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Abstract 

We study dense solid-liquid suspensions through numerical simulations. The liquid flow is solved by the 

lattice-Boltzmann method on a fixed (Eulerian), cubic, uniform grid. Spherical solid particles are tracked 

through that grid. Our main interest is in cases where the grid spacing and the particle diameter have the 

same order of magnitude ( ( )1∆=d O ). Critical issues then are the mapping operations that relate 

properties on the grid and properties of the particles, e.g. the local solids volume fraction seen by a 

particle, or the distribution of solid-to-liquid hydrodynamic forces over grid points adjacent to a particle. 

For assessing the mapping operations we compare results for particles settling under gravity in fully 

periodic, three-dimensional domains of simulations with ( )1∆=d O  to much higher resolved 

simulations ( ( )10∆=d O ) that do not require mapping. Comparisons are made in terms of average slip 

velocities as well as in terms of liquid and fluid velocity fluctuation levels. Solids volume fractions are in 

the range 0.3 to 0.5, Reynolds numbers are of order 0.1 to 10.      
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1 Introduction 

Engineering applications where solid particles are suspended in a liquid phase are abundant. An important 

class of applications – and the motivation for the research presented in this article – relates to industrial 

and pharmaceutical crystallization [1]. Other applications are sediment transport (e.g. in environmental 

flows [2]), catalytic slurry reactors [3], and hydrotransport in the mining industries [4]. Crystallization 

processes are often carried out in agitated tanks operated under turbulent conditions with high solids 

loading (20% solids by overall volume is not exceptional). The distribution of solids in the tank and 

therefore the hydrodynamic conditions individual crystals get exposed to are thought to be of influence on 

product quality: crystal size distribution, crystal shape (think of particle attrition due to frequent 

collisions), and crystal purity. 

Computational methods are one way of enhancing our understanding of solids suspension processes 

in mixing tanks. Advances in numerical methodologies  and – first and foremost – wide availability of 

high-performance computational resources make that more and more details and complexity can be 

accounted for in simulations. Specifically in the field of crystallization there are good reasons to invest 

computational effort in resolving the behavior of individual particles because the particles are the actual 

product and knowing their history in the course of their formation process (and the extent to which this 

history varies from crystal to crystal) is relevant. Among more, this notion has motivated research on 

Eulerian-Lagrangian descriptions of solid-liquid suspensions: Fluid flow is resolved in an Eulerian 

manner (i.e. on a fixed computational grid) and through this Eulerian flow field solid particles are tracked 

[5]. The specific situations we are interested in have particle sizes (d) that are of the same order of 

magnitude as the Eulerian grid spacing ∆ , i.e. ( )d O= ∆ . This is somewhere in between particle-resolved 

simulations (d ∆≫ ) [6], and the cases more common in Eulerian-Lagrangian simulations that have 

d ∆≪  [7].   

The situation we have in mind is that of a lab scale (order one liter) tank containing liquid and 300 

µm size solid particles. If the solids volume fraction is some 10 to 20%, the tank contains of the order of 
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107 particles. Dealing with such numbers of particles in a simulation is very well feasible [8], resolving 

the liquid flow around each individual particle is, however, not that feasible. By not resolving the flow 

around each particle we do not want to use a simulation method that requires d ∆≪ . This would make 

the Eulerian grid too coarse to e.g. perform a well-resolved large-eddy simulation of the liquid flow. 

The aim of this paper is to describe and calibrate a numerical procedure for Eulerian-Lagrangian 

simulations of solid-liquid suspensions with particles and grid spacing having comparable size: 

( )d O= ∆ . As will become clear, the operation of exchanging information between particles (Lagrangian 

information) and the liquid flow on the grid (Eulerian information), this operation is usually referred to as 

mapping, requires numerical settings for which no closed theory is available. At the same time, these 

settings have a pronounced impact on the outcome of a simulation. In order to make objective choices for 

the numerical settings, simulations of sedimenting particles in fully periodic domains have been 

performed with the here proposed, unresolved particles procedure. The results are compared to results of 

particle-resolved simulations (already published, see [9]) of the same, fully periodic systems. Next to 

average relative velocities of particles with respect to liquid (i.e. superficial slip velocities), an important 

demand of the particle-unresolved simulations is that they are able to reproduce the velocity fluctuation 

levels (of particles and liquid) as observed in the benchmark particle-resolved simulations. This is not 

only important from a fundamental point of view, it also is from a (industrial crystallization) practical 

point of view: Fluctuations determine collisions between particles, and are highly influential to mass 

transfer between liquid and solid as e.g. occurs in reactive crystallization, or when crystals grow or 

dissolve in the liquid phase. 

