

Allan, Pamela and Arlin, Jean-Baptiste and Kennedy, Alan R. and Walls, Aiden (2017) Mixed Ca/Sr salt forms of salicylic acid, tuning structure and aqueous solubility. Acta Crystallographica Section C: Structural Chemistry. ISSN 2053-2296 (In Press),

This version is available at https://strathprints.strath.ac.uk/62728/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>https://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.

Mixed Ca/Sr salt forms of salicylic acid, tuning structure and aqueous solubility

Pamela Allan, Jean-Baptiste Arlin, Alan R. Kennedy* and Aiden Walls

Westchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland Correspondence email: a.r.kennedy@strath.ac.uk

Abstract

Ten isostructural single-crystal diffraction studies of mixed cation Ca/Sr salt forms of the salicylate anion are presented, $[Ca_{(1-x)}Sr_x(C_7H_5O_3)_2(OH_2)_2]$, where x = 0, 0.041, 0.083, 0.165, 0.306, 0.529, 0.632, 0.789, 0.835 and 1. The structure of an isostructural Sr/Ba species $[Sr_{0.729}Ba_{0.271}(C_7H_5O_3)_2(OH_2)_2]$, is also described. The Ca/Sr structures form a series where, with increasing Sr content, the unit cell expands in both the crystallographic a and c directions (by 1.80 and 3.18% respectively), but contracts slightly in the b direction (-0.31%). The largest percentage structural expansion lies parallel to the direction of propagation of the one-dimensional coordination polymer that is the primary structural feature. This structural expansion is thus associated with increased M—O distances. Aqueous solubility measurements show that solubility generally increases with increasing Sr content. Thus tuning the composition of these mixed counterion salt forms leads to sytematic structural changes and allows solubility to be tuned to values between those for the pure Ca and Sr species.

1. Comment

Introduction.

The most common way to alter the material properties of acidic Active Pharmaceutical Ingredients (APIs) is to generate salt forms using s-block metal ions (Stahl, 2008). Commonly the material property of prime interest to manufacturers is aqueous solubility, as this has known links to dissolution rate and hence to bioavailability of APIs. We have previously published a study on comparative structure and solubility trends in series of alkaline earth metal salt forms of pharmaceutically relevant benzoic acid derivatives (Arlin *et al.*, 2011). For salts of the API salicylic acid, this study found a rank order solubility of Mg > Ba > Sr > Ca and showed that whilst the Ca and Sr salts were isostructural and isomorphic, the structures of the Mg and Ba salts were very different (Arlin *et al.*, 2011; Debuyst *et al.*, 1979). The structures of the Ca and the Sr salts are both dihydrates with 8-coordinate metal centres and one-dimensional coordination polymer structures that propagate through Ca—O—Ca bridges, where the bridging O atom is from the carboxylate group. In contrast, the structure of the Ba salt is a monohydrate two-dimensional coordination polymer and the Mg salt structure is a discrete tetrahydrate complex of type [Mg(C₇H₃O₃)₂(OH₂)₄].

For crystalline systems the isostructuality of the Ca and Sr salicylate salt forms should, according to the Hume-Rothery rules, favour the possibility of forming solid solutions with mixed Ca/Sr sites (Mizutani, 2011; Hume-Rothery & Powell, 1935). Structures with such mixed-metal formulations are ubiquitous in inorganic systems (*e.g.* minerals or alloys, Sekine *et al.*, 2017; Wahlberg *et al.*, 1965; Davidson *et al.*, 2005; Johnson *et al.*, 1970) but are much less studied in molecular or organic salt species. Whilst molecular structures with sites with mutal substitution of s-block metal ions are known both for mixed group 2 metal species (*e.g.* Trifa *et al.*, 2007) and for mixed group 1 with groups 2 metal species (*e.g.* Kennedy *et al.*, 1998) there are surprisingly few examples of systematic structural studies of this phenomenon. The most relevant work that we are aware of is a report on the structures of Ca and Sr formate, which also gives unit cell data for 3 intermediate mixed Ca/Sr forms (Matsui *et al.*, 1980).

Results.

Eleven samples of salicylate salts were prepared using different initial aqueous Ca/Sr ratios. Of these, ten gave singlecrystal samples suitable for accurate structural determination, see Table 1. A l l structures had similar unit cells to the parent "pure" structures. Where both Ca and Sr were present in solution, both metal types were always found incorporated within the structure and sharing one structural site. In all structures, the metal ions occupy a site that is a special position, namely a crystallographic centre of symmetry, Fig. 1. After several trial calculations, all mixed-metal structures were refined with EADP and EXYZ constraints on the metal centres. The composition of the mixed metal site was found by refinement of site occupancy factors, constrained to total 1. The Ca/Sr ratios as measured by diffraction are given in Tables 1 and 13. It can be seen that whilst the single-crystal derived metal ratios do not match the ratios of metals available in the parent solutions, a broad control of crystal composition is possible *i.e.* the greater the proportion of aqueous Sr provided, the greater the incorportaion of Sr into the crystal. Note that all solutions with >50% Ca available gave more Ca incorporation into the solid than expected simply from the solution composition. The equivalent case for the lower % Ca samples is much less clear cut, Table 13.

Attempts were also made to incorporate other group 2 ions into similar structures. No incorporation of Mg was observed, which is perhaps unsurprizing given the large change in ionic radii between Mg and Ca and the fundamentally different structure observed for Mg salicylate as opposed to the Ca and Sr structures (Hume-Rothery & Powell, 1935; Arlin *et al.*, 2011). On both size and structural considerations, the Hume-Rothery rules would suggest that Ba is a more likely candidate for inclusion. Indeed, a 50:50 Sr/Ba solution did give a mixed metal species, Fig. 2, that is isostructural with the Ca and Sr structures described herein. The Sr/Ba occupancy refined to 72.9 (4):27.1 (4). The solid thus has much less Ba present than was available from solution, which perhaps indicates that the larger Ba ion is not such a good fit to the coordination geometry demands of this structural type.

Unit Cell Changes

As expected, the unit cell volume increases as the amount of Sr present in the structure increases. Examination of Fig. 3 shows an overall increase in volume of 4.72%. The increase in volume is relatively linear between approximately 10 and 80% Sr with small discontinuities at either end of this range. Fig. 4 shows the change in length of the individual a, b and c dimensions. With increasing Sr content the structure expands in both the a and c directions (by 1.80 and 3.18% respectively), however the b dimension is relatively invariant and even contracts slightly (-0.31%). The Sr/Ba structure continues these trends with a larger unit cell volume (1529.04 (11) Å³), expansion of a and c (16.8381 (7) and 7.9433 (3) Å respectively) and a relatively large contraction of b (to 11.4349 (5) Å). This pattern of changes to the unit-cell dimensions with changing metal content is obviously different to the unit cell changes caused by thermal expansion of [Ca(C₇H₅O₃)₂(OH₂)₂], Fig. 5, where all axes' dimensions increase with increasing temperature.

Bond Length Considerations.

A simple driver of unit cell expansion is that increasing the amount of the large Sr ion present leads directly to the observed increase in M—O bond distances (where this observed distance is an average of the component Ca—O and Sr—O distances), Table 14. Of the four structurally independent M—O distances, the bond to the neutral water ligand increases more with increasing Sr content than do the three bonds to formally anionic atoms of carboxylate groups (compare an overall 6.39% increase for M1—O1W compared to 4.63, 5.40 and 4.37% for bonds to O3, O3ⁱⁱ and O2ⁱⁱ respectively, ii = 1 - x, 1 - y, -z). This fits with the known greater bonding affinity of Ca for neutral water as compared to Sr (Kennedy *et al.*, 2009). It also results in Ca1—O1W being the shortest coordination bond for the Ca species but Sr1—O3 being the shortest coordination bond for the Sr species, the apparent shortest bond lengths swapping at the 50:50 Ca:Sr point. Similarly, further lengthening of the apparent M—O distances occurs in the Sr/Ba structure. Again it is M—O3 that is shortest with distances of 2.5654 (17), 2.5486 (13), 2.6647 (13) and 2.8113 (13) Å for M1—O1W, M1—O3, M1—O3ⁱⁱ and M1—O2ⁱⁱ respectively.

Increasing the average M—O distances causes the metal-to-metal seperations along the coordination polymer to expand. As the coordination polymer propagates parallel to the *c* axis, this explains why it is the c direction that shows the largest percentage expansion. It is harder to explain why the b dimension does not expand but the a dimension does. Fig. 6 illustrates the packing of the coordination polymers. The metal centres define a rhomboid (of side 10.025 Å for calcium salicylate) and with internal M—M—M angles of approximately 70 and 110 °. Those M—O vectors that do not lie along the c direction are diagonaly related to both the a and b directions. The hydrogen bonding network follows the same general directions with water-phenol-water interactions linking between coordination chains in both the a and b directions, Tables 2 to 12. The only hydrogen bond interaction that changes systematically with changing metal content is the O1W —H2W···O2ⁱⁱ bond. This lengthens and becomes more linear with increasing Sr content. However, this interaction lies along the chain of the coordination polymer chains stack closer in the b direction, as measured by M^-M distances, than in the a direction. A final unique feature of the invariant b direction is that only in this direction are there close hydrophobic contacts (shortest C⁻⁻C 3.2354 (19) Å) between aromatic rings. These interactions are highlighted in Fig. 6. These are interdigitated interactions that lie alongside a relatively poorly packed region of the structure. It may be these interdigitated features that buffer the *b* axis against expansion.

Aqueous Solubility.

The variation of aqueous solubility with increasing Sr content is illustrated in Fig. 7. Note that here the % Sr is calculated by AA analysis of the bulk powders and does not rely on diffraction analysis of single crystals. It is clear that in general solubility increases with increasing Sr content, with a maximum increase of approximately 50%. Most solubility values lie between those measured for the end points defined by pure calcium salicylate and pure strontium salicylate. Thus it is possible to tune the solubility of the model API salicylate by using mixed cation formulations. Prior to undertaking this work, we postulated that mixed cation salts may give higher solubility values than their equivalent pure species due to the difficulty of incorporating differently sized "impurity" ions into an energetically minimized lattice. We note that the sample with 82.0% Sr content does indeed give a higher solubility than that found for 100% Sr but that these points have relatively high associated standard deviations and that the difference is thus not significant. There is thus no evidence for enhanced solubility.

2. Synthesis and crystallization

Samples were prepared by dissolving with stirring salicylic acid and the appropriate ratio of calcium carbonate and strontium carbonate in warm water. As an example the Ca:Sr 90:10 sample was prepared from 1.67 g (12.07 mmol) of salicylic acid, 0.55 g (5.49 mmol) of CaCO₃ and 0.09 g (0.61 mmol) of SrCO₃. Slow evaporation of the solvent gave suitable crystals after 5 to 7 days. These were isolated from the remaining mother liquor by filtration.

Metal ratio of bulk samples was determined by atomic absorption spectrometry as measured by a Thermo Scientific iCE 3300 Series AA spectrometer. A calibration graph was formed using standard solutions containing 1, 2, 2.5, 3, 4 and 5 mg l^{-1} of Sr ions. Samples of salicylate salts were diluted so as to contain approximately 4 mg l^{-1} of Sr each.

Aqueous solubility measurements were performed by forming slurries from approximately 1 g of sample and 8 cm³ of deionized water. The slurries were placed in an incubator at 298 K and stirred for 10 days. After filtering through 0.2 micron syringe filters, the solutions were diluted to suitable concentration to match a 5 point calibration curve constructed from standard strontium salicylate solutions measured with an Agilent Technologies Cary 60 uv-vis instrument at 295 cm⁻¹. All measurements were performed in duplicate. Solubility results are reported as mol/dm³ of salicylate ion. The solids isolated from 100% Ca and 100% Sr slurries were checked by powder X-ray diffraction which showed the phases isolated to be consistent with the single-crystal structures described herein (Arlin *et al.*, 2011).

The unit-cell parameters for the variable temperature study are all based on measurements of the same crystal using an Oxford Diffraction Gemini S diffractometer and monochromated $\lambda = 1.54148$ Å radiation. All cells were calculated using at least 1326 reflections using the program *CrysAlis PRO* (Agilent, 2014).

3. Refinement

For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding modes with C-H = 0.95 and $U(H)_{iso} = 1.2U(C)_{eq}$. H atoms bound to O atoms were located by difference synthesis and refined isotropically. For the structures with 100% Ca and 100% Sr it was found neccessary to restrain O–H distances to 0.85 (2) Å.

Table 1

Experimental details

	(CaSal)	(CaSr9010)	(CaSr8020)	(CaSr7030)	(CaSr6040)
Crystal data					
Chemical formula	C14H14CaO8	C14H14Ca0.96O8Sr0.04	C14H14Ca0.92O8Sr0.08	C14H14Ca0.83O8Sr0.17	C14H14Ca0.69O8Sr0.31
$M_{ m r}$	350.33	352.27	354.25	358.18	364.90
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	150	150	150	150	150
a, b, c (Å)	16.4233 (14), 11.5002 (9), 7.6203 (6)	16.4335 (7), 11.4974 (4), 7.6301 (3)	16.4344 (3), 11.4853 (2), 7.6417 (2)	16.4921 (10), 11.5345 (8), 7.6679 (5)	16.5626 (13), 11.4921 (10), 7.7041 (7)
β (°)	91.914 (7)	91.778 (4)	91.785 (2)	91.838 (6)	91.588 (8)
$V(Å^3)$	1438.5 (2)	1440.96 (10)	1441.70 (5)	1457.90 (16)	1465.8 (2)
Z	4	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.48	0.61	0.75	1.01	1.47
Crystal size (mm)	$0.30 \times 0.25 \times 0.10$	$0.30 \times 0.22 \times 0.08$	$0.35 \times 0.28 \times 0.08$	$0.26 \times 0.22 \times 0.12$	$0.30 \times 0.20 \times 0.10$
Data collection					
Diffractometer	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E
Absorption correction	Multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan <i>CrysAlis PRO</i> , Oxford nDiffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan <i>CrysAlis PRO</i> , Oxford nDiffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.914, 1.000	0.818, 1.000	0.802, 1.000	0.896, 1.000	0.845, 1.000

No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	6630, 1638, 1489	16338, 1640, 1582	16552, 1642, 1568	3241, 1659, 1494	9041, 1656, 1576
R _{int}	0.027	0.036	0.030	0.032	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649	0.649	0.650	0.650	0.650
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.027, 0.068, 1.08	0.021, 0.055, 1.07	0.021, 0.053, 1.08	0.036, 0.093, 1.09	0.024, 0.056, 1.11
No. of reflections	1638	1640	1642	1659	1656
No. of parameters	117	118	118	118	118
No. of restraints	2	0	0	0	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min}$ (e Å ⁻³)	0.34, -0.20	0.29, -0.21	0.31, -0.23	0.37, -0.38	0.28, -0.20

	(CaSr5050)	(CaSr3070)	(CaSr2080)	(CaSr1090)	(Sr100)
Crystal data					
Chemical formula	C14H14Ca0.47O8Sr0.53	C14H14Ca0.37O8Sr0.63	C14H14Ca0.21O8Sr0.79	C14H14Ca0.17O8Sr0.83	$C_{14}H_{14}O_8Sr$
$M_{ m r}$	375.48	380.38	387.85	390.00	397.87
Crystal system, space group	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	150	150	150	150	150
a, b, c (Å)	16.5994 (10), 11.4832	16.6319 (6), 11.4995	16.6650 (11), 11.4816	16.6693 (9), 11.4865	16.7182 (6),
	(6), 7.7650 (5)	(4), 7.7729 (3)	(7), 7.8105 (5)	(7), 7.8446 (4)	11.4644 (4), 7.8627 (3)
β (°)	91.555 (5)	91.599 (4)	91.576 (6)	91.510 (5)	91.660 (3)
$V(Å^3)$	1479.57 (15)	1486.05 (9)	1493.90 (16)	1501.50 (14)	1506.37 (9)
Ζ	4	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Cu Ka
$\mu (\text{mm}^{-1})$	2.17	2.49	2.98	3.11	5.36
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$	$0.30 \times 0.25 \times 0.12$	$0.26 \times 0.25 \times 0.15$	$0.30 \times 0.15 \times 0.06$	0.6 imes 0.5 imes 0.2
Data collection					
Diffractometer	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Xcalibur E	Oxford Diffraction Gemini S

Absorption correction	Multi-scan <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Versior 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Versior 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Analytical CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171.NET) (compiled Aug 13 2014,18:06:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	0.847, 1.000 8207, 1691, 1546	0.735, 1.000 16351, 1704, 1622	0.896, 1.000 6802, 1716, 1594	0.462, 1.000 8538, 1720, 1589	0.120, 0.461 2454, 1272, 1259
R _{int}	0.046	0.036	0.041	0.044	0.016
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650	0.650	0.649	0.650	0.591
Definition					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.027, 0.058, 1.12	0.021, 0.052, 1.06	0.024, 0.054, 1.06	0.027, 0.065, 1.08	0.027, 0.073, 1.17
No. of reflections	1691	1704	1716	1720	1272
No. of parameters	118	118	118	118	118
No. of restraints	0	0	0	0	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.25, -0.28	0.49, -0.25	0.31, -0.32	0.70, -0.48	0.68, -0.49

Crystal data	
Chemical formula	$C_{14}H_{14}Ba_{0.27}O_8Sr_{0.73}$
$M_{ m r}$	411.35
Crystal system, space	Monoclinic, C2/c
group	
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.8381 (7), 11.4349 (5), 7.9433 (3)
β (°)	91.280 (4)
$V(\text{\AA}^3)$	1529.04 (11)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	3.31
Crystal size (mm)	0.28 imes 0.25 imes 0.15
Data collection	
Diffractometer	Oxford Diffraction Xcalibur E
Absorption correction	Multi-scan
	CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled
	Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3
	ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.728, 1.000
No. of measured,	10452, 1754, 1685
independent and $abserved [I > 2 - (D)]$	
reflections $[I > 2\sigma(I)]$	
R	0.033
$(\sin \theta/\lambda)$ $(\dot{\Delta}^{-1})$	0.649
$(\sin \theta/\pi)_{\max}(\pi)$	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), w$	\$0.021, 0.044, 1.17
No. of reflections	1754
No. of parameters	118
No. of restraints	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}~{ m \AA}^{-3})$	0.35, -0.31

Computer programs: CrysAlis PRO (Agilent, 2014), CrysAlis PRO, SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae, 2008), SHELXL2014.

Table 2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D···A	D—H…A
01—H1 <i>0</i> ···O2	0.81 (2)	1.90 (2)	2.6256 (13)	148 (2)
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.82 (2)	2.03 (2)	2.8391 (14)	169 (2)
$O1W - H2W - O2^{ii}$	0.84 (2)	2.05 (2)	2.8795 (14)	169 (2)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 3

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01—H1 <i>O</i> ···O2	0.872 (18)	1.842 (19)	2.6204 (10)	147.6 (16)
$O1W$ — $H1W$ ··· $O1^{i}$	0.864 (19)	1.981 (19)	2.8361 (11)	169.8 (16)
O1 <i>W</i> —H2 <i>W</i> ···O2 ⁱⁱ	0.853 (18)	2.043 (18)	2.8820 (11)	167.6 (15)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 4

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01—H1 <i>O</i> …O2	0.865 (18)	1.857 (18)	2.6165 (11)	145.5 (16)
$O1W$ — $H1W$ ··· $O1^{i}$	0.85 (2)	2.00 (2)	2.8350 (11)	169.7 (17)
O1W— $H2W$ ···O2 ⁱⁱ	0.836 (19)	2.06 (2)	2.8849 (12)	166.8 (17)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1—H1 <i>O</i> ···O2	0.87 (3)	1.86 (3)	2.6216 (18)	145 (3)
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.87 (3)	1.99 (3)	2.8409 (19)	166 (3)
$O1W - H2W - O2^{ii}$	0.86 (3)	2.06 (3)	2.891 (2)	161 (3)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
01—H1 <i>O</i> …O2	0.87 (2)	1.83 (2)	2.6174 (14)	148 (2)
$O1W$ — $H1W$ ··· $O1^{i}$	0.89 (3)	1.95 (3)	2.8372 (15)	170 (2)
O1 <i>W</i> —H2 <i>W</i> ···O2 ⁱⁱ	0.89 (2)	2.02 (2)	2.8984 (16)	168.7 (19)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 7

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
01—H1 <i>O</i> …O2	0.90 (3)	1.81 (3)	2.6075 (17)	147 (2)	
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.86(3)	1.97 (3)	2.8276 (19)	171 (2)	
$O1W - H2W - O2^{ii}$	0.90 (3)	2.02 (3)	2.906 (2)	169 (2)	

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H…A
01—H1 <i>O</i> ···O2	0.90 (3)	1.81 (3)	2.6096 (15)	147 (2)
O1W— $H1W$ ···O1 ⁱ	0.84 (3)	1.99 (3)	2.8255 (16)	175 (3)
O1 <i>W</i> —H2 <i>W</i> ····O2 ⁱⁱ	0.85 (2)	2.06 (2)	2.9074 (17)	173 (2)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H…A
01—H1 <i>O</i> ···O2	0.89 (3)	1.84 (3)	2.6031 (17)	142 (2)
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.88 (3)	1.94 (3)	2.8244 (18)	173 (2)
$O1W - H2W - O2^{ii}$	0.85 (3)	2.06 (3)	2.911 (2)	178 (2)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 10

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
01—H1 <i>O</i> ···O2	0.90 (3)	1.80 (3)	2.597 (2)	147 (3)	
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.81 (3)	2.03 (3)	2.827 (2)	173 (3)	
O1 <i>W</i> —H2 <i>W</i> ···O2 ⁱⁱ	0.92 (3)	2.01 (3)	2.921 (2)	173 (3)	

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 11

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
01—H1 <i>O</i> ···O2	0.83 (2)	1.89 (3)	2.604 (2)	145 (4)	
O1 <i>W</i> —H1 <i>W</i> ···O1 ⁱ	0.82 (2)	2.01 (2)	2.823 (3)	172 (4)	
O1 <i>W</i> —H2 <i>W</i> ···O2 ⁱⁱ	0.84 (2)	2.08 (2)	2.925 (3)	178 (4)	

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 12

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
01—H7···O2	0.89 (3)	1.80 (3)	2.5938 (18)	148 (3)
O1 <i>W</i> —H1 <i>W</i> ····O1 ⁱ	0.82 (3)	2.00 (3)	2.820 (2)	172 (3)
$O1W - H2W - O2^{ii}$	0.86 (3)	2.08 (3)	2.923 (2)	169 (3)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) x, y, z-1.

Table 13

Solubility data and Ca/Sr ratios. The ratios are given as, that available from parent solution, that determined from singlecrystal refinement and that determined from AA for bulk sample.

Sr % in Solution	Sr % single-crystal	Sr % bulk AA	Solubility mol/dm ³
0	0	0	0.185 (4)
9.9	4.1 (2)	7.01	0.195 (2)
19.9	8.3 (2)	16.04	0.201 (2)
30.2	16.5 (3)	23.67	0.209 (2)
39.7	30.6 (3)	36.13	0.235 (10)
49.5	52.9 (3)	51.88	0.231 (4)
60.3		56.67	0.242 (8)
69.8	63.2 (4)	75.59	0.235 (6)
80.7	78.9 (4)	82.01	0.279 (20)
88.8	83.5 (5)	90.28	0.257 (8)
100	100	100	0.257 (10)

Table 14

Variation in apparent *M*-O bond lengths (Å) for different Ca:Sr ratios. ii = 1 - x, 1 - y, -z.

Sr % from single-crystal	M-O1W	M-O3	M-O3 ⁱⁱ	M-O2 ⁱⁱ	
0	2.3761 (10)	2.4005 (9)	2.4781 (9)	2.6333 (9)'	
4.1 (2)	2.3814 (8)	2.4027 (7)	2.4910(7)	2.6458 (7)	
8.3 (2)	2.3830 (9)	2.4062 (8)	2.4968 (8)	2.6506 (8)	
16.5 (3)	2.3968 (15)	2.4224 (13)	2.5166 (14)	2.6739 (13)	
30.6 (3)	2.4211 (11)	2.4324 (10)	2.5336 (10)	2.6907 (10)	
52.9 (3)	2.4608 (15)	2.4596 (13)	2.5621 (13)	2.7143 (12)	
63.2 (4)	2.4777 (12)	2.4686 (10)	2.5749 (10)	2.7260 (10)	
78.9 (4)	2.5020 (14)	2.4849 (12)	2.5902 (12)	2.7368 (12)	
83.5 (5)	2.5091 (17)	2.4953 (13)	2.5990 (14)	2.7400 (15)	
100	2.528 (2)	2.5116 (17)	2.6120 (17)	2.7484 (17)	

Acknowledgements

Funding information

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, Oxfordshire, England.

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Arlin, J.-B., Florence, A. J., Johnston, A., Kennedy, A. R., Miller, G. J. & Patterson, K. (2011). *Cryst. Growth Des.* **11**, 1318–1327.
- Davidson, C. M., Gibson, M. D., Hamilton, E., MacGillivray, B. H., Reglinski, J. & Rezabal, E. (2005). *Chemosphere* 58, 793–798.

- Debuyst, R., Dejehet, F., Dekandelaer, M.-C., Declercq, J. P. & van Meerssche, M. (1979). *Phys.-Chim. Biol.* **76**, 1117–1124.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Hume-Rothery, W. & Powell, H. M. (1935). Z. Krist. 91, 23-47.

Johnson, A. R., Armstrong, W. D. & Singer, L. (1970). Calc. Tiss. Res. 6, 103-112.

Kennedy, A. R., Andrikopoulos, P. C., Arlin, J.-B., Armstrong, D. R., Duxbury, N., Graham, D. V. & Kirkhouse, J. B. A. (2009). *Chem. Eur. J.* **15**, 9494–9504.

