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Abstract In recent years extensive studies on the Earth’s

climate system have been carried out by means of ad-

vanced complex network statistics. The great major-

ity of these studies, however, have been focusing on in-

vestigating interaction structures within single climato-

logical fields directly on or parallel to the Earth’s sur-

face. In this work, we develop a novel approach of node

weighted interacting network measures to study ocean-

atmosphere coupling in the Northern Hemisphere and

construct 18 coupled climate networks, each consisting
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Kräftriket 2B, 114 19 Stockholm, Sweden

Dörthe Handorf
Alfred Wegener Institute, Helmholtz Centre for Polar and
Marine Research — Telegrafenberg A43, 14473 Potsdam,
Germany

Jürgen Kurths
Potsdam Institute for Climate Impact Research — P.O. Box
60 12 03, 14412 Potsdam, Germany
Department of Physics, Humboldt University — Newtonstr.
15, 12489 Berlin, Germany
Institute for Complex Systems and Mathematical Biology,
University of Aberdeen — Aberdeen AB24 3FX, United King-
dom
Department of Control Theory, Nizhny Novgorod State Uni-
versity — Gagarin Avenue 23, 606950 Nizhny Novgorod, Rus-
sia

Reik V. Donner
Potsdam Institute for Climate Impact Research — P.O. Box
60 12 03, 14412 Potsdam, Germany

of two subnetworks. In all cases, one subnetwork repre-

sents monthly sea-surface temperature (SST) anoma-

lies while the other is based on the monthly geopo-

tential height (HGT) of isobaric surfaces at different

pressure levels covering the troposphere as well as the

lower stratosphere. The weighted cross-degree density

proves to be consistent with the leading coupled pattern

obtained from maximum covariance analysis, while net-

work measures of higher order allow for a further anal-

ysis of the correlation structure between the two fields.

Zonally averaged local network measures reveal the sets

of latitudinal bands for which there exists a strong cou-

pling between parts of the ocean and the atmosphere.

Global network measures quantify the strength of these

interactions and identify atmospheric layers which form

dynamical clusters of comparable strength with the ocean.

All measures consistently indicate that the ocean-to-

atmosphere coupling in the Northern Hemisphere fol-

lows a hierarchical structure in the sense that large ar-

eas in the ocean couple with multiple dynamically dis-

similar areas in the atmosphere. We propose, that these

patterns can be attributed to large-scale ocean currents

that interact with and mediate between smaller dynam-

ical clusters in the atmosphere.

Keywords coupled climate networks · ocean-

atmosphere interaction · node-weighted network

measures · hierarchical networks

1 Introduction

In the last years, complex network analysis has been

established as a powerful tool to study statistical in-

terdependencies in the climate system (Donges et al,

2009b; Tsonis and Roebber, 2004; Tsonis et al, 2008,

2006; Donges et al, 2015) Links in the so-called climate
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2 Marc Wiedermann et al.

networks represent functional interdependencies indi-

cated by significant correlation (Donges et al, 2009a,b;

Radebach et al, 2013; Paluš et al, 2011) or the syn-

chronous occurrence of extreme events (Stolbova et al,

2014; Boers et al, 2013; Malik et al, 2010, 2011; Boers

et al, 2014b) in climatic time series taken at different

grid points or measurement sites on or parallel to the

Earth’s surface. In addition to studies on observational

data of climate dynamics, climate networks have also

been applied successfully to hindcast extreme events,

such as extreme precipitation in South America (Boers

et al, 2014a), or to predict the occurrence of El Niño

episodes (Ludescher et al, 2013, 2014). So far, most

studies conducted within the framework of climate net-

works focused solely on the dynamics within a single

climatological field or layer. Besides atmospheric char-

acteristics like surface air temperature or precipitation,

recent studies have also addressed ocean dynamics rep-

resented by ocean temperature variabilities at the sur-

face (Feng and Dijkstra, 2014; Tantet and Dijkstra,

2014) or different depths (van der Mheen et al, 2013) as

well as the spatio-temporal variability in the strength

of the Atlantic meridional overturning circulation (Feng

et al, 2014).

It is well known, however, that the dynamics within

the two major subcomponents of the Earth’s climate

system, ocean and atmosphere, are closely entangled

(Trenberth and Hurrell, 1994; Frankignoul et al, 2001).

Examples for these interrelationships include the North

Atlantic eddy-driven jet stream (Woollings et al, 2010)

or the Pacific ocean forcing to the atmosphere which is

closely related to the dynamics of the El Niño South-

ern Oscillation (Wyrtki, 1975). In addition, there is ev-

idence for strong ocean-atmosphere feedbacks induced

by major oceanic currents in the North Atlantic as well

as the North Pacific (Kwon et al, 2010; Nonaka and

Xie, 2003). The study of a single climatological field,

however, is not sufficient to fully disentangle and under-

stand emerging dynamics in either of the two coupled

subsystems, ocean and atmosphere.

Inspired by approaches to investigate the interaction

structure between different subsystems such as infras-

tructure networks (Vespignani, 2010; Buldyrev et al,

2010; Boccaletti et al, 2014) a novel set of interacting

network measures has been proposed by Donges et al

(2011) which provides a general tool to quantify interde-

pendencies between subcomponents in complex coupled

climate networks. The latter framework has been suc-

cessfully applied to investigate the interactions between

different layers of geopotential height fields, where each

isobaric surface forms a subcomponent of a larger cli-

mate network.

In order to also include ocean dynamics into the

analysis, we follow the approach by Donges et al (2011)

and present an exploratory study to understand and

quantify ocean-atmosphere interactions in the North-

ern Hemisphere mid-to-high latitudes during winter at

monthly scales. We construct in total 18 coupled cli-

mate networks consisting of two layers each, one layer

representing sea surface temperature (SST) anomalies

and the other geopotential height fields (HGT) at dif-

ferent pressure levels from 1000 to 10 mbar covering the

entire troposphere as well as the lower stratosphere.

Our area of study covers the whole Northern Hemi-

sphere north of 30◦N so that the density of grid points

in the considered climate data sets increases rapidly to-

wards the poles and induces biases in the unweighted

network measures (Tsonis et al, 2006; Radebach et al,

2013). Therefore, the standard interacting network ap-

proach by Donges et al (2011) is not sufficient in the

present case. To overcome the problem associated with

heterogeneous spatial density of grid points interpreted

as nodes of the climate network, Heitzig et al (2012) in-

troduced a novel set of network measures that takes into

account the different sizes or weights of nodes in the net-

work. By following an axiomatic approach, each stan-

dard (or unweighted) network measure can be trans-

formed into its weighted counterpart, the so-called node

splitting invariant (n.s.i.) network measure. Correspond-

ing n.s.i. measures have also been derived by Zemp et al

(2014) for edge-weighted and directed networks.

To quantify the topology of coupled climate net-

works, we rely in this work on the previously defined

versions of local (i.e. node-wise) n.s.i. interacting net-

work measures (Feng et al, 2012; Wiedermann et al,

2013) and additionally derive further weighted global

network measures following the approach introduced

by Heitzig et al (2012). This allows us to assess and

compare the macroscopic interaction structure in each

of the 18 coupled climate networks.