This paper is organized in the following order: First the fully periodic sedimentation configuration 

is discussed. We then give a brief account of the fully resolved simulation method that provides the 

benchmark results for assessing the much less ( ( )d O= ∆ ) resolved (“particle-unresolved”) simulations. 

The methodology for particle-unresolved simulations is discussed and subsequently assessed in detail.  
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Before summarizing the results in the Conclusions section, we give an outlook on applying our particle-

unresolved numerical approach to agitation of a dense solid liquid suspension in a mixing tank. 

 

2 Flow system and simulation method 

2.1 Flow system 

The system is a three-dimensional periodic domain of size nx ny nz× ×  with 2 2nx ny nz= = . It contains a 

Newtonian liquid with density ρ  and kinematic viscosity ν , and solid particles. The solid particles are 

monosized spheres with diameter d and density sρ  larger than ρ . If there are N spheres, the solids 

volume fraction is 
3

6

d
N

nx ny nz

πφ =
⋅ ⋅

. This allows for the definition of the mixture density 

( )1m sρ φρ φ ρ≡ + − . A gravitational acceleration g acts in the negative x-direction: g= − xg e . The net 

gravity force (gravity minus buoyancy) on each sphere has a magnitude 

( ) ( )( )3 36 1 6s m sg d g dρ ρ π φ ρ ρ π− = − −  and acts in negative x-direction. To have a zero overall force 

on the periodic domain – and thus prevent the domain as a whole from accelerating – a body force (force 

per unit volume) in positive x-direction of ( )mg ρ ρ= − xf e  is applied to the liquid [10].  

One way to characterize the system above is through the following set of dimensionless numbers: 

solids volume fraction φ , density ratio sρ ρ , aspect ratio d nx , and the single-particle settling Reynolds 

number Re u d ν∞ ∞≡  with u∞  the settling velocity that we determine from a force balance over a single 

particle in an infinite domain ( ) 3 2 21
26 4s Dg d C u dρ ρ π ρ π∞− = . For the drag coefficient DC  the 

Schiller-Naumann correlation [11] ( )0.68724 1 0.15Re ReDC = +  is applied. 

 

2.2 Resolved simulations 

In previous papers [9,10,12] we have studied systems like this by means of particle-resolved simulations. 

In such simulations the grid on which the liquid flow is solved is much finer than the size of the particles 
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(typically the diameter d spans 12 to 24 lattice spacings). This allows to explicitly impose the no-slip 

boundary condition on each spherical solid-liquid interface. The forces and torques on each particle that 

result from this procedure are used to update particle locations and velocities (translational as well as 

rotational). These moving no-slip conditions for the liquid provide an intimate coupling between liquid 

and solids dynamics. Details of the particle-resolved simulations, their methodology and performance, 

can be found in the papers referred to above.  

 

2.3 Unresolved simulations 

The results of particle-resolved simulations will be confronted with those of particle-unresolved 

simulations. Such unresolved simulations are the focus of this paper. As explained in the introduction, we 

will be dealing with dense suspensions (0.2φ > ) in an Eulerian-Lagrangian manner. The Eulerian grid is 

uniform and cubic with grid spacing ∆ . The spherical particles that move through this grid have a 

diameter comparable to ∆ ; the range of diameters investigated is 0.75 2d≤ ∆ ≤ .  

On the Eulerian grid the continuity equation and momentum balance for the liquid phase [10] are 

solved:  

 ( ) ( ) 0c c

t
ρφ ρφ∂ + ∇ ⋅ =

∂
u   (1) 

 ( ) ( )c c c

t
ρφ ρφ φ∂ + ∇ ⋅ = ∇ ⋅ + +

∂ su uu π f f   (2) 

with 1cφ φ≡ −  the continuous phase (liquid) volume fraction, u the interstitial liquid velocity, π  the 

liquid’s stress tensor, and sf  the force per unit volume the solid particles exert on the liquid. Equations 1 

and 2 are rewritten in the following form 

 ( )
c

c
ct t

ρ ρ φρ φ
φ

 ∂ ∂+ ∇ ⋅ = − + ⋅∇ ∂ ∂ 
u u   (3) 

 ( ) ( )
c

c
c ct t

ρ φρ ρ φ
φ φ

 +∂ ∂+ ∇ ⋅ − ∇ ⋅ − = − + ⋅∇ ∂ ∂ 

sf f
u uu π u uu   (4) 
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Our standard, single-phase lattice-Boltzmann procedure [13,14] is capable of solving Eq. 3 and 4 if 1cφ =  

everywhere which implies that the right-hand sides of Eq. 3 and 4 are equal to zero (and also =sf 0  in Eq. 

