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ABSTRACT 9 

Load prediction is the first step in designing an efficient community district heating system 10 

(CDHS). Even though, several methods have been developed to predict the heating demand 11 

profile of buildings, there is a lack of method that can predict this profile for a large-scale 12 

community with a numerous user types in a timely manner and with an appropriate level of 13 

precision.  14 

It, first briefly describes the 4-step procedure developed earlier, utilizing a Multiple Non-Linear 15 

Regression (MNLR) method, for predicting the heating demand profile of district, followed by 16 

description of the community structure, and its district system. It also reports the field 17 

measurement procedure for collecting the data required and the preliminary analysis data. 18 

Results obtained from a continuous monitoring of the CDHS over a two-year period is employed 19 

to validate the accuracy of the developed model in the predicting the CDHS’s heating load 20 

profile. Finally, using the 4-step procedure, the district’s energy demand profile is predicted, and 21 

compared with both the measured data and the initial prediction. The outcome shows a less than 22 

11.2% in the mean square root error (MSRE) of the predicted and measured load profiles.  23 

 24 
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1. Introduction 31 

Providing secure and clean source of energy to respond the households’ demand is one of 32 

the upmost fundamental challenges faced by the energy planners. In effect, households represent 33 

a significant share of the total energy demand; they are responsible for 40% and 26% of the total 34 

energy consumption in North America and Europe, respectively [1]. In the last few decades, 35 

using fossil fuels as the world's main energy source has resulted in their depletion and increased 36 

the level of CO2 equivalent emissions. There are targets for reductions in CO2 emissions 37 

worldwide. Specifically, the Energy Technology Perspective 2012 Roadmap (IEA) aims to 38 

reduce CO2 emissions by 50% [2]. Given the expected rise in household energy consumption, the 39 

building sector is now required to adapt to the new ambitious demands of developing Net-Zero 40 

Energy Buildings/communities (NZEB) by 2050.  41 

Numerous building energy conservation strategies have been tested using energy storage 42 

[3-5] and user-demand [6] methods. The Hybrid Community-District Heating System (H-CDHS) 43 

is a unique energy management alternative given its storage and renewable systems are 44 

integrated in the district’s thermal energy system. Since the energy generated by renewable 45 

sources is not uniform throughout the day, a thermal energy storage unit allows the system to 46 

synchronize with the supply and demand. To implement this system effectively, it is essential to 47 

predict the H-CDHS’ detailed energy demand profile[7].  48 

 Hence, several methods have been developed to model buildings’ energy demand profile 49 

[8-10]. Given its restricted number of users, a small-scale Hybrid Community District Heating 50 

System  (H-CDHS) energy demand profile can be predicted using a detailed model of users’ 51 

consumption created with energy simulation models [8]. Conversely, in large district scale 52 

systems, due to the large volume of users, a comprehensive modeling is time-consuming, 53 
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computationally expensive and sometimes impractical. Some researchers used comprehensive 54 

models to predict the heating demand profile of larger scale communities [11, 12]. To overcome 55 

this problem, variety of simplified models were developed to predict the heating demand profile 56 

or total energy demand of large communities. These simplified models could be divided into four 57 

major categories—black box models (e.g. ANN) [13]; gray box models [14, 15]; equivalent RC 58 

networks [16-18]; and regression models [19-24]. Regardless of the method chosen, previous 59 

demand estimates focused mainly on predicting the peak and total energy demand. Only few 60 

studies tried predicting the demand profile [11, 14, 23].    61 

 Though these simplified models could reduce the computational time to a fraction of that 62 

of comprehensive models, their simplicity would compromise the prediction accuracy due to 63 

limitation of the simplified models. Three major drawbacks could be assumed for most of these 64 

simplified modes.  First, the low prediction accuracy emerging from assumptions made in 65 

modeling the individual buildings/units a) presentation of the occupants’ behaviour and, b) the 66 

interaction of each building with surrounding buildings in an urban setting. One of the most 67 

challenging issues of heating demand prediction models is having to correct input parameters. 68 

Input parameters that are dependent on occupants’ behaviour/activities, including heating set 69 

points and schedules; Internal heat gain due to occupants’ activity and the building’s heating 70 

system; natural ventilation flow rate; solar gains from using windows blinds or shades, etc. 71 

Second, scaling effects impair accuracy by oversimplifying scaling methods that extrapolate 72 

results from building level to the district level. And third, flexible methods that predict 73 

community load profile in diverse building types. More details regarding the limitation of 74 

previous projects can be found in previous works done by authors [8, 25]. Table 1 summarizes 75 

studies related to CDHS’ heat demand prediction. A closer analysis of existing models reveals 76 
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that the current scholarship requires further validation of models that predict heating demands 77 

using measured data.   78 

This paper endorses a 4-step procedure developed to predict the energy demand profile 79 

for H-CDHS. It, first briefly describes the 4-step procedure [25] developed earlier for predicting 80 

the heating demand profile of district, followed by description of the community structure, and 81 

its district system. It also reports the field measurement procedure for collecting the data required 82 

for validating the model from the West Whitlawburn Housing Co-Operative (WWH) CDHS in 83 

