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Abstract. Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a

challenging problem for effective tracking with fast motion, deformation, occlusion et al. Under complex tracking

conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are

inputted to the visual models, this may lead to redundancy caused low efficiency and ambiguity caused poor perfor-

mance. In this paper, an effective tracking algorithm is proposed to decontaminate features for each video sequence

adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every

feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms.

With the optimized subsets of features, “Curse of Dimensionality” has been avoided whilst the accuracy of the visual

model has been improved. The proposed algorithm has been tested on several publicly available datasets with various

tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments

have demonstrated the efficacy of the proposed methodology.
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1 Introduction

Visual tracking aims to estimate the path of a target in an image sequence, given its initial location

only. This technology is widely used in many applications[1][2]. The generic modes of visual

tracking always extract the feature of the input image at first, then determine the target region by

classification or matching methods. The features can provide a representation model of the target.

Based on the model, the tracker is able to discriminate the target from its background in every

frame. Since the discriminative ability of a visual model is one of the key factors to tracker’s

performance, an exact representation model could lead to a high accuracy for a tracker.

The targets various a lot under different visual conditions. For example, intuitively observing

the magic cube shown in Fig.1(a), it can be distinguished easily due to the color difference to its

background. In comparison, the texture features show more discriminative ability in Fig.1(b), and

the edge features play an important role in Fig.1(c). However the tracker with specific features

employed can only get good results on the specified video. That is to say, if color feature is

employed, Fig.1(a) can surely be tracked well, however at the same time Fig.1(c) may meet a

failure. Therefore the features used for tracking must be adaptive with the sequences’ specific

salient characteristic.

Investigating on the state-of-the-art trackers, the visual models employed including the single

feature model and the feature integration model are all fixed with no adaptiveness to the detected

feature. The single feature based models are being popular from the beginning of the 20th century

until nowadays, the representative works including color [3], edge[4] and motion[5]. In addition,

many generative models like sparse coding [6], PCA [7] and online density estimation [8] had also

received excellent performance and became a hot issue. In recent years, the single feature based

visual models are still in use and perform well. For example, Henriques [9] proposed to track via
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Fig 1 The salient features in different video examples.

learning and detecting over translated image patches in 2015, and standard histogram of gradients

(HOG) [10] feature was employed in his Kernelized Correlation Filters (KCF) model. Zhang [11]

realized a (Real-Time Compressive Tracking) CT method, in which the extracted Haar-like [12]

features were compressed with a sparse measurement matrix for the appearance model. With better

performance, the feature integration model is becoming more welcomed than the single feature

based model in recent years. The typical work include the weighted sum model [13], hierarchical

model [14], the HMM model [15], the Gaussian mixture model [16] and the pyramid model [17].

The idea of integration has also been realized in the Deep Learning framework: a STCT method

[18] extracted an effective feature map via convolutional networks, the networks are trained from

a large scale image classification dataset for tracking.

It has been tested that the feature integration models are superior to single feature based models,

because it can comprehensively consider the characteristic in video sequences. For example, when

color and texture features are employed together, the tracker can perform well on the videos in

which both of these features are dominant. In contrast, the trackers only employ color features

could not perform well on the sequences in which the texture feature is dominant.

However, due to diversity of video sequences, which kind of feature is absolutely dominant in

tracking can not be determined easily. It is very likely to be feature A and feature B constitute the

characteristics of video together. So can it be half of feature A and half of feature B? Absolutely

not, perhaps 20 percent of A and 80 percent of B, or 45 percent of A and 55 percent of B, it

depends. Different videos may need different proportions on feature construction, thus an adaptive

representation model is needed. There is a saying that give what you needed is better than give you

all, so we need to tailor useful information to specific video sequence. In this way lots of noise or

redundant information in integration model could be decontaminated, the computation load could

be alleviated and “Curse of Dimension” could be avoided. Moreover, the complexity of appearance

model which constrains its further application to visual tracking could be decreased.

