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Abstract 

 

Dispersions of magnetic nanoparticles in a nematic liquid crystal were investigated as magnetic 

fields were applied in three different boundary condition geometries: (i) planar substrates and B 

ŏ n, (ii) planar substrates and B Œ n, and (iii) homeotropic substrates and B ŏ n. Particle chaining 

is observed when a magnetic field is applied, with a periodicity perpendicular to the chains. 

Furthermore, linear chains are observed for the magnetic field applied perpendicular to the 

director, while zigzag chains are formed when the magnetic field direction is parallel to the 

director field. This is attributed to a change from a dipolar defect configuration around dispersed 

nanoparticles, to a quadrupolar one, i.e. the change from satellite to Saturn-ring defects. This 

effect is largely independent of the sample thickness. The dynamic development of the chain 

length, as well as their two-dimensional order parameter was studied in all cases. Chain lengths 

increased rapidly until saturation at approximately l=30ȝm after a time of about t=10s. Similarly, 

the chain order parameters increased until saturation between S=0.8-0.9, independent of sample 

geometry.  



I. Introduction 

 

In recent years the introduction of nano- and micron-sized particles or clusters into liquid crystal 

phases has attracted increasing interest from both academic as well as applicational points of 

view [1]. The main goal is to enhance performance of existing liquid crystal technologies, and to 

add functionality to be able to develop technologies beyond flat panel displays, spatial light 

modulators, or optical switches and shutters. Including additional functionality into the self-

organized liquid crystal systems opens the huge possibility of novel hybrid materials [2], for 

example in photonic and sensor applications, but also to study fundamental effects such as 

pattern formation and induced ordering in anisotropic media [3].  

Liquid crystals [4-7] are self-organized anisotropic fluids, thermodynamically located between 

the low temperature structure of long-range, three dimensional translational and orientational 

order of a crystal, and the isotropic distribution of the centers of mass of molecules in a liquid 

with no orientational order (isotropic phase). Liquid crystals exhibit self-organized ordered 

states, which can range from simple orientational order (nematic) to additional one- or two-

dimensional translational ordering (fluid and hexatix smectics, respectively). Starting from such 

a self-ordered system, it is anticipated that this order is transferred onto nano-or micro-inclusions 

which are shape anisotropic. This has been demonstrated for example in a variety of systems 

combining nematic [8], smectic [9], lyotropic [10] or discotic [11] liquid crystals with carbon 

nanotubes. Also other rod-like particles with pronounced aspect ratios have been used, mostly 

ZnO nanorods [12,13], but also those prepared from gold[14], or CdSe [15]. The underlying idea 

in all of these systems is the enhancement of optical, elastic, electric or magnetic responses 

through shape-anisotropic particles, dispersed and oriented within a liquid crystal matrix. One of 



the main advantages of these systems is further the possibility of a dynamic reorientation of the 

particles by external stimuli [16].   

For completeness, it may also be mentioned that depending on concentration, also liquid 

crystalline phases can be observed by suspending nanomaterials, such as nanotubes [17], tobacco 

mosaic viruses [18] or DNA [19], in a suitable isotropic solvent. And that also plate-shaped 

particles like clays [20] or graphene oxide [21] can be used to achieve similar effects.  

 

On the other hand, also non-elongated particles of dielectric, paramagnetic, super-paramagnetic, 

ferroelectric or ferromagnetic nature can be employed and dispersed isotropically within 

different liquid crystal phases [1,22,23]. These particles cannot exhibit a preferred directionality, 

but they can interact to form anisotropic clusters, exhibit chaining mediated via the interaction of 

defects formed in the vicinity of the inclusion [3], or form patterns under the application of 

external fields, like it was studied in this investigation. Previous investigations on liquid crystal 

based magnetic systems were directed towards nanoparticles [24,25] and observed optic [24] and 

magneto-optic effects [26], but also rod-like magnetic particles [27]. More recently, 

ferromagnetism and ferromagnetic ordering was demonstrated for magnetic platelets [26,28,29].    

 

In this paper we study the response of ferromagnetic nanoparticles dispersed at low 

concentration in a nematic liquid crystal to a static magnetic field in respect to the dynamics and 

structures of the pattern formation observed. The latter will be compared for three mutually 

orthogonal geometries. 

 

 



II. Experimental 

 

The liquid crystal employed in this study is a standard single component room temperature 

nematic cyanobiphenyl, commonly known as 5CB, commercially available from Sigma-Aldrich. 

