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Summary 11 

 12 

The global ocean’s near-surface can be partitioned into distinct provinces on the basis of regional 13 

primary productivity and oceanography [1]. This ecological geography provides a valuable 14 

framework for understanding spatial variability in ecosystem function, but has relevance only part 15 

way into the epipelagic zone (the top 200 m). The mesopelagic (200-1,000 m) makes up 16 

approximately 20% of the global ocean volume, plays important roles in biogeochemical cycling [2], 17 

and holds potentially huge fish resources [3–5]. It is, however, hidden from satellite observation, and 18 

a lack of globally-consistent data has prevented development of a global-scale understanding. 19 

Acoustic Deep Scattering Layers (DSLs) are prominent features of the mesopelagic. These vertically-20 

narrow (tens to hundreds of m) but horizontally-extensive layers (continuous for tens to thousands 21 

of km) comprise communities of fish and zooplankton, and are readily detectable using 22 

echosounders. We have compiled a database of DSL characteristics globally. We show that DSL and 23 

acoustic backscattering intensity (a measure of biomass) can be modelled accurately using just 24 

surface primary production, temperature and wind-stress. Spatial variability in these environmental 25 

factors leads to a natural partition of the mesopelagic into ten distinct classes. These classes demark 26 

a more complex biogeography than the latitudinally-banded schemes that have been proposed 27 

before [6,7]. Knowledge of how environmental factors influence the mesopelagic enables future 28 

change to be explored: we predict that by 2100 there will be widespread homogenisation of 29 

mesopelagic communities, and that mesopelagic biomass could increase by c. 17%. The biomass 30 

increase requires increased trophic efficiency, which could arise because of ocean warming and DSL 31 

shallowing. 32 
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 36 

Results  37 

Deep Scattering Layers and Acoustic Sampling 38 

Deep Scattering Layers (DSLs) are ubiquitous features of the global ocean that comprise biomass-rich 39 

communities of zooplankton and fish. They are so dense (biomass per unit volume) that in early 40 

acoustic surveys echoes from DSLs were mistaken for seabed echoes, hence the common name 41 

‘false bottom’. The mesopelagic is defined as the 200 to 1,000 m depth horizon (e.g. [8]). The physics 42 

of sound propagation enables this zone to be sampled effectively from the surface with commonly-43 

employed 38-kHz echosounders. Previous studies from tropical to sub-polar seas suggest that DSLs 44 

are rare beneath 1,000 m (e.g. [9,10]). 45 

 46 

General characteristics of regional-scale DSLs 47 

We used an automated, reproducible technique [11] to identify and characterise DSLs in 38-kHz 48 

acoustic data collected from the top 1,000 m by numerous research and fishing vessels around the 49 

world. We collated data from survey transects totalling 104,688 km in length (see Figure S1). 50 

Together these contained 26,474 DSLs >10 km long. 51 

 52 

Inspection of the global DSL dataset revealed pronounced geographic differences in DSL depth, 53 

vertical extent (thickness) and acoustic backscattering intensity (quantified as area backscattering 54 

coefficient [ABC], m2 m-2 [12]). ABC can be a linear proxy for biomass [3]. In this case, ABC is the total 55 

acoustic backscatter per m2 from DSLs in the mesopelagic zone: henceforth, we use the term 56 

‘backscatter’ for simplicity. Although it is tempting to convert backscatter to a measure of actual 57 

biomass [3], we lack the data on species composition and size, and also on acoustic target strength, 58 

to do this [13]. Our analysis henceforth is therefore relative rather than absolute. 59 

 60 

Generally speaking, during the day-time the mesopelagic zone contained a principle DSL that was 61 

vertically broad (extending over >200 m vertically), relatively dense (backscatter c. 1.59 x 10-5 m2 m-62 

2), and commonly (>66% chance) centred at a depth of c. 525 m (Figure 1). There was also 63 

sometimes (<20% chance) a secondary, less dense DSL (backscatter c. 1.26 x 10-6 m2 m-2) 64 

approximately 300 m deeper. 65 

 66 

 67 
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Environmental drivers of DSL variability 68 