To the best of our knowledge, there are few researchers paying their efforts on tracking with

selected information. A similar work with this idea is the method of Grabner etc. [19] in 2006, they

selected the best weak classifiers corresponding to the features in their Adaboost framework. This

method received a great improvement on tracking results in the early 21th century. The success

mainly relied on the adaptiveness of the boosting. Different from this method, selecting feature

is treated as an optimization problem in our algorithm, the features are decontaminated directly

before assigning them to the classifiers.

The goal of decontaminating features is to build an adaptive visual model for a specific video.

In this paper, we resolve it as an optimization problem, while the evolutionary algorithm is em-
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ployed in selecting the optimal feature subset. Moreover, in order to keep adaptiveness of the

visual model on a given feature subset over the whole sequence, we update the model parameters

and feature pool in a Sequential Monte Carlo framework. Instead of generative models that focus

on the target matching, we realized our research in a discriminative framework of ensemble.

The overall framework of the proposed tracker is shown in Fig.2. Specifically, a best string

is obtained using Evolutionary Algorithm at the first frame (shown in the right column): decon-

taminate the features extracted into feature subsets using binary codes, in which the binary codes

are optimized iteratively by Evolutionary Algorithm. The binary string represent the best features

expression. Pass the binary string to all the follow-up frames, equal to let the tracker work with

the most suitable features, train the classifiers with features in higher quality the tracking accuracy

is sure to be enhanced. To illustrate the universality of our method, the most basic evolutionary al-

gorithm Genetic Algorithm [20] is utilized as an example to obtain an optimal feature subset from

the feature pool. The final solution is generated iteratively by evaluating the qualities of feature

subsets using the objective function, which is defined to analysis distribution between interesting

region and ground truth bounding box.

The proposed method has been tested on the widely used benchmark datasets OTB2015[21]

and VOT2016[22]. Extensively experiments and discussion has been performed on representative

video sequences, which cover various tracking challenges. Compared with several state-of-the-art

trackers, our tracker is demonstrated to perform with better or at least comparable results.

This paper is organized as follows: We first describe the process of decontaminating features

for tracking in Section 2. The detailed methodology of model updating is described in Section 3.

In Section 4, the overall framework of our tracker is described. Section 5 illustrates results and

discussion.

Fig 2 Overview of the proposed decontaminating feature based tracker.

2 Decontaminate Features for Tracking

2.1 Feature Pool

The bounding box in every frame is represented as a multi-scale patches model with four levels

similar to pyramid representation[23]. In detail, at the first level, we divide the bounding box into

patches of size n × n uniformly. At the second and third levels, larger patches that cover different
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Fig 3 Approximate the optional solution by the binary evolutionary algorithm.

portions of the object are also selected by divide the bounding box into the number of 4 × 4, 2 ×
2 patches evenly. At the highest level, the whole bounding box is considered as one patch.

In the initial procedure, widely used features including 64-bins Hue-Saturation-Value (HSV)

color/gray-scale histogram, standard histogram of gradients (HOG) and Local Binary Patterns

(LBP) are extracted in the patches of four scales to form a feature combination. There exist inef-

fective features that are less dominant in discriminating, which are regarded as noise or redundant

information. The combination with redundant information could not only effect describing the

characteristic of every video sequence adaptively, but also increase the computation load and have

a negative impact on tracking result. Our task is to tailor feature to every specific video adaptively

and provide a subset with better discriminative ability for tracking.

2.2 Decontaminate Feature via Evolutionary Algorithm

In this section, we will fully introduce the method of optimizing the binary coded feature vector

with evolutionary algorithm, and its solution processes.

