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Abstract
We study dense solid-liquid suspensions throughemiga simulations. The liquid flow is solved byeth
lattice-Boltzmann method on a fixed (Eulerian), iculiniform grid. Spherical solid particles areckad

through that grid. Our main interest is in casegmghthe grid spacing and the particle diameter hlawe
same order of magnituded,(A:O(l)). Critical issues then are the mapping operatithrag relate
properties on the grid and properties of the pagice.g. the local solids volume fraction seenaby

particle, or the distribution of solid-to-liquid tgodynamic forces over grid points adjacent to diga.

For assessing the mapping operations we compavitsrder particles settling under gravity in fully

periodic, three-dimensional domains of simulationith d/A=0(1) to much higher resolved

simulations d/A:O(lo)) that do not require mapping. Comparisons are nraderms of average slip

velocities as well as in terms of liquid and flwelocity fluctuation levels. Solids volume fract®are in

the range 0.3 to 0.5, Reynolds numbers are of @&deto 10.
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1 Introduction

Engineering applications where solid particlessargpended in a liquid phase are abundant. An iraport
class of applications — and the motivation for tbgearch presented in this article — relates tastnl
and pharmaceutical crystallization [1]. Other apgions are sediment transport (e.g. in environalent
flows [2]), catalytic slurry reactors [3], and hwdiransport in the mining industries [4]. Crystadlin
processes are often carried out in agitated taplesated under turbulent conditions with high solids
loading (20% solids by overall volume is not excapal). The distribution of solids in the tank and
therefore the hydrodynamic conditions individuajstals get exposed to are thought to be of inflaeorc
product quality: crystal size distribution, crystshape (think of particle attrition due to frequent
collisions), and crystal purity.

Computational methods are one way of enhancingioderstanding of solids suspension processes
in mixing tanks. Advances in numerical methodolsgiand — first and foremost — wide availability of
high-performance computational resources make rimate and more details and complexity can be
accounted for in simulations. Specifically in theld of crystallization there are good reasonsntcest
computational effort in resolving the behavior oélividual particles because the particles are tteah
product and knowing their history in the coursdhadir formation process (and the extent to whidh th
history varies from crystal to crystal) is relevaAmong more, this notion has motivated research on
Eulerian-Lagrangian descriptions of solid-liquidspansions: Fluid flow is resolved in an Eulerian
manner (i.e. on a fixed computational grid) andtgh this Eulerian flow field solid particles aradked

[5]. The specific situations we are interested aveh particle sizesdf that are of the same order of
magnitude as the Eulerian grid spaciugi.e. d = O(A). This is somewhere in between particle-resolved
simulations @ > A) [6], and the cases more common in Eulerian-Lagean simulations that have
d<A [7].

The situation we have in mind is that of a lab es¢akder one liter) tank containing liquid and 300

pm size solid particles. If the solids volume fraatis some 10 to 20%, the tank contains of therastle



10" particles. Dealing with such numbers of partiégles simulation is very well feasible [8], resolgin
the liquid flow around each individual particle lpwever, not that feasible. By not resolving tloavf
around each particle we do not want to use a siioalanethod that required << A. This would make
the Eulerian grid too coarse to e.g. perform a-nedblved large-eddy simulation of the liquid flow.

The aim of this paper is to describe and calibeateumerical procedure for Eulerian-Lagrangian

simulations of solid-liquid suspensions with pdesc and grid spacing having comparable size:

d :O(A). As will become clear, the operation of exchangifgrmation between particles (Lagrangian

information) and the liquid flow on the grid (Eulem information), this operation is usually refefte as
mapping, requires numerical settings for which no closeeoty is available. At the same time, these
settings have a pronounced impact on the outcomesohulation. In order to make objective choiaas f
the numerical settings, simulations of sedimentpayticles in fully periodic domains have been
performed with the here proposed, unresolved pestisrocedure. The results are compared to resiults
particle-resolved simulations (already publishesk §9]) of the same, fully periodic systems. Next t
average relative velocities of particles with regge liquid (i.e. superficial slip velocities), amportant
demand of the particle-unresolved simulations & they are able to reproduce the velocity flugtunat
levels (of particles and liquid) as observed in biemchmark particle-resolved simulations. Thisa$ n
only important from a fundamental point of view,aitso is from a (industrial crystallization) praeti
point of view: Fluctuations determine collisionstween particles, and are highly influential to mass
transfer between liquid and solid as e.g. occurseactive crystallization, or when crystals grow or
dissolve in the liquid phase.