4). For solving multiphase flow problems, the single-phase procedure has been extended with source 

terms: A mass source term equal to the right-hand side of Eq. 3, and a momentum source term equal to 

the right-hand side of Eq. 4 [15]. Evaluation of these source terms requires knowledge of the continuous 

phase volume fraction field cφ , its gradient cφ∇ , and its time derivative c tφ∂ ∂ . 

The dynamics of the spherical solid particles is governed by Newton’s equations of motion 

 ( )3 3

6 6s s m

d
d d g

dt

π πρ ρ ρ= + − −p
h c x

u
F F e   (5) 
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60s

d
d

dt

πρ = +p
h c

ω
T T   (6) 

 
d

dt
=p

p

x
u   (7) 

with , ,p p pu ω x  the linear velocity, angular velocity, and centre location of a spherical particle 

respectively (note that – because we are dealing with spheres – there is no need to track the angular 

“location” of the particles); hF  and hT  the hydrodynamic force and torque on a particle, and cF  and cT  

the contact force and torque due to particle-particle collisions and lubrication effects.  

 

2.4 Modelling assumptions and procedures 

Implementation of Eqs, 3-7 in a numerical framework requires a great many assumptions and modelling 

steps, the sensitivity of which generally needs to be investigated. The focus of the current research is on 

the following three aspects: (1) Determination of the volume fractions φ  and cφ  and their temporal and 

spatial derivatives on the Eulerian grid based on the size and locations px  of individual particles; (2) 

relating the (Lagrangian) hydrodynamic forces hF  (Eq. 5) acting on a particle to the (Eulerian) body force 

sf  (Eq. 4); (3) the size of the particles relative to the grid, i.e. the ratio d ∆ . The first two aspects require 
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choices for the way in which particle properties are distributed over the Eulerian grid, specifically the 

spatial extent of such a distribution. It is anticipated that this extent is decisive for the level of velocity 

fluctuations (of liquid and solids) in the sedimenting suspension. This can be appreciated given that in the 

hypothetical case of hydrodynamic forces being distributed uniformly over the entire periodic domain, 

and the solids volume fraction being considered uniform over the entire domain, the velocity fluctuation 

levels of liquid and solid would become zero. The more focused (i.e. the narrower) one distributes 

Lagrangian properties over the Eulerian grid (and vice versa), the more local flow structures appear and 

the higher fluctuation levels one expects. The width of the distribution process is controlled by mapping 

functions [16,17] which are discussed in more detail below. 

A major simplification in this work is that the only hydrodynamic force we will be considering is 

the drag force ( h DF F= ). For gas-solid systems it is well established that drag is the dominating 

hydrodynamic force; for liquid-solid systems – with density ratios of order one – this does not necessarily 

need to be the case. An additional simplification is that drag is assumed to only depend on the solids 

volume fraction, and on the Reynolds number based on the slip velocity ( )Re 1 dφ ν= − − pu u . We thus 

do not include terms in the drag expression that depend on the granular temperature (as e.g. in [18]).  

In the literature there is extensive activity and debate about the manner in which the drag force 

depends on φ  and Re. Much of the recent work is motivated by applications of gas-solid flow (e.g. gas-

fluidization, pneumatic conveying) where Stokes numbers are high due to the high solid over fluid 

density ratios. In such cases, the fluid flow time scales are much shorter than the time scales over which 

particle configurations change so that one can view drag as the result of the gas flowing through static 

(and random) assemblies of particles. Nowadays fully resolved simulations of fluid flow through 

assemblies of static particles are standard routine [19-22] and a great many correlations have been 

proposed based on such simulations. As shown by [23], the situation for liquid-solid systems that have 

low to intermediate Stokes numbers is very different. For liquid-solid systems the prevailing approach is 

the one based on the seminal experiments of solid particles settling in liquids by Richardson and Zaki 
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[24]. Refinements and amendments are e.g. due to [25,26]. In this school of thought, hindered settling is 

described as ( ) ( )1 1pu u
N

uφ φ∞− − = −  with a well-established value for the exponent N  at low 

Reynolds numbers: 4.65N =  [26], and relatively weak dependencies of N on Re [26] or Re∞  [9] for 

moderate Reynolds numbers. The fully resolved benchmark simulations [9], that we will be comparing 

our unresolved simulations with, largely confirm the validity of an exponential hindered settling scaling.  