Differences in DSL characteristics across oceanographic frontal boundaries have been reported 69 

previously [15], but variability at the global scale has not been quantified. The spatial coverage of 70 

our data spanned 14 of Longhurst’s [1] 32 pelagic surface provinces (excluding his Coastal biome; 71 

see Figure S1). We binned daytime DSL data by these surface provinces (there can be major 72 

differences  between day-time and nighttime depths of DSLs due to diel vertical migration [16], so 73 

we separated daytime and nighttime data to avoid introducing temporal artefacts to our spatial 74 

analysis). Variability in depth of the principle daytime DSL (ZPDSL, m; see Figure 1) was explained well 75 

at this spatial scale (n = 14, R2 = 0.68, root-mean-square error [RMSE] = 28 m) by a simple multi-76 

linear model with mean annual primary production (PP, g C m-2 day-1, p = 0.01) and surface wind 77 

stress (τ, N m-2, p = 0.001) as explanatory variables (Figure 2A). The variability in backscatter from 78 

DSLs was explained well (n = 14, R2 = 0.65, RMSE = 9.11 x 10-6 m2 m-2) by a simple multi-linear model 79 

incorporating PP (p = 0.017) and the temperature at the depth of the principal DSL (TPDSL, °C, p = 80 

0.0001; Figure 2B). 81 

 82 

Mesopelagic biogeography 83 

We used a clustering approach to explore the likely geographic distribution of distinct DSL types 84 

across the global ocean (areas where total depth ≥1,000 m). We gridded (at 300 × 300 km scale) PP 85 

and TPDSL (estimated from predicted values of ZPDSL, which is a function of PP and τ; see Figure 2A), 86 

and used K-means clustering (see Supplemental Information) of the normalised variables to identify 87 

coherent mesopelagic classes across a range of spatial scales (from n = 3 to 35 classes globally, 88 

classes having characteristic backscatter, PP and TPDSL values; see Supplemental Information, Figure 89 

S3). 90 

 91 

The ability to model regional variability in backscatter was best at the scale of 22 mesopelagic 92 

classes (n = 17, R2 = 0.93, p < 0.0001, RMSE = 4.5 x 10-6 m2 m-2; Figure 2C). The best linear model 93 

included just one explanatory variable, PP × TPDSL, which was positively correlated with backscatter. 94 

Although the 22-class scale was optimal for modelling spatial variability in backscatter, several other 95 

scales also enabled very good prediction (R2 >0.83, see Figures S2 and S3). As the number of classes 96 

increased, finer scale features emerged in a progression from a simple polar and non-polar 97 

dichotomy, to biomes, to ocean gyres, to frontal features (see Figure S3). We selected the ten-class 98 

scale (R2 = 0.87) to present mesopelagic biogeographic structure here (Figure 3; also see Table S1). 99 

Projecting at the ten-class scale produced a map of 36 spatially-distinct mesopelagic provinces, a 100 

number similar to the 32 surface provinces advocated by Longhurst [1] (see Supplemental 101 
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Information, Figure S2). By choosing to focus on this scale, we were able to compare Longhurst’s 102 

surface biogeography and our mesopelagic biogeography: they do not overlap directly (Figure 3A). 103 

 104 

Our ten-class mesopelagic biogeographic structure is more complex and heterogeneous than the 105 

simple latitudinal banding that pervades previous surface [6] and abyssal [7] schemes. Although the 106 

Southern Ocean is latitudinally-banded in our scheme (reflecting the quasi-parallel oceanographic 107 

frontal structure in that ocean [18]), a markedly different arrangement is evident elsewhere. For 108 

example, the central tropical gyres of the north and south Pacific Ocean both cluster in to the same 109 

class. Classes with high backscatter values (high mesopelagic biomass) are found across the north 110 

Atlantic and within frontal zones at mid-latitudes, with the exception of the south Pacific sector of 111 

the Southern Ocean. Classes with lower backscatter values (low mesopelagic biomass) include the 112 

polar oceans and the south Atlantic. 113 

 114 

Present day backscatter and trophic efficiency 115 

We estimated total global backscatter by summing together the products of the predicted mean 116 

backscatter value (m2 m-2) and surface area of each mesopelagic class. The present-day value was 117 

6.02 x 109 m2 +/- 1.4 x 109 (error limits from regression model RMSE value; see Figure 2C). 118 

 119 

Biological production (the increase in biomass per unit time) is a function of biomass, temperature 120 

and trophic level [19]. The mesopelagic community is made up of organisms operating at a range of 121 

trophic levels (TL) between 2 and 4. Myctophid fish (TL = 3.2; www.fishbase.org) are a major 122 

component of mesopelagic biomass [20,21]. Zooplankton, squid and gelatinous predators operate at 123 