This paper is organized in the following order:sFithe fully periodic sedimentation configuration

is discussed. We then give a brief account of thly fresolved simulation method that provides the

benchmark results for assessing the much IdssQ(A)) resolved (“particle-unresolved”) simulations.

The methodology for particle-unresolved simulatiengliscussed and subsequently assessed in detail.



Before summarizing the results in the Conclusiawisn, we give an outlook on applying our particle

unresolved numerical approach to agitation of esdesolid liquid suspension in a mixing tank.

2 Flow system and simulation method
2.1 Flow system

The system is a three-dimensional periodic domasize nxxnyxnz with nx=2ny = 2nz. It contains a
Newtonian liquid with densityo and kinematic viscosity , and solid particles. The solid particles are

monosized spheres with diamettrand densityp, larger thanp. If there areN spheres, the solids

3
volume fraction is ¢)=NL. This allows for the definition of the mixture daty
oenx [y Lhz

P E¢ps+(1— w)p. A gravitational acceleratiog acts in the negative-direction: g =-ge,. The net
gravity force (gravity minus buoyancy) on each sphe has a magnitude
a(po, - p.,) /6= g(1-¢) (o, - p) 7/ 6 and acts in negativedirection. To have a zero overall force
on the periodic domain — and thus prevent the doraaia whole from accelerating — a body force €orc
per unit volume) in positive-direction off = g(,om —,o)eX is applied to the liquid [10].

One way to characterize the system above is thrtlugliollowing set of dimensionless numbers:

solids volume fractiorp, density ratiop,/ o, aspect ratiad/nx, and the single-particle settling Reynolds
numberRe, =u_d/v with u, the settling velocity that we determine from actobalance over a single
particle in an infinite domaing (o, - p) d®/6=1C,pu2 md?/4. For the drag coefficientC, the

Schiller-Naumann correlation [113, = 24(1+ 0.15 R%687)/ R is applied.

2.2 Resolved simulations
In previous papers [9,10,12] we have studied systiéaa this by means of particle-resolved simulagio

In such simulations the grid on which the liquidwilis solved is much finer than the size of theiplas



(typically the diameted spans 12 to 24 lattice spacings). This allowsxglieitly impose the no-slip
boundary condition on each spherical solid-liquiteiface. The forces and torques on each parhele t
result from this procedure are used to update gh@rtocations and velocities (translational as veall
rotational). These moving no-slip conditions foe tiquid provide an intimate coupling between ldjui
and solids dynamics. Details of the particle-resedlsimulations, their methodology and performance,

can be found in the papers referred to above.

2.3 Unresolved simulations
The results of particle-resolved simulations wik lzonfronted with those of particle-unresolved
simulations. Such unresolved simulations are tbad®f this paper. As explained in the introductiee

will be dealing with dense suspensiogs>0.2) in an Eulerian-Lagrangian manner. The Euleriad gr
uniform and cubic with grid spacind.. The spherical particles that move through thisl dgrave a
diameter comparable t4; the range of diameters investigatedig5< d/A < 2.

On the Eulerian grid the continuity equation andnmeatum balance for the liquid phase [10] are

solved:

9 (o#)+Difppu) =0 )
ot

%(pgfu)+D[Qp¢°uu):qo°DBr+f +f, (2)

with ¢ =1-¢ the continuous phase (liquid) volume fractienthe interstitial liquid velocity, = the
liquid’s stress tensor, anfd the force per unit volume the solid particles éxer the liquid. Equations 1

and 2 are rewritten in the following form

0p __p|og

EJ’D[@PU)- qu{_at +UUD¢°} (3)
9 ot p[ 3y
a(pu)+D[@puu) O v qo{u_at +uuD]]qp°} (4)



Our standard, single-phase lattice-Boltzmann proaefil3,14] is capable of solving Eq. 3 and 4/if=1
everywhere which implies that the right-hand sideEq. 3 and 4 are equal to zero (and d|se0 in Eq.