The drag force relation that is the consequence of a Richardson-Zaki type approach can be written 

as 

 ( )( )( )0.6873 1 0.15Re 1d
βπρν φ −= − + −D pF u u   (8) 

with 2Nβ = −  and a Schiller-Naumann type [11] account for finite Reynolds number drag. For (again) 

simplicity, and since this paper is focusing on the consequences of modelling choices on velocity 

fluctuations, less on average velocities, the value of the exponent has been set to the fixed value of 

2.65β = , i.e. independent of Re. 

Mapping – as alluded to above – enters Eq. 8 via determination of u (which is a measure for the 

liquid velocity around the particle location) and φ  (which is a measure for the solids volume fraction in 

the vicinity of the particle). The velocity u enters Eq. 8 directly and also via Re. Starting point for our 

mapping process is a “clipped fourth-order polynomial” [17] ( )µ ξ  which shows some resemblance to a 

Gaussian distribution but is computationally more efficient than a Gaussian. In one dimension: 

 
( )

( )

4 2

5 3

15 1
2 for 

16

0 for 

ξ ξµ ξ λ ξ λ
λ λ λ

µ ξ ξ λ

 
= − + − ≤ ≤ 

 

= >
  (9) 

The local average at location κ  over an averaging length scale 2λ  of a one-dimensional function ( )α ξ  

is then determined as ( ) ( ) ( )d
λ

λ λ
α κ µ ξ κ α ξ ξ

−
= −∫ . In our simulations, ( )α ξ  is defined on an 
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equidistant grid iξ  with spacing ∆  by values iα , and we approximate ( )α ξ  in the integrant as a stair 

step function, i.e. ( ) iα ξ α=  for 1 1
2 2i iξ ξ ξ− ∆ ≤ < + ∆ .  

Such mappings can be readily extended to three dimensions: 

 ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 1 2 3d d d
λ λ λ

λ λ λ λ
α µ ξ κ µ ξ κ µ ξ κ α ξ ξ ξ

− − −
= − − −∫ ∫ ∫κ ξ   (10) 

Equation 10 is used to determine the liquid velocity u and solids volume fraction φ  from grid values in 

the expression for the drag force (Eq. 8). We will check the impact filter length λ  has on the simulation 

results. 

An inverse mapping operation is required to couple back the hydrodynamic force − DF  to the liquid. 

This involves a distribution of the force over grid points surrounding a particle. A similar operation 

applies for determining the solids volume fraction on the grid: the volume of each particle will be 

distributed over surrounding grid cells.  

Given the discrete nature of ( )α ξ , Eq. 10 can be written as ( ) ijk ijk
i j kλ

α η α= ∑∑∑κ  with , ,i j k  

discrete coordinates in x, y, and z-direction respectively, and ijkη  coefficients following from integrating 

the mapping function. The coefficients ijkη  are only non-zero on grid points within a volume of ( )3
2λ  

around κ , and 1ijk
i j k

η =∑∑∑  since for α  uniform  λα α= .  

The same coefficients ijkη  are used to distribute particle properties to the grid. The drag force on 

one of the particles (DF ) contributes to the body force on the fluid sf  (see Eq. 4) in grid cell , ,i j k  by an 

amount 
3

1
ijkη−

∆ DF ; that same particle contributes to the solids volume fraction in cell , ,i j k  by an 

amount  
3

36 ijk

dπ η
∆

. For the total interaction force and the total solids volume fraction in each grid cell 

( ), ,i j k  contributions from all particles need to be added up. 
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Applying the lattice-Boltzmann method for incompressible flow requires that liquid velocities 

should stay well below the speed of sound [27]. This implies that  – measured in lattice units (lattice 

distance per time step; t∆ ∆ ) – liquid speeds need to be limited to order 0.1 (liquid travels typically less 

than 0.1∆  per t∆ ). As a result, particle speeds are limited to order 0.1 as well. Together with the 

distribution through mapping functions of solids volume over clusters of lattice cells around particles this 

leads to a smoothly varying (in three-dimensional space and time) solids volume fraction field 

( ), , ;x y z tφ  and thus liquid volume fraction field ( ), , ;c x y z tφ which are amenable to numerical 

differentiation to determine cφ∇ , and c tφ∂ ∂ , as encountered in Eqs. 3 and 4. We use central differences 

for cφ∇ , and an Euler backward method for c tφ∂ ∂ .  