2.2.1 Evolutionary Method for Optimization

Since the feature vectors with somewhat redundant information couldn’t describe the characteristic

of every frame adaptively, we need to remove the redundant ones in order to improve the repre-

sentative ability of visual model. The evolutionary algorithm is characterized by weeding out the

worst solution and leaving a better one to meet the needs of decontaminating feature for tacking

precisely. Evolutionary algorithms [24][25][26] simulate the way of biological evolution, aim to

gradually find an optimized solution through selection, crossover, mutation and some other ways

with the objective function as optimization direction. To illustrate the universality of our method,

the most basic evolutionary algorithm Genetic Algorithm is took as an example to resolve the

above optimization problem, therefore we suggested that the evolutionary algorithms with more

complex strategies could perform with better result.
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Every feature subset is represented as a binary string as shown in Fig.3, it is seen as an individ-

ual in the population. At each iteration step, N binary strings B = (b0, b1, ..., bm−1) are generated

randomly, bi = {0, 1}(in which 0 represents remove this feature from feature vector and 1 repre-

sents retain). For each individual, the objective function will return a fitness value which estimates

the discriminative ability of the feature subset. Maximize or minimize objective value J in the

following selection, crossover and mutation steps, a best string is to be obtained by optimizing the

initial strings:

Selection: Fitness values are obtained by evaluating every individuals with objective function.

Sort the corresponding fitness values, our algorithm retains the best M individuals as elite and

leaves them to the next generation.

Crossover: For the rest (N-M) individuals, do a randomly mutual crossover according to a

fixed probability. Two new individuals will be obtained in every crossover processing. Evaluate

the new individuals with the objective function again, if the new individual is worse then retain the

old one, otherwise replace the old with the new one.

Mutation: Choose an individual randomly from the (N-M) individuals, find the mutation point

in this string according to a mutation probability and invert it. Similar to the crossover, replace

the old individual with new one in better quality, otherwise discard the new string. Thus a new

population is formed with the new (N-M) individuals and the elite individuals.

Iterative execute the above process for K generations until a best solution convergence, which

represents the best feature subset for tracking.

2.2.2 Objective Function

As the core of optimization algorithm, objective function represents the optimization direction.

With an appropriate objective function, it is sure to obtain an optimized feature subset for visual

model.

Fig 4 Schematic diagram of objective function optimization, in which the green bounding boxes in the first picture

represent samples generated randomly, the blue ones in the following pictures represent the best samples, and the

yellow ones represent the worst.

During the optimization procedure, in order to distinguish the target and background, a number

of random samples(bounding boxes) are generated to simulate the distribution of the pixels in the

target and background. Specifically, N samples in the detection region (including target and its

neighbor background) are generated according to a Gauss perturbing on the ground-truth location,

and each sample is represented as a regional image. Our task is to determine which of these samples

5



belong to the target region according to the objective function. In order to prove the feasibility of

the optimization algorithm in decontaminating feature, two objective functions are designed to

evaluate the feature subsets from different perspectives. Fig.4 shows the random samples and the

process of optimization with the objective function, specifically the second objective function is

took as an example.

Object Function J1: Each feasible solution (random binary string) corresponds to a random

combination of the feature vectors. Based on the initial features extracted from image samples

and ground truth, simplified feature vectors are obtained according to the random combination

strategy. Then calculate all the average distances di, i ∈ 1...N between the simplified feature

vector of samples and the simplified feature vector of ground truth bounding box according to the

following formulation, specifically the ground truth of the first frame is given in benchmark for

comparison:

di = n−1

n
∑

f=1

√

ds2f − dg2f , i = 1...N (1)

where n is the size of feature vector. dsf is the f -th element of this sample feature, dgf is the

f -th element of the ground truth feature. Sort the distances in descending order and select the

samples farthest and nearest to ground-truth to obtain worst and best mean value dw, db in following

equation, in which Nw and Nb are the numbers of the worst and best samples respectively.

dw = Nw
−1

N
∑

N−Nw

di, db = Nb
−1

Nb
∑

1

diNb (2)

Finally, the objective value is defined as:

J1 = dw − db (3)

We assume that a larger objective value represents a stronger discriminative ability of the fea-

ture subset.