4). For solving multiphase flow problems, the seighase procedure has been extended with source
terms: A mass source term equal to the right-hael &f Eq. 3, and a momentum source term equal to

the right-hand side of Eq. 4 [15]. Evaluation ok source terms requires knowledge of the conisuo
phase volume fraction fielgf , its gradientT¢f , and its time derivativé¢f /ot .

The dynamics of the spherical solid particles igegned by Newton’s equations of motion

T ,,du T
psgdgd_tpzlzh+Fc_gd3(ps_pm)gex (5)
T . do
psg)ds dtp =Th+Tc (6)
dxp
E=Up (7)

with u,,®,,x, the linear velocity, angular velocity, and centoeation of a spherical particle

respectively (note that — because we are dealinly spheres — there is no need to track the angular

“location” of the particles);F, and T, the hydrodynamic force and torque on a partiahel . and T,

the contact force and torque due to particle-pgartiollisions and lubrication effects.

2.4 Modelling assumptions and procedures
Implementation of Eqs, 3-7 in a numerical framew§uires a great many assumptions and modelling

steps, the sensitivity of which generally needbddnvestigated. The focus of the current reseercim
the following three aspects: (1) Determinationted tolume fractiongy and ¢¢ and their temporal and
spatial derivatives on the Eulerian grid based len dize and locationg, of individual particles; (2)
relating the (Lagrangian) hydrodynamic fordgs(Eq. 5) acting on a particle to the (Eulerian) yoéalce

f. (Eq. 4); (3) the size of the particles relativehe grid, i.e. the ratia/A. The first two aspects require



choices for the way in which particle properties dristributed over the Eulerian grid, specificéihe
spatial extent of such a distribution. It is angatied that this extent is decisive for the levelelocity
fluctuations (of liquid and solids) in the sedimagtsuspension. This can be appreciated givenrihae
hypothetical case of hydrodynamic forces beingritisted uniformly over the entire periodic domain,
and the solids volume fraction being consideredoum over the entire domain, the velocity fluctoati
levels of liquid and solid would become zero. Therenfocused (i.e. the narrower) one distributes
Lagrangian properties over the Eulerian grid (aiw@ versa)the more local flow structures appeanrd
the higher fluctuation levels one expects. The kil the distribution process is controlled by magp
functions [16,17] which are discussed in more di&igiow.

A major simplification in this work is that the gnhydrodynamic force we will be considering is

the drag force(F, =F,). For gas-solid systems it is well established ttiatg is the dominating

hydrodynamic force; for liquid-solid systems — wit@nsity ratios of order one — this does not neségs

need to be the case. An additional simplificatisrthiat drag is assumed to only depend on the solids

volume fraction, and on the Reynolds number baseith® slip veIocityRe=(1— qo)‘u —up‘d/v . We thus

do not include terms in the drag expression thpedd on the granular temperature (as e.g. in [18]).

In the literature there is extensive activity arebate about the manner in which the drag force
depends orp and Re. Much of the recent work is motivated bpligptions of gas-solid flow (e.g. gas-
fluidization, pneumatic conveying) where Stokes bems are high due to the high solid over fluid
density ratios. In such cases, the fluid flow tisoales are much shorter than the time scales oviehw
particle configurations change so that one can \deag as the result of the gas flowing throughistat
(and random) assemblies of particles. Nowadaysy fr#isolved simulations of fluid flow through
assemblies of static particles are standard roytl®e22] and a great many correlations have been
proposed based on such simulations. As shown bly {28 situation for liquid-solid systems that have
low to intermediate Stokes numbers is very differ&or liquid-solid systems the prevailing appro&h

the one based on the seminal experiments of saliticfes settling in liquids by Richardson and Zaki