 

2.5 Particle dynamics modelling 

Now we turn to particle dynamics, i.e. the way Eqs. 5-7 are dealt with. In Section 2.3 it was already 

explained how hF  (equal to DF ) was determined. The contact force cF  consists of two parts: soft-sphere 

collision forces sscF  and lubrication forces lubF . Both forces are assumed to be radial forces, meaning that 

they act on the line connecting the two sphere centres involved in the contact. We will not be considering 

tangential contact forces and contact torques, meaning that =cT 0  in Eq. 6. 

For determining sscF , overlap distances δ  of spheres are detected. Once two spheres overlap, they 

are given a (equal and opposite) linear, elastic repulsive force with magnitude kδ=sscF . The spring 

constant 2 2
ck m tπ=  ( 3 6sm dπρ=  is the mass of a particle) is largely a numerical parameter and is 

chosen such that a typical collision time is 10 time steps 10ct t= ∆  [23]. In a typical simulation this results 

in maximum overlapping distance of not more than 210 d− . This approach leads to elastic (restitution 

coefficient e=1), smooth (i.e. frictionless) collisions between particles. 
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Lubrication forces are the result of relative velocity between closely spaced particles. When two 

particles approach, a liquid film between them needs to be squeezed out which brings about a repulsive 

force between the particles, for similar reasons, an attractive force arises when two particles separate. 

Radial lubrication forces are included in the simulations. The low-Reynolds number, analytical 

expression for the magnitude of the radial lubrication force between two equally sized spheres is 

23
,8 p rd u sπνρ= − ∆lubF  with s the distance between the two particle surfaces, and ,p ru∆  the relative 

velocity of the two particles in radial direction (with , 0p ru∆ >  separation, hence the minus sign in the 

expression for the lubrication force) [28]. In the simulations we have limited the distance over which the 

lubrication force acts to 10s d<  and changed the expression to 23
,8

1 10
p rd u

s d
πνρ  = − ∆ − 

 
lubF  [10]. To 

avoid divergence when particle touch (s=0) the lubrication is saturated, i.e. does not increase anymore 

upon approach, if 0.01s d<  [10]. 

The hydrodynamic torque (hT  in Eq. 6) on a particle is determined from the vorticity of the liquid 

in direct vicinity of the particle (ω ) and the rotation rate of the particle (pω ): ( )3 1
2dπρν= −h pT ω ω . 

This is a creeping flow approximation. The rotation of the particle is not coupled back to the liquid. Since 

the rotation does also not play a role in particle-particle collisions ( =cT 0 ), particle rotation has no  effect 

on the overall dynamics of the suspension. We do solve Eq. 6 as a matter of completeness. 

The equations of motion (Eq. 5-7) are solved by means of a split derivative time integration which 

has been discussed in detail in [29]. 

 

3 Results 

3.1 Base-case 
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First a base-case will be introduced. This allows us to explain how the simulations results were analysed 

and will give us the opportunity to give visual impressions of the flow system. The dimensionless 

parameters of the base case are 0.350φ = , 4.0sρ ρ = , Re 1.85∞ = , and 1 24d nx = .  

The particle-resolved simulation of this case had a spatial resolution such that 12d = ∆ . Results of 

this case, that also have been presented elsewhere [9], are compared to unresolved simulations with 

particle diameters of 2 , , and 0.75d = ∆ ∆ ∆  respectively. In the unresolved simulations the width of the 

mapping function has – initially – been fixed to 1.5dλ =  as e.g. suggested by [17]. In Figures 1 and 2 we 

show cross sections through the flow system. To facilitate comparison, the velocities have been shifted so 

that all cases shown in Figures 1 and 2 have volume-averaged liquid velocity in the x-direction equal to 

zero. 

