2002; Wang et al., 2004, 2008). Our high-iron samples do not show 

the geochemical fingerprint of a subduction-modified mantle wedge. In addition, on 

the Chiang Dao profile in NW Thailand, the high-iron basalts are overlain by 

Permian shallow-marine carbonate (Zhang et al., 2016; Fig. 2c). Such phenomena 

resemble those in the Changning-Menglian suture zone in SW Yunnan that are 

interpreted to form in seamount setting (e.g., Feng et al., 2002, 2004, 2008). As 

mentioned above, our data in Figs. 6-9 suggest that the least fractionated samples 

have a composition of SiO2 = ~45 wt.%, Al2O3 =~10 wt.%, FeO =~14 wt.%, MgO 

=~15 wt.%, CaO =~12 wt.%, K2O+ Na2O =~2 wt.% and TiO2 =~2.5 wt.% (Figs. 

5-6). The primary magma for both groups is Fe-, Mg- and Ti-rich and the source 

might be the garnet–spinel lherzolite with eclogite/pyroxenite streaks. Experimental 

studies indicate that ~50 % melting of eclogitic streaks can generate high-iron melt 
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with elevated Al2O3 content and Nb/La (e.g., Rapp et al., 1991; Gasparik and Litvin, 

2002; Klemme et al., 2002; Gibson, 2002). Consequently, it is inferred for the 

Permian OIB-like Group 1 and Group 2 basalts in NW Thailand having originated 

from a similar source consisting of garnet–spinel lherzolite with eclogitic or 

pyroxenite streaks in spite of the distinct magma differentiation trends.  

 

5.3 Tectonic implications 

Our results above show that the Group 1 and Group 2 basaltic rocks in NW 

Thailand have an OIB-like geochemical affinity. On a variety of plots involving 

immobile elements, they fall into the intra-plate or seamount basalt field (Fig. 11c-d). 

These samples display low Zr/Y, Nb/Y, La/Yb, Th/Yb and Nb/Yb, distinct from the 

field of N-MORB. In Figure 11a-b, they plot along the MORB–OIB array near to 

OIB. Such signatures suggest an intraplate continental rift or oceanic setting (e.g., 

Lutkov, 1991; Volkova and Budanov, 1999; Gao and Klemd, 2003).  

High-iron magma is occasionally observed in continental rift and mantle plume 

settings, along with divergent plate margin setting with thin crust (e.g., mid-oceanic 

ridge, Hunter and Sparks, 1987; Brook et al., 1991; Gibson, 2002; Harper, 2003; 

Higgins, 2005; Veksler et al., 2006; Namur et al., 2010). Our sample from the Chiang 

Dao profile yields an Ar-Ar age of 283 Ma. Such age, along with the early Permian 

fusulinids in the Chiang Dao stratigraphic sequence (Ratanasthien et al., 1999; Feng et 

al., 2002, 2004), indicating an early Permian eruption. In addition, Carboniferous 

-early Permian fusulinid fossil, foraminifers, minor corals and conodont are identified 
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in the limestones underlain by the massive basalt from the Mae Tha and Ban Pha 

Daeng areas in NW Thailand (Ratanasthien et al., 1999; Ueno, 1999, 2003; Fontaine 

et al., 2005). Such observations indicate the volcanic rocks in Chiang Mai area 

erupted at Carboniferous-early Permian. During this time, available geological data in 

NW Thailand do not reveal the presence of the large-scale doming, or dike swarms 

and anorogenic igneous activity, and thus against the plume setting. In addition, the 

magma differentiation trends revealed by our samples are uncommon in continental 

environments since crustal contamination in continental flood basalts might result in 

increases in oxygen fugacity of the magma (Xu et al., 2003), further precluding the 

possibility of a continental large igneous province setting for the Group 1 and Group 2 

magma. In contrast, late Paleozoic ocean remnants consisting of basalts, pelagic 

radiolarian cherts and limestones, mudstones and turbidites are widespread in this area 

(Caridroit, 1993; Fang et al., 1994; Feng et al., 2002, 2004, 2008; Wonganan and 

Caridroit, 2005; Wakita and Metcalfe, 2005; Ridd et al., 2011). Devonian to Middle 

Triassic deep marine radiolarian cherts are well preserved in isolated sheets along the 