Its phase sequence is Cryst. 22 N 35 Iso., and it was used as purchased. The magnetic anisotropy 

of 5CB is positive, so that the director orients parallel to the direction of an applied magnetic 

field. It should be pointed out, that the investigations presented below were performed at 

magnetic field strengths below the magnetic Freedericksz threshold. The ferromagnetic particles 

were isolated from a common ferrofluid (EFH1 from FerroTec), and are approximately 10 nm in 

size, while they do cluster to micrometer size to form aggregates which are visible in optical 

microscopy. As the commercial ferrofluid from which the magnetic particles are dried exhibits a 

very good dispersion quality, it is believed that they are surfactant coated, as it is often done to 

improve dispersibility, nevertheless, no conclusive information was available from the ferrofluid 

producer.    

The sandwich cells used were purchased from AWAT (Poland) with defined planar and 

homeotropic boundary conditions. They were used at different cell gaps between 5-25 m, as 

indicated in the discussion below. A permanent magnet with a magnetic flux of 0.1 T, uniform 

over a large area of 50 cm
2
, was employed to apply magnetic fields to various cell geometries. 

These were orthogonal to each other: (i) Planar boundary conditions, magnetic field 

perpendicular to the director, (ii) planar boundary conditions, magnetic field parallel to the 

director, and (iii) homeotropic boundary conditions, magnetic field perpendicular to the director 

(cf. Fig. 1)       



Images were captured by a digital camera (Nikon CoolPix 990) with a resolution of 2048x1536 

pixels, connected to a polarizing microscope (Olympus BH-2). Both crossed and parallel 

polarizer conditions were employed. After calibration, statistical image analysis was performed 

with software IMAGETOOL3, developed at the University of Texas Health Science Center, San 

Antonio. Chain lengths and chain angles were determined as a function of time of applied 

magnetic field, and the time development of 2D order parameters S = < 2cos
2ȕ – 1 > were 

evaluated from experimentally determined order distribution functions, with ȕ being the angle 

between the main particle chain direction and the director or the long side of the sandwich cell in 

the case of homeotropic alignment. 

 

III. Experimental Results and Discussion 

 

The three employed sample geometries are schematically shown in figure 1, where the directions 

of the magnetic field B0 and the director n are indicated. In case (i) planar boundary conditions 

are applied, with the director parallel to the substrate and the magnetic field perpendicular to the 

rubbing direction, thus also perpendicular to the director (geometry A). In (ii) planar boundary 

conditions are used with the magnetic field along the rubbing direction and the director 

(geometry B), and in (iii) homeotropic boundary conditions are employed with the director 

perpendicular to the substrate and the magnetic field perpendicular to the director (geometry C). 

As a nematic liquid crystal is used, the rubbing direction here also indicates the direction of the 

director. Figure 2 depicts a texture illustration of a typical experimentally obtained image for 

geometry A, a sandwich cell filled with a dispersion of liquid crystal and magnetic nanoparticles. 

The individual nanoparticles are typically of a size of 10 nm, which implies that particle 



aggregates are observed here. After the application of a magnetic field a clear chaining of 

nanoparticles is observed in direction of the magnetic field, which becomes more easily visible 

when using parallel polarisers (figure2(b)) instead of crossed ones (figure 2(a)). Furthermore, a 

certain periodicity of approximately 60 ȝm between the nanoparticle chains is observed, as 

demonstrated by a horizontal cut through figure 2(b) as indicated, plotting the dependence of 

light intensity as a function of distance. The reason for this periodicity is not clear yet, 

nevertheless it does not seem to be related to the cell geometry.  

Figure 3 shows the time development of the length of nanoparticle chains for two different cell 

thicknesses, a relatively thin cell of 9 ȝm (figure 3(a)) and a thick cell of 25 ȝm (figure 3(b)). In 

both cases a saturation chain length of approximately 30 ȝm is reached after about t = 20 s, 

independent of cell gap. As an example The order distribution functions for both cell gaps are  

depicted in figures 4(a) and (c), for the thin and the thick cell (d = 9 ȝm and d = 25 ȝm), 

respectively. From these, the time development of the order parameter of nanoparticle chains can 

be determined as the magnetic field is applied. The thin cell exhibits a slightly higher saturation 

order parameter of S = 0.9, which is reached after approximately t = 10 s. The saturation order 

parameter of the thick cell is slightly lower with S = 0.8, reached after a somewhat longer time of 

about t = 20 s. From reproducibility and considering the image analysis procedure, we 

conservatively estimate the error on the order parameter values to approximately S=  0.05. 