Kennedy, A. R., Mulvey, R. E. & Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180-3183.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.
- Matsui, M., Watanabe, T., Kamijo, N., Lapp, R. L. & Jacobson, R. A. (1980). Acta Cryst. B36, 1081-1086.
- Mizutani, U. (2011). *Hume-Rothery Rules for Structurally Complex Alloy Phases*. CRC Press-Taylor & Francis Group: Boca Raton, FL.
- Sekine, Y., Motokawa, R., Kozai, N., Ohnuki, T., Matsumura, D., Tsuji, T., Kawasaki, R. & Akiyoshi, K. (2017). Sci. Reports 7, article number 2064.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Stahl, P. H. & Wermuth, C. G. (2008). Eds. *Handbook of Pharmaceutical Salts: Properties, Selection and Use*. VHCA: Zurich.

Trifa, C., Bouhali, A., Boudaren, C., Bouacida, S. & Bataille, T. (2007). Acta Cryst. E63, i102-i104.

Wahlberg, J. S., Baker, J. H., Vernon, R. W. & Dewar, R. S. (1965). Geological Survey Bulletin report 1140-c.

Figure 1

Top, contents of the asymmetric unit of the 69:31 Ca:Sr species with non-H atoms shown as 50% probability ellipsoids. Atom label M1 is the mixed metal site occupied by Ca1 and Sr1. Bottom, for the same structure, part of the one-dimensional coordination polymer that extends in the crystallographic c direction. H atoms are omitted for clarity.

Figure 2

Top, contents of the asymmetric unit for the 73:27 Sr:Ba species, with non-H atoms shown as 50% probability ellipsoids. Atom label M1 is the mixed metal site occupied by Sr1 and Ba1. Bottom, for the same structure, part of the one-dimensional coordination polymer that extends in the crystallographic c direction. H atoms are omitted for clarity.

Figure 3

Expansion of unit cell volume with increasing Sr content. For comparison, the unit cell volume of the 72.9:27.1 Sr:Ba species is 1529.04 (11) Å³.

Figure 4

Change in length of unit cell axes with increase in Sr content. All percentages are given as change from the 100% Ca species. Black = a axis, green = b axis and blue = c axis.

Figure 5

Change in unit cell volume and length of unit cell axes with change in temperature for calcium salicylate. All percentages are given as change from the corresponding values at 123 K. Black = a axis, green = b axis and blue = c axis.

Figure 6

Packing diagram of 100% Ca structure viewed along the *c* axis and hence down the length of the coordination polymers. Hydrogen bond contacts are drawn as dotted lines and hydrogen atoms are omitted for clarity. The purple ring highlights one area of the hydrophobic contacts discussed in the main text.

Figure 7

Aqueous solubility versus increasing Sr content, as measured by AA analysis of bulk powders.

supporting information

Mixed Ca/Sr salt forms of salicylic acid, tuning structure and aqueous solubility

Computing details

For all structures, data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae, 2008); software used to prepare material for publication: *SHELXL2014*.

(CaSal)

Crystal data

 $C_{14}H_{14}CaO_8$ $M_r = 350.33$ Monoclinic, C2/c a = 16.4233 (14) Å b = 11.5002 (9) Å c = 7.6203 (6) Å $\beta = 91.914$ (7)° V = 1438.5 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.068$ S = 1.081638 reflections 117 parameters 2 restraints F(000) = 728 $D_x = 1.618 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3540 reflections $\theta = 3.4-30.3^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.30 \times 0.25 \times 0.10 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.914, T_{\max} = 1.000$ 6630 measured reflections 1638 independent reflections 1489 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$ $\theta_{\rm max} = 27.5^{\circ}, \, \theta_{\rm min} = 3.4^{\circ}$ $h = -21 \rightarrow 19$ $k = -14 \rightarrow 14$ $l = -9 \rightarrow 9$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0296P)^2 + 1.0416P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cal	0.5000	0.45083 (3)	-0.2500	0.01114 (11)
O1	0.25618 (6)	0.25378 (9)	0.26849 (13)	0.0177 (2)
O2	0.37861 (6)	0.40061 (8)	0.26911 (12)	0.0153 (2)
O3	0.45483 (6)	0.39842 (8)	0.03573 (12)	0.0148 (2)
O1W	0.39906 (6)	0.32390 (9)	-0.37242 (13)	0.0196 (2)
C1	0.30186 (8)	0.18870 (11)	0.15844 (16)	0.0135 (3)
C2	0.27321 (9)	0.07827 (12)	0.11389 (17)	0.0180 (3)
H2	0.2225	0.0518	0.1550	0.022*
C3	0.31936 (9)	0.00752 (12)	0.00916 (18)	0.0206 (3)
H3	0.3005	-0.0685	-0.0191	0.025*
C4	0.39285 (9)	0.04591 (12)	-0.05540 (19)	0.0201 (3)
H4	0.4244	-0.0039	-0.1257	0.024*
C5	0.41968 (8)	0.15710 (11)	-0.01649 (17)	0.0164 (3)
Н5	0.4692	0.1842	-0.0630	0.020*
C6	0.37466 (8)	0.23026 (11)	0.09084 (16)	0.0126 (3)
C7	0.40414 (8)	0.34989 (11)	0.13286 (16)	0.0116 (3)
H1O	0.2805 (13)	0.3137 (18)	0.288 (3)	0.041 (6)*
H1W	0.3577 (10)	0.2942 (16)	-0.336 (2)	0.037 (5)*
H2W	0.3917 (12)	0.3364 (16)	-0.481 (2)	0.035 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cal	0.01109 (19)	0.01165 (18)	0.01080 (19)	0.000	0.00189 (13)	0.000
01	0.0145 (5)	0.0186 (5)	0.0203 (5)	-0.0045 (4)	0.0060 (4)	-0.0023 (4)
O2	0.0163 (5)	0.0156 (5)	0.0143 (5)	-0.0024 (4)	0.0034 (4)	-0.0028 (4)
O3	0.0149 (5)	0.0144 (4)	0.0154 (5)	-0.0032 (3)	0.0037 (4)	0.0011 (4)
O1W	0.0171 (6)	0.0261 (6)	0.0156 (5)	-0.0084 (4)	0.0024 (4)	0.0007 (4)
C1	0.0134 (7)	0.0158 (6)	0.0111 (6)	-0.0005 (5)	-0.0005 (5)	0.0016 (5)
C2	0.0189(7)	0.0187 (7)	0.0164 (6)	-0.0074 (5)	-0.0007 (5)	0.0035 (5)
C3	0.0302 (8)	0.0141 (6)	0.0173 (7)	-0.0054 (6)	-0.0030 (6)	0.0004 (6)
C4	0.0259 (8)	0.0161 (7)	0.0185 (7)	0.0022 (5)	0.0027 (6)	-0.0032 (6)
C5	0.0154 (7)	0.0180 (7)	0.0158 (6)	0.0002 (5)	0.0023 (5)	0.0006 (5)
C6	0.0141 (6)	0.0122 (6)	0.0116 (6)	-0.0014 (5)	-0.0012 (5)	0.0013 (5)
C7	0.0098 (6)	0.0133 (6)	0.0116 (6)	0.0008 (4)	-0.0014(4)	0.0015 (5)

Geometric parameters (Å, °)

Ca1—O1W ⁱ	2.3761 (10)	O3—C7	1.2624 (15)
Cal—O1W	2.3761 (10)	O3—Ca1 ⁱⁱ	2.4781 (9)
Cal—O3	2.4005 (9)	O1W—H1W	0.819 (15)
Ca1—O3 ⁱ	2.4005 (9)	O1W—H2W	0.842 (15)
Cal—O3 ⁱⁱ	2.4781 (9)	C1—C2	1.3924 (18)

Cal—O3 ^m	2.4781 (9)	C1—C6	1.4016 (18)
Ca1—O2 ⁿ	2.6333 (9)	C2—C3	1.383 (2)
Ca1—O2 ^m	2.6333 (9)	C2—H2	0.9500
Ca1—C7 ⁱⁱ	2.9041 (13)	C3—C4	1.390 (2)
Ca1—C7 ⁱⁱⁱ	2.9041 (13)	С3—Н3	0.9500
Ca1—Ca1 ⁱⁱ	3.9745 (4)	C4—C5	1.3814 (19)
Ca1—Ca1 ^{iv}	3.9745 (4)	C4—H4	0.9500
Ca1—H2W	2.789 (17)	C5—C6	1.4013 (18)
O1—C1	1.3669 (16)	С5—Н5	0.9500
01—H10	0.81 (2)	C6—C7	1.4898 (17)
O2—C7	1.2740 (15)	C7—Ca1 ⁱⁱ	2.9041 (13)
O2—Ca1 ⁱⁱ	2.6333 (9)		
O1W ⁱ —Ca1—O1W	104.19 (5)	O1W ⁱ —Ca1—Ca1 ^{iv}	121.93 (3)
O1W ⁱ —Ca1—O3	73.88 (3)	O1W—Ca1—Ca1 ^{iv}	79.67 (3)
O1W—Ca1—O3	88.24 (3)	O3—Ca1—Ca1 ^{iv}	161.97 (2)
O1W ⁱ —Ca1—O3 ⁱ	88.24 (3)	O3 ⁱ —Ca1—Ca1 ^{iv}	36.10 (2)
$O1W$ — $Ca1$ — $O3^i$	73.88 (3)	$O3^{ii}$ —Ca1—Ca1 ^{iv}	115.02.(3)
03-03i	150.92 (5)	$O3^{iii}$ —Ca1—Ca1 ^{iv}	34 80 (2)
$01W^{i}$ Cal 03^{ii}	88 94 (3)	O^{2ii} —Ca1—Ca1 ^{iv}	74 82 (2)
$01W$ Cal 03^{ii}	151 41 (3)	Ω^{2}^{iii} Ω^{2}^{iii} Ω^{2}^{iii}	83 84 (2)
$03-03-03^{ii}$	70.90(3)	$C7^{ii}$ $Ca1$ $Ca1^{iv}$	93.02(3)
$O_{3}^{i} = C_{3}^{1} = O_{3}^{ii}$	132 73 (3)	C^{7ii} Cal Cal^{iv}	59.88 (3)
$0.1 W^{i} - C_{21} - O_{3}^{iii}$	152.75(3)	C_{1}^{ii} C_{2}^{ii} C_{2}^{ii} C_{2}^{ii}	146.93(2)
O1W = Ca1 = O3	131.41 (3) 88 04 (3)	Cal - Cal - Cal	140.93(2)
O^2 Col O^{2iii}	12272(2)	O1W = Ca1 = H2W	112.3(4)
O_{3}^{i} Cal O_{3}^{iii}	152.75(5)	$O_1^2 = C_{a1} = H_2^2 W$	10.4(3)
O_{3}^{ii} Cal O_{3}^{iii}	70.90(3)	O_{2i}^{i} Col H2W	104.1(3)
$O_{1} = C_{1} = O_{1}$	91.21 (4)	O_{2}^{\parallel} Cal H2W	1564(4)
O1W = Ca1 = O2	64.50(5)	$O_3 = Ca1 = H_2 W$	130.4 (4)
$O_1 = O_2$	133.09 (3)	$O_3 = Ca1 = H_2 W$	73.2(4)
$03 - Ca1 - 02^{-1}$	116.07(3)	$O2^{$	137.7(3)
$03^{$	81.08 (3) 51.10 (2)	C^{2ii} C_{-1} U^{2ii}	82.7 (4)
$03^{$	51.10(5)	$C/^{$	155.4 (5)
$03^{$	13.15 (3)	C/m = Cal = H2W	81.4 (4)
$O1W - Cal - O2^{iii}$	153.69 (3)	Cal^{m} — Cal — $H2W$	135.9 (4)
$O1 w = Ca1 = O2^{iii}$	84.30 (3)	$Cal^{}Cal^{}H2W$	63.3 (3)
$03 - Cal - 02^{m}$	81.68 (3)		107.4 (15)
$O3^4$ —Ca1—O2 ⁴⁴	118.07 (3)	$C/=O2=Ca1^{m}$	88.94 (7)
$O3^{n}$ —Cal— $O2^{m}$	73.75 (3)	C/-O3-Cal	150.77 (8)
$O3^{m}$ —Ca1—O2 ^m	51.10(3)	C/-O3-Calm	96.42 (7)
$O2^{n}$ —Cal— $O2^{m}$	99.10 (4)	Cal—O3—Cal"	109.10 (3)
OIW^{i} —Cal—C/ ⁱⁱ	90.01 (4)	Cal—OIW—HIW	134.2 (13)
O1W—Ca1—C7 ⁿ	165.80 (4)	Cal—O1W—H2W	110.8 (13)
$O3$ — $Ca1$ — $C7^n$	95.75 (3)	H1W—O1W—H2W	108.3 (18)
$O3^{1}$ —Ca1—C7 ¹¹	107.23 (3)	O1—C1—C2	117.45 (12)
$O3^{n}$ —Ca1—C7 ⁿ	25.59 (3)	01—C1—C6	122.09 (11)
$O3^{m}$ —Ca1—C7 ⁿ	78.33 (3)	C2—C1—C6	120.46 (12)
$O2^{n}$ —Ca1—C7 ⁿ	26.01 (3)	C3—C2—C1	119.33 (13)
O2 ¹¹¹ —Ca1—C7 ¹¹	82.80 (3)	С3—С2—Н2	120.3
$O1W^1$ —Ca1—C7 ^{IIII}	165.80 (4)	C1—C2—H2	120.3
O1W—Ca1—C7 ^{III}	90.01 (4)	C2—C3—C4	121.08 (13)
O3—Ca1—C7 ¹¹¹	107.23 (3)	С2—С3—Н3	119.5

O3 ⁱ —Ca1—C7 ⁱⁱⁱ	95.75 (3)	С4—С3—Н3	119.5
O3 ⁱⁱ —Ca1—C7 ⁱⁱⁱ	78.33 (3)	C5—C4—C3	119.50 (13)
O3 ⁱⁱⁱ —Ca1—C7 ⁱⁱⁱ	25.59 (3)	С5—С4—Н4	120.3
O2 ⁱⁱ —Ca1—C7 ⁱⁱⁱ	82.80(3)	С3—С4—Н4	120.3
O2 ⁱⁱⁱ —Ca1—C7 ⁱⁱⁱ	26.01 (3)	C4—C5—C6	120.68 (13)
C7 ⁱⁱ —Ca1—C7 ⁱⁱⁱ	75.79 (5)	С4—С5—Н5	119.7
O1W ⁱ —Ca1—Ca1 ⁱⁱ	79.68 (3)	С6—С5—Н5	119.7
O1W—Ca1—Ca1 ⁱⁱ	121.93 (3)	C5—C6—C1	118.88 (12)
O3—Ca1—Ca1 ⁱⁱ	36.10 (2)	C5—C6—C7	120.39 (12)
O3 ⁱ —Ca1—Ca1 ⁱⁱ	161.97 (2)	C1—C6—C7	120.73 (11)
O3 ⁱⁱ —Ca1—Ca1 ⁱⁱ	34.80 (2)	O3—C7—O2	121.12 (11)
O3 ⁱⁱⁱ —Ca1—Ca1 ⁱⁱ	115.02 (3)	O3—C7—C6	119.88 (11)
O2 ⁱⁱ —Ca1—Ca1 ⁱⁱ	83.84 (2)	O2—C7—C6	118.98 (11)
O2 ⁱⁱⁱ —Ca1—Ca1 ⁱⁱ	74.82 (2)	O3—C7—Ca1 ⁱⁱ	57.99 (6)
C7 ⁱⁱ —Ca1—Ca1 ⁱⁱ	59.88 (3)	O2—C7—Ca1 ⁱⁱ	65.04 (7)
C7 ⁱⁱⁱ —Ca1—Ca1 ⁱⁱ	93.02 (3)	C6—C7—Ca1 ⁱⁱ	164.53 (9)
O1—C1—C2—C3	-177.15 (12)	Ca1 ⁱⁱ —O3—C7—O2	16.52 (13)
C6—C1—C2—C3	3.2 (2)	Ca1—O3—C7—C6	46.8 (2)
C1—C2—C3—C4	-1.5 (2)	Ca1 ⁱⁱ —O3—C7—C6	-162.11 (10)
C2—C3—C4—C5	-0.9 (2)	Cal—O3—C7—Cal ⁱⁱ	-151.07 (18)
C3—C4—C5—C6	1.6 (2)	Ca1 ⁱⁱ —O2—C7—O3	-15.42 (12)
C4—C5—C6—C1	0.08 (19)	Ca1 ⁱⁱ —O2—C7—C6	163.22 (10)
C4—C5—C6—C7	179.75 (12)	C5—C6—C7—O3	20.62 (18)
O1—C1—C6—C5	177.86 (11)	C1—C6—C7—O3	-159.71 (12)
C2—C1—C6—C5	-2.53 (19)	C5—C6—C7—O2	-158.04 (12)
O1—C1—C6—C7	-1.81 (19)	C1—C6—C7—O2	21.63 (18)
C2—C1—C6—C7	177.80 (12)	C5—C6—C7—Ca1 ⁱⁱ	-56.9 (4)
Ca1—O3—C7—O2	-134.55 (14)	C1—C6—C7—Ca1 ⁱⁱ	122.8 (3)

Symmetry codes: (i) -*x*+1, *y*, -*z*-1/2; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*, -*y*+1, *z*-1/2; (iv) -*x*+1, -*y*+1, -*z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
01—H1 <i>O</i> …O2	0.81 (2)	1.90 (2)	2.6256 (13)	148 (2)	
$O1W$ — $H1W$ ··· $O1^{v}$	0.82 (2)	2.03 (2)	2.8391 (14)	169 (2)	
O1 <i>W</i> —H2 <i>W</i> ···O2 ^{vi}	0.84 (2)	2.05 (2)	2.8795 (14)	169 (2)	

Symmetry codes: (v) -x+1/2, -y+1/2, -z; (vi) x, y, z-1.

(CaSr9010)

Crystal data

 $C_{14}H_{14}Ca_{0.96}O_8Sr_{0.04}$ $M_r = 352.27$ Monoclinic, C2/c a = 16.4335 (7) Å b = 11.4974 (4) Å c = 7.6301 (3) Å $\beta = 91.778$ (4)° V = 1440.96 (10) Å³ Z = 4 F(000) = 731 $D_x = 1.624 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11617 reflections $\theta = 3.4-29.5^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.30 \times 0.22 \times 0.08 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.055$ S = 1.071640 reflections 118 parameters 0 restraints

Special details

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.818, T_{\max} = 1.000$ 16338 measured reflections 1640 independent reflections 1582 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -9 \rightarrow 9$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0272P)^2 + 0.9927P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F 1		1	1	• , •			. 1. 1		,	18	21
Fractional	atomic	coordinates	and	isofronic i	or eauwal	ent isotron	ic displ	acement	narameters	IA^{\prime}	- 1
1 / actionat	aronne	coordinates	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ison opic .	or equivar	cin ison op	ie auspi	accincin	parameters	(**	/

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sr1	0.5000	0.44977 (2)	-0.2500	0.01035 (10)	0.041 (2)
Cal	0.5000	0.44977 (2)	-0.2500	0.01035 (10)	0.959(2)
01	0.25621 (5)	0.25393 (7)	0.26840 (10)	0.01890 (18)	
O2	0.37837 (4)	0.40042 (6)	0.26872 (9)	0.01685 (18)	
O3	0.45479 (4)	0.39796 (6)	0.03611 (10)	0.01647 (17)	
O1W	0.39881 (5)	0.32319 (7)	-0.37328 (11)	0.02102 (19)	
C1	0.30173 (6)	0.18873 (9)	0.15848 (13)	0.0145 (2)	
C2	0.27303 (7)	0.07831 (9)	0.11382 (14)	0.0187 (2)	
H2	0.2222	0.0520	0.1548	0.022*	
C3	0.31912 (7)	0.00729 (9)	0.00925 (15)	0.0216 (2)	
H3	0.3002	-0.0687	-0.0189	0.026*	
C4	0.39272 (7)	0.04548 (9)	-0.05531 (15)	0.0215 (2)	
H4	0.4243	-0.0044	-0.1255	0.026*	
C5	0.41952 (7)	0.15686 (9)	-0.01624 (14)	0.0176 (2)	
H5	0.4690	0.1840	-0.0627	0.021*	
C6	0.37455 (6)	0.23004 (8)	0.09104 (13)	0.0136 (2)	
C7	0.40399 (6)	0.34951 (8)	0.13303 (13)	0.0129 (2)	
H1O	0.2824 (11)	0.3190 (16)	0.286 (2)	0.042 (5)*	
H1W	0.3548 (11)	0.2929 (15)	-0.334 (2)	0.044 (5)*	

supporting information

H2W	0.3914 (10)	0.3352 (14)	-0.483 (2)	0.037 (4)*	
Atomic d	displacement param	eters (Å ²)				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Sr1	0.01016 (15)	0.01078 (14)	0.01022 (15)	0.000	0.00204 (9)	0.000
Cal	0.01016 (15)	0.01078 (14)	0.01022 (15)	0.000	0.00204 (9)	0.000
01	0.0163 (4)	0.0196 (4)	0.0212 (4)	-0.0039(3)	0.0068 (3)	-0.0021(3)
O2	0.0179 (4)	0.0163 (4)	0.0165 (4)	-0.0021(3)	0.0038 (3)	-0.0025(3)
O3	0.0163 (4)	0.0154 (4)	0.0180 (4)	-0.0034(3)	0.0046 (3)	0.0007 (3)
O1W	0.0187 (4)	0.0272 (4)	0.0173 (4)	-0.0072(3)	0.0031 (3)	0.0015 (3)
C1	0.0151 (5)	0.0161 (5)	0.0124 (4)	-0.0009(4)	-0.0004 (4)	0.0020 (4)
C2	0.0205 (5)	0.0183 (5)	0.0172 (5)	-0.0071 (4)	-0.0006 (4)	0.0027 (4)
C3	0.0317 (6)	0.0147 (5)	0.0183 (5)	-0.0062(4)	-0.0022(4)	-0.0002 (4)
C4	0.0278 (6)	0.0169 (5)	0.0201 (5)	0.0023 (4)	0.0025 (4)	-0.0036 (4)
C5	0.0179 (5)	0.0180 (5)	0.0171 (5)	-0.0002 (4)	0.0024 (4)	0.0001 (4)
C6	0.0144 (5)	0.0131 (4)	0.0131 (4)	-0.0013 (4)	-0.0002 (4)	0.0009 (4)
C7	0.0110 (4)	0.0134 (4)	0.0142 (4)	0.0004 (3)	-0.0004(3)	0.0012 (3)
Geometi	ric parameters (Å, °,)				
Sr101	W ¹	2.3814 (8)	O3–	-C7	1.2	620 (12)
Sr1—01	W	2.3814 (8)	O3—Ca1 ⁿ		2.4	910 (7)
Sr1-03	1	2.4027 (7)	03–	-Sr1 ⁿ	2.4	910 (7)
Sr1—03		2.4027 (7)	O1W	/—H1W	0.8	64 (19)
Sr1—03		2.4910 (7)	O1W	/—H2W	0.8	53 (18)
Sr103		2.4910 (7)	C1-	-C2	1.3	929 (14)
Sr1—02		2.6458 (7)	C1-	-C6	1.4	002 (14)
Sr102		2.6458 (7)	C2—	-C3	1.3	838 (16)
Srl—C7		2.9198 (10)	C2—	-H2	0.9	500
Srl—C7		2.9198 (10)	C3—	-C4	1.3	911 (17)
SrI—Srl		3.9861 (2)	C3-	-H3	0.9	500
Srl—Ca	1"	3.9861 (2)	C4—	-CS	1.3	836 (15)
SrI—H2	W	2.807 (17)	C4—	-H4	0.9	500
UI-Cl	0	1.3652 (12)	C5-	-06	1.4	007(14)
UI—HI	0	0.872 (18)	C5—	-HS	0.9	500
O2—C7		1.2724 (12)	C6	-C7	1.4	878 (13)

O2—Ca1 ⁱⁱ	2.6458 (7)	C7—Cal ⁱⁱ	2.9197 (10)
O2—Sr1 ⁱⁱ	2.6458 (7)	C7—Sr1 ⁱⁱ	2.9197 (10)
O1W ⁱ —Sr1—O1W	104.66 (4)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	114.49 (2)
O1W ⁱ —Sr1—O3 ⁱ	88.60 (3)	O2 ⁱⁱ —Sr1—Ca1 ⁱⁱ	83.423 (17)
O1W—Sr1—O3 ⁱ	73.82 (3)	O2 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	74.766 (17)
O1W ⁱ —Sr1—O3	73.82 (3)	C7 ⁱⁱ —Sr1—Ca1 ⁱⁱ	59.63 (2)
O1W—Sr1—O3	88.60 (3)	C7 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	92.72 (2)
O3 ⁱ —Sr1—O3	151.29 (4)	Sr1 ⁱⁱ —Sr1—Ca1 ⁱⁱ	0.000(7)
O1W ⁱ —Sr1—O3 ⁱⁱ	88.87 (3)	O1W ⁱ —Sr1—H2W	112.7 (3)
O1W—Sr1—O3 ⁱⁱ	151.49 (3)	O1W—Sr1—H2W	16.4 (4)
$O3^{i}$ —Sr1—O3 ⁱⁱ	132.47 (3)	O3 ⁱ —Sr1—H2W	61.1 (4)
O3—Sr1—O3 ⁱⁱ	70.93 (3)	O3—Sr1—H2W	104.5 (4)
O1W ⁱ —Sr1—O3 ⁱⁱⁱ	151.49 (3)	O3 ⁱⁱ —Sr1—H2W	156.3 (3)
O1W—Sr1—O3 ⁱⁱⁱ	88.87 (3)	O3 ⁱⁱⁱ —Sr1—H2W	75.2 (3)