Additionally, we compare the results of a maximum

covariance analysis (MCA) (e.g. von Storch and Zwiers,

2001), a well-established standard tool from statistical

climatology, with the cross-degree density of nodes in

the different subnetworks and confirm expected simi-

larities between the two measures (Donges et al, 2015).

By utilizing network measures of higher order such as

the n.s.i. local cross-clustering coefficient, we find that

the ocean-to-atmosphere coupling exhibits a hierarchi-

cal structure, in which individual parts or areas of the

ocean surface interact with multiple dynamically dis-

similar parts of the atmosphere.

In general, our method serves to improve the under-

standing and quantification of mid-to high latitude cou-

pling between atmosphere and ocean at monthly time
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scales and complements the information obtained from

classical statistical methods, such as MCA.

The remainder of this paper is organized as fol-

lows. Section 2 introduces the data sets and all meth-

ods, i.e. maximum covariance analysis and climate net-

work analysis, that are applied in this study. Section 3

presents all results of the analysis followed by conclu-

sions and an outlook discussing future research tasks in

Section 4.

2 Data & Methods

2.1 Data description

We construct coupled climate networks from two dif-

ferent climatological observables in order to investigate

their interaction structure. One subnetwork is based

on monthly anomalies of geopotential height (HGT)

fields obtained from the ERA40 reanalysis project of

the European Centre for Medium-Range Weather Fore-

cast (Uppala et al, 2005). The data is given on a regu-

lar latitude/longitude grid with a spatial resolution of

∆λ = ∆φ = 2.5◦. In total, we investigate 18 layers of

HGT fields. The corresponding pressure at each isobaric

surface as well as the average geopotential height are

given in Tab. 1. The second subnetwork is constructed

from the monthly averaged SST field (HadISST1) pro-

vided by the Met Office Hadley Centre (Rayner et al,

2003) with a resolution of ∆λ = ∆φ = 1◦. All grid

points with corresponding time series containing miss-

ing values are removed from the data set as they rep-

resent areas which are at least temporarily covered by

sea-ice.

For our analysis we investigate all grid points north

of λ = 30◦N excluding those directly located at the

North Pole. Both data sets are cropped in their tem-

poral extent to cover the same time span from January

1958 to December 2001 and, hence, each time series

consists of T = 528 temporal sampling points. We ob-

tain a total number of Ns = 6201 grid points for the

SST data and Ni = 3456 grid points for each isobaric

surface i of HGT. For both data sets, we remove the

annual cycle by subtracting the climatological mean for

each month from each time series. Since our focus is set

on the interaction structure between ocean and atmo-

sphere during winter months (DJF), we use only the

corresponding values which yields a length of each time

series of τ = 132 data points.

Table 1 Air pressure pi and associated mean geopotential
height Zi for each isobaric surface i.

Layer i Air pressure pi [mbar] Geopotential
height Zi [km]

0 10 30.9
1 20 26.3
2 30 23.7
3 50 20.5
4 70 18.4
5 100 16.2
6 150 13.7
7 200 11.8
8 250 10.4
9 300 9.2
10 400 7.2
11 500 5.6
12 600 4.2
13 700 3.0
14 775 2.2
15 850 1.4
16 925 0.8
17 1000 0.1

2.2 Maximum covariance analysis (MCA)

Consider two sets of time series {Xsn(t)}Nsn=1 and {Xim(t)}Nim=1

representing two different climatological fields, which in

the scope of our application are the SST field (in what

follows indicated by the index s) and one layer i of

HGT (see also Tab. 1). Further assume the individual

time series in both fields to be normalized to zero mean

and unit variance. The linear lag-zero cross-covariance

matrix Csi with entries Csnim is then defined as

Csnim =
1

τ

τ∑
t=1

Xsn(t)Xim(t), (1)

where n = 1, . . . , Ns, m = 1, . . . , Ni and τ denotes the

total number of temporal sampling points in the two

time series. Due to the heterogeneous spatial distribu-

tion of grid points in the present data sets all matrix

entries Csnim are additionally multiplied by the square

roots of the cosine of latitudinal positions λ• to ensure

equal weighting. This then yields the weighted cross-

covariance matrix Cw
si with entries

Cwsnim =
√

cosλsn cosλimCsnim . (2)

Analogously to empirical orthogonal function (EOF)

analysis (e.g. Ghil et al, 2002; Hannachi et al, 2007),

MCA identifies orthonormal pairs of coupled patterns

p
(m)
s = (p

(m)
s1 . . . p

(m)
sNs ) and p

(m)
i = (p

(m)
i1

. . . p
(m)
iNi

) for

m = 1, . . . , R (with R being the rank of Csi) which

explain as much as possible of the covariance between

pairs of time series taken from the two different clima-

tological fields (e.g. Bretherton et al, 1992; von Storch

and Zwiers, 2001). The coupled patterns are obtained
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Fig. 1 Cross-threshold Tsi between the subnetwork con-
structed from the SST field and all 18 isobaric surfaces of
HGT in winter for different standard (unweighted) cross-link
densities.

by solving the eigenvalue problem of the weighted cross-

covariance matrix,

Cw
sip

(m)
i = σmp(m)

s , (3)

(Cw
is)

Tp(m)
s = σmp

(m)
i . (4)

They are ordered by according to their respective sin-

gular values σk with σ1 ≥ σ2 ≥ . . . ≥ σR. Hence, σ1 de-

notes the largest of the set of R singular values that can

be found to solve the above equations. Therefore, p
(1)
i

and p
(1)
s are referred to as the leading coupled patterns

representing the largest fraction of squared covariance

between the two climatological fields given by σ2
1 .

2.3 Coupled climate network construction

In climate networks, each node represents a climatolog-

ical time series and links indicate significant similarity

between two series. Hence, the N ×N (N = Ns + Ni)

similarity matrix gives the pairwise statistical relation-

ships between all time series considered for the network

construction. Here, we independently construct coupled

climate networks for all combinations of the SST field

and each of the 18 isobaric surfaces of HGT, which shall

be investigated separately and rely on the linear Pear-

son correlation coefficient as an appropriate measure of

dynamical similarity. Hence, the correlation matrix has

the form

C =

(
Css Csi

Cis Cii

)
. (5)

The two block matrices Css (Ns×Ns) and Cii (Ni×Ni)
represent the (internal) correlation matrices of the SST

and HGT fields, respectively, which consist of elements

Csnsm =
1

τ

τ∑
t=1

Xsn(t)Xsm(t), n,m = 1, . . . , Ns, (6)

Cinim =
1

τ

τ∑
t=1

Xin(t)Xim(t), n,m = 1, . . . , Ni. (7)

The elements of Csi = CT
is are derived according to

Eq. (1). Note, that for the network construction (in

contrast to the computation of the leading coupled pat-

terns) we construct the coupled climate networks from

the unweighted correlation matrix C, while the correc-

tion for the heterogeneous spatial distribution of nodes

is implemented into the corresponding network mea-

sures (see Sec. 2.4).