Object Function J2: This function is designed according to the ideal of the linear discriminant

analysis(LDA)[27]: it is also based on random samples. The similarity is calculated by dot product

the simplified features extracted from every random sample and ground-truth. Select the best

and worst random samples to build two clusters A = {Ai|i = 1...Nb} , B = {Bi|i = 1...Nw}
according to similarity, in which Nb and Nw are the numbers of best and worst samples, Ai and Bi

are samples’ locations in corresponding cluster respectively. Then calculate the objective value J2
in following equation:

J2 =
Sw

Sb

(4)

where Sw is within-class scatter, and Sb is between-class scatter. Sw is calculated by the sum

the covariances of selected samples in two clusters.

Sw = cov(A) + cov(B) (5)

Sb is the Euclidean distance between the best mean center location Ā and worst mean center

location B̄. The smaller the obtained fitness value is, the more effective for tracking the feature
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subset is.

Sb =
√

Ā2 − B̄2 (6)

In the above evolutionary algorithm, all the features are binary coded and optimized in the way

of biological evolution. After the evolution, apply the optimal solution to the feature combination,

it will be decontaminated with the character of optimal discriminative ability and efficiency.

3 Model Updating

A tracker often has to adapt to significant changes in tracking scenarios. Therefore a fixed visual

model on a given feature subset may not sufficient to keep adaptiveness over the whole sequence.

In order to improve the adaptability, we proposed to update the tracking parameters in a Sequential

Monte Carlo (SMC) framework.

Know that the discriminative model possesses better robustness, we realized the above visual

model in an ensemble tracking framework with hybrid classifiers. Every detection region is divid-

ed into a pyramid with patches in four scales as mentioned in section 2.1. Each image patch is

corresponding to a weak classifier, the smaller patches in regular size n × n are assigned to LDM

classifiers, the larger patches in other sizes are assigned to SVM classifiers. Scale-adaptive hybrid

weak classifiers are weighted combined as a strong one. And the final results are output from the

strong classifier. You can find details in our previous work[28].

In the tracking process, the features of detection region would undergo great changes. To

improve adaptiveness and generality of the tracker, both the weight vectors and the pool of weak

classifiers are updated by frame to evolve the model.

The sequentially arriving flow of weight vector Vt over the whole video sequence is seen as a

state-evolving procedure. From a Bayesian point of view, its updating is estimated by obtaining its

posterior distribution.

Given a sequence and a corresponding sequence of observations, the goal is to find a max

posterior distribution. The Monte Carlo method provides a possible solution to this problem .

Particle Filter (PF)[29] is a recursive Bayesian filter that belongs to the SMC methods.

According to the classical PF, at time t− 1, the posterior probability distribution p(vt−1|Zt−1)
is usually approximated by using a finite number (N ) of weighted wi

t−1 samples p(vt−1|Zt−1) ≈
{wi

t−1, v
i
t−1}

N
i=1. In our methods, N is set to 500 specially. Then, the posterior distribution p(vt|Zt)

can be approximated by using some weighted samples as

p(vt|Zt) ≈ cp(Zt|vt)
N
∑

i=1

wi
t−1p(v

i
t−1|Z

i
t−1) (7)

Because it is difficult to draw samples from the posterior distribution, the important sampling

method is usually performed by a proposal distribution. Samples are drawn from a proposal density

q as

vit ∼ q(vit) ,
∑

i

wi
t−1p(v

i
t|v

i
t−1). (8)

The sample weight is usually recursively updated as

wi
t = p(Zi

t−1|v
i
t−1)w

i
t−1 (9)
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The weight of each weak classifier is updated based not only on the observation at the current

frame but also on its consistency with the adjacent frames. In such a way, abrupt changes will be

avoided and reliable updating is realized.

4 Overview of the Adaptive Tracker

Above all, in order to decontaminate the redundant information from the feature pool, we propose

an adaptive visual model. An optimal feature subset is selected using evolutionary algorithm, the

adaptiveness is kept by modeling the parameters in a SMC framework. This adaptive visual model

is realized in an ensemble tracking framework. The overall algorithm is shown in Algorithm 1.

Algorithm 1 Framework of our tracking method.

Input: Video frames I1, I2..., It; Target state x0 at the first frame.

Output: Target states x1; x2; ...; xt

if frame t=1 then

Initialize target state x0 according to the ground-truth data;

Decontaminate feature with optimization method according to the ground-truth data, obtain

optimal binary string which represents the best feature subset.