The time development of the two-dimensional order parameter is shown in figures 4(b) and 4(d) 

for the thin and the thick cell, respectively.   

The situation is qualitatively different for geometry B. Application of a magnetic field results in 

general chaining of the nanoparticles, but these do not form a linear chain, but rather a zigzag 

arrangement, as depicted in figure 5 for an image between parallel polarisers. The segments of 



individual zigzag chains are roughly of the same length with about l = 30 ȝm (figure 6(a) for the 

d = 9 ȝm and figure 6(b) for the d = 25 ȝm cells), again, not being related to the cell geometry. In 

the case of the magnetic field being parallel to the director, and chains forming zigzag patterns, 

the time for chain length saturation is, in contrast to geometry A, much longer for the thin cell of 

d = 9 ȝm than the thick cell of d = 25 ȝm. In the case of zigzag chains being formed, one has to 

distinguish chain segments pointing in positive and negative direction away from the director, 

which leads to an order distribution function which is bimodal, as depicted in figures 7(a) and 

7(b) for the thin and the thick cell, respectively (d = 9 ȝm and d = 25 ȝm). From this, two order 

parameters can be estimated, one for each type of chain section, here called Spos and Sneg. These 

are shown again for the thin and the thick cell in figures 7(c), (d) and 7(e), (f), respectively. Both 

are of the order of Spos,neg=0.8-0.9, saturated after very short times, and independent of the 

direction of chain segment (compare figure 7(c) to (e), and figure 7(d) to (f)). 

For geometry C standard linear chains of nanoparticles are observed. These behave similar to 

those investigated for geometry A, with the length saturating at approximately l=30 ȝm after 

about t = 20 s, as can be seen from figure 8. The cell gap used for this geometry is 19 ȝm, thus 

between those gaps investigated for geometry A. Again, the dynamic behavior appears to be 

largely independent of cell gap. This can also be seen from the exemplary order distribution 

function shown in figure 9(a), and the calculated order parameter, which saturates at about S = 

0.9 after approximately t = 10-20 s (figure 9(b)).   

In general, it is observed that for sample cell geometries A and C the formation of linear chains 

of ferromagnetic nanoparticles is observed under magnetic field application. This is in contrast to 

geometry B, where zigzag chains were observed. We conclude that the linear chains are formed 

when the magnetic field is perpendicular to the director, Bŏn, while zigzag configurations are 



formed when the magnetic field is parallel to the director, BŒn. A possible interpretation, which 

is in line with spherical colloidal particles in liquid crystals, is related to different defects 

surrounding the nanoparticles. It was observed that linear chains were formed for dipolar satellite 

defects, while quadrupolar Saturn ring defects led to chains in the zigzag configuration [3] (cf. 

fig.10). Possibly a magnetic field applied perpendicular to the director does not change the defect 

configuration except for deformations of the director field, preserving the original satellite 

defect. A magnetic field applied parallel to the chains may on the other hand change the defect 

from satellite to Saturn ring, i.e. from dipolar to quadrupolar, leading to zigzag chains, as shown 

in figure 10 for monodisperse, spherical, colloidal particles [3]. This may be related to a different 

local director orientation in the Saturn ring and in the satellite defect with respect to the magnetic 

field   The reason why in this experiment the zigzag chains are not as perfectly developed as in 

experiments with colloids, is due to the fact that the here employed nanoparticles are not 

spherical, neither do they have a monodisperse size distribution.  One notes also that the 

formation of zigzag chains may be determined by the effective quadrupole-quadrupole 

interaction between Saturn rings. It has been shown, for example, that the quadrupole-

quadrupole interaction is responsible for the transition into the so-called herringbone phase in 2D 

anisotropic fluids composed of anisotropic particles [24]. Such a phase is characterized by the 

anticlinic order of particles which is very similar to the zigzag configuration in a single chain. 

 

IV. Simple theoretical model 

 

Let us consider a simple theoretical model of a zigzag chain assuming that each aggregate in the 

chain possess an effective quadrupole moment and as a result the chain is characterized by a 



quadrupole density Q. The quadrupole-quadrupole interaction between individual aggregates is 

described by the following interaction potential, assuming that the quadrupole tensors are 

uniaxial and the primary axes of all quadrupoles are parallel to the same plane in the zigzag 

configuration of the chain [30]: 

 

ொܸொሺͳǡʹሻ ൌ ܳଶ݈ߜଶܴିହ    ሺʹ߮ଵ ൅ ʹ߮ଶሻ      (1) 

 

where Q is the quadrupole density, įl is the length of the aggregate, R is the distance between 

aggregates and the angles ĳi=Ȧi-și, i=1,2, where Ȧi is the angle between the axis of the 

quadrupole i and the reference direction and și is the angle between the interparticle vector and 

the same reference direction. 