O3 ⁱ —Sr1—O3 ⁱⁱⁱ	70.93 (3)	O2 ⁱⁱ —Sr1—H2W	137.5 (4)
O3—Sr1—O3 ⁱⁱⁱ	132.47 (3)	O2 ⁱⁱⁱ —Sr1—H2W	82.7 (3)
O3 ⁱⁱ —Sr1—O3 ⁱⁱⁱ	90.69 (4)	C7 ⁱⁱ —Sr1—H2W	153.0 (4)
O1W ⁱ —Sr1—O2 ⁱⁱ	84.25 (3)	C7 ⁱⁱⁱ —Sr1—H2W	81.4 (3)
O1W—Sr1—O2 ⁱⁱ	153.63 (3)	Sr1 ⁱⁱ —Sr1—H2W	136.3 (4)
$O3^{i}$ —Sr1— $O2^{ii}$	81.77 (2)	Cal ⁱⁱ —Sr1—H2W	136.3 (4)
O3—Sr1—O2 ⁱⁱ	117.77 (2)	C1—01—H10	106.9 (12)
O3 ⁱⁱ —Sr1—O2 ⁱⁱ	50.76 (2)	C7—O2—Cal ⁱⁱ	89.20 (6)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱ	73.59 (2)	C7—O2—Srl ⁱⁱ	89.20 (6)
O1W ⁱ —Sr1—O2 ⁱⁱⁱ	153.63 (3)	Cal ⁱⁱ —O2—Srl ⁱⁱ	0.0
O1W—Sr1—O2 ⁱⁱⁱ	84.25 (3)	C7—O3—Sr1	150.54 (7)
O3 ⁱ —Sr1—O2 ⁱⁱⁱ	117.76 (2)	C7—O3—Ca1 ⁱⁱ	96.64 (6)
O3—Sr1—O2 ⁱⁱⁱ	81.77 (2)	Sr1—O3—Ca1 ⁱⁱ	109.1
O3 ⁱⁱ —Sr1—O2 ⁱⁱⁱ	73.59 (2)	C7—O3—Sr1 ⁱⁱ	96.64 (6)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱⁱ	50.76 (2)	Sr1—O3—Sr1 ⁱⁱ	109.07 (3)
O2 ⁱⁱ —Sr1—O2 ⁱⁱⁱ	98.76 (3)	Ca1 ⁱⁱ —O3—Sr1 ⁱⁱ	0.0
O1W ⁱ —Sr1—C7 ⁱⁱ	89.90 (3)	Sr1—O1W—H1W	133.8 (11)
O1W—Sr1—C7 ⁱⁱ	165.45 (3)	Sr1—O1W—H2W	111.4 (11)
O3 ⁱ —Sr1—C7 ⁱⁱ	107.12 (3)	H1W—O1W—H2W	107.9 (15)
O3—Sr1—C7 ⁱⁱ	95.60 (3)	01	117.57 (9)
$O3^{ii}$ —Sr1—C7 ⁱⁱ	25.43 (3)	01	122.02 (9)
$O3^{iii}$ —Sr1—C7 ⁱⁱ	78.00 (3)	C2-C1-C6	120.40 (10)
$O2^{ii}$ —Sr1—C7 ⁱⁱ	25.83 (2)	C3—C2—C1	119.44 (10)
$O2^{iii}$ —Sr1—C7 ⁱⁱ	82.58 (3)	C3—C2—H2	120.3
$O1W^{i}$ —Sr1—C7 ⁱⁱⁱ	16545(3)	C1 - C2 - H2	120.3
OIW—Sr1—C7 ⁱⁱⁱ	89.90 (3)	$C_2 - C_3 - C_4$	121.03 (10)
$O3^{i}$ Sr1- $C7^{iii}$	95.60 (3)	C2—C3—H3	119.5
$O3$ — $Sr1$ — $C7^{iii}$	107.12 (3)	C4—C3—H3	119.5
$O3^{ii}$ —Sr1—C7 ⁱⁱⁱ	78.00 (3)	C5-C4-C3	119.35 (10)
$O3^{iii}$ —Sr1—C7 ⁱⁱⁱ	25.43 (3)	C5—C4—H4	120.3
$O2^{ii}$ —Sr1— $C7^{iii}$	82.58 (3)	C3—C4—H4	120.3
Ω^{2iii} Sr1- Ω^{2iii}	25.83 (2)	C4C5C6	120.78 (10)
$C7^{ii}$ — $Sr1$ — $C7^{iii}$	75.55 (4)	C4—C5—H5	119.6
$O1W^{i}$ Sr1 Sr1 ⁱⁱ	79.62 (2)	C6-C5-H5	119.6
O1W— $Sr1$ — $Sr1$ ⁱⁱ	$122 \ 30 \ (2)$	C1 - C6 - C5	118 91 (9)
$O3^{i}$ Sr1 Sr1 $Sr1^{ii}$	161.918(18)	C1 - C6 - C7	120.66 (9)
O3— $Sr1$ — $Sr1$ ⁱⁱ	36 203 (17)	C_{5}	120.00(9) 120.43(9)
$O3^{ii}$ Sr1 Sr1 $Sr1^{ii}$	34 729 (16)	03-C7-02	120.13(9) 121.02(9)
$O3^{iii}$ Sr1 Sr1 ⁱⁱ	114 49 (2)	03 - C7 - C6	119 87 (9)
Ω^{2i} Sr1 Sr1	83 423 (17)	02 - C7 - C6	119.10 (9)
Ω^{2ii} Sr1—Sr1 ⁱⁱ	74 766 (17)	O_{3} C_{7} C_{a1}^{ii}	57.93 (5)
$C7^{ii}$ Sr1 Sr1	59.63 (2)	$02-07-01^{ii}$	64 97 (5)
$C7^{iii}$ — $Sr1$ — $Sr1^{ii}$	92 72 (2)	$C_{6} - C_{7} - C_{a1}^{ii}$	$164\ 70\ (7)$
$O1W^{i}$ Sr1 Ca1 ⁱⁱ	79.62 (2)	$03-C7-Sr1^{ii}$	57.93 (5)
O1W Sr1 Ca1 ⁱⁱ	122 30 (2)	$02 - C7 - Sr^{1ii}$	64.97 (5)
$O3^{i}$ Sr1 Cal ⁱⁱ	161 918 (18)	C_{6} C_{7} S_{1}^{ii}	$164\ 70\ (7)$
O_3 —Sr1—Ca1 ⁱⁱ	36 203 (17)	$Ca1^{ii}$ $C7$ $Sr1^{ii}$	0.0
$O3^{ii}$ Sr1 Ca1 ⁱⁱ	34 729 (16)		0.0
	51.727 (10)		
Q1—C1—C2—C3	-177.05(9)	$Sr1^{ii}$ —O3—C7—Ca1 ⁱⁱ	0.0
C6-C1-C2-C3	3.26 (15)	$Sr1-O3-C7-Sr1^{ii}$	-151.02(14)
C1—C2—C3—C4	-1.53 (16)	$Ca1^{ii}$ — $O3$ — $C7$ — $Sr1^{ii}$	0.0

C2—C3—C4—C5	-0.95 (17)	Ca1 ⁱⁱ —O2—C7—O3	-15.32 (9)	
C3—C4—C5—C6	1.72 (17)	Sr1 ⁱⁱ —O2—C7—O3	-15.32 (9)	
O1—C1—C6—C5	177.84 (9)	Ca1 ⁱⁱ —O2—C7—C6	163.42 (8)	
C2-C1-C6-C5	-2.49 (15)	Sr1 ⁱⁱ —O2—C7—C6	163.42 (8)	
O1—C1—C6—C7	-1.91 (14)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0	
C2-C1-C6-C7	177.76 (9)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0	
C4—C5—C6—C1	-0.02 (15)	C1—C6—C7—O3	-159.70 (9)	
C4—C5—C6—C7	179.73 (10)	C5—C6—C7—O3	20.55 (14)	
Sr1	-134.61 (11)	C1—C6—C7—O2	21.55 (14)	
Ca1 ⁱⁱ —O3—C7—O2	16.41 (10)	C5—C6—C7—O2	-158.20 (10)	
Sr1 ⁱⁱ —O3—C7—O2	16.41 (10)	C1—C6—C7—Ca1 ⁱⁱ	123.1 (2)	
Sr1-03-C7-C6	46.66 (18)	C5—C6—C7—Ca1 ⁱⁱ	-56.7 (3)	
Ca1 ⁱⁱ —O3—C7—C6	-162.32(7)	C1—C6—C7—Sr1 ⁱⁱ	123.1 (2)	
Sr1 ⁱⁱ —O3—C7—C6	-162.32 (7)	C5—C6—C7—Sr1 ⁱⁱ	-56.7 (3)	
Sr1—O3—C7—Ca1 ⁱⁱ	-151.02 (14)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
01—H1 <i>0</i> ···O2	0.872 (18)	1.842 (19)	2.6204 (10)	147.6 (16)
$O1W$ — $H1W$ ··· $O1^{iv}$	0.864 (19)	1.981 (19)	2.8361 (11)	169.8 (16)
$O1W - H2W - O2^{\vee}$	0.853 (18)	2.043 (18)	2.8820 (11)	167.6 (15)

Symmetry codes: (iv) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*, *y*, *z*-1.

(CaSr8020)

Crystal data

 $C_{14}H_{14}Ca_{0.92}O_8Sr_{0.08}$ $M_r = 354.25$ Monoclinic, C2/c a = 16.4344 (3) Å b = 11.4853 (2) Å c = 7.6417 (2) Å $\beta = 91.785 (2)^{\circ}$ $V = 1441.70 (5) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans F(000) = 734 $D_x = 1.632 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11379 reflections $\theta = 3.4-30.4^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.35 \times 0.28 \times 0.08 \text{ mm}$

```
Absorption correction: multi-scan
   CrysAlis PRO, Oxford Diffraction Ltd., Version
   1.171.34.40 (release 27-08-2010 CrysAlis171 .NET)
   (compiled Aug 27 2010,11:50:40) Empirical
   absorption correction using spherical harmonics,
   implemented in SCALE3 ABSPACK scaling
   algorithm.
T_{\rm min} = 0.802, T_{\rm max} = 1.000
16552 measured reflections
1642 independent reflections
1568 reflections with I > 2\sigma(I)
R_{\rm int} = 0.030
\theta_{\rm max} = 27.5^{\circ}, \, \theta_{\rm min} = 3.4^{\circ}
h = -21 \rightarrow 21
k = -14 \rightarrow 14
l = -9 \rightarrow 9
```

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent and $R[F^2 > 2\sigma(F^2)] = 0.021$ constrained refinement $wR(F^2) = 0.053$ $w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 1.0809P]$ S = 1.08where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ 1642 reflections $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$ 118 parameters $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sr1	0.5000	0.44923 (2)	-0.2500	0.01030 (10)	0.083 (2)
Cal	0.5000	0.44923 (2)	-0.2500	0.01030 (10)	0.917 (2)
01	0.25630 (5)	0.25391 (7)	0.26823 (11)	0.01854 (19)	
O2	0.37832 (5)	0.40026 (7)	0.26855 (10)	0.01658 (18)	
O3	0.45479 (5)	0.39771 (7)	0.03630 (10)	0.01642 (18)	
O1W	0.39865 (5)	0.32276 (8)	-0.37365 (12)	0.0213 (2)	
C1	0.30175 (6)	0.18861 (9)	0.15851 (13)	0.0141 (2)	
C2	0.27301 (7)	0.07823 (10)	0.11382 (14)	0.0183 (2)	
H2	0.2222	0.0519	0.1549	0.022*	
C3	0.31889 (8)	0.00733 (10)	0.00931 (15)	0.0214 (3)	
H3	0.2998	-0.0687	-0.0191	0.026*	
C4	0.39251 (8)	0.04538 (10)	-0.05506 (16)	0.0215 (3)	
H4	0.4240	-0.0047	-0.1251	0.026*	
C5	0.41944 (7)	0.15671 (10)	-0.01621 (14)	0.0171 (2)	
H5	0.4689	0.1839	-0.0627	0.021*	
C6	0.37448 (6)	0.22991 (9)	0.09118 (13)	0.0133 (2)	
C7	0.40395 (6)	0.34932 (9)	0.13318 (13)	0.0129 (2)	
H1O	0.2813 (11)	0.3191 (16)	0.288 (2)	0.039 (5)*	
H1W	0.3551 (12)	0.2915 (16)	-0.339 (2)	0.043 (5)*	
H2W	0.3914 (11)	0.3337 (15)	-0.481(3)	0.043 (5)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.00968 (14)	0.01105 (15)	0.01028 (15)	0.000	0.00222 (9)	0.000
Cal	0.00968 (14)	0.01105 (15)	0.01028 (15)	0.000	0.00222 (9)	0.000
01	0.0159 (4)	0.0194 (4)	0.0207 (4)	-0.0038 (3)	0.0065 (3)	-0.0023 (3)
O2	0.0174 (4)	0.0164 (4)	0.0161 (4)	-0.0018 (3)	0.0038 (3)	-0.0029 (3)
03	0.0156 (4)	0.0154 (4)	0.0186 (4)	-0.0035 (3)	0.0049 (3)	0.0004 (3)
O1W	0.0182 (4)	0.0283 (5)	0.0176 (4)	-0.0069 (3)	0.0036 (3)	0.0018 (3)
C1	0.0147 (5)	0.0159 (5)	0.0117 (5)	-0.0006 (4)	-0.0001 (4)	0.0020 (4)
C2	0.0196 (5)	0.0187 (5)	0.0165 (5)	-0.0071 (4)	-0.0007 (4)	0.0029 (4)
C3	0.0309 (6)	0.0146 (5)	0.0186 (6)	-0.0063 (5)	-0.0024 (5)	-0.0004 (4)
C4	0.0280 (6)	0.0173 (5)	0.0193 (6)	0.0020 (5)	0.0025 (5)	-0.0036 (4)

supporting information

C5	0.0176 (5)	0.0173 (5)	0.0165 (5)	-0.0002 (4)	0.0030 (4)	0.0000 (4)
C6	0.0136 (5)	0.0130 (5)	0.0131 (5)	-0.0010 (4)	-0.0004 (4)	0.0010 (4)
C7	0.0104 (4)	0.0142 (5)	0.0140 (5)	0.0006 (4)	-0.0008 (4)	0.0013 (4)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sr1—H2W 2.805 (18) C4—H4 0.9500 O1—C1 1.3647 (13) C5—C6 1.4015 (15) O1—H1O 0.865 (18) C5—H5 0.9500 O2—C7 1.2716 (13) C6—C7 1.4862 (14) O2—Ca1 ⁱⁱ 2.6505 (8) C7—Ca1 ⁱⁱ 2.9247 (11)	
O1C1 1.3647 (13) C5C6 1.4015 (15) O1H1O 0.865 (18) C5H5 0.9500 O2C7 1.2716 (13) C6C7 1.4862 (14) O2Cal ⁱⁱ 2.6505 (8) C7Cal ⁱⁱ 2.9247 (11)	
O1—H1O 0.865 (18) C5—H5 0.9500 O2—C7 1.2716 (13) C6—C7 1.4862 (14) O2—Ca1 ⁱⁱ 2.6505 (8) C7—Ca1 ⁱⁱ 2.9247 (11)	
O2—C7 1.2716 (13) C6—C7 1.4862 (14) O2—Ca1 ⁱⁱ 2.6505 (8) C7—Ca1 ⁱⁱ 2.9247 (11)	
O2—Ca1 ⁱⁱ 2.6505 (8) C7—Ca1 ⁱⁱ 2.9247 (11)	
$O2-Sr1^{ii}$ 2.6505 (8) $C7-Sr1^{ii}$ 2.9247 (11)	
$O1W^{i}$ —Sr1—O1W 104.89 (5) $O3^{iii}$ —Sr1—Ca1 ⁱⁱ 114.28 (2)	
O1W ⁱ —Sr1—O3 73.82 (3) $O2^{ii}$ —Sr1—Ca1 ⁱⁱ 83.294 (17)	
O1W—Sr1—O3 88.79 (3) O2 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ 74.689 (17)	
O1W ⁱ —Sr1—O3 ⁱ 88.79 (3) $C7^{ii}$ —Sr1—Ca1 ⁱⁱ 59.55 (2)	
O1W—Sr1—O3 ⁱ 73.82 (3) $C7^{iii}$ —Sr1—Ca1 ⁱⁱ 92.57 (2)	
O3—Sr1—O3 ⁱ 151.53 (4) Sr1 ⁱⁱ —Sr1—Ca1 ⁱⁱ 0.000 (7)	
$O1W^{i}$ —Sr1—O3 ⁱⁱ 88.84 (3) $O1W^{i}$ —Sr1—H2W 112.6 (4)	
O1W—Sr1—O3 ⁱⁱ 151.47 (3) O1W—Sr1—H2W 16.0 (4)	
O3—Sr1—O3 ⁱⁱ 70.88 (3) O3—Sr1—H2W 104.4 (4)	
$O3^{i}$ —Sr1—O3 ⁱⁱ 132.36 (3) $O3^{i}$ —Sr1—H2W 61.3 (4)	
O1W ⁱ —Sr1—O3 ⁱⁱⁱ 151.47 (3) O3 ⁱⁱ —Sr1—H2W 156.3 (4)	
O1W—Sr1—O3 ⁱⁱⁱ 88.84 (3) O3 ⁱⁱⁱ —Sr1—H2W 75.6 (4)	
O3—Sr1—O3 ⁱⁱⁱ 132.36 (3) $O2^{ii}$ —Sr1—H2W 137.8 (4)	
$O3^{i}$ —Sr1—O3 ⁱⁱⁱ 70.88 (3) $O2^{iii}$ —Sr1—H2W 82.9 (4)	
O3 ⁱⁱ —Sr1—O3 ⁱⁱⁱ 90.48 (4) C7 ⁱⁱ —Sr1—H2W 153.3 (4)	
$O1W^{i}$ —Sr1— $O2^{ii}$ 84.24 (3) $C7^{iii}$ —Sr1—H2W 81.7 (4)	
O1W—Sr1—O2 ⁱⁱ 153.57 (3) Sr1 ⁱⁱ —Sr1—H2W 136.2 (4)	
O3—Sr1—O2 ⁱⁱ 117.64 (2) Ca1 ⁱⁱ —Sr1—H2W 136.2 (4)	
$O3^{i}$ —Sr1— $O2^{ii}$ 81.77 (2) C1—O1—H1O 108.5 (12)	
$O3^{ii}$ —Sr1— $O2^{ii}$ 50.66 (2) C7— $O2$ —Ca1 ⁱⁱ 89.25 (6)	
$O3^{iii}$ —Sr1— $O2^{ii}$ 73.47 (3) C7— $O2$ —Sr1 ⁱⁱ 89.25 (6)	
$O1W^{i}$ —Sr1— $O2^{iii}$ 153.57 (3) Ca1 ⁱⁱ — $O2$ —Sr1 ⁱⁱ 0.0	
O1W—Sr1—O2 ⁱⁱⁱ 84.24 (3) C7—O3—Sr1 150.49 (7)	
O3—Sr1—O2 ⁱⁱⁱ 81.77 (2) C7—O3—Ca1 ⁱⁱ 96.62 (6)	
O3 ⁱ —Sr1—O2 ⁱⁱⁱ 117.64 (2) Sr1—O3—Ca1 ⁱⁱ 109.1	
$O3^{ii}$ —Sr1— $O2^{iii}$ 73.47 (3) C7— $O3$ —Sr1 ⁱⁱ 96.62 (6)	
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱⁱ 50.66 (2) Sr1—O3—Sr1 ⁱⁱ 109.12 (3)	

$O2^{n}$ —Sr1— $O2^{m}$	98.58 (3)	Cal ⁿ —O3—Srl ⁿ	0.0
$O1W^{1}$ — $Sr1$ — $C7^{n}$	89.84 (3)	Sr1—O1W—H1W	136.1 (12)
O1W—Sr1—C7 ⁿ	165.27 (3)	Sr1—O1W—H2W	112.0 (12)
$O3$ — $Sr1$ — $C7^{n}$	95.51 (3)	H1W—O1W—H2W	105.8 (16)
$O3^{i}$ —Sr1—C7 ⁱⁱ	107.04 (3)	O1—C1—C2	117.60 (10)
$O3^{ii}$ —Sr1—C7 ⁱⁱ	25.39 (3)	O1—C1—C6	122.00 (9)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	77.84 (3)	C2-C1-C6	120.40 (10)
$O2^{ii}$ —Sr1—C7 ⁱⁱ	25.77 (3)	C3—C2—C1	119.46 (10)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	82.45 (3)	С3—С2—Н2	120.3
O1W ⁱ —Sr1—C7 ⁱⁱⁱ	165.27 (3)	C1—C2—H2	120.3
O1W—Sr1—C7 ⁱⁱⁱ	89.84 (3)	C2—C3—C4	121.07 (10)
O3—Sr1—C7 ⁱⁱⁱ	107.04 (3)	С2—С3—Н3	119.5
O3 ⁱ —Sr1—C7 ⁱⁱⁱ	95.51 (3)	С4—С3—Н3	119.5
O3 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	77.84 (3)	C5—C4—C3	119.40 (11)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	25.39 (3)	С5—С4—Н4	120.3
$O2^{ii}$ —Sr1—C7 ⁱⁱⁱ	82.45 (3)	C3—C4—H4	120.3
02^{iii} Sr1- 07^{iii}	25.77 (3)	C4-C5-C6	120.63 (10)
$C7^{ii}$ Sr1 $-C7^{iii}$	75 42 (4)	C4—C5—H5	119.7
$O1W^{i}$ Sr1 Sr1 ⁱⁱ	79.60 (2)	C6	119.7
01W $Sr1$ $Sr1$	122 44 (2)	$C_{1} - C_{6} - C_{5}$	118.95 (10)
O_3 Sr1 Sr1	36 104 (18)	C1 - C6 - C7	120.66 (9)
$O_{2i}^{i} Sr_{1} Sr_{1}^{ii}$	161.016(10)	$C_{1} = C_{0} = C_{1}$	120.00(9) 120.30(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101.910(19) 24.699(17)	$C_{3} = C_{7} = C_{7}$	120.39(9)
$\begin{array}{c} 0.5 \\511 \\ -$	114.000(17)	03 - 07 - 02	121.11(10) 110.70(0)
$O_{3} = S_{1} = S_{1}$	114.20(2)	03 - 07 - 00	119.79 (9)
02° Sr1—Sr1"	83.294 (17)	02 - 07 - 00	119.09 (9)
02^{m} SrI SrI	/4.689 (17)	$03 - C / - Cal^{"}$	57.99 (5)
$C/^{-}$ Srl—Srl	59.55 (2)	$O2-C/-Cal^n$	64.98 (5)
C/ ^m —Srl—Srl ⁿ	92.57 (2)	C6—C/—Cal ⁿ	164.81 (7)
$O1W^{1}$ —Sr1—Ca1 ⁿ	79.60 (2)	$O3-C7-Sr1^n$	57.99 (5)
O1W—Sr1—Ca1 ⁿ	122.44 (2)	$O2-C7-Sr1^n$	64.98 (5)
O3—Sr1—Ca1 ⁿ	36.194 (18)	$C6-C7-Sr1^{n}$	164.81 (7)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.916 (19)	$Ca1^{ii}$ — $C7$ — $Sr1^{ii}$	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	34.688 (17)		
01—C1—C2—C3	-177.19 (10)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	3.20 (16)	Sr1—O3—C7—Sr1 ⁱⁱ	-150.97 (15)
C1—C2—C3—C4	-1.38 (17)	Ca1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-1.13 (18)	Ca1 ⁱⁱ —O2—C7—O3	-15.25 (10)
C3—C4—C5—C6	1.85 (17)	Sr1 ⁱⁱ —O2—C7—O3	-15.25 (10)
O1—C1—C6—C5	177.92 (10)	Ca1 ⁱⁱ —O2—C7—C6	163.56 (8)
C2-C1-C6-C5	-2.49(15)	Sr1 ⁱⁱ —O2—C7—C6	163.56 (8)
O1—C1—C6—C7	-1.84(15)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C_{2} C 1 - C 6 - C 7	177.75 (9)	$Ca1^{ii}$ — $O2$ — $C7$ — $Sr1^{ii}$	0.0
C4 - C5 - C6 - C1	-0.05(16)	C1 - C6 - C7 - O3	-15975(10)
C4-C5-C6-C7	179 71 (10)	C_{5} C_{6} C_{7} C_{3}	20 50 (15)
Sr1-03-07-02	-134 65 (12)	C1 - C6 - C7 - O2	21.43 (15)
$C_{a1}^{ii} - C_{a1}^{ii} - $	16 32 (11)	$C_{5} - C_{6} - C_{7} - O_{2}^{2}$	-15832(10)
Sr1 ⁱⁱ -03-07-02	16.32 (11)	$C1 - C6 - C7 - Ca1^{ii}$	123.1 (3)
Sr1_03_07_06	46 55 (19)	$C_{1} = C_{0} = C_{1} = C_{1}$	-566(3)
$C_{21}^{ii} = 03 = 07 = 06$	-162 47 (8)	$C_{1} = C_{6} = C_{7} = C_{11}^{-1}$	123 1 (3)
Ca1 - 03 - 07 - 00	102.47 (0)	UI-UU-U/511"	123.1 (3)

Sr1 ⁱⁱ —O3—C7—C6	-162.47 (8)	C5—C6—C7—Sr1 ⁱⁱ	-56.6 (3)
Sr1—O3—C7—Ca1 ⁱⁱ	-150.97 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01—H1 <i>O</i> ···O2	0.865 (18)	1.857 (18)	2.6165 (11)	145.5 (16)
$O1W$ — $H1W$ ··· $O1^{iv}$	0.85 (2)	2.00 (2)	2.8350 (11)	169.7 (17)
$O1W - H2W - O2^{v}$	0.836 (19)	2.06 (2)	2.8849 (12)	166.8 (17)

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(CaSr7030)