Chiang Rai-Mae Sariang area in the Inthanon zone (e.g., Chonglakmani, 2001; Feng 

et al., 2002, 2004; Wakita and Metcalfe, 2005; Radon et al., 2006; Sone and Metcalfe, 

2008; Ridd et al., 2011). These signatures, along with late Paleozoic fauna in the area, 

indicate the presence of a long-lived ocean basin in NW Thailand (e.g.,Caridroitet al., 

1993; Feng et al., 2004, 2008; Wonganan et al., 2005). Wakita and Metcalfe (2005) 

reported an ocean-floor stratigraphy ranging from pillow basalt up through radiolarian 

chert, interbedded radiolarian chert and pelagic limestones to deep sea argillites 
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nearby the Chiang Mai city. Thus Group 1 and Group 2 occur in a Paleotethyan 

oceanic intra-plate setting. 

On the plot of Th/Yb vs (La/Sm)cn (Fig. 11d), the samples overlap with the 

seamounts at the East Pacific Rise, Permian seamount-like blueschist in SW Yunnan, 

and the Daimao seamount in the South China Sea (e.g., Pearce, 2008; John et al., 2010; 

Fan et al., 2015; Yan et al., 2015). Our field investigations indicate that the Group 1 

and Group 2 basalts are overlain by Carboniferous-early Permian shallow-marine 

carbonates devoid of any continental detrital input, with the Doi Chiang Dao, Fang 

and Kae Noi profiles resembling typical seamount stratigraphic successions (Fig. 2c; 

Ratanasthien et al., 1999; Gradstein et al., 2004; Feng et al., 2002, 2004, 2008). Ueno 

(1999, 2003) and Feng et al. (2002, 2004, 2008) concluded that long and continuous 

carbonate deposition lacking any siliciclastic input is distinct from the normal shelf 

carbonates and can only be accomplished in the isolated intra-oceanic setting, e.g., 

seamount or oceanic plateau (Metcalfe, 2002, 2013; Wakita and Metcalfe, 2005; Feng 

et al., 2002, 2008; Ueno, 1999, 2003). As a result, the OIB-type Group 1 and Group 2 

rocks most likely represent the basaltic substrate of a seamount–capped by 

shallow-marine carbonate build-ups in the intra-oceanic setting. Taking into account 

the spatial distribution of our Permian seamount basalts, which are mainly exposed 

within the Inthanon zone between the Mae Yuam and Chiang Rai faults, it is 

concluded that the Inthanon zone constitutes the remnants of the Paleotethyan ocean 

in NW Thailand (e.g., Barr and Macdonald, 1991).  

It has been a matter of debate as to whether the Paleotethyan main suture in 
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NW Thailand lay along the Inthanon zone, Nan zone or Mae Yuam fault (e.g., 

Metcalfe, 1998, 2002, 2010, 2013; Sone and Metcalfe, 2008; Ueno and Tsutsumi, 

2009). In NW Thailand, the Sukhothai zone and the Indochina block lie to the east of 

the Chang Rai Fault, and are separated by the Nan suture zone (Fig. 2a-b；Barr and 

Macdonald, 1991). Available geological data show that the Nan suture zone 

represents the Carboniferous-early Triassic back-arc basin that links northward with 

the time equivalent Jinhong and/or Ailaoshan back-arc basins (e.g., Metcalfe, 1998, 

2002, 2013; Panjasawatwong et al., 2003; Lepvrier et al., 2008; Sone and Metcalfe, 

2008; Fan et al., 2010, 2015; Oliver et al., 2014; Qian et al., 2013, 2015). The 

synthesis of these data suggests a Permian-Triassic supra-subduction zone with a 

northward (eastward in the present configuration) subduction polarity. The spatial 

pattern of the trench-arc system is shown in Fig. 13, from west to east, which is 

characterized by the Sibumasu block, Inthanon zone, Sukhothai zone, Nan back-arc 

zone and Indochina block, respectively. The Paleotethyan oceanic crust in NW 

Thailand is older than 283 Ma for the seamount to be built. The Inthanon zone 

defines the Paleotethyan main suture zone with the Chiang Rai Fault for the eastern 

boundary in NW Thailand.  
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Figure captions 

Fig. 1. (a) Tectonic sketch map of SE Asia showing major tectonic boundaries. (b) 

Tectonic subdivision in NW Thailand showing the Sibumasu block, Inthanon zone, 

Sukhothai zone and Indochina block from west to east, which are in turn separated by 

the Mae Yuam fault, the Chiang Rai fault and Nan suture zone, respectively.  