[24]. Refinements and amendments are e.g. duest@gR In this school of thought, hindered settliag

described as(l—w)‘u—up‘/uw :(1—¢J)N with a well-established value for the exponeXt at low

Reynolds numbersN =4.65 [26], and relatively weak dependencies Mfon Re [26] orRe, [9] for

moderate Reynolds numbers. The fully resolved baack simulations [9], that we will be comparing
our unresolved simulations with, largely confirne tvalidity of an exponential hindered settling suzl
The drag force relation that is the consequence Richardson-Zaki type approach can be written

as
F, =37pvd(u-u, )(1+ 0.15R&)( £ ¢)” (8)

with =N -2 and a Schiller-Naumann type [11] account for &riReynolds number drag. For (again)
simplicity, and since this paper is focusing on ttehsequences of modelling choices on velocity
fluctuations, less on average velocities, the valighe exponent has been set to the fixed value of
L =2.65, i.e. independent of Re.

Mapping — as alluded to above — enters Eq. 8 viardenation ofu (which is a measure for the
liquid velocity around the particle location) agd(which is a measure for the solids volume fraciion
the vicinity of the particle). The velocity enters Eq. 8 directly and also via Re. Startinmtpfor our

mapping process is a “clipped fourth-order polyralinj17] /J(E) which shows some resemblance to a

Gaussian distribution but is computationally mdifecent than a Gaussian. In one dimension:

B EAPY A R
/J(E)_16L5 2/]3+J for —1<é<A

u(&)=0 for &[> A

(9)

The local average at location over an averaging length sc&2d of a one-dimensional functioa(f)

is then determined aga(k)) = f,u(.{—/()a(f)df. In our simulations,a (&) is defined on an
g



equidistant gridé, with spacingA by valuesa;, and we approximater(f) in the integrant as a stair

step function, i.ea (&) =a; for § —1A<&<& +1A.

N1

Such mappings can be readily extended to threendiimies:

(a(x)), =i 11#(51—Kl)ﬂ(fz—Kz)ﬂ(fg—Ka)a(%)dfpf a¢ (10)

Equation 10 is used to determine the liquid velouaitand solids volume fractiogp from grid values in

the expression for the drag force (Eq. 8). We whikck the impact filter lengtid has on the simulation
results.

An inverse mapping operation is required to colyalek the hydrodynamic forceF, to the liquid.

This involves a distribution of the force over ggeints surrounding a particle. A similar operation
applies for determining the solids volume fraction the grid: the volume of each particle will be

distributed over surrounding grid cells.
Given the discrete nature @f (&), Eq. 10 can be written a<$r(|<)>A =YX ¥ 1y with i, K
i j ok
discrete coordinates i y, andz-direction respectively, ang,, coefficients following from integrating
the mapping function. The coefficient, are only non-zero on grid points within a volum‘e(@)l)3

aroundx , andy. ' > 77, =1 since fora uniform (a), =a.
T 7K

The same coefficientg,, are used to distribute particle properties todhd. The drag force on

one of the particlesH;) contributes to the body force on the fldid(see Eq. 4) in grid cell, j,k by an

amount _EFDnijk; that same particle contributes to the solids naufraction in celli, j,k by an

md® : : , L :
amount W””k' For the total interaction force and the totalid®lvolume fraction in each grid cell

(i, j,k) contributions from all particles need to be addpd



Applying the lattice-Boltzmann method for incommiede flow requires that liquid velocities
should stay well below the speed of sound [27].sTimplies that — measured in lattice units (lattic

distance per time stegy/At) — liquid speeds need to be limited to order Oduid travels typically less

than 0.1A per At). As a result, particle speeds are limited to ordd as well. Together with the
distribution through mapping functions of soliddwoe over clusters of lattice cells around partidlas

leads to a smoothly varying (in three-dimensionphce and time) solids volume fraction field
@(x,y,zt) and thus liquid volume fraction fields (Xx,y,z;t)which are amenable to numerical
differentiation to determin&l¢f, andd¢f/dt , as encountered in Egs. 3 and 4. We use centfetatices

for O¢f , and an Euler backward method iy /ot .