Scotland. The measurement technique, and the preliminary analysis data are explained. Finally, 84 

using the 4-step procedure, the district’s energy demand profile is predicted, and compared with 85 

both the measured data and the initial prediction.  86 

 87 

Table 1: Load Prediction Summary 88 

 89 

      

2. Methodology 90 

2.1. The four-step demand profile procedure 91 

Talebi et al [25] developed a simplified model to predict  the heating demand profile and peak 92 

loads in complex district systems Figure 1 shows the procedure used in the development of the 93 

simplified models. The procedures are based on the Multiple Linear Regression (MLR) and 94 

Multiple Non-Linear Regression (MNLR) methods. In this four-step procedure, the entire 95 

district’s heating demand profile is predicted by modeling each individual unit in the community 96 

using its physical and geometrical characteristics, the regions’ meteorological information, and 97 

the occupants’ general behavior.  98 
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1) In the first step, a sample building stock model (BSM) is segmented into different archetypes, and 99 

a reference building is defined for each archetype. The initial segmentation is completed by considering 100 

the building’s construction method, physical and geometrical properties, and construction period [25].  101 

Once the initial archetypes are determined, each archetype is further divided into sub-archetypes based on 102 

the occupancy schedule (e.g. residential user with high, medium and low usage, etc.) of the building 103 

within that archetype. Different methods are used for segmenting the BSM based on the occupancy 104 

schedule. While some researchers only segment the BSM based on major occupancy types (e.g. 105 

residential, commercial, or office types), others segment it following the user’s energy profile. This study 106 

presents a more detailed approach for defining the number of archetypes as well as the reference building 107 

for each archetype. A hierarchical clustering method was adopted for this end. In this method, the data set 108 

is split into a prefixed number of clusters. The building closest to the centroid of that cluster is defined as 109 

a reference building for that cluster. To define the number of clusters required for a given data set, 110 

prefixed number of clusters, the optimal number of cluster is defined using the elbow method.  111 

2) The second step involves building the model’s input files. These files are constructed 112 

based on the physical properties of individual units, regional meteorological data, and occupants’ 113 

behaviour. Four different input files were constructed for this study.  114 

i) The first input file is the solar dependent variable. This variable is determined using the 115 

weather station closest to the district site and defines each unit’s envelope assembly solar heat 116 

gain. The solar components obtained from the weather file are translated on each envelope 117 

assembly using the incident angle, orientation, and albedo of that assembly.  118 

ii) The second input file is the thermal dependent file. The thermal dependent file defined 119 

based on the average heat transfer from the unit’s exterior facade, considering its average 120 

thermal resistance of the exterior façade of the unit and the indoor-outdoor temperature 121 

difference.  122 
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iii) The third input file is the units’ internal gain. Should specific data about units’ internal 123 

heat generation be unavailable, the general households’ average heat generation can be used.  124 

iv) And finally, the fourth input file constructed based on the daily HVAC system on/off 125 

cycles.  126 

3) In the third step, a reference building’s heating demand profile is initially defined using 127 

the data obtained from the measured data. An ANN model is then trained and tested using the 128 

reference building’s input file as well as the heating profile of them to obtain the regression 129 

coefficients. More detail information regarding the training of the model using the ANN method 130 

could be find in [25]. 131 

4)  Finally, in the fourth step, once the MNLR model is trained separately for each 132 

archetype, using the reference building, each individual unit’s heating demand profile is 133 

predicted by adopting the input file of them [25].  134 

 135 

Figure 1: Simplified procedure to predict the heating demand profile 136 

 137 

3. Description of the community district heating system design 138 

The selected Hybrid Community-District Heating System (H-CDHS) is a mid-size 139 

community district heating system in Whitlawburn, Cambuslang, Scotland. The WWH was 140 

established in 1989 to provide local community control and promote affordable quality housings 141 

for lower income families. The community consists of 640+ dwelling units with four types of 142 

buildings. Until 2007, all buildings used the conventional individual dwelling electrical heating 143 

systems for the space heating and domestic hot water (DHW) supply. In 2007, the administration 144 
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board developed their own district heating system to give the community a more affordable 145 

energy and improve the quality of indoor environment by increasing energy efficiency and 146 

decreasing the energy cost. Thus, after performing a feasibility study, the community 147 

management decided to develop their own DHS using a central energy center
1
, a network of 148 

insulated pipework connecting the boiler house to users, and individual direct heat interface units 149 

in each dwelling. Figure 2 shows the location of buildings connected to the H-CDHS with 150 

respect to the boiler house: 151 

1- Newly renovated tower of 12 stories (6 towers) 152 

2- Newly built duplex detached houses (50 buildings) 153 

3- 4-story terrace buildings (10 buildings) 154 

4- Community buildings (5 buildings) 155 

 156 

Figure 2: Hybrid community-district heating system layout in Whitlawburn, Cambuslang, 157 