TL = approximately 3, whilst herbivorous zooplankton reside at TL = 2. We used backscatter as a 124 

proxy for biomass, the temperature at the depth of the principle DSL, and a nominal modal trophic 125 

level of 3 to predict a value of DSL backscatter production (per m2 per unit time) for each 126 

mesopelagic class. For each class, we determined a ratio of backscatter production to primary 127 

production (TL = 1) and quantified the total amount of wet-weight primary-producer biomass 128 

required to generate 1 unit of backscatter (PPbs, tonnes m-2; see Supplemental Information). PPbs 129 

serves as an inverse proxy for the trophic efficiency between TL 1 and TL 3, i.e. an increase in PPbs 130 

signifies a decrease in trophic efficiency. For the present day, we estimated a global mean PPbs value 131 

of 108 tonnes m-2 (error limits 62 to 195.6 tonnes m-2 from regression model RMSE values). To 132 

enable regional comparisons of trophic efficiency to be made, mean PPbs values were calculated for 133 

each of Longhurst’s [1] surface provinces. PPbs, and hence trophic efficiency, was geographically 134 

diverse (Figure 4A). 135 

http://www.fishbase.org/
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 136 

Impacts of environmental change on DSL structure and distribution 137 

As the atmosphere warms the ocean will warm [22], its density structure will change [23] 138 

(influencing stratification and near-surface nutrient supply [24]), surface wind intensity will change 139 

(influencing vertical mixing, stratification and nutrient supply), and primary production will change 140 

[25,26]. Our finding that the depth of, and backscatter from, present-day DSLs are influenced by PP, 141 

temperature and wind stress, suggests that regional DSLs characteristics will change too in the 142 

future as a result of expected environmental change. We used the coupled climate-ecosystem model 143 

NEMO-MEDUSA-2.0 [27] (under the Representative Concentration Pathways (RCP) 8.5 climate 144 

scenario, and with surface forcing as per the UK Meteorological Office's HadGEM2-ES model) to 145 

obtain PP, τ and TPDSL for the period 2090-2100. Values of PP and TPDSL (estimated from predicted 146 

values of ZPDSL, which is a function of PP and τ) were gridded (300 × 300 km scale), and each grid cell 147 

was attributed a DSL class using the K-means centroids (see Table S1) from the present-day (2005-148 

2008) ten-class scale mesopelagic biogeography (Figure 3B). 149 

 150 

According to NEMO-MEDUSA-2.0, oceanic PP will remain fairly constant over the 21st century, with 151 

mean values over the pelagic realm of 0.319 and 0.324 g C m-2 day-1 for the present and 2100 152 

respectively. While there are differences between the predictions of various Earth system models, 153 

predictions of future PP by NEMO-MEDUSA-2.0 are consistent with those from a number of other 154 

models [28–31], and this ensemble agreement is mutually supportive. By 2100, the predicted mean 155 

ZPDSL will be shallower on average than present (shallowing from 545 m to 510 m, RMSE = 28 m; see 156 

Figure 2A and 4B), the predicted TPDSL will increase (from a mean of 7.2 +/- 0.28 to 8.5 +/- 0.37 °C, 157 

error limits based on ZPDSL regression model RMSE value), and wind stress will weaken (from 0.085 to 158 

0.058 Nm-2). 159 

 160 

Future backscatter and trophic efficiency 161 

In light of the environmental changes predicted by NEMO-MEDUSA-2.0, we estimated that global 162 

DSL backscatter will increase by 16.7% from a present-day value of 6.02 x 109 m2 +/- 1.4 x 109 to 7.03 163 

x 109 m2 +/- 1.4 x 109 in 2100 (error limits from regression model RMSE value; see Figure 2C). We 164 

estimate that the global mean PPbs will decrease from 108.0 tonnes m-2 (error limits from 62.0 to 165 

195.6) to 73.9 tonnes m-2 (error limits from 53.6 to 145.7) by 2100 (error limits from regression 166 

model RMSE values; Figure 4A), i.e. that 34.1 tonnes less primary producer biomass per m2 will be 167 

needed to generate 1 unit of DSL backscatter by 2100, equivalent to a factor increase in trophic 168 

efficiency of 1.232 +/- 0.015 (error limits from regression model RMSE values, see Supplemental 169 
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Information). The predicted increase in global backscatter and decrease in the mean global value of 170 