2.5 Particle dynamics modelling
Now we turn to particle dynamics, i.e. the way EfS. are dealt with. In Section 2.3 it was already

explained howF, (equal toF,) was determined. The contact forEe consists of two parts: soft-sphere
collision forcesF_, and lubrication force§;, , . Both forces are assumed to be radial forces, mgahat

they act on the line connecting the two sphereresnhvolved in the contact. We will not be consiinig

tangential contact forces and contact torques, mgahat T, =0 in Eq. 6.

For determiningF_, overlap distance® of spheres are detected. Once two spheres ovéhiap,
are given a (equal and opposite) linear, elastisive force with magnitudéF, |=kd. The spring
constantk = 777m/t> (m=7p.d*/6 is the mass of a particle) is largely a numergalameter and is
chosen such that a typical collision time is 10etistepst, =10At [23]. In a typical simulation this results

in maximum overlapping distance of not more tH&Y'd . This approach leads to elastic (restitution

coefficiente=1), smooth (i.e. frictionless) collisions betwegmnrticles.

10



Lubrication forces are the result of relative vélpdetween closely spaced particles. When two
particles approach, a liquid film between them seedbe squeezed out which brings about a repulsive
force between the particles, for similar reasomsatiractive force arises when two particles sdpara
Radial lubrication forces are included in the siatigns. The low-Reynolds number, analytical

expression for the magnitude of the radial lubrazatforce between two equally sized spheres is

Fu| =—2mpd?Au,, /s with s the distance between the two particle surfaces, ), the relative
velocity of the two particles in radial directiowith Au, >0 separation, hence the minus sign in the

expression for the lubrication force) [28]. In thienulations we have limited the distance over whiah

lubrication force acts t@<d/10 and changed the expressiodl%gb| = —gnl/pdzAupr (1—%j [10]. To
"s

avoid divergence when particle touct@) the lubrication is saturated, i.e. does notaase anymore
upon approach, i6<0.0-d [10].

The hydrodynamic torqueT( in Eqg. 6) on a particle is determined from thetiedy of the liquid
in direct vicinity of the particle ¢) and the rotation rate of the particle (): T, = izz)vd3(%m—cop).

This is a creeping flow approximation. The rotatafrthe particle is not coupled back to the ligusahce
the rotation does also not play a role in partaeticle collisions T, =0), particle rotation has no effect
on the overall dynamics of the suspension. We tieedeq. 6 as a matter of completeness.

The equations of motion (Eq. 5-7) are solved bymsea a split derivative time integration which

has been discussed in detail in [29].

3 Results

3.1 Base-case

11



First a base-case will be introduced. This allowgaiexplain how the simulations results were asely
and will give us the opportunity to give visual imapsions of the flow system. The dimensionless

parameters of the base case @re0.350, p./0=4.0, Re, =1.8% andd/nx=1/24.

The particle-resolved simulation of this case hagbatial resolution such that=12A . Results of
this case, that also have been presented elsey®lerare compared to unresolved simulations with

particle diameters ofl =2A,A, and 0.7B respectively. In the unresolved simulations thdtkviof the

mapping function has — initially — been fixedAo=1.5d as e.g. suggested by [17]. In Figures 1 and 2 we
show cross sections through the flow system. Tiitite comparison, the velocities have been stifie
that all cases shown in Figures 1 and 2 have volaveeaged liquid velocity in thedirection equal to
zero.

In Figure 1, resolved and unresolved simulatioescampared. In the resolved simulation shown in
full resolution (top panel), the interaction betwdiguid and solid is clearly visible. One obserligsiid
squeezing through the open space between the lpgstend the liquid flow being deflected by the
particles. Each vector we show in the middle paridFigure 1 is the average of a cluster@f 6x 6
vectors of the fully resolved flow, i.e. we haveasally filtered the fully resolved flow to a resmion that
is the same as that of an unresolved simulatioh @it 2A . Results of the latter are shown in the lower
panel of Figure 1. The clear interaction betweguitl and solid, still visible in the filtered reset field,
is to a large extent lost in the unresolved fidltlis is not a surprise given the schematizationthé
unresolved simulations as discussed above. Congpariddle and lower panel more gobally, one sees
similar levels of variation of liquid velocities drsomewhat higher absolute particle velocities @red
particles) in the lower panel. Figure 2 shows camspas among unresolved simulations, with the
particle size over grid size decreasing from topdttom.