Scotland  158 

 159 

Although most recent district systems prefer using medium to low temperature water to 160 

minimize heat loss, an operational temperature of 80°C was chosen in this case to satisfy the 161 

minimum temperature required for DHW usage. The proposed H-CDHS can be thus categorized 162 

somewhere between the second (high temperature) and third generation (energy storage) of the 163 

DHSs according to the district system’s generation type (See Figure 3). In the first development 164 

phase, six high-rise towers and five terrace buildings were connected to the H-CDHS. To size the 165 

                                                           
1
 A boiler house with a biomass boiler as its main heat generator, three backup gas boilers, and a 50 m

3
 hot water 

thermal storage tank to cover potential winter peaks. 
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boilers and the thermal storage tank, conservative industry standard sizing methods were used, 166 

following the Design Day method [ref old CIBSE Guide], which pre-dates the current guidance 167 

[new CIBSE Guide]. The district’s energy demand was predicted based on the living space’s 168 

total square meters and the Scottish building stock’s annual energy consumption benchmarks 169 

[CIBSE TM46]. 170 

Figure 3: District heating systems generations [34] 171 

 172 

4. Monitoring the district heating system’s performance  173 

Since 2014, the district heating system became operative and provides energy for more 174 

than 80% of the dwellings within the community. To better understand the system’s heat flow, a 175 

monitoring Building Management System (BMS) interface was installed, enabling operators to 176 

monitor the system’s energy generation, loss of the distribution network, and energy consumed 177 

by tenants at different measuring points (MP). The main advantage of having a BMS system with 178 

multiple MPs is that the data obtained from different MPs can be used to validate and calibrate 179 

other MPs and estimate heat loss in the H-CDHS. In other words, using the data collected from 180 

the district line and smart meters helps operators measure the energy purchased by tenants, 181 

compare it with the energy generated by the boiler house, and eventually determine the 182 

distribution networks’ heat loss. Thus, the MPs potentially help verify the measurements’ 183 

accuracy at different stages. There are five MPs types installed in the H-CDHS at different 184 

locations and data acquisition frequencies (see Figure 3): 185 

1) Smart meters located in each dwelling monitor energy consumption of both space heating 186 

(SH) and domestic hot water (DHW) system every half hour. 187 
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2) Energy meters installed on the dual heat exchanger units for SH and DHW inside the 188 

dwelling heat interface units (HIUs) (See Figure 5) provide the supply and return hot water 189 

pipes’ real-time mass flow rate and temperature, energy and volume pulse outputs, and 190 

accumulated energy consumed monthly. 191 

3) Building block energy meters similar to those in the HIUs at the entrance of each building 192 

block were mainly used to measure the accumulated energy consumed. 193 

4) District line meters measure the hot water flow rate, the H-CDHS main supply line’s supply, 194 

and the boiler house’s temperature every five minutes.   195 

5) The boilers sensors measure the accumulated amount of fuel consumed and the energy 196 

generated by each boiler every fifteen minutes.  197 

 198 

Figure 4: (A) Smart meter; (B) energy meter; (C) district and block meter; (D) boiler sensors 199 

 200 

A dual pipe network transfers the heated water from the boiler house to the building 201 

units, where a dual heat exchanger (“sub-system”) was installed to provide energy for space 202 

heating and domestic hot water purposes.  203 

As previously mentioned, a wide range of users of different socio-economic levels and 204 

behavior demands are connected to the system. Since a large number of users are lower income 205 

families, their energy consumption, and consequently their annual energy demand, are highly 206 

dependent on their economical state and the financial support received. Thus, the management 207 

office developed a prepaid energy credit system allowing each tenant to buy a credit in advance. 208 

The prepaid system connects to a smart meter in each unit. Smart-meters function both as an MP 209 
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and a user interface that records the costs associated with the energy consumed every half hour, 210 

which tenants could use to monitor their energy usage over time.  211 

 212 

Figure 5: The dual heat exchanger sub-system 213 

 214 

4.1. Limitations in demand profile prediction 215 

After surveying the site and reviewing the plant sizing and load prediction procedures in 216 

the design stage, it was concluded that several initial simplifications were made to predict the 217 

district system’s heating load. They are: 218 

1) All users were treated identically, irrespective of their behaviour, socio-economical 219 

background, etc., leading to a potentially significant error in load prediction. For example, while 220 

some senior tenants heat their units at a higher temperature throughout the day, younger tenants 221 

try lowering their heating bill as much as possible by turning off the system at night, and by 222 

using it for a short time in the evening. Those for whom social welfare is the only income could 223 

potentially tolerate lower interior temperatures and use less hot water than more affluent tenants. 224 