Provide the feature subset to classifiers for training.

end if

if frame t > 1 then

Obtain the set of all scanning windows in this frame as S(t);

For each input data x ∈ S(t), represent x in multi-scale method and extract features according

to the optimal binary string.

Employ hybrid classifiers to patches in different scales.

Ensemble the weak classifiers as a strong classifier with weight combined.

Update the weight of weak classifier and pool of weak classifier under SMC framework.

end if

Fig 5 The curves of the parameter settings on tracking performance.

5 Results and Discussion

In this section the implementation details and parameter settings are described.
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There are few benchmarks for visual tracking proposed[21,22]. Considering the fairness, the

effectiveness of our tracking method is demonstrated by quantitative and qualitative analysis not

only on the widely used dataset OTB2015[21] with various challenges, including illumination vari-

ation, scale variation, occlusion, deformation, in-plane rotation, out-of-plane rotation, background

clutters, and low resolution but also on rich VOT2016 datasets[22] which cover many represen-

tative datasets, such as ALOV+++[30], non-tracking datasets, Computer Vision Online, Professor

Bob Fishers Image Database and some other representative datasets. Similar to popular track-

ers proposed in [21] visual cues including HSV, HOG and LBP are employed, the feature pool

construction is already sufficient to analyse the effect of feature decontamination.

5.1 Evaluation methodology

We employ five widely used metrics for evaluation: Average Center Location Error (ACLE), Av-

erage Overlap Ratio (AOR), success rate, precision plots and average expected overlap.

The metric of ACLE [31] is the average Euclidean distance between center of predicted and

ground truth bounding box. AOR according to the Pascal VOC criteria [32] is the overlap ratio

between result output and ground truth bounding box. ACLE and AOR can evaluate the tracking

method from the aspect of each video sequence frame to frame which is more intuitive. Specially,

larger AOR represents better performance, and smaller ACLE represents better performance.

The success rate and precision plot follow the evaluation protocols in [33]. The ratio of suc-

cessfully tracked frames is measured by a set of thresholds, where bounding box overlap ratio and

center location error are employed in success rate and precision plot, respectively. We rank the

tracking methods based on Area Under Curve(AUC) for success rate plot and center location er-

ror at 20 pixels for precision plot. The success plot and precision plot that consider all results of

different visual sequences can provide a more comprehensive comparison.

The average expected overlap is the average overlap ratio between bounding box and the ground

truth similar with AOR. For a full treatment of this metric, readers are encouraged to read [22].

5.2 Parameters Discussion

We study the parameter settings on the tracking performance. Overall, the controlling parameters

include the number of iterations, the encoding ratio, the crossover and mutation probabilities in the

GA. Since the video sequences “boy” covers most tracking challenges such as “scale variation”,

“motion blur”, “fast motion”, ‘in plane rotation”, “out of plane rotation”, all the parameters are

tested on this certain video for analysis. For each parameter, we test its influence in its definition

domain when the others are fixed. The curves in Fig. 5 presents the influence of the parameters

settings on the tracking performance.

The genetic algorithm starts from an initial solution, and converges to an optimal one after

a number of iterations. When other parameters (crossover and mutation probabilities) are fixed,

number of iterations determines the precision of the optimal solution. We test number of iterations

from 10 to 60. And from the curves shown in Fig.5(a), we can see that the tracking performance,

especially the AOR curves is not sensitive to the number of iterations. Overall, it is fixed to 40 in

all experiments.

The mutation and crossover probabilities influence the convergence speed of GA. For the

crossover probability, it is set in the range of 0.1 to 0.9. And for the mutation probability, it is

usually below 0.3, therefore, it is set as 0.001, 0.01, 0.1, 0.2 and 0.3. From the curves in Fig. 5, the
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Fig 6 Average success plot and precision plot on OTB2015.