From the correlation matrix C one generally derives

the network’s adjacency matrix A+ by setting a fixed

threshold T such that only a certain fraction (i.e. the

link density ρ) of strongest correlations is represented

by links in the resulting climate network. For obtaining

the adjacency matrix A+ of coupled climate networks,

we refine this procedure by fixing a desired link density

ρs = ρi = 0.01 for the structure of internal links within

the two subnetworks representing SST and HGT fields,

respectively. This means that only nodes with a correla-

tion above the empirical 99th percentile of correlations

between all time series within each field are connected.

This condition then leads to internal correlation thresh-

olds Ts for the SST field and Ti for each isobaric surface

of GPH. Usually, the dynamics within the different cli-

matological fields shows much higher cross-correlations

than the dynamics between them. We account for this

fact by assuming the fraction of significant interactions

between the climatological fields to be lower than those

within them. Specifically, we request a cross-link den-

sity of ρsi = 0.005 < ρs = ρi, which is lower than the

internal ones, and derive a cross-threshold Tsi for each

layer of HGT individually (Fig. 1). The different val-

ues of Tsi already give an impression of the interaction

strenghts between the SST field and the different iso-

baric layers: low thresholds generally indicate weaker

interactions while high thresholds imply strong correla-

tion between both different fields.

Using the different thresholds introduced above, we

obtain the coupled climate network’s adjacency matrix

by individually thresholding the absolute correlation

values between and within both fields as

A+ =

(
Θ(|Css| − Ts) Θ(|Csi| − Tsi)
Θ(|Cis| − Tsi) Θ(|Cii| − Ti)

)
,

where Θ(·) denotes the Heaviside function. Note that in

most recent studies on climate networks self-loops (re-

sulting in a non-vanishing trace of the adjacency ma-

trix) have been excluded. In this case the adjacency
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matrix is usually denoted as A. Since we aim to apply

node splitting invariant network measures (see below)

to quantify the network’s topology we specifically de-

mand each node to be connected with itself. The result-

ing matrix A+ is referred to as the extended adjacency

matrix (Heitzig et al, 2012).

2.4 Interacting network characteristics

The local (point-wise) and global structure of a cli-

mate network can be quantified by a variety of network

measures (Newman, 2003; Albert and Barabási, 2002;

Donges et al, 2009b), which generally can be interpreted

as specific operations on the adjacency matrix. The cli-

mate networks in this study are constructed from cli-

mate data sets where the density of grid points and,

hence, the density of nodes in the network, rapidly in-

creases towards the North pole. In order to avoid bias

in the evaluation of the climate network’s structure,

we account for this effect by relying on node weighted

network measures and value nodes with a gradually

decreasing weight as one moves from the equator to

the pole. To quantify the ocean-atmosphere interac-

tions at each node we focus on two previously defined

node weighted local network measures, the n.s.i cross-

degree (Feng et al, 2012) and the n.s.i. local cross-

clustering coefficient (Wiedermann et al, 2013). In addi-

tion, we utilize the construction mechanism introduced

by Heitzig et al (2012) to convert global interacting net-

work measures (Donges et al, 2011) into their weighted

counterparts.

2.4.1 Preliminaries

Consider a coupled climate network G = (V,E) with

a set of nodes V , links E and the number of nodes

N = |V |. Identifying every node v ∈ V with a natu-

ral number p = 1, . . . , N , the network G is represented

by its adjacency matrix A with Apq = 1 if (p, q) ∈
E, Apq = 0 if (p, q) 6∈ E. In this study, the network

is composed of two subnetworks, Gs = (Vs, Ess) repre-

senting the ocean and Gi = (Vi, Eii) representing the

atmosphere. The set of nodes V decomposes into sub-

sets Vs and Vi such that each node belongs to exactly

one subnetwork (i.e., V = Vs ∪ Vi and Vs ∩ Vi = ∅).
Likewise, the set of links E then splits into internal link

sets Ess and Eii connecting nodes within a subnetwork

and cross-link sets Esi connecting nodes v ∈ Vs with

nodes q ∈ Vi in the subnetworks Gs and Gi, respec-

tively (Donges et al, 2011).

In the present case (as for all regular gridded cli-

mate data sets) the share on the entire area of the sur-

face that is represented by each node is governed by

its latitudinal position λv on the grid. Following Tsonis

et al (2006), we therefore assign to each node v in the

climate network a weight

wv = cosλv. (8)

Heitzig et al (2012) introduced a novel set of node

splitting invariant (n.s.i.) network measures to quantify

the topology of a climate network with such a heteroge-

neous spatial node density for the case of a single-layer

network and, hence, only one climate variable under

study. In fact, the n.s.i. network measures are not re-

stricted to climate networks but can be utilized to study

any type of single-layer complex network where nodes

represent entities of different weights. Heitzig et al (2012)

further showed that each complex network measure can

be transformed into its weighted counterpart by using

a four-step construction mechanism:

(a) Sum up weights wv whenever the unweighted mea-

sure counts nodes.

(b) Treat every node v ∈ V as connected with itself.

(c) Allow equality for v and q wherever the original

measure involves a sum over distinct nodes v and

q.

(d) “Plug in” n.s.i. versions of measures wherever they

are used in the definition of other measures.

From the definition of the adjacency matrix A+ in

Eq. (8) we note that step (b) of the above scheme is

in our case already fulfilled. Wiedermann et al (2013)

and Zemp et al (2014) recently utilized the proposed

scheme to convert local interacting network measures

as well as measures for directed networks into their

weighted counterparts. Here, we additionally derive n.s.i.

versions of some global cross-network measures that
were introduced by Donges et al (2011).

2.4.2 Local measures

For quantifying local cross-network interactions in cou-

pled climate networks we rely on two measures, n.s.i.

cross-degree kj∗v and n.s.i. local cross-clustering coeffi-

cient Cj∗v , that were introduced by Wiedermann et al

(2013) and (for the case of the n.s.i. cross-degree) by

Feng et al (2012). These two measures are defined as

kj∗v =
∑
q∈Vj

wqA
+
vq, (9)

Cj∗v =
1

(kj∗v )
2

∑
p,q∈Vj

A+
vpA

+
pqA

+
qvwqwp ∈ [0, 1]. (10)

In contrast to the unweighted cross-degree

kjv =
∑
q∈Vj

A+
vq (11)



6 Marc Wiedermann et al.

which simply counts nodes q ∈ Vj that are connected

with v ∈ Vi, kj∗v is proportional to the share on the con-

sidered overall ice-free ocean or isobaric surface area,

respectively, that is connected with nodes v ∈ Vj in the

other subnetwork. It therefore gives a notion of how

similar the dynamics at a node v ∈ Vi is to that of

the other climate variable observed at all available grid

points.

Similar to kj∗v , Cj∗v no longer relies on the counting

of distinct triangles in the network (as for the classical

local clustering coefficient (Newman, 2003)) but on the

weighted sum of occurrences of triples of connected ar-

eas within the two subnetworks. It gives the probability

that an area represented by a node v ∈ Vi is connected

with two mutually connected, hence, dynamically simi-

lar, areas in the opposite subnetwork. In this spirit Cj∗v
estimates how likely areas in the coupled system are to

form clusters of dynamical equivalence between the dif-

ferent climatological fields, or subsystems under study.