These factors were not considered in detail in the early design stage.  225 

2) All units were modeled following the same benchmark assumptions, while units’ 226 

characteristics (e.g. layout, orientation, insulation level, and window-to-wall ratio) were ignored. 227 

For example, on top of developing the district heating system in 2007, the exterior facade of all 228 

high-rise towers was renovated by adding a new layer over it. Also, balconies were converted to 229 

solaria, primarily on the south and west sides, which could potentially compensate a large 230 
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amount of heat requirements during the day due to solar gains. This highlights the potential error 231 

in using standard benchmarks, which are commonly based only on floor area and building age.  232 

3) System heat loss was estimated based on the operating temperature of the distribution 233 

network supply (85°C) and return (70°C), and the constant heat loss per degree temperature 234 

throughout the building envelope. This assumption could hold for newly renovated buildings, but 235 

not for partially renovated terrace buildings (the community’s oldest buildings). In this case, the 236 

oversimplified assumption underestimates heat loss and thus overestimates the demand profile 237 

prediction. However, underestimating the buildings’ heat loss could partly compensate for 238 

overestimating heating demands. But since the number of units in terrace buildings is less than 239 

20% of the total units connected to the district system, this underestimation is not enough to 240 

compensate for an exaggerated heating load prediction for high-rise units. 241 

Simplifications and conservative standard methods can greatly overestimate the overall 242 

energy and peak demands; cause oversized, inefficient systems with correspondingly increased 243 

capital costs provoked by short cycling and increasing inefficient combustion maintenance 244 

requirements; and potentially shorter lifetimes and replacement periods. Therefore, an alternative 245 

method that addresses these weaknesses was evaluated.    246 

4.2. Data Validation 247 

 To ensure accuracy, all measured data were cross validated at three different levels: unit 248 

level, building level and district level.  The methodology was applied to Arran tower (Tower #1) 249 

and Arian tower (Tower #2).  250 

 In the preliminarily validation of the data collected by smart metres in the Arran Tower 251 

units over four months of heating (November 2016 to February 2017), tenant occupancy was 252 
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verified and any changes in unit occupancy eliminated from results to avoid errors in the unit 253 

energy demand profile. After eliminating units with different tenants
2
, the monthly energy 254 

demand of remaining units was calculated using the data collected from smart meters. The 255 

monthly energy demand in units with similar tenants is expected to correlate with the monthly 256 

outdoor temperature. Therefore, a unit’s monthly usage in months with similar average outdoor 257 

temperatures should remain almost constant. 258 

 To ensure building data accuracy, the cumulated monthly usage of all units in each 259 

building and the building’s linearized heat loss were calculated and compared with the building 260 

meter. A similar procedure was chosen at the network level. The boiler house’s total output was 261 

compared with the total accumulated energy demand of all buildings and network losses added. 262 

5. Results and Conclusion  263 

5.1. Primary analysis of the H-CDHS energy performance 264 

In the first step, the CDHS’ two-year long monitored data was analyzed. Results showed 265 

that CDHS’ existing condition operates less efficiently with a higher heat loss than the expected 266 

design efficiency. Moreover, the predicted heating demand load for sizing the boiler house was 267 

2-2.5 higher than the district’s actual power demand load. This over estimating caused an 268 

oversizing of the boiler house. Given this, the boiler never worked at its optimal capacity and 269 

most of the time operated at a partial capacity, which decreased the system’s efficiency. 270 

Tenants’ behaviour is widely variable and possibly affected by individual characteristics, 271 

including economic status. The preliminary analysis of the data obtained from smart meters in 272 

each unit showed that units with almost identical physical characteristic have significantly 273 

                                                           
2
 Between November 2016 and February 2017.  
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different monthly energy demands. A field investigation and a recorded data reading revealed 274 

that only few units used a thermostat with a given set-point value to control the space heating.  275 

The majority did not use the heating system for most of a day. In most units, the heating system 276 

was off day and night, or only used briefly during the day. For tenants who turned on the heating 277 

more frequently, such unexpected behaviors were oversimplified in the CDHS’ design stage, 278 

assuming that all tenants use thermostats to control space heating on a regular pattern day and 279 

night. 280 

5.2. Clustering units 281 

The first step in predicting the heating load, using the four-step procedure mentioned in 282 

the methodology section, is to define the number of clusters required. To do that, all the units 283 

were initially divided, based on their built form and construction type, into two archetypes—the 284 

newly renovated high-rise, and partially renovated old terrace buildings. The units within each 285 

archetype were further segmented based on their occupancy behavior. A sample population 286 

dataset was selected to define the optimal number of archetypes associated with the occupants’ 287 

behavior in each construction type The total energy demand [kWh], the number of inter-unit heat 288 

exchanger on/off cycle per month, the peak monthly load [kW], the monthly heating degree day 289 