In Figure 1, resolved and unresolved simulations are compared. In the resolved simulation shown in 

full resolution (top panel), the interaction between liquid and solid is clearly visible. One observes liquid 

squeezing through the open space between the particles, and the liquid flow being deflected by the 

particles. Each vector we show in the middle panel of Figure 1 is the average of a cluster of 6 6 6× ×  

vectors of the fully resolved flow, i.e. we have spatially filtered the fully resolved flow to a resolution that 

is the same as that of an unresolved simulation with 2d = ∆ . Results of the latter are shown in the lower 

panel of Figure 1. The clear interaction between liquid and solid, still visible in the filtered resolved field, 

is to a large extent lost in the unresolved field. This is not a surprise given the schematizations in the 

unresolved simulations as discussed above. Comparing middle and lower panel more gobally, one sees 

similar levels of variation of liquid velocities and somewhat higher absolute particle velocities (more red 

particles) in the lower panel. Figure 2 shows comparisons among unresolved simulations, with the 

particle  size over grid size decreasing from top to bottom.    

It is clear that much of the flow physics captured in the particle-resolved simulations is lost in the 

particle-unresolved simulations. In resolved simulations, hydrodynamic interactions between particles are 

largely captured (only for particles that are very close, lubrication modelling enters). In unresolved 
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simulations, these interactions are parameterized in a drag force correlations that involves φ  (Eq. 8) and 

also the interactions enter through 1cφ φ= −  that is contained in the liquid mass and momentum balances 

(Eqs. 3 and 4). Note that in the current approach only the drag force is included, other type forces will 

certainly contribute further to interactions. Also note that as a result of mapping, φ  is a spatial average 

over a length scale 2λ  which usually equals a few particle diameters.  

The pragmatic approach we will be following is to try and establish how sensitive the outcomes of 

unresolved simulations of settling particles are with respect to the two main numerical parameters we 

have: d ∆  and dλ . With regards to the outcomes, we will focus on the superficial slip velocity 

( )1 φ− − pu u  and on the velocity fluctuations in the x (direction of gravity) and y and z directions of 

particles as well as liquid. For the base-case we first establish these quantities for the particle-resolved 

simulation. Figure 3 shows quasi-steady time series of the volume-averaged quantities 

( )1su φ= − − pu u , 
22

x x xu u u′ = − , 2
y yu u′ = , 2

z zu u′ = , 
22

px px pxu u u′ = − , 2
py pyu u′ = , 

2
pz pzu u′ =  with the brackets  indicating volume averaging. There is a clear anisotropy in the 

velocity fluctuations, with the x-velocities fluctuating stronger by a factor of approximately two (for 

liquid as well as for particles). The particles fluctuations being somewhat weaker than the liquid 

fluctuations is due to density of the particles being four times higher than the liquid density. The slip 

velocity is at a level of 0.135su u∞≈  which demonstrates the hindered settling effect [24]. 

Time series of unresolved particle simulation – counterparts of the particle-resolved time series in 

Figure 3 – for a mapping function width 1.5dλ =  are given in Figure 4. The general observations are 

similar as for the resolved simulations: x-fluctuations stronger than y and z fluctuations; liquid velocity 

fluctuations stronger than particle velocity fluctuations. Spatial resolution, as expressed by the ratio d ∆  

has significant impact on the results. Fluctuation levels decrease with decreasing resolution. Also the 

difference between liquid and solids fluctuations reduces with decreasing resolution.  
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The slip velocity is remarkably stable in all simulations shown in Figure 4. It is consistently (some 

10%) higher than in the resolved simulation: 0.15su u∞≈ , almost independent of the spatial resolution. As 

we will see shortly, the 0.15su u∞≈  also is hardly dependent on the width λ  of the mapping function (if 

dλ > ). In the extreme case of uniform mapping (λ → ∞ ) we find from the simulations 0.153su u∞= . 

The latter value is consistent with the use of Eq. 8 as the expression for the drag force. This consistency 

has been detailed in Appendix A. 

The simulation data have been further reduced to time averages taken over quasi-steady portions of 

the simulations. Still for the base-case, these data are presented in Figure 5. The slip velocity shows only 

a weak dependence on the numerical parameters d ∆  and dλ  if 1dλ > . The reduction of slip velocity 

at 1dλ =  at the lower resolutions is the result of the now very focused reaction force acting from 

particles to lquid which locally strongly drags down the liquid.  