   In a linear segment of the zigzag chain every individual quadrupole interacts with all other 

quadrupoles within the same segment and also with all quadrupoles in the two adjacent linear 

segments (see Fig. 10). One notes that if the two interacting quadrupoles belong to the same 

segment, the angles Ȧi=și=0 if the reference direction is parallel to the segment assuming that 

the axes of the quadrupoles are also parallel to the segment. In contrast, if the two quadrupoles 

belong to the adjacent segments which make an angle ȕ with each other, Ȧ1=0, Ȧ2=ȕ and ș=Į 

where the angle Į is shown in Fig. 10.  In this case it is: cos(2ĳ1+2ĳ2)=-cos(2Į). As a result the 

total quadrupole-quadrupole interaction energy per segments can be written in the form: 

 ܸ ൌ ௔ܸ ൅ ʹ ௕ܸ         (2) 

 

Where Va is the interaction between the quadrupoles which belong to the same linear segment: 



 

௔ܸ ൌ ܳଶ ׬ ׬ ሺ݄ଵ െ ݄ଶሻିହ݄݀ଵ݀ሺ݄ଵ െ ݄ଶሻ̱ ଵସܳଶ݈ሺ݈ߜሻିସ௟ఋ௟௟ఋ௟    (3) 

 

Here we have taken into account that įl<<l, where h1 is the coordinate of the quadrupole 1 along 

the linear segment. 

The potential Vb is the total interaction between the quadrupoles in the two adjacent segments. It 

can be estimated by making the simple assumption that the total quadrupoles of the two 

segments are located at their centers. Then the quadrupole-quadrupole interaction between the 

two segments, which make an angle ʌ-ȕ (with ȕ shown in fig. 10) can be estimated as 

 

௕ܸ̱ܳଶ݈ଶ ୡ୭ୱ ሺଶఉሻଶ௟మାଶ௟మୡ୭ୱ ሺఉሻሻఱమ       (4) 

 

It is interesting to note that the potential (3) which describes the quadrupolar interaction within a 

linear segment is always positive which indicates that the linear chain with sufficiently large 

quadrupole density should be unstable. In contrast, the quadrupole-quadrupole interaction 

between adjacent segments, given by eq.(4), can be negative if cos(2ȕ)<0, i.e. if ȕ>ʌ/4. The 

minimum of the potential (4) is achieved when cos(ȕ)=2-√6.5 which corresponds to ȕ~126 

degrees. Thus the angle between the two adjacent segments is approximately 54 degrees which 

coincides well with the 50-60 degrees obtained from experimental data (fig. 7(a) and (b)) taking 

into account the simplicity of the model. 

 

So far we have assumed that the length of the linear segment in the zig-zag chain is equal to a 

length l. The value of l can be estimated if we take into consideration that the bend of the chain 



between the two adjacent segments cost an amount of energy which we denote as E0>0. Let us 

now consider the chain of the total length L which contains N linear segments. Taking into 

account the quadrupole-quadrupole interaction between different segments, considered above, 

the difference between the energy of the zigzag chain and the linear chain can in approximation 

be expressed as: 

 οܷ̱ሺܰ െ ͳሻܧ଴ ൅ ܳଶ݈ଶ ଶୡ୭ୱ ሺఉሻమିଵሺଶ௟మାଶ௟మୡ୭ୱ ሺఉሻሻఱమ     (5) 

 

where cos(ȕ)=2-√6.5 and l=L/N. Minimizing the energy (5) with respect to N, one obtains the 

equilibrium length of the linear segment as 

 

݈̱ܳඨ ଷሺଵଽିଶξ଺Ǥହሻாబ௅మሺ଺ିଶξ଺Ǥହሻఱమ        (6) 

 

Experimentally L ~ 30 µm and l ~ 10 nm, and hence eq.(6) establishes a relationship between the 

quadrupole density Q and the bent energy E0. However, both parameters are not known at 

present and thus it is impossible to make further physical conclusions. At the same time eq.(6) 

indicates that the length of the straight segment l is expected to decrease with the increasing total 

chain length L , i.e. l~L
-3/2

.  This relationship can, in principle, be tested experimentally when 

more data are available. 