(HDD), and average monthly outdoor temperature were determined as effective parameters for 290 

defining the number of archetypes.  291 

For large-scale communities with numerous users like WWH, using all monitored data 292 

from every individual unit to determine the parameters required for defining the optimal cluster 293 

number is computationally intensive. Instead of calculating the required parameters of all units, 294 

the parameters of a smaller sample data that could represent the same distribution as the whole 295 
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community were considered (Arran tower, 72 units). The results were extrapolated to the entire 296 

data-set (Arian tower and the whole district).  297 

Figure 6 shows Arran tower’s average monthly energy demand (for all dwelling units) 298 

for both DHW and SH, between November 2016 and February 2017. This figure shows the range 299 

of energy demand fluctuation when outdoor temperatures and monthly HDD do not vary 300 

considerably. Variations between 5.17 [°C] and 5.98 [°C] for outdoor temperature and from 312 301 

to 331 for monthly HDD (Figure 6) are not significant for most units. Results obtained for all 302 

individual units in the Arran tower show that the monthly energy demand remains almost 303 

constant, with unit-to-unit variation generally being much greater than that of a unit’s monthly 304 

variation (except units 12, 37 and 39). Hence, most units’ demand profile’s monthly average is 305 

expected to remain almost constant (Figure 7).  306 

 307 

Figure 6: Monthly consumption of individual units in Tower # 1, Arran Tower 308 

 309 

 310 

Figure 7: Outdoor temperature and HDD for the 2016-17 heating season (Nov 2016 - Feb 2017) 311 

 312 

Using the five parameters, monthly consumption, number of inter-unit heat exchanger on/off 313 

cycle per month, monthly peak demand, monthly HDD and monthly outdoor average 314 

temperature, the K-means (number of clusters) varied between 1 and 20 to construct different 315 

numbers of clusters. Using an R software for each value of k, the square metric distance (m²) of 316 

residual (R) from a reference point was determined in order to find the optimal number of 317 

archetypes (clusters) for simulation. This value was selected when the difference between the 318 

residual of two consecutive clusters became negligible. One should choose a number of clusters 319 
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so that adding another cluster does not significantly increase the dataset presentation. The results 320 

are plotted in Figure 8, and it can be concluded that four to seven archetypes can be chosen as the 321 

optimal number. Here, k-means 4 was selected as the optimal number for demonstrating the 322 

method with adequate accuracy while maintaining computational costs low.  323 

Given the hierarchical clustering approach, all units in the sample dataset (Tower # 1) 324 

were divided into four different archetypes: Non-Typical High Usage (NTHU) cluster 1, Non-325 

Typical Low Usage (NTLU) cluster 2, Typical Thermostat Control Usage (TTCU) cluster 3, and 326 

Non-Typical Medium Usage (NTMU) cluster 4 (See Figure 9). The percentage ratio of units 327 

within each archetype is shown in Figure 9. 328 

 329 

Figure 8: Optimal number of archetypes 330 

 331 

Results obtained from the clustering in Tower # 1 show that only 5% of units are of the 332 

TTCU archetype. This value was assumed to be 100% in the CDHS’ design stage. The 333 

percentage of users in other archetypes are 16% (NTLU), 24% (NTMU), and 53% (NTHU).   334 

 335 

Figure 9: Clustering results for Tower # 1  336 

 337 

Figure 10 shows the typical daily demand profile of the reference buildings associated 338 

with each defined archetype obtained from the monitored data. It is important to note that in the 339 

training stage (step 3), the annual reference building’s demand profile was used, while here only 340 

a typical daily demand was presented. The heating demand profile for different occupancy 341 

archetypes is similar to one reported by tenants in the field investigation. NTLU users’ profile is 342 

largely dominated by a DHW usage in the morning and evening, and a slight use of space 343 
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heating in the evening. NTMU users heat their space more frequently during the day, while 344 

NTHU and TTCU users generally use their thermostat to control space heating for defined 345 

periods. As a result, their heating profile is more continuous. NTHU users turn off their heating 346 

at night, while TTCU users keep it on the whole day, with variable night and day set points. 347 