Hence, we interpret a high local cross-clustering coeffi-

cient as representing confined regions of similar dynam-

ics at different nodes or measurement sites and, hence,

a strong coupling between them.

In order to make the n.s.i. cross-degree kj∗v compa-

rable between the two subnetworks, we normalize it by

the maximum possible weight that nodes v ∈ Vi can be

connected with,

κj∗v =

∑
q∈Vj wqA

+
vq

Wj
∈ [0, 1]. (12)

In the spirit of earlier work by Donges et al (2012) and

Donner et al (2010), we refer to this quantity as the

n.s.i. cross-degree density. Here, Wj =
∑
q∈Vj wq de-

notes the total weight of nodes q ∈ Vj . For the case

of a single-layer network, a measure similar to the n.s.i.

cross-degree density has been introduced by Tsonis et al

(2006) in terms of the area weighted connectivity which

measures the share on the subdomain of interest repre-

sented by the entire network G that is connected with

any nodes v ∈ V .

Generally, Wiedermann et al (2013) and Zemp et al

(2014) showed that the weighted local cross-network

measures improve the representation of a network’s topol-

ogy with inhomogeneous node density within the do-

main of interest in comparison with its unweighted coun-

terparts.

Donges et al (2015) showed that for the unweighted

case cross-degree and leading coupled patterns display

high similarity if the first coupled patterns explain a

high fraction of the system’s covariance. A similar as-

sessment can be made for the similarity between the

leading coupled patterns obtained from a weighted cross-

covariance matrix and the n.s.i. cross-degree (see Ap-

pendix A).

2.4.3 Global measures

In addition to local (per node) network measures we

also aim to characterize the macroscopic interaction

structure of each pair of coupled climate networks by

means of global network properties. For coupled climate

networks a variety of unweighted measures have been

proposed by Donges et al (2011). Here, we utilize the

construction mechanism by Heitzig et al (2012) to con-

vert a selection of them into their weighted counterparts

as well.

N.s.i. cross-link density The (unweighted) cross-link den-

sity ρij measures the share of links present between

two different subnetworks with respect to the number

of possible links. When constructing climate networks,

this quantity is usually kept fixed and utilized to ob-

tain the cross-threshold Tij above which correlations

between time series at the corresponding grid points

are considered significant and the respective nodes vi
and vj are treated as linked. The cross-link density ρij
is commonly defined as the average normalized cross-

degree (Donges et al, 2011),

ρij =

∑
p∈Vi

∑
q∈Vj Apq

NiNj

=

∑
v∈Vi k

j
v

NiNj
=

∑
v∈Vj k

i
v

NiNj
(13)

with Ni and Nj being the number of nodes in the two

subnetworks. Analogously, the weighted average of the

n.s.i. cross-degree density yields the n.s.i. cross-link den-

sity

ρ∗ij =

∑
v∈Vj wvκ

j∗
v

Wi
=

∑
v∈Vi wvκ

i∗
v

Wj
, (14)

which measures the average share of the Earth’s sur-

face that nodes in either of the two subnetworks are

connected with. Hence, high values of ρ∗ij indicate a

strong similarity between the two climate variables un-

der study.

N.s.i. global cross-clustering coefficient. The global cross-

clustering coefficient Cij of a subnetwork Gi gives the

probability that for a randomly chosen node v ∈ Vi one

finds neighbors p, q ∈ Vj that are mutually linked. It

is defined as the arithmetic mean over all local cross-

clustering coefficients Cjv,

Cij =
1

Ni

∑
v∈Vi

Cjv. (15)
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This measure can be converted into its n.s.i. counter-

part by calculating the weighted mean over all values

of Cj∗v ,

C∗ij =
1

Wi

∑
v∈Vi

wvCj∗v . (16)

Again, analogously to the interpretation of the local

n.s.i. measures, C∗ij no longer only measures pure node-

wise triangular structures but takes into account the

share on the Earth’s surface areas involved in the for-

mation of triangular structures. Generally, high values

of C∗ij (which are induced by a dominance of connected

triples between the two subnetworks under considera-

tion) indicate strong transitivity in the underlying cor-

relation structure.

N.s.i. cross-transitivity. The cross-transitivity Tij gives

the probability that two randomly drawn nodes p, q ∈
Vj are connected if they have a common neighbor v ∈
Vi. It is given as

Tij =

∑
v∈Vi

∑
p 6=q∈Vj AvpApqAqv∑

v∈Vi
∑
p6=q∈Vj AvpAqv

. (17)

Like Cij , the cross-transitivity is a measure of organiza-

tion with respect to the interaction structure in a cou-

pled network (Donges et al, 2011). However, in contrast

to Cij , Tij takes into account the increasing influence

of nodes with high cross-degree and weighs them more

heavily than nodes with low cross-degree. The node-

weighted variant of Tij can be written as

T ∗ij =

∑
v∈Vi

∑
p,q∈Vj wvA

+
vpwpA

+
pqwqA

+
qv∑

v∈Vi
∑
p,q∈Vj wvA

+
vpwpwqA

+
qv

(18)

=

∑
v∈Vi wv(k

j∗
v )

2Cj∗v∑
v∈Vi wv(k

j∗
v )

2 .

We note that both C∗ij and T ∗ij similarly evaluate the

transitivity of correlation between the two climatolog-

ical variables under study and, hence, quantify a sim-

ilar network property. They are derived, however, in a

disjoint manner. One measure, C∗ij is computed as the

weighted average taken over Cj∗v . In contrast, despite

suggestions by Radebach et al (2013) to decompose the

global transitivity into local contributions, the n.s.i.

cross-transitivity T ∗ij is defined solely as a global net-

work measure with no direct local counterpart. It is im-

portant to note that, in contrast to the n.s.i. cross-link

density, n.s.i. cross-transitivity and n.s.i. global cross-

clustering coefficient can be asymmetric in the sense

that T ∗ij 6= T ∗ji and C∗ij 6= C∗ji.

3 Results

3.1 Maximum covariance analysis (MCA)

We start our analysis by computing the leading coupled

patterns between the SST field and the 18 HGT layers

for winter months (DJF). Figure 2 displays the results

for three representative layers of HGT at 50 mbar, 100

mbar and 500 mbar.

By applying MCA, we detect coherent large-scale

patterns of winter SST, which co-vary with the winter

atmospheric circulation structures instantaneously. The

leading MCA patterns explain rather large amounts

of 42%, 63% and 70% (for the 500, 100 and 50 mbar

pressure level, respectively) of the squared covariance.

At all levels, the leading MCA mode displays signifi-

cant SST anomalies over the North Pacific with maxi-

mum values along the sub-Arctic front near 40◦N, and

anomalies of the opposite sign along the western coast

of North America (Fig. 2A,C,E) (Frankignoul and Sen-

nchael, 2007; An and Wang, 2005). Over the North At-

lantic, a dipole structure is seen between the northern

part of the Gulf Stream and the Atlantic Ocean south

of Greenland including parts of the Davis Strait and the

North Atlantic current. This pattern resembles the first

SST EOF for the Northern Hemisphere during winter

(not shown).