Qualitatively, the general observations of velocity fluctuations in the resolved simulations are 

recovered by the unresolved simulations: Fluctuations in gravity direction are a factor of approximately 

two larger than in the lateral directions, and liquid fluctuations are stronger compared to particle 

fluctuations. Also the order of magnitude of the fluctuations in the unresolved simulations corresponds to 

those in the resolved simulations.  

There is a clear trend with the numerical parameters though. The strongest is the one with dλ . 

Fluctuations decrease with increasing dλ . This is to be expected, the wider the influence of one particle 

is felt, the more it will behave in coherence with its neighbouring particles (and – as we argued above – if 

dλ  goes to infinity the fluctuations will disappear). According to Figure 5, the best agreement between 

fluctuations in unresolved and resolved simulations is reached for dλ  in the range 1.0 to 1.5. It is 

interesting to note that Capecelatro and Desjardins [30] recommend a resolution at the level of 3dλ = . 
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Given the sensitivity of the slip velocity at dλ =1for  the resolution (d ∆ ), it was decided to 

continue working with dλ =1.5 and to study the performance of unresolved simulations with this setting 

for a range of solids volume fractions and Re∞  values. 

 

3.2 Slip velocity and particle fluctuation levels 

In Figure 6 the results of the parameter study have been summarized. Since the trends in particle and 

liquid velocity fluctuations was the same, only particle fluctuations levels are reported. The downward 

trend of all variables on display with an increasing solids volume fraction is no surprise and can be 

summarized as more hindrance between particles for denser suspensions. The agreement between 

resolved and  unresolved simulations we consider fair for the lower part of the Reynolds number range 

studied. For Re 10∞ ≥ , however, we see that the unresolved simulations strongly deviate from the 

resolved ones. Specifically at low φ  the fluctuations come out too high in the unresolved simulations.  

  

3.3 A sample mixing tank result 

In order to give a sense of the potential of the above described numerical approach to agitated solid-liquid 

systems, we here give a brief account of simulations of a particle suspension process in a mixing tank. 

The tank, as displayed in Figure 7, has the same geometry as the one we previously used for particle-

resolved simulations [31]. The “pitched-blade” impeller rotates such that it pumps liquid  in the 

downward direction. The liquid flow in the tank is characterized by a Reynolds number that is defined as 

2Remx nD ν≡  (with D the impeller diameter, and n its angular velocity in revolutions per unit time) and 

has a value of 1440. Without solid particles present this would be a mildly turbulent flow. In this tank we 

place N=290,000 solid, spherical particle with a diameter 0.0229d D= . The overall solids volume 

fraction of this system is ( )3 26 0.138N d W Hφ π= = . The density ratio is 2.5sρ ρ = . A useful 

dimensionless parameter that to a significant extent characterizes the suspensions process is a modified 
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Shields number [30] ( )2 2
sn D gdθ ρ ρ ρ = −  . It is the ratio of inertial stress (that scales with 2 2n Dρ  

and is the mechanism responsible for suspending the particles) and net gravity. In the simulation 

presented here 48θ = .  

The sequence of instantaneous realizations in Figure 8 reveals some interesting features of this 

solid-liquid flow. In the first place it shows – in the initial stages – the way the stream of liquid coming 

off the impeller in the downward direction is eroding the bed of particles. In the later stages a cone of 

particles forms under the impeller. This cone the result of the particles influencing the overall circulation 

structure in the tank (a solid-to-liquid coupled phenomenon): the liquid stream generated by the impeller 

is deflected in outward radial direction by the presence of a dense packing of particles under the impeller. 

This stream is therefore not able to truly mobilize and suspend the particles in the cone. The stream does 

continuously erode the surface of the cone. 

Experiments are very much needed to assess the level of realism of these types of simulations. 

Matching the refractive index of liquid and (glass) particles would allow for performing experiments that 

look through the suspension with optical methods. 

 

5 Conclusions 

In this paper we have described and subsequently assessed an Eulerian-Lagrangian simulation method for 

solid-liquid suspensions. A typical feature is that the method allows for the particle size to be of the same 

order of magnitude as the Eulerian grid spacing. Additionally, the assessment was focused on the – from a 

practical point of view – very relevant range of high solids volume fractions ( 0.30φ > ) and on velocity 

fluctuations. 