PPbs is indicative of an overall future increase in mesopelagic biomass and trophic efficiency. 171 

 172 

Discussion 173 

The analysis reported here is the first to apply a consistent, automated technique to identify and 174 

determine characteristics of DSLs from data collected on multiple acoustic surveys across the global 175 

ocean. As such, it provides the first consistent view of DSL variability globally, and has enabled the 176 

development, for the first time, of a DSL-based mesopelagic biogeography. Several site-specific DSL 177 

studies have been published [32,33], but quantitative comparisons between studies have not usually 178 

been possible because a consistent approach to DSL detection and parameterisation has not been 179 

used. Longhurst’s surface biogeography [1], defined in part using globally-consistent satellite remote 180 

sensing data, has been extremely valuable for improving understanding of spatial variability in 181 

ecosystem function in the visible and accessible ocean surface. We hope that the analysis presented 182 

here will be of value for understanding operation on a global-scale of the ecosystem of the hidden 183 

mesopelagic realm. 184 

 185 

Drivers of backscatter from DSLs  186 

Primary production (PP) – Foodweb theory holds that biomass at higher trophic levels (such as 187 

zooplankton grazers at level 2 and myctophid fish predators at level 3.2) is constrained by PP [34]. 188 

Indeed PP-to-biomass relationships have already been reported for mesopelagic fish [3]. It is no 189 

surprise, therefore, that PP is a significant factor in our model of DSL backscatter (a proxy for 190 

biomass; p = 0.01). PP in turn is influenced by light intensity, nutrient availability, stratification and 191 

mixing, and sea surface temperature (PP occurs in the illuminated, near-surface zone where 192 

biological processes are strongly-influenced by sea surface temperature). 193 

 194 

Temperature at the depth of the – Sea surface temperature was not a significant driver of 195 

backscatter (n = 14, R2 = 0.07, p = 0.19), but temperature at the depth of the DSL was. Mesopelagic 196 

organisms live their lives away from the surface, which is one reason why the mesopelagic 197 

biogeography revealed here does not map well on to Longhurst’s [1] surface scheme (Figure 3). 198 

Biomass, production, and production-to-biomass ratios for marine fish all vary with temperature [34] 199 

(positively; temperature influences metabolic rates and therefore growth and reproduction), and 200 

our finding of a highly significant positive linear relationship (p = 0.0001) between DSL backscatter 201 

and temperature at the depth of the DSL is consistent with this. A consequence is that by 2100, the 202 



7 
 

majority of surface provinces where DSLs are predicted to shallow significantly (> 28 m) will have 203 

increased biomasses because they will be warmer habitats (Figures 3 and 4B). 204 

 205 

Biogeographic change by 2100 206 

Using predicted values of PP, τ and TPDSL for 2090 - 2100 (from NEMO-MEDUSA-2.0 [27]), and 207 

mapping the ten present-day mesopelagic classes on to grid cells (300 x 300 km), it becomes 208 

apparent that environmental change will lead to a marked change in global mesopelagic 209 

biogeographic structure by the end of this century (Figure 3). Prominent changes by 2100 include: 210 

the low biomass regions of the north and south Pacific gyres expanding to almost fill their respective 211 

ocean basins (being separated by only a narrower, but more productive, east Equatorial Zone); the 212 

south Indian Ocean gyre decreasing in biomass (Figure 3); southern mid-latitudinal frontal zones 213 

increasing in area and biomass; the presently diverse south and central Atlantic Ocean coalescing to 214 

a more homogeneous, and relatively productive (for an open-ocean gyre system) regime, and 215 

increasing biomass in sub-polar regions. This latter change will be mediated strongly by DSL 216 

shallowing (Figure 4B), and may indicate northward and southward range expansions of mesopelagic 217 

fish. For the northern hemisphere, this in turn may be supportive of the view that the Atlantic and 218 

Arctic food webs will merge [27], and will lead to increasing abundance and diversity of polar 219 

mesopelagic fish. 220 

 221 

Trophic Efficiency now and by 2100 222 

The rule-of-thumb mean figure for trophic efficiency is approximately 10% per trophic level [35]. As 223 

temperature increases (up to the point that it becomes physiologically challenging), for a given food 224 

supply fish production will increase [19], yielding a higher trophic efficiency. This is because with 225 

increased temperature more food can be metabolised per unit time, increasing growth and 226 

reproduction rates (via shorter generation times). More rapid growth also leads to increased survival 227 

and recruitment because, by growing, individuals more rapidly escape some predation risk in size-228 

structured food webs. We predict a mean increase in trophic efficiency between trophic level 1 and 229 