 

 

 



V. CONCLUSIONS 

 

When subjected to a static magnetic field of small strength, ferromagnetic nanoparticles cluster 

and form chains in a nematic liquid crystal. The chains are linear in nature for the magnetic field 

being directed perpendicular to the liquid crystal director. If the magnetic field is directed 

parallel to the director, zigzag chains are formed. Particle chaining can be explained via 

interactions between defects formed in the close vicinity of colloidal inclusions in nematics. The 

fact that linear and zigzag chains are observed in dependence on the applied magnetic field 

direction with respect to the director field, can be due to a change from a dipolar to a quadrupolar 

defect configuration, i.e. the change from satellite to Saturn-ring defects. The length of particle 

chains increases with time until saturation at about l = 30 ȝm after approximately t = 10 s, 

largely independent of cell gap and cell geometry. The two-dimensional chain orientational order 

parameter saturates with time of magnetic field application at values of about S = 0.8-0.9, also 

practically independent of cell gap and geometry. This is approximately equivalent as could be 

expected as the 2D orientational order parameter for the liquid crystal host.            

  



References 

[1] T. Hegmann, Hao Qi, V.M. Marx, J. Inorg. Organometallic Polym. Mater., 17, (2007), 483 

[2] J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys., 12, (2012), 1387 

[3] I. Musevic, M. Skarabot, Soft Matter, 4, (2008), 195 

[4] P.J. Collings, M. Hird, Introduction to Liquid Crystals, Taylor&Francis, London, 1997 

[5] S. Chandrasekhar, Liquid Crystals, 2
nd

 ed., Cambridge University Press, Cambridge, 1992 

[6] I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003 

[7] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1992 

[8] I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mater., 16, (2004), 865 

[9] K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E, 34, (2011), DOI 10.1140/epje/i2011-11034-7 

[10] J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, 

Adv. Mater., 19, (2007), 359 

[11] S. Kumar, H.K. Bisoyi, Angew. Chem. Int. Ed., 46, (2007), 1501 

[12] J. Branch, R. Thompson, J. W. Taylor, L. Salamanca-Riba, L. J. Martınez-Miranda1, J. 

Appl. Phys., 115, (2014), 164313 

[13] Mu-Zhe Chen, Wei-Sheng Chen, Shie-Chang Jeng, Sheng-Hsiung Yang, YuehFeng Chung, 

Optics Express, 21, (2013), 29277 

[14] S. Umadevi, Xiang Feng, T. Hegmann, Adv. Funct. Mater., 23, (2013), 1393 

[15] M.V. Mukhina, V.V. Danilov, A.O. Orlova, M.V. Fedorov, M.V. Artemyev, A.V. Baranov, 

Nanotechnology, 23, (2012), 325201 

[16] I. Dierking, G. Scalia, P. Morales, J. Appl. Phys., 97, (2005), 044309   

 [17] S. Badaire, C. Zakri, M. Maugey, A. Derre, J.N. Barisci, G. Wallace, P. Poulin, Adv. 

 Mater. 17, (2005), 1673 



[18] J. Zasadzinski, R.B. Meyer, Phys. Rev. Lett., 56, (1986), 636 

[19] F. Livolant, A. Leforestier, Prog. Polym. Sci., 21, (1996), 1115 

[20] E. Paineau, K. Antonova, C. Baravian, I. Bihannic, P. Davidson, I. Dozov, M. Imperor-

Clere, P. Levitz, A. Madsen, F. Meneau, L.J. Michot, J. Phys. Chem. B, 113, (2009), 15858 

[21] S.H. Aboutalebi, M.M. Gudarzi, Q.B. Zheng, J.-K.Kim, Adv. Func. Mater., 21, (2011), 

2978   

[22] Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, J. West, 

Appl. Phys. Lett., 82, (2003), 1917 

[23] F.H. Li, J. West, A. Glushenko, C. Il Cheon, Y. Reznikov, J. Soc. Inform. Displ., 14 (2006), 

523 

[24] N. Podoliak, O. Buchnev, O. Buluy, G. D'Alessandro, M. Kaczmarek, Y. Reznikov, T.J. 

Sluckin, Soft Matter, 7, (2011), 4742 

[25] T. Toth-Katona, P. Salamon, N. Eber, N. Tomasovicova, Z. Mitroova, P. Kopcansky, J. 

Mag. and Mag. Mater., 372, (2014), 117 

[26] A, Mertelj, N. Osterman, D. Lisjak, M. Copic, Soft Matter, 10, (2014), 9065 

[27] N. Podoliak, O. Buchnev, D.V. Bavykin, A.N. Kulak, M. Kaczmarek, T.J. Sluckin, J. 