Crystal data

 $C_{14}H_{14}Ca_{0.83}O_8Sr_{0.17}$ $M_r = 358.18$ Monoclinic, C2/c a = 16.4921 (10) Å b = 11.5345 (8) Å c = 7.6679 (5) Å $\beta = 91.838 (6)^{\circ}$ $V = 1457.90 (16) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.093$ S = 1.091659 reflections 118 parameters 0 restraints F(000) = 740 $D_x = 1.632 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2211 reflections $\theta = 3.4-30.1^{\circ}$ $\mu = 1.01 \text{ mm}^{-1}$ T = 150 KCut prism, colourless $0.26 \times 0.22 \times 0.12 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{min} = 0.896, T_{max} = 1.000$ 3241 measured reflections 1659 independent reflections 1494 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.4^{\circ}$ $h = -21 \rightarrow 18$ $k = -12 \rightarrow 14$ $l = -9 \rightarrow 9$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Sr1	0.5000	0.44817 (4)	-0.2500	0.01289 (17)	0.165 (3)
Ca1	0.5000	0.44817 (4)	-0.2500	0.01289 (17)	0.835 (3)
01	0.25637 (7)	0.25373 (13)	0.26791 (18)	0.0219 (3)	
O2	0.37813 (7)	0.39984 (12)	0.26805 (17)	0.0196 (3)	
O3	0.45477 (7)	0.39682 (12)	0.03736 (17)	0.0205 (3)	
O1W	0.39825 (8)	0.32205 (14)	-0.3747 (2)	0.0264 (4)	
C1	0.30155 (10)	0.18853 (17)	0.1580 (2)	0.0176 (4)	
C2	0.27293 (11)	0.07830 (19)	0.1139 (2)	0.0217 (4)	
H2	0.2225	0.0520	0.1553	0.026*	
C3	0.31847 (12)	0.00760 (18)	0.0095 (3)	0.0238 (5)	
H3	0.2993	-0.0680	-0.0189	0.029*	
C4	0.39199 (13)	0.04538 (18)	-0.0547 (3)	0.0248 (5)	
H4	0.4233	-0.0044	-0.1247	0.030*	
C5	0.41889 (11)	0.15622 (17)	-0.0154 (2)	0.0203 (4)	
Н5	0.4683	0.1830	-0.0615	0.024*	
C6	0.37431 (10)	0.22961 (17)	0.0915 (2)	0.0162 (4)	
C7	0.40362 (10)	0.34874 (16)	0.1336 (2)	0.0158 (4)	
H1O	0.2801 (18)	0.321 (3)	0.280 (4)	0.056 (9)*	
H1W	0.3554 (16)	0.290 (2)	-0.331 (3)	0.046 (8)*	
H2W	0.3898 (16)	0.329 (2)	-0.486 (4)	0.046 (8)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.0097 (2)	0.0165 (3)	0.0126 (2)	0.000	0.00114 (15)	0.000
Cal	0.0097 (2)	0.0165 (3)	0.0126 (2)	0.000	0.00114 (15)	0.000
01	0.0170 (6)	0.0246 (8)	0.0244 (7)	-0.0032 (6)	0.0064 (5)	-0.0028 (6)
02	0.0178 (6)	0.0214 (8)	0.0196 (7)	-0.0031 (6)	0.0032 (5)	-0.0026 (6)
O3	0.0155 (6)	0.0224 (8)	0.0238 (7)	-0.0032 (5)	0.0042 (5)	0.0006 (6)
O1W	0.0192 (7)	0.0375 (9)	0.0226 (8)	-0.0068 (7)	0.0032 (6)	0.0037 (7)
C1	0.0160 (8)	0.0213 (10)	0.0153 (8)	0.0006 (8)	-0.0014 (7)	0.0019 (8)
C2	0.0202 (9)	0.0258 (10)	0.0190 (9)	-0.0072 (8)	-0.0010(7)	0.0032 (9)
C3	0.0322 (10)	0.0177 (10)	0.0211 (10)	-0.0061 (9)	-0.0057 (8)	0.0012 (9)
C4	0.0309 (11)	0.0229 (11)	0.0207 (10)	0.0027 (8)	0.0020 (9)	-0.0028 (8)
C5	0.0189 (8)	0.0224 (10)	0.0197 (9)	-0.0002 (8)	0.0015 (7)	0.0004 (8)
C6	0.0147 (8)	0.0185 (9)	0.0154 (8)	-0.0011 (7)	-0.0015 (7)	0.0006 (8)
C7	0.0097 (7)	0.0191 (9)	0.0182 (9)	0.0020(7)	-0.0029 (7)	0.0006 (8)

Geometric parameters (Å, °)

Sr1—O1W	2.3968 (15)	O3—C7	1.266 (2)
Sr1—O1W ⁱ	2.3968 (15)	O3—Ca1 ⁱⁱ	2.5166 (14)
Sr1—03	2.4224 (13)	O3—Sr1 ⁱⁱ	2.5166 (14)

Sr1—O3 ⁱ	2.4224 (13)	O1W—H1W	0.87 (3)
Sr1—O3 ⁱⁱ	2.5166 (14)	O1W—H2W	0.86 (3)
Sr1—O3 ⁱⁱⁱ	2.5166 (14)	C1—C2	1.394 (3)
Sr1—O2 ⁱⁱ	2.6739 (13)	C1—C6	1.401 (2)
Sr1—O2 ⁱⁱⁱ	2.6739 (13)	C2—C3	1.381 (3)
Sr1—C7 ⁱⁱ	2.9529 (19)	С2—Н2	0.9500
Sr1—C7 ⁱⁱⁱ	2.9529 (19)	C3—C4	1.393 (3)
Sr1—Sr1 ⁱⁱ	4.0160 (4)	С3—Н3	0.9500
Sr1—Ca1 ⁱⁱ	4.0160 (4)	C4—C5	1.383 (3)
Sr1—H2W	2.87 (3)	C4—H4	0.9500
O1—C1	1.368 (2)	C5—C6	1.403 (3)
01—H10	0.87 (3)	С5—Н5	0.9500
O2—C7	1.271 (2)	C6—C7	1.489 (3)
O2—Ca1 ⁱⁱ	2.6740 (13)	C7—Ca1 ⁱⁱ	2.9529 (19)
O2—Sr1 ⁱⁱ	2.6740 (13)	C7—Sr1 ⁱⁱ	2.9529 (19)
O1W—Sr1—O1W ⁱ	105.26 (8)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	113.45 (4)
O1W—Sr1—O3	89.00 (5)	O2 ⁱⁱ —Sr1—Ca1 ⁱⁱ	82.95 (3)
O1W ⁱ —Sr1—O3	73.78 (5)	O2 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	74.48 (3)
O1W—Sr1—O3 ⁱ	73.78 (5)	C7 ⁱⁱ —Sr1—Ca1 ⁱⁱ	59.45 (4)
$O1W^{i}$ —Sr1— $O3^{i}$	89.00 (5)	C7 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	92.06 (4)
$O3$ — $Sr1$ — $O3^i$	151.69 (7)	Sr1 ⁱⁱ —Sr1—Ca1 ⁱⁱ	0.0
O1W—Sr1—O3 ⁱⁱ	151.52 (4)	O1W—Sr1—H2W	15.7 (6)
O1W ⁱ —Sr1—O3 ⁱⁱ	89.05 (5)	O1W ⁱ —Sr1—H2W	112.4 (6)
O3—Sr1—O3 ⁱⁱ	71.21 (5)	O3—Sr1—H2W	104.4 (6)
$O3^{i}$ —Sr1— $O3^{ii}$	132.03 (5)	O3 ⁱ —Sr1—H2W	61.2 (5)
$O1W$ — $Sr1$ — $O3^{iii}$	89.05 (5)	O3 ⁱⁱ —Sr1—H2W	156.4 (6)
O1W ⁱ —Sr1—O3 ⁱⁱⁱ	151.52 (5)	O3 ⁱⁱⁱ —Sr1—H2W	76.4 (6)
$O3$ — $Sr1$ — $O3^{iii}$	132.03 (5)	O2 ⁱⁱ —Sr1—H2W	138.0 (6)
O3 ⁱ —Sr1—O3 ⁱⁱⁱ	71.21 (5)	O2 ⁱⁱⁱ —Sr1—H2W	83.4 (6)
O3 ⁱⁱ —Sr1—O3 ⁱⁱⁱ	89.46 (7)	C7 ⁱⁱ —Sr1—H2W	153.4 (6)
$O1W$ — $Sr1$ — $O2^{ii}$	153.52 (5)	C7 ⁱⁱⁱ —Sr1—H2W	82.3 (6)
$O1W^{i}$ —Sr1— $O2^{ii}$	84.31 (5)	Sr1 ⁱⁱ —Sr1—H2W	136.4 (5)
$O3$ — $Sr1$ — $O2^{ii}$	117.47 (4)	Ca1 ⁱⁱ —Sr1—H2W	136.4 (5)
$O3^{i}$ —Sr1— $O2^{ii}$	81.91 (4)	C1	107.5 (19)
$O3^{ii}$ —Sr1— $O2^{ii}$	50.21 (4)	$C7-O2-Ca1^{ii}$	89.62 (10)
$O3^{iii}$ —Sr1— $O2^{ii}$	73.04 (4)	C7—O2—Sr1 ⁱⁱ	89.62 (10)
$O1W$ — $Sr1$ — $O2^{iii}$	84.31 (5)	$Ca1^{ii}$ — $O2$ — $Sr1^{ii}$	0.0
O1W ⁱ —Sr1—O2 ⁱⁱⁱ	153.52 (5)	C7—O3—Sr1	150.16 (12)
$O3$ — $Sr1$ — $O2^{iii}$	81.91 (4)	C7—O3—Ca1 ⁱⁱ	97.05 (11)
$O3^{i}$ —Sr1— $O2^{iii}$	117.47 (4)	Sr1—O3—Ca1 ⁱⁱ	108.8
$O3^{ii}$ —Sr1— $O2^{iii}$	73.04 (4)	$C7-O3-Sr1^{ii}$	97.05 (11)
$O3^{iii}$ —Sr1— $O2^{iii}$	50.21 (4)	Sr1—O3—Sr1 ⁱⁱ	108.79 (5)
$O2^{ii}$ —Sr1—O2 ⁱⁱⁱ	98.07 (6)	Ca1 ⁱⁱ —O3—Sr1 ⁱⁱ	0.0
O1W—Sr1—C7 ⁱⁱ	164.87 (5)	Sr1—O1W—H1W	132.2 (17)
$O1W^{i}$ — $Sr1$ — $C7^{ii}$	89.87 (5)	Sr1—O1W—H2W	115.4 (18)
$O3$ — $Sr1$ — $C7^{ii}$	95.59 (5)	H1W—O1W—H2W	108 (2)
O3 ⁱ —Sr1—C7 ⁱⁱ	106.89 (5)	01-C1-C2	117.64 (16)
$O3^{ii}$ —Sr1—C7 ⁱⁱ	25.19 (4)	01-C1-C6	121.87 (17)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	77.16 (5)	C2—C1—C6	120.48 (18)
O2 ⁱⁱ —Sr1—C7 ⁱⁱ	25.49 (4)	C3—C2—C1	119.53 (17)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	82.09 (5)	C3—C2—H2	120.2

O1W—Sr1—C7 ⁱⁱⁱ	89.87 (5)	C1—C2—H2	120.2
O1W ⁱ —Sr1—C7 ⁱⁱⁱ	164.87 (5)	C2—C3—C4	121.04 (19)
O3—Sr1—C7 ⁱⁱⁱ	106.89 (5)	С2—С3—Н3	119.5
O3 ⁱ —Sr1—C7 ⁱⁱⁱ	95.60 (5)	С4—С3—Н3	119.5
O3 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	77.16 (5)	C5—C4—C3	119.26 (19)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	25.19 (4)	C5—C4—H4	120.4
O2 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	82.09 (5)	C3—C4—H4	120.4
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	25.49 (4)	C4—C5—C6	120.96 (17)
C7 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	75.01 (7)	C4—C5—H5	119.5
O1W—Sr1—Sr1 ⁱⁱ	122.70 (4)	C6—C5—H5	119.5
O1W ⁱ —Sr1—Sr1 ⁱⁱ	79.70 (4)	C1—C6—C5	118.66 (17)
O3—Sr1—Sr1 ⁱⁱ	36.39 (3)	C1—C6—C7	120.61 (16)
O3 ⁱ —Sr1—Sr1 ⁱⁱ	161.92 (3)	C5—C6—C7	120.73 (16)
O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	34.82 (3)	O3—C7—O2	120.89 (17)
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	113.45 (4)	O3—C7—C6	119.73 (16)
O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	82.95 (3)	O2—C7—C6	119.36 (15)
O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.48 (3)	O3—C7—Ca1 ⁱⁱ	57.76 (9)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	59.45 (4)	O2—C7—Ca1 ⁱⁱ	64.89 (9)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	92.06 (4)	C6—C7—Cal ⁱⁱ	164.95 (11)
O1W—Sr1—Ca1 ⁱⁱ	122.70 (4)	O3—C7—Sr1 ⁱⁱ	57.76 (9)
O1W ⁱ —Sr1—Ca1 ⁱⁱ	79.70 (4)	O2—C7—Sr1 ⁱⁱ	64.89 (9)
O3—Sr1—Ca1 ⁱⁱ	36.39 (3)	C6—C7—Sr1 ⁱⁱ	164.95 (11)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.92 (3)	Ca1 ⁱⁱ —C7—Sr1 ⁱⁱ	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	34.82 (3)		
O1—C1—C2—C3	-177.15 (17)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	2.6 (3)	Sr1—O3—C7—Sr1 ⁱⁱ	-150.2 (3)
C1—C2—C3—C4	-1.0 (3)	Ca1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-1.1 (3)	Ca1 ⁱⁱ —O2—C7—O3	-14.77 (16)
C3—C4—C5—C6	1.7 (3)	Sr1 ⁱⁱ —O2—C7—O3	-14.77 (16)
O1-C1-C6-C5	177.71 (16)	Cal ⁱⁱ —O2—C7—C6	163.75 (14)
C2-C1-C6-C5	-2.0 (3)	Sr1 ⁱⁱ —O2—C7—C6	163.75 (14)
O1—C1—C6—C7	-2.3 (3)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2-C1-C6-C7	177.94 (16)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
C4—C5—C6—C1	-0.1 (3)	C1—C6—C7—O3	-159.89 (17)
C4—C5—C6—C7	179.91 (17)	C5—C6—C7—O3	20.1 (3)
Sr1	-134.4 (2)	C1—C6—C7—O2	21.6 (3)
Ca1 ⁱⁱ —O3—C7—O2	15.83 (17)	C5—C6—C7—O2	-158.43 (17)
Sr1 ⁱⁱ —O3—C7—O2	15.83 (17)	C1—C6—C7—Ca1 ⁱⁱ	124.1 (4)
Sr1—O3—C7—C6	47.1 (3)	C5—C6—C7—Ca1 ⁱⁱ	-55.9 (5)
Ca1 ⁱⁱ —O3—C7—C6	-162.68 (13)	C1—C6—C7—Sr1 ⁱⁱ	124.1 (4)
Sr1 ⁱⁱ —O3—C7—C6	-162.68 (13)	C5—C6—C7—Sr1 ⁱⁱ	-55.9 (5)
Sr1—O3—C7—Ca1 ⁱⁱ	-150.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1 <i>O</i> …O2	0.87 (3)	1.86 (3)	2.6216 (18)	145 (3)

$O1W$ — $H1W$ ··· $O1^{iv}$	0.87 (3)	1.99 (3)	2.8409 (19)	166 (3)
$O1W - H2W - O2^{v}$	0.86 (3)	2.06 (3)	2.891 (2)	161 (3)

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(CaSr6040)

Crystal data

 $C_{14}H_{14}Ca_{0.69}O_8Sr_{0.31}$ $M_r = 364.90$ Monoclinic, C2/c a = 16.5626 (13) Å b = 11.4921 (10) Å c = 7.7041 (7) Å $\beta = 91.588$ (8)° V = 1465.8 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.056$ S = 1.111656 reflections 118 parameters 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sr1	0.5000	0.44698 (2)	-0.2500	0.01216 (10)	0.306 (3)
Cal	0.5000	0.44698 (2)	-0.2500	0.01216 (10)	0.694 (3)
O1	0.25637 (6)	0.25381 (9)	0.26752 (13)	0.0210 (2)	

F(000) = 750 $D_x = 1.653 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5800 reflections $\theta = 3.4-28.9^{\circ}$ $\mu = 1.47 \text{ mm}^{-1}$ T = 150 KCut prism, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$

Absorption correction: multi-scan CrvsAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.845, T_{\max} = 1.000$ 9041 measured reflections 1656 independent reflections 1576 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$ $\theta_{\rm max} = 27.5^\circ, \, \theta_{\rm min} = 3.4^\circ$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -9 \rightarrow 10$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0227P)^2 + 0.9652P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$

O2	0.37777 (6)	0.39961 (8)	0.26740 (13)	0.0196 (2)
03	0.45477 (6)	0.39600 (8)	0.03791 (13)	0.0201 (2)
O1W	0.39752 (7)	0.32033 (10)	-0.37681 (16)	0.0260 (3)
C1	0.30144 (8)	0.18819 (12)	0.15846 (17)	0.0160 (3)
C2	0.27255 (9)	0.07810(12)	0.11375 (19)	0.0201 (3)
H2	0.2220	0.0521	0.1544	0.024*
C3	0.31787 (10)	0.00708 (13)	0.00995 (19)	0.0238 (3)
H3	0.2988	-0.0687	-0.0182	0.029*
C4	0.39121 (9)	0.04474 (13)	-0.0543 (2)	0.0237 (3)
H4	0.4222	-0.0052	-0.1246	0.028*
C5	0.41838 (9)	0.15549 (12)	-0.01466 (19)	0.0196 (3)
H5	0.4678	0.1821	-0.0603	0.023*
C6	0.37401 (8)	0.22901 (12)	0.09187 (17)	0.0152 (3)
C7	0.40357 (8)	0.34819 (11)	0.13391 (18)	0.0152 (3)
H1O	0.2827 (13)	0.3191 (19)	0.284 (3)	0.049 (6)*
H1W	0.3521 (15)	0.290 (2)	-0.337 (3)	0.062 (7)*
H2W	0.3920 (12)	0.3345 (18)	-0.490 (3)	0.046 (6)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.01084 (15)	0.01233 (15)	0.01342 (16)	0.000	0.00272 (10)	0.000
0.01084 (15)	0.01233 (15)	0.01342 (16)	0.000	0.00272 (10)	0.000
0.0183 (5)	0.0206 (5)	0.0245 (6)	-0.0042 (4)	0.0069 (4)	-0.0028 (4)
0.0191 (5)	0.0178 (5)	0.0222 (5)	-0.0023 (4)	0.0040 (4)	-0.0033 (4)
0.0178 (5)	0.0169 (5)	0.0260 (6)	-0.0037 (4)	0.0066 (4)	0.0000 (4)
0.0217 (6)	0.0334 (6)	0.0232 (6)	-0.0055 (5)	0.0052 (5)	0.0041 (5)
0.0163 (6)	0.0175 (7)	0.0140 (7)	-0.0003 (5)	0.0002 (5)	0.0024 (5)
0.0219 (7)	0.0199 (7)	0.0185 (7)	-0.0068 (6)	-0.0002(6)	0.0033 (6)
0.0355 (8)	0.0159 (7)	0.0199 (8)	-0.0068 (6)	-0.0022 (6)	-0.0001 (6)
0.0301 (8)	0.0194 (7)	0.0217 (8)	0.0018 (6)	0.0032 (6)	-0.0031 (6)
0.0188 (7)	0.0196 (7)	0.0204 (7)	0.0002 (5)	0.0028 (6)	0.0003 (6)
0.0150 (6)	0.0149 (6)	0.0157 (7)	-0.0012 (5)	-0.0001(5)	0.0013 (5)
0.0114 (6)	0.0151 (6)	0.0192 (7)	0.0004 (5)	-0.0006(5)	0.0014 (5)
	U^{11} 0.01084 (15) 0.01084 (15) 0.0183 (5) 0.0191 (5) 0.0178 (5) 0.0217 (6) 0.0163 (6) 0.0219 (7) 0.0355 (8) 0.0301 (8) 0.0188 (7) 0.0150 (6) 0.0114 (6)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.01084 (15) & 0.01233 (15) \\ \hline 0.01084 (15) & 0.01233 (15) \\ \hline 0.0183 (5) & 0.0206 (5) \\ \hline 0.0191 (5) & 0.0178 (5) \\ \hline 0.0178 (5) & 0.0169 (5) \\ \hline 0.0217 (6) & 0.0334 (6) \\ \hline 0.0163 (6) & 0.0175 (7) \\ \hline 0.0219 (7) & 0.0199 (7) \\ \hline 0.0301 (8) & 0.0194 (7) \\ \hline 0.0188 (7) & 0.0196 (7) \\ \hline 0.0150 (6) & 0.0151 (6) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Sr1-O1W ⁱ	2.4211 (11)	O3—C7	1.2660 (16)
Sr1—O1W	2.4211 (11)	O3—Ca1 ⁱⁱ	2.5336 (10)
Sr1-03	2.4324 (10)	O3—Sr1 ⁱⁱ	2.5336 (10)
Sr1—O3 ⁱ	2.4324 (10)	O1W—H1W	0.89 (3)
Sr1-O3 ⁱⁱ	2.5336 (10)	O1W—H2W	0.89 (2)
Sr1-O3 ⁱⁱⁱ	2.5336 (10)	C1—C2	1.3925 (19)
Sr1-O2 ⁱⁱ	2.6907 (10)	C1—C6	1.4008 (19)
Sr1-O2 ⁱⁱⁱ	2.6907 (10)	C2—C3	1.379 (2)
Sr1-C7 ⁱⁱ	2.9686 (13)	C2—H2	0.9500
Sr1-C7 ⁱⁱⁱ	2.9686 (13)	C3—C4	1.393 (2)
Sr1—Sr1 ⁱⁱ	4.0402 (4)	C3—H3	0.9500
Sr1-Ca1 ⁱⁱ	4.0402 (4)	C4—C5	1.381 (2)
Sr1—H2W	2.85 (2)	C4—H4	0.9500
01—C1	1.3662 (17)	C5—C6	1.4002 (19)
01—H10	0.87 (2)	С5—Н5	0.9500

02 C7	1 2703 (17)	C6 C7	1 4872 (18)
	1.2703(17)		1.4672(10)
02 - Cal	2.0900(10)	C/-Cal	2.9080(13)
02—Sr1"	2.0900 (10)	C/—Sf1"	2.9080 (13)
$O1W^{i}$ —Sr1— $O1W$	106.09 (6)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	113.09(3)
$O1W^{i}$ —Sr1—O3	73.59 (4)	$O2^{ii}$ —Sr1—Ca1 ⁱⁱ	82.52.(2)
01W - Sr1 - 03	89 60 (4)	Ω^{2ii} Sr1—Ca1 ⁱⁱ	74 63 (2)
$01W^{i}$ Sr1 03^{i}	89.60 (4)	$C7^{ii}$ Sr1 Ca1 ⁱⁱ	59 19 (3)
$01W_{r} sr1_{0}^{i}$	73 59 (4)	$C7^{iii}$ Sr1 Cal ⁱⁱ	91 94 (3)
$03-8r1-03^{i}$	152 13 (5)	$Sr1^{ii}$ $Sr1$ $Ca1^{ii}$	0.0
03-31-03	152.15 (5) 88.65 (4)	$O1W^{i}$ Sr1 H2W	114.2(4)
$01W Sr1 - 03^{ii}$	151.62(4)	O1W Sr1 H2W	114.2(4)
$O_1 = 0.000$	71 12 (4)	$O_2 = 1 U_2 W$	17.1(4)
03-51-03	(1.12(4))	O_{3} S_{1} $H_{2}W$	100.2(3)
03 - 51 - 03	151.61(5)	$O_{2ii} = S_{r1} = H_{2W}$	155.7(4)
01W - Sr1 - 03	151.62 (4)	O3 ^{III} S1 HOW	155.7 (4)
$01 \text{ w} - \text{Sr1} - 03^{\text{iii}}$	88.65 (4)	$O3^{III}$ $O3^{IIII}$ $O3^{III}$ $O3^{III}$ $O3^{III}$ $O3^{III}$ $O3^{III}$ $O3^{III}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIIII}$ $O3^{IIII}$ $O3^{IIIII}$ $O3^{IIII}$ $O3^{IIII}$ $O3^{IIIIIII$ $O3^{IIII}$ $O3^{IIIIIIIII$ $O3^{IIIIIIII$ $O3^{IIIIIIIIIII$ $O3^{IIIIIIIIII$ $O3^{IIIIIIIIII$ $O3^{IIIIIIIIIIIIIIIIIIIIII O3^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	/4.6 (4)
03—SrI— 03 ^m	131.81 (3)	O2 ⁱⁱⁱ SrI—H2W	136.4 (5)
$O3^{i}$ —Sr1— $O3^{ii}$	71.12 (4)	O2 ^m —Sr1—H2W	82.5 (4)
$O3^{n}$ —Sr1—O3 ^m	89.17 (5)	C/ ⁿ —Sr1—H2W	151.5 (4)
$O1W^{i}$ —Sr1— $O2^{ii}$	83.91 (3)	C/m—Sr1—H2W	80.9 (4)
$O1W$ — $Sr1$ — $O2^n$	153.36 (4)	Sr1 ⁿ —Sr1—H2W	137.7 (4)
$O3$ — $Sr1$ — $O2^n$	117.03 (3)	Ca1 ⁿ —Sr1—H2W	137.7 (4)
$O3^{i}$ Sr1 $-O2^{ii}$	82.02 (3)	C1—O1—H1O	106.5 (14)
$O3^{n}$ —Sr1— $O2^{n}$	49.91 (3)	$C7-O2-Ca1^{n}$	89.66 (8)
$O3^{iii}$ —Sr1— $O2^{ii}$	73.18 (3)	$C7-O2-Sr1^{ii}$	89.66 (8)
$O1W^{i}$ —Sr1— $O2^{iii}$	153.36 (4)	Cal ⁱⁱ —O2—Srl ⁱⁱ	0.0
$O1W$ — $Sr1$ — $O2^{iii}$	83.92 (3)	C7—O3—Sr1	149.93 (9)
O3—Sr1—O2 ⁱⁱⁱ	82.02 (3)	C7—O3—Ca1 ⁱⁱ	97.08 (8)
$O3^{i}$ —Sr1— $O2^{iii}$	117.03 (3)	Sr1—O3—Ca1 ⁱⁱ	108.9
$O3^{ii}$ —Sr1— $O2^{iii}$	73.18 (3)	C7—O3—Sr1 ⁱⁱ	97.08 (8)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱⁱ	49.91 (3)	Sr1—O3—Sr1 ⁱⁱ	108.88 (4)
$O2^{ii}$ —Sr1—O2 ⁱⁱⁱ	98.12 (4)	Ca1 ⁱⁱ —O3—Sr1 ⁱⁱ	0.0
O1W ⁱ —Sr1—C7 ⁱⁱ	89.42 (4)	Sr1—O1W—H1W	133.3 (15)
O1W—Sr1—C7 ⁱⁱ	164.48 (4)	Sr1—O1W—H2W	109.7 (13)
O3—Sr1—C7 ⁱⁱ	95.33 (3)	H1W—O1W—H2W	110.1 (19)
$O3^{i}$ —Sr1—C7 ⁱⁱ	106.80 (4)	O1—C1—C2	117.63 (12)
O3 ⁱⁱ —Sr1—C7 ⁱⁱ	25.04 (3)	O1—C1—C6	121.97 (12)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	77.09 (4)	C2—C1—C6	120.40 (13)
O2 ⁱⁱ —Sr1—C7 ⁱⁱ	25.34 (3)	C3—C2—C1	119.48 (13)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	82.22 (3)	С3—С2—Н2	120.3
O1W ⁱ —Sr1—C7 ⁱⁱⁱ	164.48 (4)	C1—C2—H2	120.3
O1W—Sr1—C7 ⁱⁱⁱ	89.42 (4)	C2—C3—C4	121.07 (14)
O3—Sr1—C7 ⁱⁱⁱ	106.80 (4)	С2—С3—Н3	119.5
O3 ⁱ —Sr1—C7 ⁱⁱⁱ	95.33 (4)	С4—С3—Н3	119.5
O3 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	77.09 (4)	C5—C4—C3	119.32 (14)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	25.04 (3)	C5—C4—H4	120.3
O2 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	82.22 (3)	C3—C4—H4	120.3
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	25.34 (3)	C4—C5—C6	120.82 (13)
C7 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	75.08 (5)	С4—С5—Н5	119.6
O1W ⁱ —Sr1—Sr1 ⁱⁱ	79.35 (3)	С6—С5—Н5	119.6
O1W—Sr1—Sr1 ⁱⁱ	123.20 (3)	C5—C6—C1	118.83 (13)
O3—Sr1—Sr1 ⁱⁱ	36.40 (2)	C5—C6—C7	120.56 (12)