Fig. 2. (a) Distribution of late Paleozoic volcanic rocks in Thailand (after Ridd et 

al., 2011). (b) Geological map in NW Thailand showing sampling locations. (c) 

Representative stratigraphic profiles at Chiang Dao and Fang showing seamount 

association (revised after Feng, 2002). 

Fig. 3. Micrographs of the representative Group 1 (a, TG-2A; and b, TG-12L) and 

Group 2 (c, TG-4G; d, TG-14A6) samples in NW Thailand.  

Fig. 4. The 
40

Ar/
39

Ar age spectra of the basaltic sample (TG-4A) in NW Thailand. 

The length of bars reflects 1 uncertainty. See Fig. 2b for locations of the sample. 

Fig. 5. Plots of (a) Zr/Ti versus Nb/Y, (b) TiO2 versus MgO and, (c) FeOt versus 

SiO2 for the basaltic samples at the Chiang Mai area of NW Thailand. The fields of 

Emeishan basalts and Skaergaard Fenner basalts in (b-c) are from Xu et al. (2003) and 

Brooks et al. (1991), respectively. 

Fig. 6. Harker diagram involving MgO versus (a) Al2O3, (b) SiO2, (c) TiO2, (d) 

CaO, (e) K2O+Na2O and (f) MnO for the Group 1 and 2 basalts in NW Thailand, 

respectively.   

Fig. 7 MgO versus (a) Sc, (b) Co, (c) V, (d) Cr, (e) Ni, and Zr versus (f) Y, (g) Nb, 

(h) La, (i) Th and (j) Sr for the Group 1 and 2 basalts at the Chiang Mai area of NW 
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Thailand, respectively.  

Fig. 8. The patterns of (a) the chondrite-normalized rare-earth elements, and (b) 

primitive mantle-normalized spidergram for the Group 1 and 2 basalts at the Chiang 

Mai area of NW Thailand, respectively. Chondrite- and primitive mantle-normalize 

values are from Sun and McDonough (1989). Data for OIB and E-MORB are after 

Sun and McDonough (1989). 

Fig. 9. Plot of εNd(t) versus initial
 87

Sr/
86

Sr(t) for the representative samples from 

Group 1 and 2 at the Chiang Mai area of NW Thailand, respectively. Data for Hawaii 

OIB, Kenya, Samoa, Kergulen, Emeishan high-Ti and low-Ti basalts are from Xu et al. 

(2003) and Hart (1989). 

Fig. 10.Plots of (a) Th and Ni, (b) Yb and La/Yb and (c) Yb and Tb/Yb for the 

Group 1 and 2 samples at the Chiang Mai area of NW Thailand, respectively.  

Fig. 11. Plots of (a) La/Nb vs Nb/Th, (b) Zr/Y vs Nb/Y, (c) Th/Ta vs Tb/Ta, and (d) 

La/Sm vs Th/Yb for the Group 1 and 2 samples at the Chiang Mai area of NW 

Thailand, respectively. IAT: island-arc tholeiite; WPB: within-plate basalt; CAB: 

continental arc basalt; CFB: continental flood basalt; BAB: back-arc basin; MORB: 

mid-oceanic ridge basalt; E-MORB: enriched mid-oceanic-ridge basalt; N-MORB: 

normal mid-oceanic- ridge basalt; OIB: oceanic-island basalt; OIT: oceanic-island 

tholeiite; WPAB: within- plate alkali basalt. 

Fig. 12. (a) Zr/Nb vs Ce/Y and (b) La/Sm vs Sm/Yb for Group 1 and 2 at the 

Chiang Mai area of NW Thailand, respectively. 

Fig. 13. Late Paleozoic paleography in NW Thailand showing the trench-arc 
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system. Form west to east, the spatial pattern is characterized by the Sibumasu block, 

Inthanon zone, Sukhothai zone, Nan back-arc zone and Indochina block.  
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Highlights 

► The Chiang Mai basaltic rocks are characterized by high-Fe basalts with 

distinct differentiation trends.  

► These basalts in NW Thailand originated from an OIB-like source in the 

Paleotethyan intra-oceanic seamount setting. 

► The Inthanon zone defines the Paleotethyan main suture with the Chiang Rai 

Fault for the easternmost boundary.  