Colloid Interf. Sci., 386, (2012), 158 

[28] A. Mertelj, D. Lisjak, M. Drofenik, M. Copic, Nature, 504, (2013), 237 

[29] M. Shuai, A. Klittnick, Y. Shen, G.P. Smith, M.R. Tuchband, C. Zhu, R.G. Petschek, A. 

Mertelj, D. Lisjak, M. Copic, J.E. Maclennan, M.A. Glaser, N.A. Clark, Nature Comm., 7, 

(2015), 10394  

[30] V.M. Kaganer, M.A. Osipov, J. Chem. Phys., 109, (1998), 2600 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=T1qP8RRFh3PQ3oFXXs3&field=AU&value=MEYER,%20RB&ut=13972880&pos=%7b2%7d&excludeEventConfig=ExcludeIfFromFullRecPage


Figure captions 

 

Fig. 1: Schematic illustration of the three different geometries employed. (a) Geometry A with 

planar boundary conditions and magnetic field perpendicular to the director, B ŏ n , (b) 

Geometry B, with planar boundary conditions and magnetic field along the director, BŒn, and (c) 

Geometry C with homeotropic boundary conditions and magnetic field perpendicular to the 

director, B ŏ n. The cell gaps were for geometry A and B: d=9-25µm and geometry C: d=19µm.  

 

Fig. 2: (a) Texture of liquid crystal – magnetic nanoparticle dispersion after field application, 

with crossed polarizers. Due to numerous Schlieren defects the nanoparticles are not very well 

visible. (b) The sample between parallel polarizers clearly shows chaining of the magnetic 

nanoparticles. (c) Perpendicular to the chaining direction a clear periodicity, in this case 

approximately 60m, is observed. 

 

Fig. 3: Time dependence on magnetic field application of the average length of the nanoparticle 

chains in Geometry A for cell gap (a) d=9µm and (b) d=25µm. After approximately 20s the 

chain length reaches saturation at about l=30µm. (The red lines are a guide to the eye).    

 

Fig. 4: (a), (c) Exemplary order distribution function and (b), (d) determined time dependence of 

the two-dimensional order parameter S for cell gap d=9µm ((a) and (b))  and d=25µm ((c) and 

(d)). After approximately 10s the order parameter reaches a saturation value of about S=0.8-0.9. 

(The red lines are a guide to the eye). 

  



Fig. 5: Texture micrograph of a sample of Geometry B between parallel polarizers. With a 

magnetic field applied parallel to the director, instead of perpendicular to it, the formation of 

zigzag chains is observed, instead of linear chains. The chains are not perfectly zigzag shaped as 

for colloidal particles, due to the deviation of the nanoparticles from a spherical shape, and their 

polydispersion.  

 

Fig. 6: Time dependence on magnetic field application of the average length of the nanoparticle 

zigzag chain segments in Geometry B for cell gap (a) d=9µm and (b) d=25µm. After 

approximately 150s for thin cells and 20s for thick cells, the chain segment length reaches 

saturation at about l=25-35µm. (The red lines are a guide to the eye). 

 

Fig. 7: Bimodal distribution function for (a) the d=9µm and (b) the d=25µm cell, describing the 

angular order of the zigzag chain segments in the positive and the negative direction from the 

director. (c) and (d) are the corresponding two-dimensional order parameters in positive direction 

from the director, Spos, and (e) and (f) for the negative direction, Sneg, for the d=9µm and 

d=25µm cells respectively. The order parameters quickly reach a saturation value of 

Spos=Sneg=0.8-0.9. (The red lines are a guide to the eye).    

 

Fig. 8: Chain length evolution of the linear chains observed for Geometry C, at a cell gap of 

d=19µm for homeotropic boundary conditions with the magnetic field applied perpendicular to 

the director. After about 50s the chain length reaches saturation at approximately l=30-35µm. 

(The red line is a guide to the eye). 

 



Fig. 9: (a) Order distribution function and (b) two-dimensional order parameter S of 

ferromagnetic nanosphere chains in a magnetic field for cell Geometry C, at thickness d=19µm. 

(The red lines are a guide to the eye). 

 

Fig.10: Director configuration and experimental examples for linear and zigzag chaining of 

monodisperse, spherical colloidal particles in a liquid crystal, (a) dipolar arrangement and (b) 

quadrupolar arrangement (after [3], reprinted with permission from the Royal Society of 

Chemistry).  
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