This general SST pattern is co-varying with a pres-

sure anomaly pattern showing a hemispheric annular-

like structure in the upper troposphere and lower strato-

sphere (Fig. 2B,D). In the mid-troposphere (Fig. 2F),

this pattern displays wave-like deviations from the an-

nular structure, which show distinct similarities with

the wave-train structure of the Pacific North American

(PNA) pattern over the Pacific-North American sector.

Therefore, the leading MCA mode relates negative SST

anomalies along the sub-Arctic front to a positive PNA

phase.

The second MCA mode (not shown, explaining 13%,

17% and 21% of the squared covariance fraction for

the 500, 100 and 50 mbar pressure level, respectively)

displays the strongest SST anomalies over the North

Atlantic. Over that region, the SST pattern resembles

the northern part of the North Atlantic SST tripole

pattern which is related to the North Atlantic Oscil-

lation (NAO) (e.g. Czaja and Frankignoul, 1999, 2002;

Gastineau and Frankignoul, 2014). Accordingly, the co-

varying atmospheric pattern in the middle troposphere

shows the cold ocean/warm land (COWL) pattern (in-

troduced by Wallace et al (1996)) including a NAO-like

dipole over the North Atlantic. At higher levels, the

co-varying atmospheric patterns display a pronounced

wavenumber-2 pattern.
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Fig. 2 Leading coupled patterns obtained from MCA between the SST field and three layers of geopotential height at 50
mbar (A and B), 100 mbar (C and D) and 500 mbar (E and F) in winter (DJF). The left column (A, C and E) displays the
component in the SST and the right column (B, D and F) that in the respective HGT field.

By applying lagged MCA between SST and mid-

tropospheric circulation fields, several studies for the

North Atlantic and the North Pacific have shown that

the squared covariance fraction is strongest and most

significant at lags 0 and 1 month during late fall and

winter (e.g. Czaja and Frankignoul, 1999; Wen et al,

2005; Liu et al, 2006; Frankignoul and Sennchael, 2007;

Gastineau and Frankignoul, 2014). This points to the

forcing of the SST by the dominant atmospheric pat-

tern, which is the PNA pattern over the Pacific-North

American sector (e.g. Frankignoul and Sennchael, 2007)

and the NAO over the North Atlantic-European region

(Czaja and Frankignoul, 1999; Gastineau and Frankig-

noul, 2014). On the other hand, results of lagged MCA

analyses with the ocean leading by 1 to 4 months in

Frankignoul and Sennchael (2007) and Gastineau and

Frankignoul (2014) suggest that the SST anomalies have



Hierarchical structures in Northern Hemispheric extratropical winter ocean-atmosphere interactions 9

120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

A
120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

B

120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

C
120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

D

120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

E
120°W

90°W

60°W

180°150°W 150°E180°

30°W 0° 30°E

F

0.0

0.01

0.02

0.03

0.04

0.05

κ
i
∗

v

0.0

0.01

0.01

0.02

0.02

0.03

κ
s
∗

v

0.0

0.01

0.02

0.02

0.03

0.04
κ
i
∗

v

0.0

0.01

0.01

0.02

0.02

0.03

κ
s
∗

v

0.0

0.01

0.01

0.02

0.02

0.03

κ
i
∗

v

0.0

0.01

0.01

0.02

0.02

0.03

κ
s
∗

v

Fig. 3 N.s.i. cross-degree density for coupled climate networks constructed from the SST field and three layers of geopotential
height at 50 mbar (A and B), 100 mbar (C and D) and 500 mbar (E and F) for winter months (DJF). The left column (A, C
and E) displays the n.s.i. cross degree density κi∗v for links pointing from the SST into the HGT subnetwork while the right
column (B, D and F) displays the n.s.i. cross-degree density κs∗v for links pointing from the HGT into the SST subnetwork.
Only nodes with κi∗v > 0 and κs∗v > 0 are shown.

a substantial influence on the large-scale atmospheric

circulation on these time-scales.

3.2 Local interacting network measures

In order to demonstrate the additional value of the cou-

pled climate network analysis approach in comparison

with MCA, we next study coupled climate networks

between the SST field and the three previously consid-

ered layers of geopotential height (500 mbar, 100 mbar,

50 mbar). The n.s.i. cross-degree densities κi∗v and κs∗v
are expected to display similar spatial structures as the

corresponding leading coupled patterns (Donges et al,

2015) as the latter explains a high share of the cross-

covariance between both fields (see Appendix).

As demonstrated in Fig. 3, the results for κs∗v and

κi∗v indeed match well the results obtained from the

MCA when comparing the locations of maximum val-

ues in the network’s n.s.i. cross-degree density to those

of maximum or minimum values in the leading mode of
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Fig. 4 As in Fig. 3 for the n.s.i. local cross-clustering coefficients Ci∗v and Cs∗v .

the MCA. Note, that the n.s.i. cross-degree densities κs∗v
and κi∗v take, per definition, only positive values, while

coupled patterns display positive and negative values.

Hence, κs∗v and κs∗v only reproduce structures that co-

incide with the absolute values of the leading coupled

patterns.

Network analysis, however, now allows us to under-

take a further in-depth analysis of the correlation struc-

ture between the different layers. The n.s.i. local cross-

clustering coefficients Ci∗v and Cs∗v (Eq. (10)) give the

probabilities, that the dynamics at a grid point in, e.g.,

the SST field is similar with that at two grid points in

the HGT field, which themselves are dynamically simi-

lar.

Figure 4 presents the results for the n.s.i. local cross-

clustering coefficients Ci∗v computed for all nodes in the

SST field (Fig. 4A,C,E) and Cs∗v computed for all nodes

in the HGT field (Fig. 4B,D,F). We find that for the

SST field most nodes tend to display a low n.s.i. lo-

cal cross-clustering coefficient Ci∗v < 0.2 (Fig. 4A,C,E).

Thus, these nodes preferentially couple with nodes in

the HGT fields that themselves are dynamically dis-

similar and, hence, unconnected (Fig. 5). In contrast,

we find many nodes in the HGT fields which tend to

show a comparatively high or intermediate n.s.i. local

cross-clustering coefficient 0.4 < Cs∗v < 1 (Fig. 4B,D,F).

Thus, in contrast to the ocean, nodes in the atmosphere
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tend to couple with nodes in the ocean that themselves

are mutually connected.