O3 ⁱ —Sr1—Sr1 ⁱⁱ	161.85 (2)	C1—C6—C7	120.62 (12)
O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	34.73 (2)	O3—C7—O2	121.12 (12)
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	113.09 (3)	O3—C7—C6	119.62 (12)
O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	82.52 (2)	O2—C7—C6	119.25 (12)
O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.63 (2)	O3—C7—Ca1 ⁱⁱ	57.88 (7)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	59.19 (3)	O2—C7—Ca1 ⁱⁱ	65.01 (7)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	91.94 (3)	C6—C7—Ca1 ⁱⁱ	165.24 (9)
O1W ⁱ —Sr1—Ca1 ⁱⁱ	79.35 (3)	O3—C7—Sr1 ⁱⁱ	57.88 (7)
O1W—Sr1—Ca1 ⁱⁱ	123.20 (3)	O2—C7—Sr1 ⁱⁱ	65.01 (7)
O3—Sr1—Ca1 ⁱⁱ	36.40 (2)	C6—C7—Sr1 ⁱⁱ	165.24 (9)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.85 (2)	Ca1 ⁱⁱ —C7—Sr1 ⁱⁱ	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	34.73 (2)		
O1—C1—C2—C3	-177.25 (13)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	3.1 (2)	Sr1—O3—C7—Sr1 ⁱⁱ	-149.92 (19)
C1—C2—C3—C4	-1.5 (2)	Ca1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-0.7 (2)	Ca1 ⁱⁱ —O2—C7—O3	-14.85 (13)
C3—C4—C5—C6	1.4 (2)	Sr1 ⁱⁱ —O2—C7—O3	-14.85 (13)
C4C5C6C1	0.2 (2)	Ca1 ⁱⁱ —O2—C7—C6	164.10 (10)
C4—C5—C6—C7	-179.95 (13)	Sr1 ⁱⁱ —O2—C7—C6	164.10 (10)
O1—C1—C6—C5	177.92 (12)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2-C1-C6-C5	-2.5 (2)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
O1—C1—C6—C7	-1.9 (2)	C5—C6—C7—O3	20.16 (19)
C2-C1-C6-C7	177.69 (12)	C1—C6—C7—O3	-160.01 (13)
Sr1—O3—C7—O2	-134.00 (15)	C5—C6—C7—O2	-158.80 (13)
Ca1 ⁱⁱ —O3—C7—O2	15.92 (13)	C1—C6—C7—O2	21.03 (19)
Sr1 ⁱⁱ —O3—C7—O2	15.92 (13)	C5—C6—C7—Ca1 ⁱⁱ	-55.8 (4)
Sr1—O3—C7—C6	47.1 (2)	C1—C6—C7—Ca1 ⁱⁱ	124.0 (3)
Cal ⁱⁱ —O3—C7—C6	-163.03 (10)	C5—C6—C7—Sr1 ⁱⁱ	-55.8 (4)
Sr1 ⁱⁱ —O3—C7—C6	-163.03 (10)	C1C6C7Sr1 ⁱⁱ	124.0 (3)
Sr1—O3—C7—Ca1 ⁱⁱ	-149.92 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
01—H1 <i>O</i> ···O2	0.87 (2)	1.83 (2)	2.6174 (14)	148 (2)	
$O1W$ — $H1W$ ··· $O1^{iv}$	0.89 (3)	1.95 (3)	2.8372 (15)	170 (2)	
$O1W$ — $H2W$ ··· $O2^{v}$	0.89 (2)	2.02 (2)	2.8984 (16)	168.7 (19)	

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(CaSr5050)

Crystal data

$C_{14}H_{14}Ca_{0.47}O_8Sr_{0.53}$	$V = 1479.57 (15) \text{ Å}^3$
$M_r = 375.48$	Z = 4
Monoclinic, C2/c	F(000) = 766
a = 16.5994 (10) Å	$D_{\rm x} = 1.686 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.4832 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 7.7650 (5) Å	Cell parameters from 4653 reflections
$\beta = 91.555 (5)^{\circ}$	$\theta = 3.4 - 30.1^{\circ}$

 $\mu = 2.17 \text{ mm}^{-1}$ T = 150 K

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.058$ S = 1.121691 reflections 118 parameters 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			_	IT */IT	0 (<1)
	x	У	Ζ	$U_{\rm iso} - U_{\rm eq}$	Ucc. (<1)
Sr1	0.5000	0.44561 (2)	-0.2500	0.01158 (11)	0.529 (3)
Cal	0.5000	0.44561 (2)	-0.2500	0.01158 (11)	0.471 (3)
01	0.25645 (8)	0.25386 (12)	0.26716 (17)	0.0212 (3)	
O2	0.37738 (7)	0.39876 (10)	0.26651 (17)	0.0198 (3)	
03	0.45461 (7)	0.39421 (10)	0.03917 (17)	0.0204 (3)	
O1W	0.39635 (9)	0.31743 (13)	-0.3803 (2)	0.0277 (4)	
C1	0.30099 (11)	0.18734 (15)	0.1584 (2)	0.0165 (4)	
C2	0.27182 (12)	0.07802 (15)	0.1141 (2)	0.0209 (4)	
H2	0.2214	0.0522	0.1550	0.025*	
C3	0.31666 (13)	0.00696 (16)	0.0102 (3)	0.0242 (5)	
H3	0.2972	-0.0686	-0.0185	0.029*	
C4	0.38967 (12)	0.04380 (16)	-0.0531 (3)	0.0240 (5)	
H4	0.4204	-0.0065	-0.1229	0.029*	
C5	0.41717 (11)	0.15415 (15)	-0.0138 (2)	0.0200 (4)	
H5	0.4664	0.1805	-0.0595	0.024*	
C6	0.37345 (10)	0.22793 (14)	0.0929 (2)	0.0153 (4)	

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Prism. colourless

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.847, T_{\max} = 1.000$ 8207 measured reflections 1691 independent reflections 1546 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.046$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 10$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2 + 0.3827P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

supporting information

C7	0.40331 (10)	0.34674 (15)	0.1335 (2)	0.0153 (4)
H1O	0.2830 (15)	0.322 (2)	0.281 (3)	0.053 (8)*
H1W	0.3526 (17)	0.290 (2)	-0.338 (3)	0.061 (9)*
H2W	0.3873 (16)	0.334 (2)	-0.492 (4)	0.060 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01033 (17)	0.01192 (16)	0.01263 (18)	0.000	0.00294 (11)	0.000
Cal	0.01033 (17)	0.01192 (16)	0.01263 (18)	0.000	0.00294 (11)	0.000
01	0.0186 (7)	0.0224 (7)	0.0230 (8)	-0.0039 (6)	0.0078 (6)	-0.0032 (6)
O2	0.0193 (7)	0.0182 (6)	0.0220 (8)	-0.0027 (5)	0.0045 (6)	-0.0042 (5)
O3	0.0173 (7)	0.0180 (6)	0.0264 (8)	-0.0043 (5)	0.0072 (6)	-0.0002 (6)
O1W	0.0216 (8)	0.0379 (9)	0.0239 (9)	-0.0071 (7)	0.0059 (7)	0.0032 (7)
C1	0.0174 (9)	0.0181 (9)	0.0140 (10)	-0.0001 (7)	0.0005 (7)	0.0020(7)
C2	0.0225 (10)	0.0212 (9)	0.0190 (11)	-0.0082 (8)	-0.0002(8)	0.0036 (8)
C3	0.0354 (12)	0.0161 (9)	0.0209 (12)	-0.0072 (9)	-0.0020 (9)	-0.0003 (8)
C4	0.0302 (11)	0.0191 (9)	0.0228 (11)	0.0019 (8)	0.0023 (9)	-0.0032 (8)
C5	0.0187 (10)	0.0205 (9)	0.0210(11)	-0.0002 (8)	0.0033 (8)	-0.0001 (8)
C6	0.0143 (9)	0.0160 (9)	0.0155 (10)	-0.0001 (7)	0.0004 (7)	0.0020(7)
C7	0.0108 (9)	0.0175 (9)	0.0176 (10)	0.0015 (7)	-0.0005 (7)	0.0018 (7)

Geometric parameters (Å, °)

Sr1—O3 ⁱ	2.4596 (13)	O3—C7	1.262 (2)	
Sr1—O3	2.4597 (13)	O3—Ca1 ⁱⁱ	2.5621 (13)	
Sr1—O1W ⁱ	2.4608 (15)	O3—Sr1 ⁱⁱ	2.5621 (13)	
Sr1—O1W	2.4608 (15)	O1W—H1W	0.86 (3)	
Sr1—O3 ⁱⁱ	2.5621 (13)	O1W—H2W	0.90 (3)	
Sr1—O3 ⁱⁱⁱ	2.5621 (13)	C1—C2	1.385 (2)	
Sr1—O2 ⁱⁱ	2.7143 (12)	C1—C6	1.398 (2)	
Sr1—O2 ⁱⁱⁱ	2.7143 (12)	C2—C3	1.380 (3)	
Sr1—C7 ⁱⁱ	3.0001 (18)	C2—H2	0.9500	
Sr1—C7 ⁱⁱⁱ	3.0001 (18)	C3—C4	1.386 (3)	
Sr1—Sr1 ⁱⁱ	4.0785 (3)	С3—Н3	0.9500	
Sr1—Ca1 ⁱⁱ	4.0785 (3)	C4—C5	1.378 (2)	
Sr1—H2W	2.92 (3)	C4—H4	0.9500	
O1—C1	1.370 (2)	C5—C6	1.401 (2)	
01—H10	0.90 (3)	С5—Н5	0.9500	
O2—C7	1.278 (2)	C6—C7	1.483 (2)	
O2—Ca1 ⁱⁱ	2.7143 (12)	C7—Ca1 ⁱⁱ	3.0001 (18)	
O2—Sr1 ⁱⁱ	2.7143 (12)	C7—Sr1 ⁱⁱ	3.0001 (18)	
O3 ⁱ —Sr1—O3	152.23 (6)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	112.38 (3)	
$O3^{i}$ —Sr1—O1W ⁱ	90.21 (5)	O2 ⁱⁱ —Sr1—Ca1 ⁱⁱ	82.11 (3)	
O3—Sr1—O1W ⁱ	73.10 (5)	O2 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	74.57 (3)	
O3 ⁱ —Sr1—O1W	73.10 (5)	C7 ⁱⁱ —Sr1—Ca1 ⁱⁱ	58.90 (4)	
O3—Sr1—O1W	90.21 (5)	C7 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	91.70 (4)	
O1W ⁱ —Sr1—O1W	106.53 (7)	Sr1 ⁱⁱ —Sr1—Ca1 ⁱⁱ	0.000 (8)	
O3 ⁱ —Sr1—O3 ⁱⁱ	131.57 (4)	O3 ⁱ —Sr1—H2W	60.8 (5)	
O3—Sr1—O3 ⁱⁱ	71.40 (4)	O3—Sr1—H2W	106.1 (5)	
O1W ⁱ —Sr1—O3 ⁱⁱ	88.66 (5)	O1W ⁱ —Sr1—H2W	115.5 (5)	

O1W—Sr1—O3 ⁱⁱ	151.92 (5)	O1W—Sr1—H2W	16.7 (5)
O3 ⁱ —Sr1—O3 ⁱⁱⁱ	71.40 (4)	O3 ⁱⁱ —Sr1—H2W	154.3 (5)
O3—Sr1—O3 ⁱⁱⁱ	131.57 (4)	O3 ⁱⁱⁱ —Sr1—H2W	74.4 (5)
O1W ⁱ —Sr1—O3 ⁱⁱⁱ	151.92 (5)	O2 ⁱⁱ —Sr1—H2W	136.7 (5)
O1W—Sr1—O3 ⁱⁱⁱ	88.66 (5)	O2 ⁱⁱⁱ —Sr1—H2W	81.5 (5)
O3 ⁱⁱ —Sr1—O3 ⁱⁱⁱ	88.23 (6)	C7 ⁱⁱ —Sr1—H2W	150.8 (5)
$O3^{i}$ —Sr1— $O2^{ii}$	82.31 (4)	C7 ⁱⁱⁱ —Sr1—H2W	80.0 (5)
O3—Sr1—O2 ⁱⁱ	116.73 (4)	Sr1 ⁱⁱ —Sr1—H2W	137.1 (5)
O1W ⁱ —Sr1—O2 ⁱⁱ	84.05 (4)	Cal ⁱⁱ —Sr1—H2W	137.1 (5)
O1W—Sr1—O2 ⁱⁱ	153.03 (5)	C1-01-H10	106.5 (15)
O3 ⁱⁱ —Sr1—O2 ⁱⁱ	49.43 (4)	C7—O2—Ca1 ⁱⁱ	90.00 (10)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱ	72.84 (4)	C7—O2—Sr1 ⁱⁱ	90.00 (10)
O3 ⁱ —Sr1—O2 ⁱⁱⁱ	116.73 (4)	Ca1 ⁱⁱ —O2—Sr1 ⁱⁱ	0.0
O3—Sr1—O2 ⁱⁱⁱ	82.31 (4)	C7—O3—Sr1	149.53 (12)
O1W ⁱ —Sr1—O2 ⁱⁱⁱ	153.03 (5)	C7—O3—Ca1 ⁱⁱ	97.49 (11)
$O1W$ — $Sr1$ — $O2^{iii}$	84.05 (4)	Sr1—O3—Ca1 ⁱⁱ	108.6
$O3^{ii}$ —Sr1— $O2^{iii}$	72.84 (4)	$C7-O3-Sr1^{ii}$	97.49 (11)
$O3^{iii}$ —Sr1— $O2^{iii}$	49.43 (4)	$Sr1 - O3 - Sr1^{ii}$	108.60 (4)
02^{ii} —Sr1— 02^{iii}	97.64 (5)	$Ca1^{ii}$ —O3—Sr1 ⁱⁱ	0.0
$O3^{i}$ Sr1 $-C7^{ii}$	106.94 (4)	Sr1—O1W—H1W	130.5 (18)
$O3$ — $Sr1$ — $C7^{ii}$	95.17 (5)	Sr1—O1W—H2W	111.7 (17)
$O1W^{i}$ — $Sr1$ — $C7^{ii}$	89.38 (5)	H1W - O1W - H2W	109 (2)
$O1W$ — $Sr1$ — $C7^{ii}$	164.08 (5)	01-C1-C2	117.85 (16)
$O3^{ii}$ —Sr1—C7 ⁱⁱ	24.65 (4)	01	121.47 (16)
$O3^{iii}$ Sr1 $-C7^{ii}$	2 1.65 (1) 76 56 (4)	$C^2 - C^1 - C^6$	120.68(17)
Ω^{2i} Sr1 Ω^{7i}	25 21 (4)	C_{3} C_{2} C_{1}	119.37(18)
Ω^{2iii} Sr1 Ω^{7ii}	23.21 (1) 81 84 (4)	C_{3} C_{2} H_{2}	120.3
O_{2}^{i} Sr1- C_{7}^{iii}	95 17 (5)	$C_1 - C_2 - H_2$	120.3
$03 - 8r1 - C7^{iii}$	106 94 (4)	C_{2} C_{3} C_{4}	120.3 121.17(18)
$01W^{i}$ Sr1 $-C7^{iii}$	164.08 (5)	$C_2 = C_3 = H_3$	119.4
01W $Sr1 - C7$	89 38 (5)	C_{4} C_{3} H_{3}	119.1
$O3^{ii}$ Sr1 $C7^{iii}$	76 56 (4)	C_{5} C_{4} C_{3}	119.30 (18)
$O3^{iii}$ Sr1 $O7^{iii}$	24 65 (4)	C5-C4-H4	120.4
02^{ii} Sr1 $-C7^{iii}$	21.03 (1) 81 84 (4)	$C_3 - C_4 - H_4$	120.1
Ω^{2iii} Sr1 Ω^{2iii}	25 21 (4)	C4-C5-C6	120.1
$C7^{ii}$ Sr1 $-C7^{iii}$	23.21 (1) 74.73 (7)	C4—C5—H5	119.6
$O3^{i}$ Sr1 Sr1 i^{ii}	161.89(3)	C6-C5-H5	119.6
03— $8r1$ — $8r1$ ⁱⁱ	36 54 (3)	C1 - C6 - C5	118 54 (16)
$O1W^{i}$ Sr1 Sr1 ⁱⁱ	79.04 (4)	C1 - C6 - C7	121.03 (16)
01W $Sr1$ $Sr1$	123 81 (4)	C_{5}	120.43 (16)
$O3^{ii}$ Sr1 Sr1	34 86 (3)	03-07-02	120.15 (16)
$O3^{iii}$ Sr1 Sr1 ⁱⁱ	112 38 (3)	03 - C7 - C6	120.96 (16)
Ω^{2i} Sr1 Sr1	82 11 (3)	02-07-06	118.95 (16)
Ω^{2iii} Sr1 Sr1 ⁱⁱ	74 57 (3)	$03-07-03^{ii}$	57 86 (9)
$C7^{ii}$ Sr1 Sr1	58 90 (4)	$02-C7-Ca1^{ii}$	64 79 (9)
$C7^{iii}$ $Sr1$ $Sr1^{ii}$	91 70 (4)	$C_{2} = C_{1} = C_{1}$	165 59 (12)
$O3^{i}$ Sr1 $O1^{ii}$	161.89 (3)	$03-C7-Sr1^{ii}$	57.86 (9)
O3—Sr1—Ca1 ⁱⁱ	36 54 (3)	$\Omega^2 - C^7 - Sr1^{ii}$	64 79 (9)
$O1W^{i}$ Sr1—Ca1 ⁱⁱ	79 04 (4)	$C6-C7-Sr1^{ii}$	165 59 (12)
O1W—Sr1—Ca1 ⁱⁱ	123 81 (4)	$Ca1^{ii}$ $C7$ $Sr1^{ii}$	0.0
$O3^{ii}$ Sr1—Ca1 ⁱⁱ	34 86 (3)		
55 511 Cui			

O1—C1—C2—C3	-177.53 (17)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	2.7 (3)	Sr1—O3—C7—Sr1 ⁱⁱ	-149.1 (2)
C1—C2—C3—C4	-1.1 (3)	Cal ⁱⁱ —O3—C7—Srl ⁱⁱ	0.0
C2—C3—C4—C5	-1.1 (3)	Ca1 ⁱⁱ —O2—C7—O3	-14.40 (17)
C3—C4—C5—C6	1.8 (3)	Sr1 ⁱⁱ —O2—C7—O3	-14.40 (17)
O1—C1—C6—C5	178.20 (16)	Cal ⁱⁱ —O2—C7—C6	164.36 (14)
C2—C1—C6—C5	-2.1 (3)	Sr1 ⁱⁱ —O2—C7—C6	164.36 (14)
O1—C1—C6—C7	-2.4 (3)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2-C1-C6-C7	177.32 (17)	Cal ⁱⁱ —O2—C7—Srl ⁱⁱ	0.0
C4—C5—C6—C1	-0.2 (3)	C1—C6—C7—O3	-160.07 (17)
C4—C5—C6—C7	-179.59 (18)	C5—C6—C7—O3	19.3 (3)
Sr1—O3—C7—O2	-133.67 (19)	C1—C6—C7—O2	21.2 (3)
Ca1 ⁱⁱ —O3—C7—O2	15.42 (18)	C5—C6—C7—O2	-159.47 (17)
Sr1 ⁱⁱ —O3—C7—O2	15.42 (18)	C1C6C7Ca1 ⁱⁱ	122.5 (5)
Sr1-03-C7-C6	47.6 (3)	C5—C6—C7—Ca1 ⁱⁱ	-58.1 (6)
Ca1 ⁱⁱ —O3—C7—C6	-163.33 (14)	C1—C6—C7—Sr1 ⁱⁱ	122.5 (5)
Sr1 ⁱⁱ —O3—C7—C6	-163.33 (14)	C5—C6—C7—Sr1 ⁱⁱ	-58.1 (6)
Sr1—O3—C7—Ca1 ⁱⁱ	-149.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H··· A	
01—H1 <i>O</i> ···O2	0.90 (3)	1.81 (3)	2.6075 (17)	147 (2)	
$O1W$ — $H1W$ ··· $O1^{iv}$	0.86 (3)	1.97 (3)	2.8276 (19)	171 (2)	
$O1W$ — $H2W$ ··· $O2^{v}$	0.90 (3)	2.02 (3)	2.906 (2)	169 (2)	

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(CaSr3070)

Crystal data

 $C_{14}H_{14}Ca_{0.37}O_8Sr_{0.63}$ $M_r = 380.38$ Monoclinic, C2/ca = 16.6319 (6) Å *b* = 11.4995 (4) Å c = 7.7729 (3) Å $\beta = 91.599 \ (4)^{\circ}$ $V = 1486.05 (9) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcalibur E	16351 measured
diffractometer	1704 independen
Radiation source: sealed tube	1622 reflections
ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min}$
CrysAlis PRO, Oxford Diffraction Ltd., Version	$h = -21 \rightarrow 21$
1.171.34.40 (release 27-08-2010 CrysAlis171 .NET)	$k = -14 \rightarrow 14$
(compiled Aug 27 2010,11:50:40) Empirical	$l = -10 \rightarrow 10$
absorption correction using spherical harmonics,	
implemented in SCALE3 ABSPACK scaling	
algorithm.	
$T_{\min} = 0.735, T_{\max} = 1.000$	