It is clear that much of the flow physics captunedhe particle-resolved simulations is lost in the
particle-unresolved simulations. In resolved sirtiates, hydrodynamic interactions between particlies

largely captured (only for particles that are vetgse, lubrication modelling enters). In unresolved

12



simulations, these interactions are parameterizealdrag force correlations that involves(Eqg. 8) and

also the interactions enter through= -¢ that is contained in the liquid mass and momertatances

(Egs. 3 and 4). Note that in the current approadly the drag force is included, other type force w
certainly contribute further to interactions. Alsote that as a result of mapping,is a spatial average
over a length scal@A which usually equals a few particle diameters.

The pragmatic approach we will be following is tg &nd establish how sensitive the outcomes of
unresolved simulations of settling particles ar¢hwespect to the two main numerical parameters we

have: d/A and A/d. With regards to the outcomes, we will focus oe 8uperficial slip velocity
(1—(0)‘u—up‘ and on the velocity fluctuations in tke(direction of gravity) and/ andz directions of

particles as well as liquid. For the base-case ivg¢ éstablish these quantities for the particksheed

simulation. Figure 3 shows quasi-steady time serigs the volume-averaged quantities

:<1 ¢‘u u‘ uf—uxz u_\/i F \/ px

<u,§z> with the brackets< > indicating volume averaging. There is a clear @nipy in the

velocity fluctuations, with thex-velocities fluctuating stronger by a factor of eppmately two (for
liquid as well as for particles). The particles ctiuations being somewhat weaker than the liquid
fluctuations is due to density of the particlesnigefour times higher than the liquid density. Thip s
velocity is at a level ofi, =0.13%, which demonstrates the hindered settling effeg}.[2

Time series of unresolved particle simulation —rtetparts of the particle-resolved time series in
Figure 3 — for a mapping function width=1.5d are given in Figure 4. The general observatioes ar
similar as for the resolved simulationsfluctuations stronger thay andz fluctuations; liquid velocity
fluctuations stronger than particle velocity fluations. Spatial resolution, as expressed by the thiA

has significant impact on the results. Fluctuatievels decrease with decreasing resolution. Als th

difference between liquid and solids fluctuatioeduces with decreasing resolution.
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The slip velocity is remarkably stable in all simtibns shown in Figure 4. It is consistently (some

10%) higher than in the resolved simulatiog=0.15._, almost independent of the spatial resolution. As
we will see shortly, thei, =0.15, also is hardly dependent on the widthof the mapping function (if
A>d). In the extreme case of uniform mappind) £ o) we find from the simulationsi, =0.153_ .

The latter value is consistent with the use of &gs the expression for the drag force. This ctersty
has been detailed in Appendix A.

The simulation data have been further reducedne tiverages taken over quasi-steady portions of
the simulations. Still for the base-case, thesa de¢ presented in Figure 5. The slip velocity shomy

a weak dependence on the numerical paramelgsand A/d if A/d >1. The reduction of slip velocity
at A/d=1 at the lower resolutions is the result of the mesvy focused reaction force acting from

particles to lquid which locally strongly drags dwotine liquid.

Qualitatively, the general observations of velodiiyctuations in the resolved simulations are
recovered by the unresolved simulations: Fluctuatim gravity direction are a factor of approxintate
two larger than in the lateral directions, and ikfjdluctuations are stronger compared to particle
fluctuations. Also the order of magnitude of thectuations in the unresolved simulations correspdnd

those in the resolved simulations.

There is a clear trend with the numerical pararsetieough. The strongest is the one withd .
Fluctuations decrease with increasiagd . This is to be expected, the wider the influentere particle

is felt, the more it will behave in coherence withneighbouring particles (and — as we argued @boW

A/d goes to infinity the fluctuations will disappeaf)ccording to Figure 5, the best agreement between
fluctuations in unresolved and resolved simulatiseached ford/d in the range 1.0 to 1.5t is

interesting to note that Capecelatro and Desjaf@@srecommend a resolution at the leveligtl = 3.