To further quantify the asymmetries in the coupling

structure between ocean and atmosphere, we investi-

gate for each node with a given n.s.i. cross-degree den-

sity its corresponding n.s.i. local cross-clustering coef-

ficient in a coupled climate network constituted from

the SST and (for illustration) the 100 mbar HGT field

(Fig. 6). For nodes in the SST field (Fig. 6A) we find

that Ci∗v (κi∗v ) tends to follow a power-law, Ci∗v ∼ (κi∗v )−1,

which indicates a hierarchical network structure (Ravasz

and Barabási, 2003; Ravasz et al, 2002). Here, hierar-

chical means that nodes in the SST field couple with

disconnected clusters of dynamically similar nodes in

the HGT field as depicted in Fig. 5. This deduction is

further supported by the fact that for the HGT field,

the distribution of combinations of Cs∗v and κs∗v is more

wide-spread and Cs∗v generally takes higher values than

Ci∗v implying that nodes in the HGT field show a stronger

tendency to connect with connected nodes in the SST

field.

The resulting hierarchical network structure may be

explained by the presence of large-scale ocean currents,

such as the Gulf Stream, the North Atlantic Drift and

the North Pacific Current, which cover large fractions

of the ocean surface. Each of these areas can be as-

sumed to display a high internal dynamical similarity

and, hence, be internally strongly connected in the re-

sulting climate network (Molkenthin et al, 2014; Tupik-

ina et al, 2014). If along the spatial domain covered

by each current, the ocean would couple to multiple

smaller internally similar areas in the atmosphere, such

as those covered by the NAO or the PNA, one would

naturally obtain an interaction scheme as illustrated in

Fig. 5. To further investigate and test the proposed hy-

pothesis, we plan to study the specific internal structure

within the subnetworks in future work.

3.3 Zonally averaged local network measures

To gain further insights into the spatial structure of

the ocean-atmosphere interactions, we now examine the

coupled climate networks between all 18 HGT fields and

the SST field. In order to focus on the main patterns, we

first compute zonal averages of the obtained n.s.i. cross-

degree density and the n.s.i. local cross-clustering coef-

ficient separately over grid points in the Pacific (from

φ = 160◦E to φ = 140◦W) and the Atlantic (from

φ = 60◦W to φ = 0◦) for all winter months.

The corresponding results are shown in Fig. 7. For

the average n.s.i. cross-degree density 〈κi∗v 〉λ pointing

from the SST into the HGT fields, we find constantly

high values over the entire range of pressure levels at

SST

HGT
1 2

3

Fig. 5 Schematic explanation of the observed quantitative
differences in the n.s.i. local cross-clustering coefficients for
nodes in the SST and HGT fields. Nodes in the ocean (box
3) tend to connect with dynamically dissimilar and, hence,
unconnected nodes in the atmosphere (such as nodes in box
1 and 2). Hence, the n.s.i. local cross-clustering coefficient Ci∗v
only takes low values. In contrast, nodes in the atmosphere,
e.g. from box 1, likely connect with mutually connected nodes
in the SST field, such as nodes exclusively in box 3. This
results in a high n.s.i. cross local-clustering coefficient Cs∗v for
nodes in the atmosphere.
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κ i ∗
v
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100
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∗ v
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κ s ∗
v
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B

Fig. 6 N.s.i. local cross-clustering coefficients Ci∗v (κi∗v ) for
nodes in the SST field (A) and Cs∗v (κs∗v ) for nodes in the
100 mbar HGT field (B) as functions of the respective n.s.i.
cross-degree densities. The dashed line in (A) indicates the
relationship Ci∗v (κi∗v ) ∼ (κi∗v )−1 expected for traditional net-
work measures Cv(kv) in the case of hierarchical network
structures (Ravasz and Barabási, 2003; Ravasz et al, 2002).

about λ = 60◦N and between λ = 30◦N and λ = 40◦N

in the North Atlantic indicating a strong coupling be-

tween the ocean and the troposphere as well as the

stratosphere (Fig. 7A). Additionally, maximum values

of the average n.s.i. cross-degree density 〈κs∗v 〉λ pointing

from grid points in the HGT networks into the SST net-

work for regions in the Pacific coincide with maxima in

observed zonal wind speeds (Fig. 8) averaged over the

same time period (DJF) as used in the network con-

struction (Fig. 7B). Up to pressure levels of 100 mbar

the average n.s.i. cross-degree density 〈κs∗v 〉λ takes up

its maximum value at around λ = 40◦N, which may

be a signature of the subtropical jet stream. For higher

levels the maximum is found to shift towards higher

latitudes around λ = 80◦N coinciding with the loca-

tion of the polar vortex (Fig. 8). We note that 〈κs∗v 〉λ
takes lower values above the Atlantic as compared to
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Fig. 7 Zonal averages of n.s.i. cross-degree density 〈κi∗v 〉λ (A) for nodes in the SST field and 〈κs∗v 〉λ (B) for nodes in the
HGT fields and the n.s.i. local cross-clustering coefficients 〈Ci∗v 〉λ (C) and 〈Cs∗v 〉λ (D). For the Pacific, all grid points between
φ = 160◦E and φ = 140◦W and for the Atlantic all grid points between φ = 60◦W and φ = 0◦ longitude are zonally averaged.
Areas with no data or average n.s.i cross-degree density 〈κi∗v 〉λ = 0 and 〈κs∗v 〉λ = 0 are displayed in grey.

Fig. 8 Average zonal wind speed over the Pacific taken over
all grid points between φ = 150◦W and φ = 120◦E.

the Pacific and, hence, we do not resolve any prominent

signatures there. This implies that correlations between

both fields generally are higher above the Pacific than

above the Atlantic. Choosing a higher cross-link den-

sity might overcome this issue. In this case lower corre-

lations would also be considered when constructing the

network.

The average local n.s.i. cross-clustering coefficients

〈Ci∗v 〉λ and 〈Cs∗v 〉λ estimate the probability for a grid

point in one subnetwork to correlate with dynamically

similar grid points in the other one (Fig. 7C,D). Anal-

ogously to the results presented in Sec. 3.2, we find

that grid points in the SST field (Fig. 7C) generally

display a low average n.s.i. local cross-clustering coeffi-

cient 〈Ci∗v 〉λ over the whole range of latitudes and layers

of geopotential height. Hence, it again seems reasonable

to conclude that the ocean-to-atmosphere coupling in

the Northern Hemisphere follows a hierarchical struc-

ture and nodes in the SST field tend to connect with

unconnected nodes in the HGT field. As opposed to

this, the average n.s.i. local cross-clustering coefficient

〈Cs∗v 〉λ for nodes in the HGT field takes also large val-

ues over a wide range of latitudes and pressure levels

(Fig. 7D) which again hints to a strong localization of

coupling between atmospheric layers to the ocean.

We note that particularly the zonally averaged n.s.i.

cross-degree density 〈κs∗v 〉λ for nodes in the different

HGT fields (Fig. 7B) is dominated by a strong sig-

nal above the North Pacific and, hence, few links are

present connecting the SST and HGT fields above the

Atlantic. For future research, coupled climate networks

could be constructed for the two oceans individually in

order to gain information on possible coupling mecha-

nisms above the Atlantic, which display lower correla-

tion and are thus not prominently represented in the

present case.

3.4 Global measures

In addition to the local network measures, we also in-

vestigate their global counterparts, which characterize
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the overall topology of the two interacting subnetworks.

For each pair of coupled climate networks we investi-

gate the n.s.i. cross-link density, n.s.i. cross-transitivity

and n.s.i. global cross-clustering coefficient.