F(000) = 774 $D_{\rm x} = 1.700 {\rm Mg} {\rm m}^{-3}$ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 10979 reflections $\theta = 3.4 - 30.4^{\circ}$ $\mu = 2.49 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.30 \times 0.25 \times 0.12 \text{ mm}$

reflections nt reflections with $I > 2\sigma(I)$ $= 3.4^{\circ}$

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent and $R[F^2 > 2\sigma(F^2)] = 0.021$ constrained refinement $wR(F^2) = 0.052$ $w = 1/[\sigma^2(F_0^2) + (0.0278P)^2 + 1.2252P]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.06 $(\Delta/\sigma)_{\rm max} = 0.001$ 1704 reflections $\Delta \rho_{\text{max}} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3}$ 118 parameters 0 restraints Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sr1	0.5000	0.44518 (2)	-0.2500	0.01297 (8)	0.632 (4)
Cal	0.5000	0.44518 (2)	-0.2500	0.01297 (8)	0.368 (4)
01	0.25649 (6)	0.25358 (10)	0.26696 (14)	0.0226 (3)	
O2	0.37727 (6)	0.39842 (9)	0.26602 (13)	0.0206 (2)	
03	0.45448 (6)	0.39323 (9)	0.03965 (14)	0.0215 (3)	
O1W	0.39587 (7)	0.31632 (11)	-0.38135 (16)	0.0283 (3)	
C1	0.30065 (8)	0.18750(12)	0.15863 (18)	0.0173 (3)	
C2	0.27135 (9)	0.07781 (13)	0.11396 (19)	0.0220 (3)	
H2	0.2210	0.0523	0.1546	0.026*	
C3	0.31588 (10)	0.00648 (14)	0.0105 (2)	0.0255 (3)	
H3	0.2963	-0.0689	-0.0180	0.031*	
C4	0.38909 (11)	0.04319 (14)	-0.0530(2)	0.0263 (4)	
H4	0.4197	-0.0070	-0.1229	0.032*	
C5	0.41673 (9)	0.15382 (13)	-0.01308 (19)	0.0217 (3)	
H5	0.4660	0.1800	-0.0584	0.026*	
C6	0.37330 (8)	0.22746 (12)	0.09286 (18)	0.0169 (3)	
C7	0.40328 (8)	0.34645 (12)	0.13462 (18)	0.0167 (3)	
H1O	0.2833 (15)	0.321 (2)	0.284 (3)	0.054 (7)*	
H1W	0.3520 (17)	0.292 (2)	-0.344 (3)	0.064 (8)*	
H2W	0.3891 (13)	0.3347 (19)	-0.487 (3)	0.043 (6)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01299 (12)	0.01185 (12)	0.01419 (12)	0.000	0.00261 (7)	0.000
Cal	0.01299 (12)	0.01185 (12)	0.01419 (12)	0.000	0.00261 (7)	0.000
01	0.0202 (5)	0.0221 (6)	0.0258 (6)	-0.0037 (4)	0.0074 (4)	-0.0023 (4)
O2	0.0208 (5)	0.0177 (5)	0.0234 (5)	-0.0025 (4)	0.0042 (4)	-0.0034 (4)
O3	0.0209 (5)	0.0186 (5)	0.0254 (6)	-0.0041 (4)	0.0069 (4)	-0.0001 (4)
O1W	0.0243 (6)	0.0364 (7)	0.0245 (6)	-0.0067 (5)	0.0053 (5)	0.0037 (5)
C1	0.0188 (7)	0.0170(7)	0.0162 (6)	-0.0010 (5)	-0.0003 (5)	0.0024 (5)
C2	0.0238 (7)	0.0211 (7)	0.0210 (7)	-0.0078 (6)	-0.0001 (6)	0.0034 (6)
C3	0.0373 (9)	0.0163 (7)	0.0226 (8)	-0.0064 (6)	-0.0023 (6)	0.0001 (6)
C4	0.0339 (9)	0.0203 (8)	0.0248 (8)	0.0015 (6)	0.0039 (6)	-0.0039(6)

supporting information

C5	0.0220 (7)	0.0200 (7)	0.0231 (7)	-0.0001 (6)	0.0037 (6)	0.0003 (6)
C6	0.0173 (6)	0.0152 (7)	0.0182 (7)	-0.0013 (5)	0.0000 (5)	0.0014 (5)
C7	0.0137 (6)	0.0170 (7)	0.0192 (7)	0.0006 (5)	0.0003 (5)	0.0013 (5)

Geometric parameters (Å,	9	
--------------------------	---	--

Sr1—O3 ⁱ	2.4686 (10)	O3—C7	1.2627 (17)	_
Sr1—O3	2.4686 (10)	O3—Ca1 ⁱⁱ	2.5749 (10)	
Sr1—O1W ⁱ	2.4777 (12)	O3—Sr1 ⁱⁱ	2.5749 (10)	
Sr1—O1W	2.4778 (12)	O1W—H1W	0.84 (3)	
Sr1—O3 ⁱⁱ	2.5749 (10)	O1W—H2W	0.85 (2)	
Sr1—O3 ⁱⁱⁱ	2.5749 (10)	C1—C2	1.393 (2)	
Sr1—O2 ⁱⁱ	2.7260 (10)	C1—C6	1.403 (2)	
Sr1—O2 ⁱⁱⁱ	2.7260 (10)	C2—C3	1.379 (2)	
Sr1—C7 ⁱⁱ	3.0088 (14)	C2—H2	0.9500	
Sr1—C7 ⁱⁱⁱ	3.0088 (14)	C3—C4	1.392 (2)	
Sr1—Sr1 ⁱⁱ	4.0858 (2)	С3—Н3	0.9500	
Sr1—Ca1 ⁱⁱ	4.0858 (2)	C4—C5	1.385(2)	
Sr1—H2W	2.87 (2)	C4—H4	0.9500	
01—C1	1.3639 (18)	C5—C6	1.397 (2)	
01—H10	0.90(3)	C5—H5	0.9500	
$0^2 - C^7$	12697(18)	C6-C7	1 4890 (19)	
Ω^2 —Ca1 ⁱⁱ	2 7260 (10)	$C7$ — $Ca1^{ii}$	3 0088 (14)	
Ω^2 Sul	2.7260(10)	$C7$ — $Sr1^{ii}$	3,0088(14)	
02 511	2.7200 (10)	67 511	5.0000 (14)	
O3 ⁱ —Sr1—O3	151.99 (5)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	111.93 (2)	
O3 ⁱ —Sr1—O1W ⁱ	90.14 (4)	O2 ⁱⁱ —Sr1—Ca1 ⁱⁱ	81.94 (2)	
O3—Sr1—O1W ⁱ	73.03 (4)	O2 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	74.52 (2)	
O3 ⁱ —Sr1—O1W	73.03 (4)	C7 ⁱⁱ —Sr1—Ca1 ⁱⁱ	59.00 (3)	
O3—Sr1—O1W	90.14 (4)	C7 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	91.35 (3)	
O1W ⁱ —Sr1—O1W	106.53 (6)	Sr1 ⁱⁱ —Sr1—Ca1 ⁱⁱ	0.0	
O3 ⁱ —Sr1—O3 ⁱⁱ	131.42 (4)	O3 ⁱ —Sr1—H2W	61.0 (5)	
O3—Sr1—O3 ⁱⁱ	71.81 (4)	O3—Sr1—H2W	105.7 (5)	
O1W ⁱ —Sr1—O3 ⁱⁱ	88.87 (4)	O1W ⁱ —Sr1—H2W	115.4 (5)	
O1W—Sr1—O3 ⁱⁱ	152.01 (4)	O1W—Sr1—H2W	16.4 (5)	
O3 ⁱ —Sr1—O3 ⁱⁱⁱ	71.81 (4)	O3 ⁱⁱ —Sr1—H2W	154.2 (4)	
O3—Sr1—O3 ⁱⁱⁱ	131.42 (4)	O3 ⁱⁱⁱ —Sr1—H2W	74.9 (5)	
O1W ⁱ —Sr1—O3 ⁱⁱⁱ	152.01 (4)	O2 ⁱⁱ —Sr1—H2W	137.1 (5)	
O1W—Sr1—O3 ⁱⁱⁱ	88.87 (4)	O2 ⁱⁱⁱ —Sr1—H2W	81.5 (4)	
O3 ⁱⁱ —Sr1—O3 ⁱⁱⁱ	87.62 (5)	C7 ⁱⁱ —Sr1—H2W	150.9 (5)	
O3 ⁱ —Sr1—O2 ⁱⁱ	82.47 (3)	C7 ⁱⁱⁱ —Sr1—H2W	80.3 (5)	
O3—Sr1—O2 ⁱⁱ	116.77 (3)	Sr1 ⁱⁱ —Sr1—H2W	137.0 (5)	
O1W ⁱ —Sr1—O2 ⁱⁱ	84.13 (4)	Cal ⁱⁱ —Sr1—H2W	137.0 (5)	
O1W—Sr1—O2 ⁱⁱ	153.06 (4)	C1-01-H10	107.2 (15)	
$O3^{ii}$ —Sr1—O2 ⁱⁱ	49.13 (3)	C7—O2—Ca1 ⁱⁱ	90.08 (8)	
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱ	72.67 (3)	C7—O2—Sr1 ⁱⁱ	90.08 (8)	
$O3^{i}$ —Sr1— $O2^{iii}$	116.77 (3)	Ca1 ⁱⁱ —O2—Sr1 ⁱⁱ	0.0	
$O3$ —Sr1— $O2^{iii}$	82.47 (3)	C7-03-Sr1	149.91 (9)	
$O1W^{i}$ —Sr1— $O2^{iii}$	153.06 (4)	$C7-O3-Ca1^{ii}$	97.32 (8)	
$O1W$ — $Sr1$ — $O2^{iii}$	84.13 (4)	$Sr1-O3-Ca1^{ii}$	108.2	
$O3^{ii}$ —Sr1— $O2^{iii}$	72.67 (3)	$C7-O3-Sr1^{ii}$	97.32.(8)	
$O3^{iii}$ —Sr1— $O2^{iii}$	49.13 (3)	Sr1—O3—Sr1 ⁱⁱ	108.19 (4)	
			· · · · · · · · · · · · · · · · · · ·	

	07.44(4)		0.0
02^{i} Sr1 02^{ii}	97.44 (4)	$Cal^{-}O3 - Srl^{-}$	0.0
03 - Sr1 - C/	106.83 (4)	SrI—OIW—HIW	131.2 (18)
$03-SII-C/^{2}$	95.50 (4)	SrI—OI w—H2 w	108.7(15)
O1W - Sr1 - C/	89.53 (4)	HIW = OIW = H2W	109(2)
OIW - SFI - C/2	103.92(4)	01 - 01 - 02	11/.89 (15)
	24.00(3)	01 - 01 - 06	121.78(13)
03^{ii} S 1 C7 ⁱⁱ	/6.10(4)	$C_2 = C_1 = C_6$	120.32 (14)
02° Sr1 $-C/^{\circ}$	24.96 (3)	C_{3} C_{2} C_{1}	119.63 (14)
$02^{$	81./1 (3)	C3—C2—H2	120.2
03 - Srl - C/m	95.50 (4)	C1—C2—H2	120.2
03—SrI—C/ ^m	106.83 (4)	$C_2 = C_3 = C_4$	121.05 (14)
Olw - Srl - C/m	163.92 (4)	С2—С3—Н3	119.5
OIW— SrI — C / ^m	89.53 (4)	С4—С3—Н3	119.5
$O3^{\text{m}}$ —Sr1—C/m	76.10 (4)	C5—C4—C3	119.16 (15)
$O3^{\text{in}}$ —SrI—C/ ⁱⁿ	24.60 (3)	С5—С4—Н4	120.4
$O2^{n}$ —Sr1—C7 ^m	81.71 (3)	С3—С4—Н4	120.4
$O2^{m}$ —Srl—C7 ^m	24.96 (3)	C4—C5—C6	121.02 (14)
$C7^{n}$ —Sr1— $C7^{m}$	74.43 (5)	C4—C5—H5	119.5
$O3^{i}$ —Sr1—Sr1 ⁱⁱ	161.86 (2)	C6—C5—H5	119.5
$O3$ — $Sr1$ — $Sr1^n$	36.78 (2)	C5—C6—C1	118.77 (13)
$O1W^{i}$ —Sr1—Sr1"	79.12 (3)	C5—C6—C7	120.68 (13)
O1W—Sr1—Sr1 ⁿ	123.91 (3)	C1—C6—C7	120.55 (13)
$O3^{ii}$ —Sr1—Sr1 ⁱⁱ	35.03 (2)	O3—C7—O2	121.35 (13)
$O3^{iii}$ —Sr1—Sr1 ⁱⁱ	111.93 (2)	O3—C7—C6	119.42 (13)
$O2^{ii}$ —Sr1—Sr1 ⁱⁱ	81.94 (2)	O2—C7—C6	119.23 (12)
$O2^{iii}$ —Sr1—Sr1 ⁱⁱ	74.52 (2)	O3—C7—Cal ⁱⁱ	58.08 (7)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	59.00 (3)	O2—C7—Cal ⁱⁱ	64.96 (7)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	91.35 (3)	C6—C7—Ca1 ⁱⁱ	165.88 (9)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.86 (2)	O3—C7—Sr1 ⁱⁱ	58.08 (7)
O3—Sr1—Ca1 ⁱⁱ	36.78 (2)	O2—C7—Srl ⁱⁱ	64.96 (7)
O1W ⁱ —Sr1—Ca1 ⁱⁱ	79.12 (3)	C6—C7—Sr1 ⁱⁱ	165.88 (9)
O1W—Sr1—Ca1 ⁱⁱ	123.91 (3)	Ca1 ⁱⁱ —C7—Sr1 ⁱⁱ	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	35.03 (2)		
O1—C1—C2—C3	-177.33 (13)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	2.8 (2)	Sr1—O3—C7—Sr1 ⁱⁱ	-148.2 (2)
C1—C2—C3—C4	-1.3 (2)	Ca1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-0.9 (2)	Ca1 ⁱⁱ —O2—C7—O3	-14.58 (13)
C3—C4—C5—C6	1.6 (2)	Sr1 ⁱⁱ —O2—C7—O3	-14.58 (13)
C4C5C6C1	-0.1 (2)	Ca1 ⁱⁱ —O2—C7—C6	164.83 (11)
C4—C5—C6—C7	-179.76 (14)	Sr1 ⁱⁱ —O2—C7—C6	164.83 (11)
O1-C1-C6-C5	177.99 (13)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2—C1—C6—C5	-2.1 (2)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
O1—C1—C6—C7	-2.3 (2)	C5—C6—C7—O3	19.7 (2)
C2—C1—C6—C7	177.57 (13)	C1—C6—C7—O3	-160.00(13)
Sr1-03-C7-02	-132.57 (16)	C5—C6—C7—O2	-159.73 (14)
Ca1 ⁱⁱ —O3—C7—O2	15.58 (14)	C1—C6—C7—O2	20.6 (2)
Sr1 ⁱⁱ —O3—C7—O2	15.58 (14)	C5—C6—C7—Ca1 ⁱⁱ	-56.1 (5)
Sr1-03-C7-C6	48.0 (2)	C1—C6—C7—Ca1 ⁱⁱ	124.2 (4)
Ca1 ⁱⁱ —O3—C7—C6	-163.82 (10)	C5—C6—C7—Sr1 ⁱⁱ	-56.1 (5)

Sr1 ⁱⁱ —O3—C7—C6	-163.82 (10)	C1—C6—C7—Sr1 ⁱⁱ	124.2 (4)
Sr1—O3—C7—Ca1 ⁱⁱ	-148.2 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
O1—H1 <i>O</i> ···O2	0.90 (3)	1.81 (3)	2.6096 (15)	147 (2)
$O1W$ — $H1W$ ··· $O1^{iv}$	0.84 (3)	1.99 (3)	2.8255 (16)	175 (3)
$O1W - H2W - O2^{v}$	0.85 (2)	2.06 (2)	2.9074 (17)	173 (2)

Symmetry codes: (iv) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*, *y*, *z*-1.

(CaSr2080)

Crystal data

 $C_{14}H_{14}Ca_{0.21}O_8Sr_{0.79}$ $M_r = 387.85$ Monoclinic, C2/c a = 16.6650 (11) Å b = 11.4816 (7) Å c = 7.8105 (5) Å $\beta = 91.576$ (6)° V = 1493.90 (16) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.054$ S = 1.061716 reflections 118 parameters 0 restraints F(000) = 785 $D_x = 1.724 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4057 reflections $\theta = 3.4-30.1^{\circ}$ $\mu = 2.98 \text{ mm}^{-1}$ T = 150 KCut prism, colourless $0.26 \times 0.25 \times 0.15 \text{ mm}$

Absorption correction: multi-scan *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{min} = 0.896$, $T_{max} = 1.000$ 6802 measured reflections 1716 independent reflections 1594 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 27.5^{\circ}$, $\theta_{min} = 3.4^{\circ}$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 10$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0229P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sr1	0.5000	0.44477 (2)	-0.2500	0.01095 (9)	0.789 (4)
Cal	0.5000	0.44477 (2)	-0.2500	0.01095 (9)	0.211 (4)
O1	0.25656 (7)	0.25362 (12)	0.26623 (17)	0.0208 (3)	
O2	0.37707 (7)	0.39785 (11)	0.26542 (16)	0.0186 (3)	
O3	0.45435 (7)	0.39201 (11)	0.04011 (16)	0.0187 (3)	
O1W	0.39514 (8)	0.31499 (13)	-0.38344 (19)	0.0262 (4)	
C1	0.30041 (10)	0.18727 (15)	0.1585 (2)	0.0160 (4)	
C2	0.27070 (11)	0.07764 (15)	0.1144 (2)	0.0199 (4)	
H2	0.2205	0.0522	0.1554	0.024*	
C3	0.31486 (12)	0.00625 (16)	0.0105 (2)	0.0239 (4)	
H3	0.2949	-0.0689	-0.0187	0.029*	
C4	0.38783 (12)	0.04244 (16)	-0.0520 (3)	0.0248 (5)	
H4	0.4183	-0.0081	-0.1213	0.030*	
C5	0.41577 (11)	0.15290 (15)	-0.0124 (2)	0.0201 (4)	
H5	0.4650	0.1788	-0.0578	0.024*	
C6	0.37279 (10)	0.22681 (15)	0.0933 (2)	0.0155 (4)	
C7	0.40303 (10)	0.34547 (15)	0.1344 (2)	0.0146 (4)	
H1O	0.2797 (15)	0.323 (2)	0.280 (4)	0.064 (9)*	
H1W	0.3496 (16)	0.288 (2)	-0.344 (4)	0.060 (8)*	
H2W	0.3899 (14)	0.338 (2)	-0.487 (3)	0.047 (8)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01062 (14)	0.01113 (14)	0.01121 (13)	0.000	0.00220 (9)	0.000
Cal	0.01062 (14)	0.01113 (14)	0.01121 (13)	0.000	0.00220 (9)	0.000
01	0.0178 (7)	0.0216 (7)	0.0234 (7)	-0.0037 (5)	0.0074 (5)	-0.0023 (6)
O2	0.0183 (7)	0.0181 (7)	0.0197 (7)	-0.0025 (5)	0.0047 (5)	-0.0036 (5)
O3	0.0169 (6)	0.0196 (7)	0.0198 (7)	-0.0055 (5)	0.0052 (5)	0.0007 (5)
O1W	0.0222 (8)	0.0356 (9)	0.0210 (8)	-0.0090 (6)	0.0045 (6)	0.0022 (6)
C1	0.0177 (9)	0.0176 (9)	0.0126 (9)	0.0008 (7)	-0.0001 (7)	0.0026(7)
C2	0.0211 (10)	0.0204 (10)	0.0181 (9)	-0.0069(7)	-0.0016 (7)	0.0025 (7)
C3	0.0366 (11)	0.0154 (9)	0.0194 (10)	-0.0079 (8)	-0.0029 (8)	0.0001 (8)
C4	0.0328 (12)	0.0194 (10)	0.0223 (10)	0.0027 (8)	0.0031 (8)	-0.0039 (8)
C5	0.0197 (10)	0.0211 (10)	0.0194 (10)	0.0006 (7)	0.0026 (7)	-0.0001 (8)
C6	0.0165 (9)	0.0159 (9)	0.0142 (9)	-0.0018 (7)	-0.0010(7)	0.0001 (7)
C7	0.0112 (8)	0.0170 (9)	0.0153 (9)	0.0008 (7)	-0.0012 (6)	0.0020(7)

Geometric parameters (Å, °)

Sr1—O3 ⁱ	2.4849 (12)	O3—C7	1.2623 (19)
Sr1—O3	2.4849 (12)	O3—Ca1 ⁱⁱ	2.5903 (12)
Sr1—O1W ⁱ	2.5020 (14)	O3—Sr1 ⁱⁱ	2.5903 (12)

Sr1 O1W	25020(14)		0.88(3)
Sr101W	2.5020(14)		0.86(3)
Si1-03	2.5902(12)	C1 C2	0.83(3)
Si1-03	2.3902(12)	C1 = C2	1.393(2)
	2.7508 (12)	C1 = C0	1.398 (2)
SrI—02 ^m	2.7368 (12)	$C_2 = C_3$	1.380 (3)
SrI—C/ ⁿ	3.0245 (17)	С2—Н2	0.9500
Srl—C7 ⁱⁱⁱ	3.0245 (17)	C3—C4	1.387 (3)
Sr1—Sr1 ⁿ	4.1061 (3)	С3—Н3	0.9500
Sr1—Ca1 ⁿ	4.1061 (3)	C4—C5	1.383 (2)
Sr1—H2W	2.85 (3)	C4—H4	0.9500
01—C1	1.362 (2)	C5—C6	1.395 (2)
01—H10	0.89 (3)	С5—Н5	0.9500
O2—C7	1.273 (2)	C6—C7	1.485 (2)
O2—Ca1 ⁱⁱ	2.7368 (12)	C7—Cal ⁱⁱ	3.0245 (17)
O2—Sr1 ⁱⁱ	2.7368 (12)	C7—Sr1 ⁱⁱ	3.0245 (17)
O3 ⁱ —Sr1—O3	151.79 (6)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	111.76 (3)
$O3^{i}$ —Sr1—O1W ⁱ	90.39 (4)	$O2^{ii}$ —Sr1—Ca1 ⁱⁱ	81.81 (3)
03 — $8r1$ — $01W^{i}$	72 71 (4)	Ω^{2ii} Sr1—Ca1 ⁱⁱ	74 61 (3)
$O3^{i}$ Sr1 $O1W$	72.71(4)	$C7^{ii}$ Sr1 Ca1 ⁱⁱ	58 93 (3)
$O_3 $ Sr1 $O_1 W$	72.71(4)	$C7^{iii}$ Sr1 Ca1 ⁱⁱ	90.99(3)
03-31-01W	50.39(4)	C = Sr1 = Ca1	91.38(3)
O_{1}^{i} S_{1}^{i} O_{1}^{i}	100.90(7) 121.42(4)	SiI - SiI - CaI	0.0
$03 - 51 - 03^{"}$	131.42 (4)	03 - 51 - 12 W	10(.7(3))
03 - 5r1 - 03	/2.01 (4)	03—SrI—H2W	106.2 (5)
$Olw - Srl - O3^{n}$	88.72 (5)	Olw-Srl—H2W	116.3 (5)
OIW —Sr1— $O3^{m}$	152.14 (4)	OIW—Sr1—H2W	16.7 (5)
$O3^{1}$ —Sr1— $O3^{11}$	72.01 (4)	O3 ⁿ —Sr1—H2W	153.7 (5)
O3—Sr1—O3 ^m	131.42 (4)	O3 ^m —Sr1—H2W	74.3 (5)
$O1W^{i}$ —Sr1—O3 ⁱⁱⁱ	152.14 (4)	O2 ⁱⁱ —Sr1—H2W	136.6 (5)
O1W—Sr1—O3 ⁱⁱⁱ	88.72 (5)	O2 ⁱⁱⁱ —Sr1—H2W	81.1 (5)
$O3^{ii}$ —Sr1—O3 ⁱⁱⁱ	87.32 (6)	C7 ⁱⁱ —Sr1—H2W	150.2 (5)
$O3^{i}$ —Sr1— $O2^{ii}$	82.68 (4)	C7 ⁱⁱⁱ —Sr1—H2W	79.7 (5)
O3—Sr1—O2 ⁱⁱ	116.70 (4)	Sr1 ⁱⁱ —Sr1—H2W	137.2 (5)
O1W ⁱ —Sr1—O2 ⁱⁱ	84.06 (4)	Ca1 ⁱⁱ —Sr1—H2W	137.2 (5)
O1W—Sr1—O2 ⁱⁱ	152.87 (4)	C1-01-H10	109.9 (16)
O3 ⁱⁱ —Sr1—O2 ⁱⁱ	48.93 (3)	C7—O2—Cal ⁱⁱ	90.30 (9)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱ	72.64 (4)	C7—O2—Sr1 ⁱⁱ	90.30 (9)
O3 ⁱ —Sr1—O2 ⁱⁱⁱ	116.70 (4)	Ca1 ⁱⁱ —O2—Sr1 ⁱⁱ	0.0
O3—Sr1—O2 ⁱⁱⁱ	82.68 (4)	C7—O3—Sr1	149.79 (11)
$O1W^{i}$ —Sr1— $O2^{iii}$	152.87 (4)	C7—O3—Ca1 ⁱⁱ	97.42 (10)
$01W - Sr1 - 02^{iii}$	84.06(4)	$r_{1}=03-c_{1}^{ii}$	108.0
03^{ii} Sr1 02^{ii}	7264(4)	$C7-03-8r1^{ii}$	97 42 (10)
$O3^{iii}$ Sr1 $O2^{iii}$	18 93 (3)	$Sr1_03_Sr1^{ii}$	107.09 (4)
$O_{2}^{ii} = S_{r1} = O_{2}^{iii}$	(5)	$C_{21}^{ii} = O_{2}^{2} = S_{21}^{ii}$	107.55 (4)
02 - 51 - 02	97.30(3)	Cal = 05 = 511	0.0
03 - 311 - 07	100.98 (4)	$S_{11} = O_1 W = O_1 W$	131.3(17)
03—SrI—C/"	95.52 (4)	SrI—OIW—H2W	105.4 (17)
$OIW - SrI - C/^{"}$	89.34 (5)	$HIW \rightarrow UIW \rightarrow H2W$	112 (2)
OIW - SrI - C/"	163.73 (5)	01	117.73 (15)
$O3^{\mu}$ —Sr1—C/ ^{μ}	24.45 (4)	01	121.76 (15)
$O3^{m}$ —Sr1—C7 ⁿ	76.00 (4)	C2—C1—C6	120.51 (16)
$O2^{n}$ —Sr1—C7 ⁿ	24.90 (4)	C3—C2—C1	119.39 (17)
$O2^{iii}$ —Sr1—C7 ⁱⁱ	81.69 (4)	C3—C2—H2	120.3