 348 

Figure 10: Demand Profile for Reference Buildings of Each Class 349 

   NTLU (1), NTMU (2), NTHU (3), TTCU (4) 350 

 351 

5.3. Predictive models 352 

 After training the model using data from the reference buildings, and defining the input file for 353 

the remaining units, the heating demand profile of the district was predicted. The MNLR model 354 

was used here to predict WWH district’s heating demand profile, trained by adopting the non-355 

linear autoregressive model with an external Input (NARX). To account for the building’s 356 

thermal mass effect on the unit’s energy demand, the model used past target data, a demand 357 

profile, and other series of input parameters defined earlier in this paper. To predict the demand 358 

profile in future hours, previously predicted values and input files were used at the same time.  359 

To determine the number of past hours required in the training stage, the model was trained with 360 

different past hours ranging from 2 to 8 hours. The best fit was set as the number of past hours 361 

required for representing the thermal mass of the units. For this study, 4 hours was the best fit. 362 

Also in this study, the data for real H-CDHS was used to train and validate the MLNR model 363 

using the above-mentioned four-step procedure. To verify the models’ flexibility to include 364 

different users’ behavior, WWH’s diverse community with a wider range of users’ behavior was 365 

used.  366 
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Due to limitations in acquired data, the adapted methodology (Figure 5 and section 5) and 367 

associated Matlab code were slightly modified [25] to further improve the model’s accuracy, as 368 

explained below: 369 

� In addition to the reference buildings’ demand profile and three sets of input files (i.e. solar 370 

dependent, internal gain dependent, and temperature dependent data files), a time-dependent 371 

factor related to the DHW was also considered. 372 

� In the initial model [25], the indoor-outdoor temperature difference was used to generate the 373 

temperature dependent data file. In this study, only the outdoor temperature was considered 374 

since the units’ indoor temperature was not monitored. 375 

� Since the internal heat generation was not monitored in each unit, the electrical energy 376 

consumed by the reference building was used to indicate the unit’s internal energy 377 

generation. The existing internal generation from the British Housing Model (BHM) was 378 

thus adopted and scaled down to match the energy consumption. 379 

� The adjusted typical thermostat control profile with a thermostat set-point of 19°C was used 380 

for the common area. For the towers, the common area accounts for about 15.8% of the total 381 

area of which only 45% is assumed to be conditioned. 382 

Using the latter modifications, the input file for all units was generated. Moreover, the 383 

reference buildings and their demand profiles were defined earlier in the clustering step. Having 384 

the reference building’s input file and demand profile, the MNLR model was trained and the 385 

related coefficients were determined. To verify the model’s accuracy, its prediction was 386 

compared with measured data at three different levels. At the first level, the Arran tower’s 387 
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(Tower #1) heating demand profile
3
 was predicted. At the second level, the model was applied to 388 

the Arian Tower (Tower #2) and its prediction was compared with the measured data. The entire 389 

district’ total energy demand was then predicted and compared with the data acquired from the 390 

district’s total energy demand. 391 

Energy demand prediction for the Arran tower (Tower #1)  392 

In first step, the energy demand profile of the Arran tower’s (Tower #1) has been 393 

predicted. The predicted profile then compared with the one obtained from measured data. 394 

Figure 11 shows the energy demand profile for the first ten days of November 2016, where 395 

appears a generally good agreement between the model’s prediction and the measured data. The 396 

MSRE calculated for the data predicted was around 12.6%. A discrepancy between the two 397 

curves is expected and can be attributed largely to the inevitable lack of information about 398 

occupants’ inherently stochastic behaviour.  399 

 400 

Figure 11: Model prediction (Orange) vs. measured energy demand (Blue) for Tower #1 401 

 402 

Energy demand prediction for the Arian tower (Tower #2) 403 

 At the second level of model validation, the model’s prediction is validated with the 404 

measured data for the Arian tower (Tower #2). No data collected from this tower was previously 405 

used to generate the model associated with the units’ energy demand profile. The Arian tower 406 

holds 72 units and is approximately 300 meters away from the boiler house.  Figure 12 compares 407 

the model’s prediction and the measured data for the first 10 days of the November 2016. A good 408 

agreement can be observed. The MSRE calculated for the predicted data is around 11.2% for the 409 

                                                           
3
 This tower was used earlier to define the number of archetypes and the profile associated with each archetype.  
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whole year and 8.2% for the heating season. The predicted demand’s general trend matches the 410 

measured demand. Considering the data used to generate the demand profile model was based on 411 

that of occupants in a different tower, the result is remarkably good. 412 

Figure 12: Model prediction (Orange) vs. measured energy demand (Blue) for Tower # 2 413 