3.4.1 N.s.i. cross-link density

The n.s.i. cross-link density ρ∗si measures the share of

mutually connected areas between the two climatologi-

cal fields with respect to the weight of all possibly con-

nected areas and is displayed in Fig. 9A for different

choices of standard cross-link density ρsi. For a fixed

cross-link density ρsi it gives a notion of the latitudi-

nal position of areas that are connected with those in

the opposite subnetworks, i.e. higher values of ρ∗si indi-

cate for more connections to be present in low latitudes

(since the corresponding node weights are higher than

those of nodes closer to the pole), whereas low values

of ρ∗si indicate a shift of connections towards the poles.

We find that for the 400 and 75 mbar pressure levels,

ρ∗si takes up its maximum value and displays the lowest

values for pressure levels near the Earth’s surface and

those in the lower stratosphere above 50 mbar which

might relate to the presence of the stratospheric polar

vortex (Fig. 9A). However, since ρ∗si = ρ∗is is a sym-

metric measure, it is not visible whether the variation

in the n.s.i. cross-link density is preferably induced by

latitudinal shifts of strong coupling in the atmosphere

or in the ocean.

To further address this issue we additionally com-

pute the area-weighted average cross-degree density

κsi =
1

Wi

∑
v∈Vs

κivwv (19)

taken over all nodes in the SST and

κis =
1

Ws

∑
v∈Vi

κsvwv (20)

taken all nodes in the HGT fields individually. This

gives an indication of the average latitudinal position

of nodes that are likely to couple with those in the op-

posite subnetwork. As for ρ∗si, a shift of κsi and κis to-

wards higher values indicates a tendency towards nodes

at lower latitudes to display strong interactions with the

opposite field.

The area-weighted average cross-degree density κsi
for nodes in the SST field is displayed in Fig. 9B and its

respective counterpart κis for nodes in the HGT field

in Fig. 9C. We find that the results for ρ∗si and κis are

qualitatively very similar (Fig. 9A,C), whereas we find

almost no variation with pressure level for κsi except

for the coupling with the lower troposphere (Fig. 9B).
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Fig. 9 (A) N.s.i. cross-link density ρ∗si between the SST field
and all 18 layers of geopotential height (HGT). Area-weighted
average cross-degree densities (B) κsi for nodes in the SST
field and (C) κis for nodes in the HGT fields as defined in
Eq. (19) and (20).

Hence, almost no latitudinal dependence of the cou-

pling structure in the ocean is present and we find (on

average) that always nodes of the same latitudes in the

ocean interact with the atmosphere. This aligns well



14 Marc Wiedermann et al.

0.1 0.2 0.3 0.4 0.5 0.6

20

50
100
200

400
700

Pr
es

su
re

 [m
ba

r]

A

0.1 0.2 0.3 0.4 0.5 0.6

B

0.1 0.2 0.3 0.4 0.5 0.6
N.s.i. cross-transitivity T ∗ij

20

50
100
200

400
700

Pr
es

su
re

 [m
ba

r]

C

0.1 0.2 0.3 0.4 0.5 0.6
N.s.i. cross-global clustering C ∗

ij

D

26.3

20.5
16.2
11.8

7.2
3.0 Av

g.
 g

eo
po

t. 
he

ig
ht

 [k
m

]

26.3

20.5
16.2
11.8

7.2
3.0 Av

g.
 g

eo
po

t. 
he

ig
ht

 [k
m

]

ρsi=0.005 ρsi=0.01 ρsi=0.025

Fig. 10 Global interacting network measures computed for
all 18 coupled climate networks. N.s.i. cross-transitivity (A)
and n.s.i. global cross-clustering coefficient (B) taken over
all nodes in the SST field. (C) and (D) display the respec-
tive measures computed over all nodes in the HGT field.
To demonstrate the robustness and consistency of the re-
sults we construct the networks for different choices of (un-
weighted) cross-link density ρsi and internal link density
ρi = ρs = 2ρsi.

with the hypothesis put forward in Sec. 3.2 regarding a

possible role of major ocean currents for the detailed in-

teraction structure and the topology of the resulting cli-

mate networks. Since the large-scale flow patterns and,

hence, the latitudinal positions of the currents rarely

vary with time, the values of κsi are also expected to

remain roughly constant (Fig. 9B).

In contrast, the majority of variations in the n.s.i.

cross link-density ρ∗si can be related to latitudinal shifts

of areas in the atmosphere that interact with the ocean.

We find the same distinct maxima in κis for the 400 and

75 mbar HGT fields that were present for ρ∗si (Fig. 9A,C).

Thus, for these pressure levels interactions preferably

take place between the ocean and parts of the atmo-

sphere further towards the equator as compared to other

layers of HGT.

3.4.2 N.s.i. cross-transitivity and n.s.i. global

cross-clustering coefficient

Finally, we investigate the n.s.i. cross-transitivity T ∗si
computed over nodes in the SST field and T ∗is com-

puted over nodes in each of the HGT fields according to

Eq. (18) together with the n.s.i. global cross-clustering

coefficients C∗si and C∗is, respectively (Eq. (16)), Fig. 10.

Both T ∗si and C∗si show their maximum values at around

10 km (250 mbar), which coincides with the maximum

of the jet wind speed in winter (Figs. 10A and 10B). For

the same quantities, distinct minima at 850 mbar (1.4

km) coincide with the transition from the atmospheric

boundary layer to the lower troposphere (as in Donges

et al, 2011). For all layers above 100 mbar particularly

T ∗si remains almost constant at low values. Hence, T ∗si
and C∗si seem to naturally discriminate the atmosphere

into three different layers: Those below 850 mbar (the

atmospheric boundary layer), those between 850 mbar

and 100 mbar (the free atmosphere) and those above

100 mbar (the lower stratosphere).

For the global measures computed over all nodes in

the HGT field, we find that the n.s.i. cross-transitivity

T ∗is shows almost constant values for all layers below

200 mbar and, hence, again separates well the dynam-

ics within the troposphere from that inside the strato-

sphere, Fig. 10C. For all layers above 200 mbar T ∗is be-

comes almost independent of the cross-link density ρsi
that is fixed when constructing the network. The same

property holds also for the n.s.i. global cross-clustering

coefficient C∗is computed over all nodes in the HGT field,

Fig. 10D.

In agreement with the (averaged) local measures

discussed in Sec. 3.2 and 3.3 we find that the n.s.i. cross-

transitivity and n.s.i. global cross-clustering coefficients

are larger for nodes in the HGT fields than for nodes

in the SST field (compare Fig. 10A with Fig. 10C and

Fig. 10B with Fig. 10D). As for the n.s.i. local cross-

clustering coefficients this indicates again the hierar-

chical network structure, e.g., a higher tendency for

nodes in the HGT field to form triangular structures

with nodes in the SST field, that is present across all

atmospheric layers. The detailed structure of this hi-

erarchical coupling, however, seems to vary with the

different atmospheric layers under study.