14



Given the sensitivity of the slip velocity at/d =1for the resolution ¢/A), it was decided to
continue working withA/d =1.5 and to study the performance of unresolvedilsitions with this setting

for a range of solids volume fractions aReé_ values.

3.2 Slip velocity and particle fluctuation levels

In Figure 6 the results of the parameter study Haen summarized. Since the trends in particle and
liquid velocity fluctuations was the same, onlytpe fluctuations levels are reported. The dowrdvar
trend of all variables on display with an incregssolids volume fraction is no surprise and can be
summarized as more hindrance between particlesdémser suspensions. The agreement between
resolved and unresolved simulations we considerfda the lower part of the Reynolds number range

studied. ForRe, = 1C, however, we see that the unresolved simulatidrengly deviate from the

resolved ones. Specifically at logr the fluctuations come out too high in the unresdlgimulations.

3.3 A sample mixing tank result

In order to give a sense of the potential of thevaldescribed numerical approach to agitated siojiod
systems, we here give a brief account of simulatioha particle suspension process in a mixing.tank
The tank, as displayed in Figure 7, has the samengigy as the one we previously used for particle-
resolved simulations3[l]. The “pitched-blade” impeller rotates such thatpumps liquid in the
downward direction. The liquid flow in the tankdbaracterized by a Reynolds number that is defased
Re,, = nD?/v (with D the impeller diameter, amtlits angular velocity in revolutions per unit timand
has a value of 1440. Without solid particles présieis would be a mildly turbulent flow. In thisrtia we

place N=290,000 solid, spherical particle with a diameter0.022D . The overall solids volume

fraction of this system isp= Nnd3/(6W2H):O.135. The density ratio isp,/p=2.5. A useful

dimensionless parameter that to a significant éxtbaracterizes the suspensions process is a eddifi
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Shields number [30]9:pn2D2/[gd(ps—p)]. It is the ratio of inertial stress (that scaleshwon®D?

and is the mechanism responsible for suspendingp#récles) and net gravity. In the simulation
presented heré =48.

The sequence of instantaneous realizations in &igureveals some interesting features of this
solid-liquid flow. In the first place it shows — the initial stages — the way the stream of liqgeeening
off the impeller in the downward direction is enoglithe bed of particles. In the later stages a @ine
particles forms under the impeller. This cone #sult of the particles influencing the overall alation
structure in the tank (a solid-to-liquid coupledepbmenon): the liquid stream generated by the ilepel
is deflected in outward radial direction by thegaece of a dense packing of particles under thelierp
This stream is therefore not able to truly mobilial suspend the particles in the cone. The stokm®
continuously erode the surface of the cone.

Experiments are very much needed to assess thkedévealism of these types of simulations.
Matching the refractive index of liquid and (glags)ticles would allow for performing experimentsit

look through the suspension with optical methods.

5 Conclusions
In this paper we have described and subsequersgsssd an Eulerian-Lagrangian simulation method for
solid-liquid suspensions. A typical feature is ttte method allows for the particle size to behef same
order of magnitude as the Eulerian grid spacingli#a@hally, the assessment was focused on them &0
practical point of view — very relevant range ofthisolids volume fractionsg(> 0.30) and on velocity
fluctuations.

By comparing with fully resolved simulations, it sv@oncluded that a reasonable choice for the
width of the mapping function that facilitates tw@y communication between the particles and the gri

is one and a half particle diametel/¢ =1.5).
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Results between resolved and unresolved simulasbos fair agreement in terms of superficial
slip velocity between solid and liquid and in termis particle velocity fluctuation levels except for

Re, = 1C. At that stage, the unresolved simulations tenover-predict slip velocities as well as velocity

fluctuations. One route to investigate this furtfeeby considering more sophisticated drag relatithat
e.g. include a Reynolds number based on granutapeeature [18] or the Stokes number [23]. If this
would improve slip velocity predictions, it might the same time improve fluctuation levels. Thesoga

for this is that the over-prediction of fluctuat®rand slip velocity happen in the same part of the

(go, Reoo) parameter space. Particles moving with less blipugh the liquid will reduce local forces on

the liquid and thereby might reduce liquid and igéetfluctuations.