 414 

District energy demand prediction 415 

The WWH district consists of six 12-story towers and five 4-story terrace buildings 416 

connected to the boiler house through an underground piping distribution network. To predict the 417 

entire WWH district system’ total energy demand, predicting the lost and delivered energies is 418 

required and calculated in this section. To predict the entire WWH H-CDHS’ demand, the 419 

demand of each block has to be calculated. The losses associated with the distribution system 420 

itself must then be factored in.   421 

The underground piping network has been used in in this project is an insulated dual pipe 422 

network transferring hot water at a flow temperature of 85 ℃ and a return temperature of 70 ℃ 423 

with a total length of 2.4 km (1.2 km supply and 1.2 km return). Figure 13 shows the 424 

underground piping network’ operational temperature.   425 

 426 

Figure 13: Underground network’s operational temperature 427 

 428 

Instead of changing the room operational temperature, the underground network’s 429 

operational temperature remains relatively constant during the year to control the amount of heat 430 

transfer from the boiler house to the consumers. This causes the system’s mass flow rate to 431 
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continuously vary during a day. Figure 14 shows the fluctuating water flow rate in the first 10 432 

days of November 2016. 433 

 434 

Figure 14: Water flow rate vs. outdoor temperature in the distribution network  435 

 436 

Having the underground network’s total length alongside its operational temperature, the 437 

supply and return pipes’ water mass flow rate, the outdoor temperature, the thermal properties of 438 

the soil and pipe insulations, and the distribution network’s total heat loss can be determined. To 439 

simplify the prediction process, a linear relation for the temperature difference between the 440 

operational temperature and surrounding environment temperatures is pre-assumed. Figure 15 441 

shows the underground distribution network’s predicted heat loss for the entire system. 442 

 443 

Figure 15: Distribution network’s monthly heat loss projection 444 

 445 

Since for many units the demand profiles are not available (see section 4), the energy demand 446 

predicted for the entire system is compared with the total energy generated by the boiler house. 447 

As stated earlier, the boiler house’s sensor measures only the accumulated amount of fuel 448 

consumed and the energy generated by each boiler every fifteen minutes. Figure 16 and Table 2 449 

show the district’s predicted accumulated energy demand against the energy generated by the 450 

boiler house. 451 

 452 

Figure 16: Accumulated predicted energy delivered vs actual generated energy in the boiler 453 

house 454 

 455 
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Table 2: Accumulated predicted energy delivered vs actual generated energy in the boiler 456 

house and error 457 

 458 

Results show a higher agreement between the predicted and actual energy demand with a 459 

monthly discrepancy between -4% to 6%, except in January 2017, when the error was 460 

approximately 30%. This error is due to a relatively high heat loss in the distribution network. In 461 

January 2017, given two faulty bypass valves in two different towers, the system’s mass flow 462 

rate increased. Percent and results in increasing the higher heat loss of the system compared with 463 

normal condition. Over a year, the accumulated energy demand predicted (3,288,340 kWh) 464 

shows a discrepancy of about 5% compared with the actual energy generated by the boiler house 465 

(3,138,431 kWh). The underestimation of the total energy demand of the district is mainly due to 466 

the buildings’ heat loss, especially the older 4-stories terrace building with higher envelope 467 

deterioration. However, in the training process (Step 3), the reference profile obtained from the 468 

Arran tower, which is better renovated comparing with the terrace buildings, was used with a 469 

relatively lower heat loss. It is important to note that in the training stage, the MNLR model was 470 

trained once using the reference building obtained from the Arran tower. These trained models 471 

were later used to predict the heating demand profile of remaining units, only by adopting their 472 

input file. Moreover, the ratio of the occupants’ behavior considered in TTCU in terrace 473 

buildings was slightly higher. 474 

6. Conclusion 475 

The existing simplified models used for predicting the CDHSs demand lack the flexibility 476 

to predict loads for diverse user types. To predict the heating demand, this study used a mid-size 477 

community district energy system with diverse user types was investigated using a newly 478 

proposed procedure. The main conclusion of this study can be summarized as follows:   479 
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� At an early design stage, the community’s heating demand profile was predicted following a 480 

simplified model with an average national energy benchmark for Scotland. The only 481 

adjustment made to the benchmark was a 20% reduction in the overall energy consumption 482 

and peak demand to compensate for the occupants’ economic status. The results of this 483 

oversimplification was overestimating the peak energy demand by a factor of 2. 484 

� The prediction shows high correlations between the predicted and actual profile even though 485 

the heating demand profile consist of both SH and DHW usage.  The suggested procedure 486 

captured the profile with an acceptable accuracy level—11.2% in the annual RMSE, and 487 

8.2% in the seasonal RMSE.   488 

� Results shows that the prediction accuracy remains close both at the building and community 489 

levels due to the models’ flexibility in capturing the demand profile of every individual unit. 490 

Unlike most existing models, the suggested procedure, which extrapolates the data based on 491 

the number of the users or total floor area, this model predicts the community load by 492 

envisaging that of every single user. 493 
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Table 1: Load Prediction Summary 