3 by a factor of 1.232 +/- 0.015 by 2100. In the context of the rule-of-thumb 10% efficiency per 230 

trophic level, this is an increase of 1.1% per level. The magnitude and direction of change will, 231 

however, be geographically diverse because of geographic variation in temperature change and 232 

primary production (food supply). At the ocean scale, the backscatter in the Atlantic as a whole is 233 

predicted to change dramatically by 2100: substantial reductions in PP (-21% caused by stratification 234 

and nutrient depletion [27]) will lead to reduced biomass (Figure 3) despite the Atlantic maintaining 235 

some of the lowest values of PPbs (i.e. highest values of trophic efficiency; Figure 4A). Estimated 236 
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values of PPbs are presently highest in the polar regions but, by 2100, we predict substantially 237 

greater trophic efficiency in those regions due to ocean warming and DSL shallowing (Figure 3 and 238 

Figure 4A).  239 

 240 

Mesopelagic fish 241 

Although we do not know the extent to which mesopelagic fish contribute to DSL biomass [13], it is 242 

not unreasonable to expect it to be high [3]. Consequently, in light of predictions here of an increase 243 

in global backscatter by 2100 (of 16.7%), we predict an increase in the biomass of mesopelagic fish in 244 

the future. 245 

 246 

Mesopelagic fish are a key component of pelagic food webs [36], fuelling some commercially 247 

important fisheries [21]. They also play a major role in the biological pump [2,37,38], the active 248 

transport of carbon to the ocean interior that buffers atmospheric CO2, so provide an important 249 

‘ecosystem service’. In recognition of these roles, the US National Oceanic and Atmospheric 250 

Administration’s National Marine Fisheries Service prohibited in April 2016 commercial fisheries for 251 

myctophids (Myctophidae, or ‘Lantern fish’ are major constituents of mesopelagic biomass) and 252 

other small forage fish in the Pacific Ocean off the U.S. West Coast [39]. Our global-scale analysis can 253 

contribute towards ecosystem-based management of the mesopelagic because it highlights regions 254 

of relatively high (and low) biomass, and because present-day spatial variability (e.g. DSL 255 

characteristics in the sub-tropics versus in temperate regions) can be used as a proxy for future 256 

temporal change (e.g. regional warming). The ability to predict the redistribution of oceanic 257 

mesopelagic production could aid conservation management by, for example, guiding placement of 258 

open-ocean marine protected areas. 259 

 260 

Concluding remarks 261 

We have defined a global biogeography for the mesopelagic zone and used it to infer changes in 262 

mesopelagic biomass and trophic efficiency in to the future. This has gone some way to fill the ‘dark 263 

hole’ [4,5] in our understanding of the mesopelagic. Predictions based on output from NEMO-264 

MEDUSA-2.0 suggest that the mesopelagic will become more productive by 2100, but that this 265 

production will be condensed into smaller regions (e.g. concentrated at fronts) and spread 266 

polewards as DSLs shallow and the ocean warms. It has been suggested that constancy of light 267 

regime under climate change will prevent myctophid fish invading the Arctic [40]. Our results bring 268 

this in to question: ice loss will bring change to the Arctic surface and – we suggest – will presage 269 

change to the deep sea there as well. These changes may bring new opportunities for fishing. 270 
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 377 

Figure Legends 378 

Figure 1. Scattering Layer Daytime Vertical Distribution and Acoustic Backscattering Intensity. 379 

A typical day-time water-column acoustic profile (an echogram), showing a ‘surface’ scattering layer 380 

in the epipelagic zone (0 – 200 m), a principal deep scattering layer (DSL) at around 525 m (the global 381 

mean) and a secondary DSL at around 825 m, both in the mesopelagic (200 – 1,000 m). Data were 382 

recorded using a 38 kHz echosounder from the fishing vessel Will Watch [14] on the 30th May 2012 383 

in the south west Indian Ocean (28.8°S, 47.3°E). The colour bar is mean volume backscattering 384 

strength (MVBS, dB re 1m-1, [12]). 385 

 386 

Figure 2. Weighted linear regressions between Observed and Predicted Principal Depths of, and 387 