In general, we observe that the quantitative and

qualitative properties of the n.s.i. cross-transitivity and

n.s.i. global cross-clustering coefficients vary with the

different atmospheric layers. Hence, these global charac-

teristics may serve as a quantifier to inter-compare and

distinguish between different types of coupling struc-

tures in a coupled climate network. An in-depth analy-

sis of the mechanisms that cause the occurrence of this

behavior in our specific application remains as a subject

of future research.

4 Conclusions

We have carried out a detailed analysis of the inter-

action structure between atmospheric and ocean dy-

namics in the Northern Hemisphere from the viewpoint
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of coupled climate networks. Comparison between the

n.s.i. cross-degree density (measuring the weighted share

of significant correlations between grid points in dif-

ferent layers) and the leading mode of the maximum

covariance analysis (MCA) reveals an expected high

congruence between both methods for the considered

data sets. However, network analysis, and particularly

the investigation of higher-order network parameters,

allows us to further disentangle the underlying inter-

action structure. The (average) n.s.i. cross-degree den-

sity in combination with the (average) n.s.i. local cross-

clustering coefficient provides insights on areas in the

ocean and the atmosphere that show significant cou-

pling as well as localized versus delocalized interaction

structures with the respective opposite field. In the SST

field nodes tend to couple with multiple unconnected

clusters of dynamically similar nodes within the re-

spective HGT fields. From investigating the interdepen-

dency between n.s.i. cross-degree density and n.s.i. local

cross-clustering coefficient, we found that the coupling

from the ocean to the atmosphere follows a hierarchical

structure, which might be related to large-scale ocean

currents that couple with different dynamically dissim-

ilar areas along their respective direction of flow.

Additionally, our analysis recaptures dominant sig-

natures such as jet stream patterns and the polar vor-

tex. Global network characteristics further support the

results obtained from their local correspondents and

provide insights into the overall interaction structure

between ocean and atmosphere. Hence, complex net-

work theory serves as a powerful tool for addressing

these issues complementing other well-established meth-

ods from statistical climatology.

Future work should also study the internal network

structure within each of the climatological fields in or-

der to further investigate the processes that cause the

presence of the observed hierarchical interacting net-

work structure. To this end, our analysis has only been

performed for the pairwise coupling between one at-

mospheric layer and the ocean. Thus, future studies

should investigate the possibility to refine the proposed

methods to also quantify interactions in a climate net-

work that decomposes into more than two subnetworks.

Specifically, when studying coupled climate networks in

the Northern hemisphere one should also consider Arc-

tic sea ice concentration as an additional observable

in the network construction. Its dynamics have already

been discovered as an influencing factor on atmospheric

teleconnections and the dynamics of land snow cover in

the Northern hemisphere (Handorf et al, 2015). The

study of coupled climate networks can help here to fur-

ther disentangle and quantify possible changes in inter-

actions between ocean and atmosphere over the course

of the past decades that may be induced by processes

related to the Arctic amplification (Serreze and Francis,

2006). Moreover, it is of great interest to apply these

methods not only to an interacting network composed

of different climatological fields, but also to a network

constructed from a single field that divides into dy-

namically distinct areas, usually denoted as communi-

ties (Tsonis et al, 2010; Steinhaeuser et al, 2011). This

would allow for a detailed investigation of correlation

structures between different climatic subsystems such

as, for example, the Indian Summer Monsoon and the

El Niño Southern Oscillation (Hlinka et al, 2014).

Finally, it remains to remark that the weighted net-

work measures presented in this work provide a general

framework which can be applied to quantify interde-

pendencies in complex networks representing subjects

of study taken from many other fields beyond climatol-

ogy.
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A Similarities between leading coupled

patterns and n.s.i. cross-degree densities

Following Donges et al (2015), we derive relationships be-
tween degree-related weighted and unweighted measures for
coupled climate networks and the corresponding coupled pat-
terns from weighted MCA. In this work, coupled patterns

p
(k)
s and p

(k)
i (see Eqs. (3)-(4)) are computed from the weighted

cross-correlation matrix (Eq. 2) between two climatological
fields with elements

Cwsnim = wsnimCsnim

=
√

cosλsn cosλimCsnim (21)

with wsnim =
√

cosλsn cosλim according to Eq. (2). The
weighted cross-covariance matrix can be expanded in terms

of coupled patterns and singular values as

Cwsnim =
R∑
k=1

σkp
(k)
sn
p
(k)
im
. (22)

This implies that the unweighted cross-correlation matrix can
be expressed as

Csnim =
1

wsnim

R∑
k=1

σkp
(k)
sn
p
(k)
im
. (23)

Since all coupled climate network measures are based on
Csnim , degree-based measures can be written as functions of
singular values and coupled patterns from weighted MCA as
well. For the unweighted cross-degree, we obtain

ksm =
Ns∑
n=1

Θ (|Csnim | − Tsi)

=
Ns∑
n=1

Θ

(
1

wsnim

∣∣∣∣∣
R∑
k=1

σkp
(k)
sn
p
(k)
im

∣∣∣∣∣− Tsi
)

(24)

and analogously

kin =
Ni∑
m=1

Θ (|Csnim | − Tsi)

=
Ni∑
m=1

Θ

(
1

wsnim

∣∣∣∣∣
R∑
k=1

σkp
(k)
sn
p
(k)
im

∣∣∣∣∣− Tsi
)
. (25)

Similarly, for the n.s.i. cross-degree one obtains

ks∗m =
Ns∑
n=1

wnΘ (|Csnim | − Tsi)

=
Ns∑
n=1

wnΘ

(
1

wsnim

∣∣∣∣∣
R∑
k=1

σkp
(k)
sn
p
(k)
im

∣∣∣∣∣− Tsi
)

(26)

and

ki∗n =
Ni∑
m=1

wmΘ (|Csnim | − Tsi)

=
Ni∑
m=1

wmΘ

(
1

wsnim

∣∣∣∣∣
R∑
k=1

σkp
(k)
sn
p
(k)
im

∣∣∣∣∣− Tsi
)
. (27)

Analogous results hold for the cross-degree and n.s.i. cross-
degree densities, respectively.

In the following, we focus on the n.s.i. cross-degree ks∗m for
illustration, while all results hold for the other degree-related
measures as well. If the leading pair of coupled patterns ex-
plains a large fraction of the cross-covariance between both
climatological fields with σ1 � σ2 (as is the case for the
climatological fields investigated in this study), we can ap-
proximate

ks∗m ≈
Ns∑
n=1

wnΘ

(
σ1

wsnim

∣∣∣p(1)sn p(1)im ∣∣∣− Tsi
)

(28)

Elements of the leading coupled pattern p
(1)
im

contribute to

this sum if |p(1)im | ≥ Tsiwsnim/σ1|p
(1)
sn |. Hence, a larger |p(1)im |

increases the odds for a larger ks∗m to arise, implying a posi-

tive correlation between the absolute coefficient of the leading

coupled pattern |p(1)im | and the n.s.i. cross-degree ks∗m as well

as the n.s.i. cross-degree density κs∗m = ks∗m /Ws, as it is ob-

served in this study (Section 3.2).
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