O3 ⁱ —Sr1—C7 ⁱⁱⁱ	95.52 (4)	С1—С2—Н2	120.3
O3—Sr1—C7 ⁱⁱⁱ	106.98 (4)	C2—C3—C4	121.07 (17)
O1W ⁱ —Sr1—C7 ⁱⁱⁱ	163.73 (5)	С2—С3—Н3	119.5
O1W—Sr1—C7 ⁱⁱⁱ	89.34 (5)	С4—С3—Н3	119.5
O3 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	76.00 (4)	C5—C4—C3	119.28 (18)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	24.45 (4)	С5—С4—Н4	120.4
O2 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	81.69 (4)	С3—С4—Н4	120.4
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	24.90 (4)	C4—C5—C6	120.99 (16)
C7 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	74.44 (6)	С4—С5—Н5	119.5
O3 ⁱ —Sr1—Sr1 ⁱⁱ	161.91 (3)	С6—С5—Н5	119.5
O3—Sr1—Sr1 ⁱⁱ	36.87 (3)	C5—C6—C1	118.70 (16)
O1W ⁱ —Sr1—Sr1 ⁱⁱ	78.82 (4)	C5—C6—C7	120.60 (15)
O1W—Sr1—Sr1 ⁱⁱ	124.19 (3)	C1—C6—C7	120.69 (15)
O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	35.14 (3)	O3—C7—O2	121.30 (15)
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	111.76 (3)	O3—C7—C6	119.60 (15)
O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	81.81 (3)	O2—C7—C6	119.10 (15)
O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.61 (3)	O3—C7—Ca1 ⁱⁱ	58.13 (9)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	58.93 (3)	O2—C7—Ca1 ⁱⁱ	64.81 (9)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	91.38 (3)	C6—C7—Ca1 ⁱⁱ	166.10 (12)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.91 (3)	O3—C7—Sr1 ⁱⁱ	58.13 (9)
O3—Sr1—Ca1 ⁱⁱ	36.87 (3)	O2—C7—Sr1 ⁱⁱ	64.81 (9)
O1W ⁱ —Sr1—Ca1 ⁱⁱ	78.82 (4)	C6—C7—Sr1 ⁱⁱ	166.10 (12)
O1W—Sr1—Ca1 ⁱⁱ	124.19 (3)	Ca1 ⁱⁱ —C7—Sr1 ⁱⁱ	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	35.14 (3)		
O1—C1—C2—C3	-177.70 (17)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.0
C6—C1—C2—C3	2.4 (3)	Sr1—O3—C7—Sr1 ⁱⁱ	-147.4 (2)
C1—C2—C3—C4	-0.7 (3)	Ca1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-1.4 (3)	Ca1 ⁱⁱ —O2—C7—O3	-14.34 (17)
C3—C4—C5—C6	1.9 (3)	Sr1 ⁱⁱ —O2—C7—O3	-14.34 (17)
C4—C5—C6—C1	-0.2 (3)	Ca1 ⁱⁱ —O2—C7—C6	164.99 (14)
C4—C5—C6—C7	-179.67 (17)	Sr1 ⁱⁱ —O2—C7—C6	164.99 (14)
O1—C1—C6—C5	178.14 (16)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2-C1-C6-C5	-2.0 (3)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
O1—C1—C6—C7	-2.4 (3)	C5—C6—C7—O3	19.4 (3)
C2—C1—C6—C7	177.50 (16)	C1—C6—C7—O3	-160.11 (16)
Sr1—O3—C7—O2	-132.13 (19)	C5—C6—C7—O2	-159.97 (17)
Cal ⁱⁱ —O3—C7—O2	15.30 (18)	C1—C6—C7—O2	20.6 (3)
Sr1 ⁱⁱ —O3—C7—O2	15.30 (18)	C5—C6—C7—Ca1 ⁱⁱ	-57.2 (6)
Sr1-03-C7-C6	48.5 (3)	C1—C6—C7—Ca1 ⁱⁱ	123.3 (4)
Cal ⁱⁱ —O3—C7—C6	-164.02 (13)	C5—C6—C7—Sr1 ⁱⁱ	-57.2 (6)
Sr1 ⁱⁱ —O3—C7—C6	-164.02 (13)	C1—C6—C7—Sr1 ⁱⁱ	123.3 (4)
Sr1—O3—C7—Ca1 ⁱⁱ	-147.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1 <i>O</i> …O2	0.89 (3)	1.84 (3)	2.6031 (17)	142 (2)

$O1W$ — $H1W$ ··· $O1^{iv}$	0.88 (3)	1.94 (3)	2.8244 (18)	173 (2)
$O1W - H2W - O2^{v}$	0.85 (3)	2.06 (3)	2.911 (2)	178 (2)

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(CaSr1090)

Crystal data

 $\begin{array}{l} C_{14}H_{14}Ca_{0.17}O_8Sr_{0.83}\\ M_r = 390.00\\ \text{Monoclinic, } C2/c\\ a = 16.6693 \ (9) \text{ Å}\\ b = 11.4865 \ (7) \text{ Å}\\ c = 7.8446 \ (4) \text{ Å}\\ \beta = 91.510 \ (5)^{\circ}\\ V = 1501.50 \ (14) \text{ Å}^3\\ Z = 4 \end{array}$

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.065$ S = 1.081720 reflections 118 parameters 0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sr1	0.5000	0.44477 (2)	-0.2500	0.01276 (11)	0.835 (5)
Cal	0.5000	0.44477 (2)	-0.2500	0.01276 (11)	0.165 (5)
01	0.25676 (9)	0.25384 (14)	0.26678 (18)	0.0233 (4)	

F(000) = 788 $D_x = 1.725 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5187 reflections $\theta = 3.3-29.8^{\circ}$ $\mu = 3.11 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.30 \times 0.15 \times 0.06 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\min} = 0.462, \ T_{\max} = 1.000$ 8538 measured reflections 1720 independent reflections 1589 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.044$ $\theta_{\rm max} = 27.5^\circ, \, \theta_{\rm min} = 3.4^\circ$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 10$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0342P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.70$ e Å⁻³ $\Delta\rho_{min} = -0.48$ e Å⁻³

O2	0.37708 (9)	0.39750 (13)	0.26522 (17)	0.0209 (4)
O3	0.45424 (9)	0.39167 (13)	0.04016 (17)	0.0210 (4)
O1W	0.39510 (10)	0.31466 (16)	-0.3837 (2)	0.0290 (4)
C1	0.30050 (12)	0.18684 (18)	0.1590 (2)	0.0181 (4)
C2	0.27068 (14)	0.07795 (19)	0.1142 (3)	0.0234 (5)
H2	0.2203	0.0529	0.1544	0.028*
C3	0.31465 (15)	0.0064 (2)	0.0112 (3)	0.0267 (5)
H3	0.2947	-0.0688	-0.0172	0.032*
C4	0.38764 (15)	0.04259 (19)	-0.0520 (3)	0.0279 (5)
H4	0.4178	-0.0079	-0.1217	0.033*
C5	0.41582 (13)	0.15248 (19)	-0.0125 (3)	0.0229 (5)
Н5	0.4651	0.1783	-0.0577	0.027*
C6	0.37269 (12)	0.22650 (18)	0.0935 (2)	0.0170 (4)
C7	0.40300 (12)	0.34517 (17)	0.1347 (2)	0.0164 (4)
H1O	0.2833 (18)	0.321 (3)	0.279 (4)	0.050 (9)*
H1W	0.353 (2)	0.289 (3)	-0.350 (4)	0.053 (10)*
H2W	0.3914 (19)	0.335 (2)	-0.497 (4)	0.054 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01047 (16)	0.01452 (17)	0.01349 (14)	0.000	0.00403 (10)	0.000
Cal	0.01047 (16)	0.01452 (17)	0.01349 (14)	0.000	0.00403 (10)	0.000
01	0.0175 (8)	0.0256 (9)	0.0273 (8)	-0.0046 (7)	0.0095 (6)	-0.0026 (6)
O2	0.0187 (8)	0.0225 (8)	0.0219 (7)	-0.0029 (6)	0.0066 (6)	-0.0042 (6)
O3	0.0181 (8)	0.0221 (8)	0.0231 (7)	-0.0045 (6)	0.0076 (6)	0.0001 (6)
O1W	0.0221 (9)	0.0409 (11)	0.0243 (8)	-0.0111 (8)	0.0060 (7)	0.0012 (7)
C1	0.0156 (10)	0.0221 (11)	0.0168 (9)	-0.0007 (8)	0.0019 (8)	0.0018 (8)
C2	0.0218 (11)	0.0256 (12)	0.0227 (10)	-0.0082 (9)	-0.0003 (9)	0.0034 (8)
C3	0.0368 (14)	0.0190 (12)	0.0244 (11)	-0.0084 (10)	-0.0004 (10)	-0.0012 (9)
C4	0.0338 (14)	0.0223 (13)	0.0278 (11)	0.0014 (10)	0.0045 (10)	-0.0061 (9)
C5	0.0202 (11)	0.0243 (12)	0.0244 (10)	-0.0004 (9)	0.0061 (9)	-0.0002 (8)
C6	0.0159 (10)	0.0183 (11)	0.0169 (9)	-0.0014 (8)	0.0008 (8)	0.0024 (8)
C7	0.0116 (9)	0.0194 (11)	0.0183 (9)	0.0006 (8)	0.0010 (8)	0.0029(7)

Geometric parameters (Å, °)

Sr1-O3 ⁱ	2.4953 (13)	O3—C7	1.264 (2)
Sr1-03	2.4953 (13)	O3—Ca1 ⁱⁱ	2.5990 (14)
Sr1-O1Wi	2.5091 (17)	O3—Sr1 ⁱⁱ	2.5990 (14)
Sr1—O1W	2.5091 (17)	O1W—H1W	0.81 (3)
Sr1-O3 ⁱⁱ	2.5990 (14)	O1W—H2W	0.92 (3)
Sr1-O3 ⁱⁱⁱ	2.5990 (14)	C1—C2	1.388 (3)
Sr1-O2 ⁱⁱ	2.7400 (15)	C1—C6	1.397 (3)
Sr1-O2 ⁱⁱⁱ	2.7400 (15)	C2—C3	1.377 (3)
Sr1-C7 ⁱⁱ	3.029 (2)	C2—H2	0.9500
Sr1-C7 ⁱⁱⁱ	3.029 (2)	C3—C4	1.389 (3)
Sr1-Sr1 ⁱⁱ	4.1224 (2)	С3—Н3	0.9500
Sr1-Ca1 ⁱⁱ	4.1224 (2)	C4—C5	1.379 (3)
Sr1—H2W	2.90 (3)	C4—H4	0.9500
01—C1	1.368 (2)	C5—C6	1.401 (3)
01—H10	0.90 (3)	C5—H5	0.9500

Ω^2 $-C7$	1 273 (2)	C6-C7	1 486 (3)
$O_2 = C_1^{ii}$	1.273(2)	$C_0 - C_7$	1.400(3)
$O_2 = Cal$	2.7400(15) 2.7400(15)	C7 = Ca1	3.029(2)
02—511	2.7400 (13)	C/—SII	5.029 (2)
$O3^{i}$ —Sr1—O3	151.70(7)	O3 ⁱⁱⁱ —Sr1—Ca1 ⁱⁱ	111.89 (3)
$O3^{i}$ —Sr1—O1W ⁱ	90.54 (5)	O2 ⁱⁱ —Sr1—Ca1 ⁱⁱ	81.76 (3)
$O3$ — $Sr1$ — $O1W^{i}$	72.51 (5)	$\Omega^{2^{iii}}$ Sr1—Ca1 ⁱⁱ	74.71 (3)
$O3^{i}$ Sr1 $O1W$	72 51 (5)	$C7^{ii}$ —Sr1—Ca1 ⁱⁱ	58 94 (4)
03 - 8r1 - 01W	90 54 (5)	$C7^{iii}$ —Sr1—Ca1 ⁱⁱ	91 47 (4)
$01W^{i}$ Sr1 $-01W$	106 88 (8)	$Sr1^{ii}$ $Sr1$ $Ca1^{ii}$	0.0
$O3^{i}$ Sr1 $O3^{ii}$	131 51 (5)	$O3^{i}$ Sr1 H2W	59.1 (6)
$03 - 8r1 - 03^{ii}$	71.98 (5)	O_3 Sr1 H2W	107.5 (6)
$01W^{i}$ Sr1 03^{ii}	88.62 (5)	$0.1 W^{i}$ Sr1 H2W	115.8 (6)
$01W - Sr1 - 03^{ii}$	152.26 (5)	01W - 511 - 112W	17.6 (6)
O_1^{i} Sr1 O_2^{iii}	132.20(3)	O^{2ii} Sr1 H2W	17.0(0)
03 - 511 - 03	11.90 (3)	$O_{2} = O_{2} = O_{2$	134.7(0)
03-51-03	151.51(5) 152.26(5)	$O_{2}^{\text{IIII}} = O_{2}^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	74.1(0)
$01W - Sr1 - 03^{\text{iii}}$	152.26 (5)	$O2^{}$ SrI-H2W	135.4 (6)
OIW - SrI - O3	88.03 (5)	$O2^{m}$ —Sr1—H2W	82.1 (6)
03^{i} Sr1 -03^{ii}	87.42 (7)	C/"—Srl—H2W	149.8 (6)
03 ¹ —Sr1—O2 ¹¹	82.82 (5)	C/m—Sr1—H2W	80.2 (6)
$O3$ — $Sr1$ — $O2^{n}$	116.64 (4)	Sr1 ⁿ —Sr1—H2W	138.8 (6)
$O1W^1$ — $Sr1$ — $O2^{n}$	84.17 (5)	Cal ⁿ —Srl—H2W	138.8 (6)
$O1W$ — $Sr1$ — $O2^n$	152.79 (5)	C1—O1—H1O	106.4 (19)
$O3^{\text{u}}$ —Sr1— $O2^{\text{u}}$	48.88 (4)	$C7-O2-Cal^{n}$	90.41 (12)
$O3^{m}$ —Sr1— $O2^{n}$	72.65 (5)	$C7-O2-Sr1^n$	90.41 (12)
$O3^{i}$ —Sr1— $O2^{iii}$	116.64 (4)	Cal ⁱⁱ —O2—Srl ⁱⁱ	0.0
O3—Sr1—O2 ⁱⁱⁱ	82.82 (5)	C7—O3—Sr1	149.97 (13)
O1W ⁱ —Sr1—O2 ⁱⁱⁱ	152.79 (5)	C7—O3—Ca1 ⁱⁱ	97.22 (11)
O1W—Sr1—O2 ⁱⁱⁱ	84.17 (5)	Sr1—O3—Ca1 ⁱⁱ	108.0
O3 ⁱⁱ —Sr1—O2 ⁱⁱⁱ	72.65 (5)	C7—O3—Sr1 ⁱⁱ	97.22 (11)
O3 ⁱⁱⁱ —Sr1—O2 ⁱⁱⁱ	48.88 (4)	Sr1—O3—Sr1 ⁱⁱ	108.02 (5)
O2 ⁱⁱ —Sr1—O2 ⁱⁱⁱ	97.22 (6)	Cal ⁱⁱ —O3—Srl ⁱⁱ	0.0
O3 ⁱ —Sr1—C7 ⁱⁱ	107.07 (5)	Sr1—O1W—H1W	133 (2)
O3—Sr1—C7 ⁱⁱ	95.50 (5)	Sr1—O1W—H2W	106.5 (19)
O1W ⁱ —Sr1—C7 ⁱⁱ	89.36 (5)	H1W—O1W—H2W	112 (3)
O1W—Sr1—C7 ⁱⁱ	163.72 (6)	O1—C1—C2	118.05 (19)
O3 ⁱⁱ —Sr1—C7 ⁱⁱ	24.45 (4)	O1—C1—C6	121.47 (18)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	76.05 (5)	C2—C1—C6	120.5 (2)
O2 ⁱⁱ —Sr1—C7 ⁱⁱ	24.85 (5)	C3—C2—C1	119.6 (2)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	81.62 (5)	С3—С2—Н2	120.2
O3 ⁱ —Sr1—C7 ⁱⁱⁱ	95.50 (5)	С1—С2—Н2	120.2
$O3$ — $Sr1$ — $C7^{iii}$	107.07 (5)	C2—C3—C4	121.1 (2)
$O1W^{i}$ —Sr1—C7 ⁱⁱⁱ	163.72.(6)	С2—С3—Н3	119.5
$01W$ — $Sr1$ — $C7^{iii}$	89 36 (5)	C4—C3—H3	119.5
$O3^{ii}$ Sr1 $C7^{iii}$	76.05.(5)	C_{5} C_{4} C_{3}	119.3 (2)
$O3^{iii}$ Sr1 $O7^{iii}$	76.05(5) 24 45 (4)	C5_C4_H4	120.3
03^{ii} Sr1 $-C7^{iii}$	24.43 (4) 81.62 (5)	$C_3 - C_4 - H_4$	120.3
$O2^{iii}$ Sr1 $C7^{iii}$	24.85 (5)	C_{4}	120.3
$C7^{ii}$ _Sr1_C7 ⁱⁱⁱ	27.03(3) 74 42 (7)	C4_C5_H5	110.6
$O_{2i} = Sr_{1} = Sr_{1}^{ii}$	161 96 (3)	ст –сэ—нэ Сб—С5—Н5	119.0
03 - 511 - 511	101.90(3)		119.0
03 - 311 - 311	30.64 (3) 78 (2 (4)	$C_1 = C_0 = C_3$	118.74(19)
O1W - Sr1 - Sr1	/8.03 (4)	UI	120.69 (18)

O1W—Sr1—Sr1 ⁱⁱ	124.31 (4)	C5—C6—C7	120.58 (18)
O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	35.14 (3)	O3—C7—O2	121.42 (19)
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	111.89 (3)	O3—C7—C6	119.43 (17)
O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	81.76 (3)	O2—C7—C6	119.16 (17)
O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.71 (3)	O3—C7—Ca1 ⁱⁱ	58.33 (10)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	58.94 (4)	O2—C7—Ca1 ⁱⁱ	64.75 (11)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	91.47 (4)	C6—C7—Ca1 ⁱⁱ	166.17 (14)
O3 ⁱ —Sr1—Ca1 ⁱⁱ	161.96 (3)	O3—C7—Sr1 ⁱⁱ	58.33 (10)
O3—Sr1—Ca1 ⁱⁱ	36.84 (3)	O2—C7—Sr1 ⁱⁱ	64.75 (11)
O1W ⁱ —Sr1—Ca1 ⁱⁱ	78.63 (4)	C6—C7—Sr1 ⁱⁱ	166.17 (14)
O1W—Sr1—Ca1 ⁱⁱ	124.31 (4)	Cal ⁱⁱ —C7—Srl ⁱⁱ	0.0
O3 ⁱⁱ —Sr1—Ca1 ⁱⁱ	35.14 (3)		
O1—C1—C2—C3	-177.54 (19)	Sr1 ⁱⁱ —O3—C7—Ca1 ⁱⁱ	0.000(1)
C6—C1—C2—C3	3.2 (3)	Sr1—O3—C7—Sr1 ⁱⁱ	-147.4 (3)
C1—C2—C3—C4	-1.5 (3)	Cal ⁱⁱ —O3—C7—Srl ⁱⁱ	0.000(1)
C2—C3—C4—C5	-0.9 (3)	Ca1 ⁱⁱ —O2—C7—O3	-14.47 (19)
C3—C4—C5—C6	1.5 (3)	Sr1 ⁱⁱ —O2—C7—O3	-14.47 (19)
O1-C1-C6-C5	178.24 (18)	Ca1 ⁱⁱ —O2—C7—C6	165.07 (16)
C2—C1—C6—C5	-2.5 (3)	Sr1 ⁱⁱ —O2—C7—C6	165.07 (16)
O1—C1—C6—C7	-2.1 (3)	Sr1 ⁱⁱ —O2—C7—Ca1 ⁱⁱ	0.0
C2-C1-C6-C7	177.16 (18)	Ca1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
C4—C5—C6—C1	0.1 (3)	C1—C6—C7—O3	-160.15 (18)
C4—C5—C6—C7	-179.5 (2)	C5—C6—C7—O3	19.5 (3)
Sr1	-132.0 (2)	C1—C6—C7—O2	20.3 (3)
Ca1 ⁱⁱ —O3—C7—O2	15.4 (2)	C5—C6—C7—O2	-160.04 (19)
Sr1 ⁱⁱ —O3—C7—O2	15.4 (2)	C1—C6—C7—Ca1 ⁱⁱ	123.2 (5)
Sr1-03-C7-C6	48.5 (4)	C5—C6—C7—Ca1 ⁱⁱ	-57.2 (6)
Ca1 ⁱⁱ —O3—C7—C6	-164.14 (15)	C1—C6—C7—Sr1 ⁱⁱ	123.2 (5)
Sr1 ⁱⁱ —O3—C7—C6	-164.14 (15)	C5—C6—C7—Sr1 ⁱⁱ	-57.2 (6)
Sr1—O3—C7—Ca1 ⁱⁱ	-147.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
01—H1 <i>O</i> ···O2	0.90 (3)	1.80(3)	2.597 (2)	147 (3)	
O1 <i>W</i> —H1 <i>W</i> ···O1 ^{iv}	0.81 (3)	2.03 (3)	2.827 (2)	173 (3)	
$O1W - H2W - O2^{v}$	0.92 (3)	2.01 (3)	2.921 (2)	173 (3)	

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.

(Sr100)

Crystal data

$C_{14}H_{14}O_8Sr$	$V = 1506.37 (9) \text{ Å}^3$
$M_r = 397.87$	Z = 4
Monoclinic, C2/c	F(000) = 800
a = 16.7182 (6) Å	$D_{\rm x} = 1.754 \ {\rm Mg \ m^{-3}}$
b = 11.4644 (4) Å	Cu K α radiation, $\lambda = 1.5418$ Å
c = 7.8627 (3) Å	Cell parameters from 1700 reflections
$\beta = 91.660 \ (3)^{\circ}$	$\theta = 5.3-65.9^{\circ}$

 $\mu = 5.36 \text{ mm}^{-1}$ T = 150 K

Data collection

Oxford Diffraction Gemini S diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.073$ S = 1.171272 reflections 118 parameters 3 restraints Hydrogen site location: mixed

Special details

Prism, colourless $0.6 \times 0.5 \times 0.2 \text{ mm}$

Absorption correction: analytical CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014 CrysAlis171 .NET) (compiled Aug 13 2014,18:06:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{\rm min} = 0.120, \ T_{\rm max} = 0.461$ 2454 measured reflections 1272 independent reflections 1259 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$ $\theta_{\text{max}} = 65.6^{\circ}, \ \theta_{\text{min}} = 5.3^{\circ}$ $h = -19 \rightarrow 19$ $k = -11 \rightarrow 13$ $l = -5 \rightarrow 9$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 2.8711P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.68 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL2014*/7 (Sheldrick 2015, Fc^{*}=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0030 (2)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sr1	0.5000	0.44431 (2)	-0.2500	0.00935 (19)
O1	0.25630 (11)	0.25371 (16)	0.2660 (2)	0.0170 (4)
O2	0.37709 (10)	0.39712 (15)	0.2644 (2)	0.0140 (4)
O3	0.45408 (10)	0.39012 (16)	0.0409 (2)	0.0143 (4)
O1W	0.39465 (12)	0.31301 (18)	-0.3853 (3)	0.0200 (4)
C1	0.29980 (15)	0.1867 (2)	0.1585 (3)	0.0130 (5)
C2	0.26953 (17)	0.0777 (2)	0.1141 (4)	0.0173 (6)
H2	0.2193	0.0529	0.1544	0.021*
C3	0.31329 (18)	0.0055 (2)	0.0107 (4)	0.0198 (6)
H3	0.2932	-0.0696	-0.0182	0.024*
C4	0.3864 (2)	0.0415 (2)	-0.0518 (4)	0.0212 (6)
H4	0.4165	-0.0092	-0.1211	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C5	0.41481 (17)	0.1514 (2)	-0.0121 (3)	0.0166 (6)	
Н5	0.4639	0.1770	-0.0569	0.020*	
C6	0.37212 (15)	0.2254 (2)	0.0934 (3)	0.0124 (5)	
C7	0.40301 (15)	0.3448 (2)	0.1348 (3)	0.0114 (5)	
H1O	0.279 (2)	0.317 (2)	0.279 (5)	0.031 (10)*	
H1W	0.3533 (15)	0.289 (3)	-0.344 (4)	0.029 (10)*	
H2W	0.391 (2)	0.336 (3)	-0.487 (3)	0.030 (10)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.0106 (2)	0.0095 (2)	0.0081 (2)	0.000	0.00290 (13)	0.000
01	0.0162 (9)	0.0165 (10)	0.0185 (10)	-0.0050 (8)	0.0071 (7)	-0.0010 (8)
O2	0.0150 (9)	0.0141 (9)	0.0132 (9)	-0.0021 (7)	0.0054 (7)	-0.0024 (7)
O3	0.0149 (9)	0.0148 (9)	0.0134 (9)	-0.0040 (7)	0.0049 (7)	-0.0007 (7)
O1W	0.0181 (10)	0.0281 (11)	0.0140 (10)	-0.0080 (8)	0.0040 (8)	0.0006 (8)
C1	0.0150 (12)	0.0150 (12)	0.0089 (12)	-0.0001 (10)	-0.0001 (10)	0.0025 (10)
C2	0.0193 (14)	0.0179 (12)	0.0145 (13)	-0.0069 (11)	-0.0004 (11)	0.0040 (11)
C3	0.0317 (16)	0.0112 (13)	0.0164 (13)	-0.0058 (11)	-0.0022 (12)	-0.0009 (10)
C4	0.0302 (17)	0.0157 (13)	0.0179 (15)	0.0015 (11)	0.0036 (13)	-0.0038 (11)
C5	0.0185 (13)	0.0172 (13)	0.0141 (13)	0.0002 (11)	0.0038 (10)	0.0003 (10)
C6	0.0141 (12)	0.0126 (12)	0.0106 (12)	0.0002 (10)	-0.0006 (10)	0.0021 (10)
C7	0.0103 (12)	0.0128 (12)	0.0111 (12)	-0.0001 (9)	-0.0010 (10)	0.0028 (10)

Geometric parameters (Å, °)