Appendix A
Here we discuss hindered settling velocity ratioxcase mapping is uniform, i.el —» . The force

balance over a single patrticle in thdirection is
T 3 687
g(ps—p)gd =3mpvdu, (1+ 0.15Ré& ) (A1)
The force balance over one particle in a swarmadtigles inx-direction is
g(p. —pm)’—gds =3rpvd|u-u,|(1+ 0.15RE)( £¢)” (A2)

with  p,-p,=(1-¢)(p.,-p) and uS=(1—qo)‘u—up‘ Eq. A2 can be written as

a(po, —p)gde’ = 37;0|/dus(1+ 0.15 R8687)( %qo)_ﬁ_z. Dividing this by Eq. Al leads to

L Re (1+ 0.15 Ré‘f”)

- (L+0.15R&%)

= A3
u Re_ (A3)

In the base case = 0.35 and Re, = 1.8%. Solving this non-linear equation in Re (wif=2.65) gives

Y :& = 0.153 which also was the result of a (unresolved) sitmawith A — o .

u_Re

o0 oo
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Figures

Figure 1. Base-case. Instantaneous cross sections throagiintlulation domain. Liquid velocity vectors,
particle locations, and particle speeds. Gravitingsoto the left. The average liquid velocity is@eTop
panel: resolved simulation witdd =12A showing the full resolution of the liquid flow; ddle panel: the
same realization with now the liquid flow filtered the same resolution as the bottom panel; bottom
panel: unresolved simulation witth=2A, and A =1.5d . The reference vector (see bottom, left) applies
to all three panels.
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Figure 2. Base-case. Instantaneous cross sections throagiintlulation domain. Liquid velocity vectors,
particle locations, and particle speeds. Gravitingsoto the left. Unresolved simulations. Togh= 2A
(same figure as Fig. 1, bottom); middle= A ; bottom:d =0.75A . All three cases havé =1.5d .
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Figure 3. Base-case; particle-resolved simulations. Timdeseof the volume-averaged velocity
fluctuation levels as well as of the slip velocity. Left: particles; right: liquid.
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Figure 4. Base-case; unresolved simulations. Time seriethefvolume-averaged velocity fluctuation
levels as well as of the slip velocity, . Left: particles; right: liquid. All results obtaed for A =1.5d .

Decreasing resolution from top to bottoch= 2A,A, 0.7%\ respectively.
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Figure 5. Base-case; unresolved simulations. Time-averagads for (from left to right) slip velocity,
liquid velocity fluctuations, and particle velociflyctuations as a function of mapping function thidl .
The different symbols signify particle size relatito grid spacing (as indicated). Black symbolateeto
x-components, red and blue in the center pangldndz respectively, red in the right panel yandz
averaged. The horizontal lines are resolved base-essults.
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Figure 6. Particle-resolved versus particle-unresolved sathhs. From left to rightu,, u,, and

I

Uy =%(u'py +u’pz) respectively. Increasin®e_, from top to bottom as indicated. Thandicate resolved

simulationsA is unresolved. In all simulatiord=A andA=1.5d.
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Figure 7. Initial situation for solid suspension simulati@pherical particles (all with diametdy fill up
the lower portion of a square tank with side lengtland heightH=0.83V. The impeller has a diameter
D =0.4VN = 43.&l. The number of particles is such that the ovetaiik-averaged solids volume fraction
is ¢=0.138.
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Figure 8. Start of the solids suspension process in thengitank. Only the particles with their center in
a vertical slice with thickness d@re displayed. The colors in the plane perpendidol the slice indicate

liquid speed relative to the impeller tip spegg. The snapshots are 1, 4, 16 and 40 impeller réook!
after starting the impeller (from panel (a) to ke§pectively).
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