Author Ref Year 
Prediction 

period 
Prediction Type/Resolution Method 

Fonsenca et al. [26] 2015 Annual Total Energy Demand Simplified Modeling/ Adjusted HDD 

Powell et al. [13] 2014 Daily One day forecasting NARX**; ANN 

Tuominen et al. [19] 2014 Annual Total Energy Demand Linear Development Using REMA 

Filogamo et al. [16] 2014 Annual Total Energy Demand Simplified Equivalent RC 

Koene et al. [17] 2014 Annual Total Energy Demand Simplified Equivalent RC 

Gadd et al. [27] 2013 Daily 
Average Daily and Hourly 

Variation 
Time Series 

Caputo et al. [28] 2013 Annual Total Energy Demand Comprehensive Modeling 

Nouvel et al. [29] 2013 Annual Total Energy Demand Quasi State Monthly Energy Balance 

Galante et al. [20] 2012 Annual Total Energy Consumption Linear Regression Analysis 

Ali et al. [30] 2011 Annual Peak Load and Total Demand Multivariant Regression 

Lee et al. [15] 2011 Annual Total Energy Demand Gray Box Model 

Theodoridou et 

al. 
[12] 2011 Annual Annual Peak Demand Comprehensive Modeling 

Goia et al. [31] 2010 Monthly Peak Load Forecasting Linear Regression & Clustering 

Mavrogianni [21, 24] 2009 Annual Annual Heating Degree Day Linear Regression 

Linda Pedersen 

et al. 
[22] 2008 Annual Linearized peak Day Profile* Linear Regression 

Ihara et al.  2008 Annual Total Energy Demand Gray Box 

Heiple et al. [11] 2008 Annual Hourly / Total Energy Demand Software Modeling, "eQUEST" 

Nielsen et al. [14] 2006 Annual Profile Gray Box 

Tanimoto et al. [32] 2008 Annual Peak Demand Stochastic method 

Koroneos  2005 Annual Total Energy Demand Gray Box 

Ratti et al.  2004 Annual Total Energy Demand Multivariant Regression 

Shimoda et al. [33] 2004 Annual 
Total EUI / Total Energy 

Demand 
Software Modeling, "SCHEDULE" 

Eicker [18] 2004 Annual Total Energy Demand Simplified Equivalent RC 

Dotzauer [23] 2002 Annual Profile Linear Regression 
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Predicted Actual 

Error 

 
Monthly Accumulated Monthly Accumulated 

Apr-16 265000 265000 282000 282000 6% 

May-16 301003 566003 293610 575610 -3% 

Jun-16 424837 990840 409140 984750 -4% 

Jul-16 175360 1166200 168770 1153520 -4% 

Aug-16 189030 1355230 185340 1338860 -2% 

Sep-16 173552 1528782 177190 1516050 2% 

Oct-16 259411 1788193 266710 1782760 3% 

Nov-16 356885 2145078 368310 2151070 3% 

Dec-16 388553 2533631 429580 2580650 10% 

Jan-17 245779 2779410 349300 2929950 30% 

Feb-17 359021 3138431 358390 3288340 0% 

 

Table 2: Accumulated predicted energy delivered vs actual generated energy in the boiler house 
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Figure 1: Simplified procedure to predict the heating demand profile 
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Figure 2: Hybrid community-district heating system layout in Whitlawburn, Cambuslang, 

Scotland  

Tower 

Terrace 

Boiler House 
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1) Figure 3: District heating systems generations [34]  
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Figure 4: (A) Smart meter; (B) energy meter; (C) district and block meter; (D) boiler sensors 

 

Figure 5: The dual heat exchanger sub-system  

 

Figure 6: Monthly consumption of individual units in Tower # 1, Arran Tower 
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Figure 7: Outdoor temperature and HDD for the 2016-17 heating season (Nov 2016 - Feb 2017) 

 

Figure 8: Optimal number of archetypes 
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Figure 9: Clustering results for Tower # 1  
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Figure 10: Demand Profile for Reference Buildings of Each Class 

   NTLU (1), NTMU (2), NTHU (3), TTCU (4) 

 

 

Figure 11: Model prediction (Orange) vs. measured energy demand (Blue) for Tower #1 

Figure 12: Model prediction (Orange) vs. measured energy demand (Blue) for Tower # 2 
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Figure 13: Underground network’s operational temperature 

 

Figure 14: Water flow rate vs. outdoor temperature in the distribution network  
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Figure 15: Distribution network’s monthly heat loss projection 

 

 

Figure 16: Accumulated predicted energy delivered vs actual generated energy in the boiler 

house 
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Highlights 

� Simplified method is used to predict the heating load of a mid-size community. 

� Clustering approach is used to define the number of archetypes required for the load 

prediction.   

� The simplified model prediction is validated with the measured data. 

 