Sr1—O3	2.5116 (17)	O3—C7	1.257 (3)
Sr1—O3 ⁱ	2.5116 (17)	O3—Sr1 ⁱⁱ	2.6121 (17)
Sr1—O1W	2.528 (2)	O1W—H1W	0.819 (19)
Sr1—O1W ⁱ	2.528 (2)	O1W—H2W	0.841 (19)
Sr1—O3 ⁱⁱ	2.6120 (17)	C1—C2	1.389 (4)
Sr1—O3 ⁱⁱⁱ	2.6120 (17)	C1—C6	1.399 (4)
Sr1—O2 ⁱⁱ	2.7484 (17)	C2—C3	1.384 (4)
Sr1—O2 ⁱⁱⁱ	2.7484 (17)	C2—H2	0.9500
Sr1—C7 ⁱⁱ	3.035 (3)	C3—C4	1.393 (4)
Sr1—C7 ⁱⁱⁱ	3.035 (3)	С3—Н3	0.9500
Sr1—Sr1 ⁱⁱ	4.1335 (2)	C4—C5	1.379 (4)
Sr1—Sr1 ^{iv}	4.1335 (2)	C4—H4	0.9500
Sr1—H2W	2.86 (3)	C5—C6	1.397 (4)
O1—C1	1.367 (3)	С5—Н5	0.9500
01—H10	0.825 (19)	C6—C7	1.496 (4)
O2—C7	1.270 (3)	C7—Sr1 ⁱⁱ	3.035 (3)
O2—Sr1 ⁱⁱ	2.7484 (17)		
O3—Sr1—O3 ⁱ	151.36 (8)	O3—Sr1—Sr1 ^{iv}	161.98 (4)
O3—Sr1—O1W	90.48 (6)	O3 ⁱ —Sr1—Sr1 ^{iv}	37.05 (4)
O3 ⁱ —Sr1—O1W	72.37 (6)	O1W—Sr1—Sr1 ^{iv}	78.63 (5)
O3—Sr1—O1W ⁱ	72.37 (6)	O1W ⁱ —Sr1—Sr1 ^{iv}	124.40 (4)
O3 ⁱ —Sr1—O1W ⁱ	90.48 (6)	O3 ⁱⁱ —Sr1—Sr1 ^{iv}	111.47 (4)
O1W—Sr1—O1W ⁱ	106.92 (10)	O3 ⁱⁱⁱ —Sr1—Sr1 ^{iv}	35.40 (4)
O3—Sr1—O3 ⁱⁱ	72.46 (6)	O2 ⁱⁱ —Sr1—Sr1 ^{iv}	74.68 (4)
O3 ⁱ —Sr1—O3 ⁱⁱ	131.37 (6)	O2 ⁱⁱⁱ —Sr1—Sr1 ^{iv}	81.70 (4)

$O1W$ —Sr1— $O3^{ii}$	152.38 (6)	C7 ⁱⁱ —Sr1—Sr1 ^{iv}	91.32 (5)
$O1W^{i}$ Sr1- $O3^{ii}$	88 82 (6)	$C7^{iii}$ — $Sr1$ — $Sr1^{iv}$	58 98 (5)
$03 - 8r1 - 03^{iii}$	131 37 (6)	r^{ii} r^{ii} r^{iv}	$144\ 010\ (14)$
$O3^{i}$ Sr1 $O3^{iii}$	72 46 (6)	O3—Sr1—H2W	106 2 (5)
$01W_{r} r_{1} 03^{iii}$	88 82 (6)	$O3^{i}$ Sr1 H2W	604(6)
$01W^{i}$ Sr1- 03^{iii}	152 38 (6)	01W Sr1 H2W	166(5)
03^{ii} Sr1 03^{ii}	86 78 (8)	$O1W^{i}$ Sr1 H2W	10.0(3) 116.2(7)
03 - 8r1 - 03	116 73 (5)	$O1^{ii}$ $Sr1$ $H2W$	110.2(7) 153.8(7)
03^{i} Sr1 -02^{ii}	82.96 (5)	O_{3}^{iii} Sr1—H2W	74.6 (6)
$0.1 W Sr1 O2^{ii}$	152.75 (6)	$O_{2}^{ii} = S_{*1} = H_{2}^{ii} W_{1}$	136.6 (5)
$01W^{i}$ Sr1 02^{ii}	84.18 (6)	Ω^{2} Sr1—H2W	130.0(3) 81.3(7)
$O_{1}^{ii} = Sr_{1}^{ii} = O_{2}^{ii}$	48.61 (5)	C_{2}^{ii} Sr1 H2W	150.2 (6)
03^{iii} $8r1 - 02^{ii}$	72 53 (5)	C7 = -511 = -112 W $C7^{\text{iii}} = -5r1 = H2 \text{ W}$	79.9(7)
03 - 31 - 02	72.55 (5) 82.96 (5)	C = -311 - 112 W Sr1 ⁱⁱ Sr1 H2W	13.3(7)
$O_{3}^{i} = S_{r1} = O_{2}^{iii}$	32.50(5)	$S_{r1} = S_{r1} = H_2 W$	137.4(0)
03 - 511 - 02	110.75 (J) 94.19 (C)	$S_{11} = S_{11} = H_2 W$	100(2)
01W = Sr1 = 02	64.16(0) 152.75(6)	$C_1 = 0_1 = H_1 O_1$	109(3)
$O1W - Sr1 - O2^{iii}$	152.75 (6)	C7_02_Sfl	90.36 (14)
$03^{$	/2.53 (5)	$C/-O_3$	150.19 (16)
03^{m} Sr1 -02^{m}	48.61 (5)	$C/03Sr1^{"}$	97.06 (15)
02^{-1} Sr1 -02^{-1}	97.18(7)	Sr1—O3—Sr1"	107.54 (6)
O_3 —SrI—C/ ⁿ	95.74 (6)	SrI—OIW—HIW	128 (3)
03^{-} SrI- $C/^{-}$	107.11 (6)	Sr1—O1W—H2W	104 (2)
OIW —SrI— $C/^{n}$	163.67 (7)	HIW—OIW—H2W	116 (4)
OlW^{i} —Srl—C/ ⁿ	89.37 (6)	01	117.7 (2)
$O3^n$ —Sr1—C/n	24.27 (6)	01	121.9 (2)
$O3^{m}$ —Sr1—C7 ⁿ	75.74 (6)	C2—C1—C6	120.4 (2)
$O2^{n}$ Sr1-C7 ⁿ	24.74 (6)	C3—C2—C1	119.4 (3)
$O2^{m}$ —Sr1—C7 ⁿ	81.62 (6)	C3—C2—H2	120.3
$O3$ — $Sr1$ — $C7^{m}$	107.11 (6)	C1—C2—H2	120.3
$O3^{i}$ —Sr1—C7 ⁱⁱⁱ	95.74 (6)	C2—C3—C4	121.0 (3)
O1W—Sr1—C7 ⁱⁱⁱ	89.37 (6)	С2—С3—Н3	119.5
$O1W^{i}$ —Sr1—C7 ⁱⁱⁱ	163.67 (7)	С4—С3—Н3	119.5
$O3^{ii}$ —Sr1—C7 ⁱⁱⁱ	75.74 (6)	C5—C4—C3	119.4 (3)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	24.27 (6)	C5—C4—H4	120.3
$O2^{ii}$ —Sr1—C7 ⁱⁱⁱ	81.62 (6)	C3—C4—H4	120.3
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	24.74 (6)	C4—C5—C6	120.7 (3)
C7 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	74.37 (9)	С4—С5—Н5	119.6
O3—Sr1—Sr1 ⁱⁱ	37.05 (4)	С6—С5—Н5	119.6
O3 ⁱ —Sr1—Sr1 ⁱⁱ	161.98 (4)	C5C6C1	119.1 (2)
O1W—Sr1—Sr1 ⁱⁱ	124.40 (4)	C5—C6—C7	120.4 (2)
O1W ⁱ —Sr1—Sr1 ⁱⁱ	78.63 (5)	C1—C6—C7	120.5 (2)
O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	35.40 (4)	O3—C7—O2	122.0 (2)
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	111.47 (4)	O3—C7—C6	119.1 (2)
O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	81.70 (4)	O2—C7—C6	118.9 (2)
O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.68 (4)	O3—C7—Sr1 ⁱⁱ	58.66 (13)
C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	58.98 (5)	O2—C7—Sr1 ⁱⁱ	64.90 (13)
C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	91.32 (5)	C6—C7—Sr1 ⁱⁱ	166.48 (17)
01—C1—C2—C3	-177.6 (2)	Sr1 ⁱⁱ —O3—C7—O2	15.1 (3)
C6—C1—C2—C3	2.8 (4)	Sr1—O3—C7—C6	49.6 (4)
C1—C2—C3—C4	-1.1 (4)	Sr1 ⁱⁱ —O3—C7—C6	-164.54 (19)
C2—C3—C4—C5	-1.1 (4)	Sr1-03-C7-Sr1 ⁱⁱ	-145.8 (3)

supporting information

C3—C4—C5—C6	1.7 (4)	Sr1 ⁱⁱ —O2—C7—O3	-14.2 (2)
C4—C5—C6—C1	-0.1 (4)	Sr1 ⁱⁱ —O2—C7—C6	165.4 (2)
C4—C5—C6—C7	-179.5 (3)	C5—C6—C7—O3	19.3 (4)
O1—C1—C6—C5	178.2 (2)	C1—C6—C7—O3	-160.1 (2)
C2—C1—C6—C5	-2.2 (4)	C5—C6—C7—O2	-160.3 (2)
O1—C1—C6—C7	-2.3 (4)	C1—C6—C7—O2	20.2 (4)
C2—C1—C6—C7	177.3 (2)	C5—C6—C7—Sr1 ⁱⁱ	-57.5 (8)
Sr1	-130.7 (3)	C1—C6—C7—Sr1 ⁱⁱ	123.1 (7)

Symmetry codes: (i) -x+1, y, -z-1/2; (ii) -x+1, -y+1, -z; (iii) x, -y+1, z-1/2; (iv) -x+1, -y+1, -z-1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
01—H1 <i>O</i> …O2	0.83 (2)	1.89 (3)	2.604 (2)	145 (4)
$O1W$ — $H1W$ ··· $O1^{v}$	0.82 (2)	2.01 (2)	2.823 (3)	172 (4)
O1W— $H2W$ ···O2 ^{vi}	0.84 (2)	2.08 (2)	2.925 (3)	178 (4)

Symmetry codes: (v) -x+1/2, -y+1/2, -z; (vi) x, y, z-1.

(SrBa)

Crystal data

 $C_{14}H_{14}Ba_{0.27}O_8Sr_{0.73}$ $M_r = 411.35$ Monoclinic, C2/c a = 16.8381 (7) Å b = 11.4349 (5) Å c = 7.9433 (3) Å $\beta = 91.280 (4)^{\circ}$ $V = 1529.04 (11) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcalibur E diffractometer Radiation source: sealed tube ω scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.044$ S = 1.17 F(000) = 820 $D_x = 1.787 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 7047 reflections $\theta = 3.3-29.8^{\circ}$ $\mu = 3.31 \text{ mm}^{-1}$ T = 150 KCut prism, colourless $0.28 \times 0.25 \times 0.15 \text{ mm}$

Absorption correction: multi-scan CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. $T_{min} = 0.728, T_{max} = 1.000$ 10452 measured reflections 1754 independent reflections 1685 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -21 \rightarrow 21$ $k = -14 \rightarrow 14$ $l = -10 \rightarrow 10$

1754 reflections 118 parameters 0 restraints Hydrogen site location: mixed

H atoms treated by a mixture of independent and	$(\Delta/\sigma)_{\rm max} = 0.001$
constrained refinement	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
$w = 1/[\sigma^2(F_0^2) + (0.0132P)^2 + 1.6161P]$	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sr1	0.5000	0.43902 (2)	-0.2500	0.01477 (7)	0.729 (4)
Ba1	0.5000	0.43902 (2)	-0.2500	0.01477 (7)	0.271 (4)
01	0.25640 (8)	0.25403 (12)	0.26510 (18)	0.0233 (3)	
O2	0.37639 (8)	0.39626 (11)	0.26415 (17)	0.0215 (3)	
O1W	0.39280 (9)	0.31015 (15)	-0.3903 (2)	0.0335 (4)	
O3	0.45452 (8)	0.38793 (11)	0.04491 (18)	0.0233 (3)	
C1	0.29899 (10)	0.18637 (16)	0.1589 (2)	0.0175 (4)	
C2	0.26877 (12)	0.07775 (16)	0.1138 (2)	0.0226 (4)	
H2	0.2188	0.0530	0.1541	0.027*	
C3	0.31155 (13)	0.00609 (18)	0.0105 (3)	0.0267 (5)	
H3	0.2908	-0.0685	-0.0195	0.032*	
C4	0.38438 (13)	0.04069 (17)	-0.0508 (3)	0.0276 (5)	
H4	0.4139	-0.0103	-0.1201	0.033*	
C5	0.41326 (11)	0.14997 (17)	-0.0100 (2)	0.0223 (4)	
H5	0.4625	0.1748	-0.0539	0.027*	
C6	0.37156 (11)	0.22479 (15)	0.0947 (2)	0.0172 (4)	
C7	0.40255 (10)	0.34315 (16)	0.1364 (2)	0.0176 (4)	
H1W	0.3492 (17)	0.287 (2)	-0.361 (3)	0.048 (8)*	
H2W	0.3864 (16)	0.326 (2)	-0.495 (4)	0.048 (8)*	
H7	0.2843 (16)	0.319 (2)	0.285 (3)	0.052 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.01305 (10)	0.01757 (11)	0.01383 (11)	0.000	0.00353 (7)	0.000
Ba1	0.01305 (10)	0.01757 (11)	0.01383 (11)	0.000	0.00353 (7)	0.000
01	0.0196 (7)	0.0219 (7)	0.0288 (8)	-0.0043 (6)	0.0080 (6)	-0.0023 (6)
02	0.0198 (7)	0.0189 (6)	0.0261 (8)	-0.0030 (5)	0.0063 (6)	-0.0051 (6)
O1W	0.0254 (8)	0.0447 (10)	0.0307 (9)	-0.0075 (7)	0.0081 (7)	0.0061 (8)
O3	0.0209 (7)	0.0200 (7)	0.0293 (8)	-0.0053 (5)	0.0095 (6)	-0.0022 (6)
C1	0.0179 (9)	0.0187 (9)	0.0159 (9)	-0.0006 (7)	0.0001 (7)	0.0037 (7)
C2	0.0255 (10)	0.0219 (10)	0.0204 (10)	-0.0077 (8)	-0.0009 (8)	0.0037 (8)
C3	0.0384 (12)	0.0184 (10)	0.0231 (11)	-0.0072 (9)	-0.0016 (9)	0.0001 (8)
C4	0.0357 (11)	0.0196 (10)	0.0276 (11)	0.0012 (8)	0.0044 (9)	-0.0041 (8)
C5	0.0227 (9)	0.0207 (9)	0.0238 (10)	-0.0001 (8)	0.0055 (8)	0.0002 (8)
C6	0.0173 (8)	0.0161 (9)	0.0183 (9)	-0.0018 (7)	-0.0006 (7)	0.0007 (7)
C7	0.0132 (8)	0.0177 (9)	0.0219 (10)	0.0003 (7)	0.0001 (7)	0.0009(7)

Geometric parameters (Å, °)

Sr1-O3 ⁱ	2.5486 (13)	O1W—H2W	0.86 (3)
Sr1—O3	2.5486 (13)	O3—C7	1.259 (2)
Sr1—O1W ⁱ	2.5654 (17)	O3—Ba1 ⁱⁱ	2.6646 (13)
Sr1—O1W	2.5655 (17)	O3—Sr1 ⁱⁱ	2.6646 (13)
Sr1—O3 ⁱⁱ	2.6647 (13)	C1—C2	1.386 (3)
Sr1—O3 ⁱⁱⁱ	2.6647 (13)	C1—C6	1.405 (2)
Sr1—O2 ⁱⁱ	2.8113 (13)	C2—C3	1.375 (3)
Sr1—O2 ⁱⁱⁱ	2.8113 (13)	C2—H2	0.9500
Sr1—C7 ⁱⁱ	3.1056 (18)	C3—C4	1.387 (3)
Sr1—C7 ⁱⁱⁱ	3.1056 (18)	С3—Н3	0.9500
Sr1—Ba1 ⁱⁱ	4.2094 (2)	C4—C5	1.377 (3)
Sr1—Sr1 ⁱⁱ	4.2094 (2)	C4—H4	0.9500
01—C1	1.361 (2)	C5—C6	1.394 (3)
O1—H7	0.89 (3)	С5—Н5	0.9500
O2—C7	1.270 (2)	C6—C7	1.485 (2)
O2—Ba1 ⁱⁱ	2.8112 (13)	C7—Ba1 ⁱⁱ	3.1056 (18)
O2—Sr1 ⁱⁱ	2.8112 (13)	C7—Sr1 ⁱⁱ	3.1056 (18)
O1W—H1W	0.82 (3)		
O3 ⁱ —Sr1—O3	153.49 (6)	C7 ⁱⁱⁱ —Sr1—Ba1 ⁱⁱ	89.85 (4)
$O3^{i}$ —Sr1—O1 W^{i}	92.55 (5)	O3 ⁱ —Sr1—Sr1 ⁱⁱ	161.72 (3)
O3—Sr1—O1W ⁱ	72.06 (5)	O3—Sr1—Sr1 ⁱⁱ	37.10 (3)
O3 ⁱ —Sr1—O1W	72.06 (5)	O1W ⁱ —Sr1—Sr1 ⁱⁱ	78.19 (4)
O3—Sr1—O1W	92.56 (5)	O1W—Sr1—Sr1 ⁱⁱ	125.82 (4)
O1W ⁱ —Sr1—O1W	109.88 (8)	O3 ⁱⁱ —Sr1—Sr1 ⁱⁱ	35.23 (3)
O3 ⁱ —Sr1—O3 ⁱⁱ	130.09 (4)	O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	108.95 (3)
O3—Sr1—O3 ⁱⁱ	72.33 (4)	O2 ⁱⁱ —Sr1—Sr1 ⁱⁱ	80.29 (3)
O1W ⁱ —Sr1—O3 ⁱⁱ	88.35 (5)	O2 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	74.02 (3)
O1W—Sr1—O3 ⁱⁱ	151.87 (5)	C7 ⁱⁱ —Sr1—Sr1 ⁱⁱ	58.08 (3)
O3 ⁱ —Sr1—O3 ⁱⁱⁱ	72.33 (4)	C7 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	89.85 (4)
O3—Sr1—O3 ⁱⁱⁱ	130.09 (4)	Ba1 ⁱⁱ —Sr1—Sr1 ⁱⁱ	0.0
O1W ⁱ —Sr1—O3 ⁱⁱⁱ	151.87 (5)	C1—O1—H7	107.6 (18)
O1W—Sr1—O3 ⁱⁱⁱ	88.35 (5)	C7—O2—Bal ⁱⁱ	91.03 (10)
$O3^{ii}$ —Sr1—O3 ⁱⁱⁱ	84.09 (6)	C7—O2—Sr1 ⁱⁱ	91.03 (10)
$O3^{i}$ —Sr1— $O2^{ii}$	83.05 (4)	Ba1 ⁱⁱ —O2—Sr1 ⁱⁱ	0.0
$O3$ — $Sr1$ — $O2^{ii}$	115.36 (4)	Sr1—O1W—H1W	133.7 (19)
$O1W^{i}$ — $Sr1$ — $O2^{ii}$	83.56 (5)	Sr1—O1W—H2W	111.9 (18)
O1W—Sr1—O2 ⁱⁱ	151.87 (5)	H1W—O1W—H2W	104 (3)
$O3^{n}$ —Sr1— $O2^{n}$	47.47 (4)	C7—O3—Sr1	148.31 (13)
$O3^{m}$ —Sr1— $O2^{n}$	71.39 (4)	C7—O3—Ba1 ⁿ	98.23 (11)
$O3^{1}$ —Sr1— $O2^{111}$	115.36 (4)	Sr1—O3—Ba1 ⁿ	107.7
$O3$ — $Sr1$ — $O2^{m}$	83.05 (4)	C7—O3—Sr1 ⁿ	98.23 (11)
$O1W^{i}$ —Sr1— $O2^{in}$	151.87 (5)	Sr1—O3—Sr1 ⁿ	107.67 (4)
$O1W$ — $Sr1$ — $O2^{in}$	83.56 (5)	Ba1 ⁿ —O3—Sr1 ⁿ	0.0
$O3^n$ —Sr1— $O2^m$	71.39 (4)	01—C1—C2	118.31 (16)
$O3^{m}$ —Sr1— $O2^{m}$	47.47 (4)	Ol—Cl—C6	121.46 (16)
$O2^{n}$ —Sr1— $O2^{m}$	95.86 (5)	C2—C1—C6	120.24 (17)
$O3^{\mu}$ -Srl- $C7^{\mu}$	106.46 (5)	C3—C2—C1	119.61 (18)
$O3$ — $Sr1$ — $C7^n$	94.84 (5)	C3—C2—H2	120.2
OlW^{i} — Srl — $C7^{ii}$	88.42 (5)	C1—C2—H2	120.2
OIW — Srl — $C7^{n}$	161.62 (5)	C2—C3—C4	121.24 (18)

O3 ⁱⁱ —Sr1—C7 ⁱⁱ	23.65 (4)	С2—С3—Н3	119.4
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	74.03 (5)	С4—С3—Н3	119.4
O2 ⁱⁱ —Sr1—C7 ⁱⁱ	24.14 (4)	C5—C4—C3	119.10 (19)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱ	80.67 (4)	C5—C4—H4	120.4
O3 ⁱ —Sr1—C7 ⁱⁱⁱ	94.84 (5)	C3—C4—H4	120.4
O3—Sr1—C7 ⁱⁱⁱ	106.46 (5)	C4—C5—C6	121.18 (18)
O1W ⁱ —Sr1—C7 ⁱⁱⁱ	161.62 (5)	C4—C5—H5	119.4
O1W—Sr1—C7 ⁱⁱⁱ	88.42 (5)	С6—С5—Н5	119.4
O3 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	74.03 (5)	C5—C6—C1	118.58 (17)
O3 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	23.65 (4)	C5—C6—C7	120.86 (16)
O2 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	80.67 (4)	C1—C6—C7	120.55 (16)
O2 ⁱⁱⁱ —Sr1—C7 ⁱⁱⁱ	24.14 (4)	O3—C7—O2	121.66 (17)
C7 ⁱⁱ —Sr1—C7 ⁱⁱⁱ	73.35 (7)	O3—C7—C6	119.18 (16)
O3 ⁱ —Sr1—Ba1 ⁱⁱ	161.72 (3)	O2—C7—C6	119.16 (16)
O3—Sr1—Ba1 ⁱⁱ	37.10 (3)	O3—C7—Ba1 ⁱⁱ	58.12 (9)
O1W ⁱ —Sr1—Ba1 ⁱⁱ	78.19 (4)	O2—C7—Ba1 ⁱⁱ	64.83 (9)
O1W—Sr1—Ba1 ⁱⁱ	125.82 (4)	C6—C7—Ba1 ⁱⁱ	167.51 (12)
O3 ⁱⁱ —Sr1—Ba1 ⁱⁱ	35.23 (3)	O3—C7—Sr1 ⁱⁱ	58.12 (9)
O3 ⁱⁱⁱ —Sr1—Ba1 ⁱⁱ	108.95 (3)	O2—C7—Sr1 ⁱⁱ	64.83 (9)
O2 ⁱⁱ —Sr1—Ba1 ⁱⁱ	80.29 (3)	C6—C7—Sr1 ⁱⁱ	167.51 (12)
O2 ⁱⁱⁱ —Sr1—Ba1 ⁱⁱ	74.02 (3)	Ba1 ⁱⁱ —C7—Sr1 ⁱⁱ	0.0
C7 ⁱⁱ —Sr1—Ba1 ⁱⁱ	58.08 (3)		
O1—C1—C2—C3	-178.19 (18)	Sr1 ⁱⁱ —O3—C7—Ba1 ⁱⁱ	0.0
C6—C1—C2—C3	2.2 (3)	Sr1—O3—C7—Sr1 ⁱⁱ	-144.9 (2)
C1—C2—C3—C4	-0.5 (3)	Ba1 ⁱⁱ —O3—C7—Sr1 ⁱⁱ	0.0
C2—C3—C4—C5	-1.4 (3)	Ba1 ⁱⁱ —O2—C7—O3	-12.76 (18)
C3—C4—C5—C6	1.6 (3)	Sr1 ⁱⁱ —O2—C7—O3	-12.76 (18)
C4—C5—C6—C1	0.2 (3)	Ba1 ⁱⁱ —O2—C7—C6	166.69 (15)
C4—C5—C6—C7	-179.17 (19)	Sr1 ⁱⁱ —O2—C7—C6	166.69 (15)
O1—C1—C6—C5	178.34 (17)	Sr1 ⁱⁱ —O2—C7—Ba1 ⁱⁱ	0.0
C2-C1-C6-C5	-2.1 (3)	Ba1 ⁱⁱ —O2—C7—Sr1 ⁱⁱ	0.0
O1—C1—C6—C7	-2.3 (3)	C5—C6—C7—O3	18.5 (3)
C2-C1-C6-C7	177.26 (17)	C1—C6—C7—O3	-160.87 (18)
Sr1—O3—C7—O2	-131.29 (19)	C5—C6—C7—O2	-161.00 (18)
Ba1 ⁱⁱ —O3—C7—O2	13.61 (19)	C1—C6—C7—O2	19.7 (3)
Sr1 ⁱⁱ —O3—C7—O2	13.61 (19)	C5—C6—C7—Ba1 ⁱⁱ	-55.5 (7)
Sr1—O3—C7—C6	49.3 (3)	C1—C6—C7—Ba1 ⁱⁱ	125.1 (5)
Ba1 ⁱⁱ —O3—C7—C6	-165.83 (14)	C5—C6—C7—Sr1 ⁱⁱ	-55.5 (7)
Srl ⁱⁱ —O3—C7—C6	-165.83 (14)	C1—C6—C7—Sr1 ⁱⁱ	125.1 (5)
Sr1—O3—C7—Ba1 ⁱⁱ	-144.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H7···O2	0.89 (3)	1.80 (3)	2.5938 (18)	148 (3)
O1 <i>W</i> —H1 <i>W</i> ···O1 ^{iv}	0.82 (3)	2.00 (3)	2.820 (2)	172 (3)
$O1W$ — $H2W$ ··· $O2^{v}$	0.86 (3)	2.08 (3)	2.923 (2)	169 (3)

Symmetry codes: (iv) -x+1/2, -y+1/2, -z; (v) x, y, z-1.