AOR metric shows less sensitiveness to these two parameters. However a big difference is shown

between the ACLE curves. Specifically, the tracker reaches the minimum error when the crossover

probability is around 0.6 and the mutation probability is 0.01. That means frequent crossover or

mutation will lead to premature convergence. Therefore, these two parameters are set to 0.55 and

0.01.

Table 1 Tracking sequences used in our experiments

Video sequences Nubmer of frames Main challenges

Boy 602
Scale Variation,Motion Blur,Fast Motion,In-Plane Rotation,

Out-of-Plane Rotation

Basketball 725
Illumination Variation,Occlusion,Deformation,Out-of-Plane

Rotation,Background Clutters

Car4 659 Illumination Variation,Scale Variation

Coke 291
Illumination Variation,Occlusion,Fast Motion,In-Plane

Rotation,Out-of-Plane Rotation,Background Clutters

Couple 140
Scale Variation,Deformation,Fast Motion,Out-of-Plane

Rotation,Background Clutters

Deer 71
Motion Blur,Fast Motion,In-Plane Rotation,Background

Clutters,Low Resolution

Football1 81
In-Plane Rotation,Out-of-Plane Rotation,Background

Clutters

Girl 500
Scale Variation,Occlusion,In-Plane Rotation,Out-of-Plane

Rotation

Walking2 500 Scale Variation,Occlusion,Low Resolution

Bird2 99
Occlusion,Deformation,Fast Motion,In-Plane Rotation,

Out-of-Plane Rotation
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Fig 7 Average expected overlap plot on VOT2016(a). Performance rank between our method and other state-of-the-art

methods under different visual challenges(b).

5.3 Comparison with State-of-the-Art Methods

Our method is compared with ten state-of-the-art publicly available visual trackers, including MIL

[34], VTD[35], Struck [36], SCM [37], TLD[31], LSHT [38], FCT [39], KCF [9], Staple [40] and

SRDCFdecon [41] on dataset OTB2015. The overall performance on OPE and SRE evaluation is

shown in Fig. 6. According to the plots, we can see that the proposed approach achieves the best

precision in both OPE and SRE. For success rate, ours is the best for OPE and the second best in

SRE.

Besides, we also compared our method with six representative tracking methods on datasets

VOT2016, including Staple [40], SRDCF[42], SRDCFdecon [41], KCF [9], FCT [39] and Struck

[36](The reason for the lack of several methods is that these methods didn’t provide results for VOT

datasets). The overall performance on average expected overlap evaluation and the performance

rank between our method and other state-of-the-art approaches under different visual challenges

are shown in Fig. 7. As seen, our method reaches a higher average expected overlap ratio and

on-average ranks the first under various visual challenges, especially in coping with illumination

changes.

Since in both datasets, our method performs with better or at least comparable results, to evalu-

ate intuitively, we select ten video sequences from the OTB2015 benchmark dataset. The selected

sequences cover various attributes in tracking challenges are shown in Table 1, the AOR and ACLE

results compared with six representative tracking methods are reported in Table 2 and Table. 3.

The proposed tracker with two different objective functions Ours (J1) and Ours (J2) (described in

formula(3) and (4), which represent two different algorithms used to implement optimization) are

listed in tables specifically. In addition, to better validate the effect of the decontamination step,

the proposed method is also compared with the method without optimization step (Ours(baseline))

in the same tracking framework. As higher AOR value and lower ACLE value represent better

performance, conclude from data in tables we can see that the method optimized with J1 objective

function can achieve a higher AOR value, and the method optimized with J2 objective function

can achieve a lower ACLE value. However compared to the tracking method without optimization

step, the performance of which with both these two objective functions have been enhanced a lot.

Overall, the proposed adaptive model realizes better or at least comparative performance in

comparison with the other methods. Generally speaking, for many challenging videos, our method
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Fig 8 Tracking results comparison of the tested videos on some key frames, where the tracking results are represented

as a bounding box. Different color represents different tracker.

is qualified to provide the accurate locations of the target.