Acoustics Backscattering Intensities from, DSLs. 388 

(A) Principal DSL depth (ZPDSL, m; n = 14, R2 = 0.68, RMSE = 28 m) predicted for 14 of Longhurst’s 32 389 

surface provinces [1], using mean values of primary production (PP, g C m-2 day-1: data from 390 

http://www.science.oregonstate.edu/ocean.productivity/index.php) and wind stress (τ: output from 391 

SODA [17]) as explanatory variables (ZPDSL̂=483.8+1272×τ-143×PP);  392 

(B) Backscatter (ABC, m2 m-2; n = 14, R2 = 0.65, RMSE = 9.11 x 10-6 m2 m-2) predicted for 14 of the 32 393 

surface provinces [1] using surface PP and the temperature at ZPDSL (TPDSL, °C: inferred from ocean 394 

temperature output from SODA [17]) as explanatory variables 395 

(ABĈ=-1.18×10-5+2.99×10-5×PP+3.38×10-6×TPDSL); 396 

(C) Backscatter (ABC, m2 m-2; n = 17, R2 = 0.93, RMSE = 4.5 x 10-6 m2 m-2) predicted for 17 of the 22 397 

mesopelagic classes (determined by K-means clustering of normalised gridded PP and TPDSL values, 398 

see Figure S3G) using PP × TPDSL as an explanatory variable (ABĈ=-1.34×10-6+8.62×10-6×(PP×TPDSL)). 399 

Cross size represents the relative weighting of samples. Colours for (A) and (B) differentiate 400 

betweenLonghurst Biomes: red = Trades; green = Westerlies, and blue = Polar. Grey regions indicate 401 

the range of RMSE for each regression model. ZPDSL is weighted by probability of observation, and 402 

backscatter is weighted by sample size (spatial coverage within surface province or mesopelagic 403 

class). See also Figure S1. 404 

 405 

 406 

http://www.science.oregonstate.edu/ocean.productivity/index.php
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 407 

Figure 3. Present-Day Mesopelagic Biogeography Derived from Values of Surface Primary 408 

Productivity and Temperature at the Depth of the Principal DSL, and Predicted Biogeography for 409 

the Period 2090-2100. 410 

(A) Present-day mesopelagic biogeography derived by K-means clustering of gridded PP (g C m-2 day-411 

1: data from http://www.science.oregonstate.edu/ocean.productivity/index.php) and TPDSL (°C: 412 

estimated from predicted values of ZPDSL using data output from SODA [17]) values into ten classes 413 

(see Table S1 for mean values). 414 

(B) Future mesopelagic biogeography. Gridded cells attributed to their future appropriate class using 415 

centroids from the present-day result. 416 

Longhurst surface provinces [1] are overlaid and labelled. Each mesopelagic biogeography is formed 417 

of ten classes (that form distinct mesopelagic provinces when resolved spatially), which are ranked 418 

in order (from C1 to C10) of increasing backscatter values (proxies for mesopelagic biomass). See 419 

also Figures S2 and S3 and Table S1. 420 

 421 

Figure 4: Global Change in PPbs, an Inverse Proxy of Trophic Efficiency, and Principal DSL Depth for 422 

Each Longhurst Surface Province for the Present-Day and Future, Assuming Future Conditions as 423 

per Data Output from NEMO-MEDUSA-2.0 for the Period 2090-2100. 424 

(A) PPbs (tonnes m-2; primary-producer biomass required to generate one unit of backscatter per m2 425 

from DSLs in the mesopelagic) calculated by surface province (see Supplemental Information). Error 426 

bars are from regression model RMSE values. 427 

(B) Predicted variability in the depth of the principle day-time DSL (ZPDSL̂=483.8+1272×τ-143×PP, 428 

RMSE = 28 m, where PP (g C m-2 day-1) is primary production (data from 429 

http://www.science.oregonstate.edu/ocean.productivity/index.php) and τ (N m-2), is wind stress, 430 

taken from SODA [17]). See also Figure S1. 431 

Surface provinces are grouped by Ocean and ranked by latitude from north to south: ARC is the 432 

Arctic Ocean, IO is the Indian Ocean, SO is the Southern Ocean, and ANT represents the region of the 433 

SO south of the Antarctic Polar Front. For the Pacific and Atlantic Oceans, provinces that are furthest 434 

north (N), south (S) and those which reside closest to the equator (E) are indicated. 435 

http://www.science.oregonstate.edu/ocean.productivity/index.php
http://www.science.oregonstate.edu/ocean.productivity/index.php