For more informative comparison, the qualitative tracking results obtained by multiple algo-

rithms on the selected sequences are illustrated in Fig.8 and Fig.9. We can conclude that our

method outperforms most of the other trackers against tracking challenges including complex
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Fig 9 Tracking results comparison of the tested videos on some key frames, where the tracking results are represented

as a bounding box. Different color represents different tracker.

Table 2 Tracking results on AOR, where DFT(J1) and DFT(J2) are the data for the proposed tracking employ different

object functions shown in formula (2) and (4)

AOR LSHT FCT KCF Staple SRDCFdecon
Ours

(baseline)

Ours

(J1)

Ours

(J2)

BOY 0.3393 0.63 0.65 0.74 0.83 0.74 0.73 0.73

Basketball 0.4363 0.23 0.68 0.44 0.42 0.58 0.61 0.62

Car4 0.2097 0.24 0.59 0.79 0.87 0.45 0.71 0.70

Coke 0.1589 0.36 0.39 0.58 0.56 0.62 0.63 0.69

Couple 0.1778 0.48 0.22 0.5 0.73 0.6 0.64 0.64

Deer 0.1081 0.67 0.42 0.68 0.8 0.76 0.68 0.78

Football1 0.5834 0.17 0.48 0.76 0.48 0.74 0.76 0.76

Girl 0.2499 0.36 0.51 0.55 0.63 0.42 0.45 0.52

Walking2 0.3788 0.28 0.38 0.76 0.808 0.46 0.67 0.65

Bird2 0.5421 0.1 0.58 - - 0.66 0.66 0.71

Average 0.32 0.35 0.49 0.64 0.67 0.60 0.65 0.68
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Table 3 Tracking results on ACLE, where DFT(J1) and DFT(J2) are the data for the proposed tracking employ

different object functions shown in formula (2) and (4)

ACLE LSHT FCT KCF Staple SRDCFdecon
Ours

(baseline)

Ours

(J1)

Ours

(J2)

BOY 15.67 6.07 1.97 2.54 1.5 1.16 1.06 1.03

Basketball 70.64 77.4 5.02 11.52 18.35 16.51 7.66 12.55

Car4 87.71 37.7 9.58 12.1 1.56 17.07 3.17 3.23

Coke 35.59 12 12.67 9.36 13.35 7.6778 5.93 5.05

Couple 64.33 31.9 45 4.3 3.3 3.077 2.58 2.49

Deer 41.33 4.4 11.6 10.5 2.7 3.86 2.49 3.66

Football1 5.92 16.4 3.25 2.3 6.04 2.363 1.69 1.55

Girl 24.45 13 8.39 7.9 2.3 11.77 9.85 8.44

Walking2 2.79 23.5 6.66 1.8 0.88 3.46 1.09 1.09

Bird2 17.15 45.82 7.67 - 8.32 9.69 7.88 6.16

Average 36.56 26.8 11.18 6.9 5.83 7.66 4.34 4.52

background, fast motion, occlusion, deformation and so on. The success of our method mainly

due to two factors: the first one is that the features used in the tracking process are different be-

tween video sequences, and every feature subset is corresponding to the character of current video

sequences. With high discriminative visual model, the accuracy of tracker is sure to be enhanced.

The second factor is: SMC based framework is employed to update tracking parameters and fea-

ture pool, target deformation and abrupt changes are able to be handled in the tracking process. As

a result, the stability and adaptability of the tracking are well guaranteed.

6 Conclusion

In this paper, a novel scheme is proposed to improve the adaptability and robustness of visual

models. Specifically, the visual modeling is converted into an optimization problem, where the

optimal solution is determined by applying the classical evolutionary algorithm. By applying the

determined adaptive visual model for specific video sequence, it helps to provide a new view for

the visual modeling problem. The Genetic Algorithm is employed as an example due to its strong

generalization capability, other evolutionary algorithms such as Artificial immune algorithm, Sim-

ulated annealing algorithm can also be employed. Although in our experiments only color, edge

and texture features are employed, more visual cues such as motion and Haar-like features can

also be added. For future work, we will integrate more features and other existing evolutionary

algorithms to further improve the performance of the proposed trackers.
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