By comparing with fully resolved simulations, it was concluded that a reasonable choice for the 

width of the mapping function that facilitates two-way communication between the particles and the grid 

is one and a half particle diameter (dλ =1.5). 
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Results between resolved and unresolved simulations show fair agreement in terms of superficial 

slip velocity between solid and liquid and in terms of particle velocity fluctuation levels except for 

Re 10∞ ≥ . At that stage, the unresolved simulations tend to over-predict slip velocities as well as velocity 

fluctuations. One route to investigate this further is by considering more sophisticated drag relations that 

e.g. include a Reynolds number based on granular temperature [18] or the Stokes number [23]. If this 

would improve slip velocity predictions, it might at the same time improve fluctuation levels. The reason 

for this is that the over-prediction of fluctuations and slip velocity happen in the same part of the 

( ),Reφ ∞  parameter space. Particles moving with less slip through the liquid will reduce local forces on 

the liquid and thereby might reduce liquid and particle fluctuations.    

 

Appendix A 

Here we discuss hindered settling velocity ratios in case mapping is uniform, i.e. λ → ∞ . The force 

balance over a single particle in the x-direction is 

 ( ) ( )3 0.6873 1 0.15Re
6sg d du
πρ ρ πρν ∞ ∞− = +   (A1) 

The force balance over one particle in a swarm of particles in x-direction is 

 ( ) ( ) ( )3 0.6873 1 0.15Re 1
6 pu us mg d d

βπρ ρ πρν φ −− = − + −   (A2) 

With ( )( )1s m sρ ρ φ ρ ρ− = − −  and ( )1su φ= − − pu u  Eq. A2 can be written as 

( ) ( )( ) 23 0.6873 1 0.15Re 1
6s sg d du

βπρ ρ πρν φ − −− = + − . Dividing this by Eq. A1 leads to 

 ( )
( )
( )

0.687

2

0.687

1 0.15ReRe
1

Re 1 0.15Re

β
φ

∞+

∞ ∞

+
= = −

+
su

u
  (A3) 

In the base case 0.35φ=  and Re 1.85∞ = . Solving this non-linear equation in Re (with β =2.65) gives 

Re
0.153

Re∞ ∞

= =su

u
 which also was the result of a (unresolved) simulation with λ → ∞ . 
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Figures 
 
Figure 1. Base-case. Instantaneous cross sections through the simulation domain. Liquid velocity vectors, 
particle locations, and particle speeds. Gravity points to the left. The average liquid velocity is zero. Top 
panel: resolved simulation with 12d = ∆  showing the full resolution of the liquid flow; middle panel: the 
same realization with now the liquid flow filtered to the same resolution as the bottom panel; bottom 
panel: unresolved simulation with 2d = ∆ , and 1.5dλ = . The reference vector (see bottom, left) applies 
to all three panels. 
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Figure 2. Base-case. Instantaneous cross sections through the simulation domain. Liquid velocity vectors, 
particle locations, and particle speeds. Gravity points to the left. Unresolved simulations. Top: 2d = ∆  
(same figure as Fig. 1, bottom); middle d = ∆ ; bottom: 0.75d = ∆ . All three cases have 1.5dλ = . 
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Figure 3. Base-case; particle-resolved simulations. Time series of the volume-averaged velocity 
fluctuation levels as well as of the slip velocity su . Left: particles; right: liquid. 
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Figure 4. Base-case; unresolved simulations. Time series of the volume-averaged velocity fluctuation 
levels as well as of the slip velocity su . Left: particles; right: liquid. All results obtained for 1.5dλ = . 

Decreasing resolution from top to bottom: 2 , , 0.75d = ∆ ∆ ∆  respectively. 
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Figure 5. Base-case; unresolved simulations. Time-averaged values for (from left to right) slip velocity, 
liquid velocity fluctuations, and particle velocity fluctuations as a function of mapping function width λ . 
The different symbols signify particle size relative to grid spacing (as indicated). Black symbols relate to 
x-components, red and blue in the center panel to y and z respectively, red in the right panel to y and z 
averaged. The horizontal lines are resolved base-case results.  
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Figure 6. Particle-resolved versus particle-unresolved simulations. From left to right: su , pxu′ , and 

( )1
2pyz py pzu u u′ ′ ′= +  respectively. Increasing Re∞  from top to bottom as indicated. The �  indicate resolved 

simulations; ∆ is unresolved. In all simulations d = ∆  and 1.5dλ = . 
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Figure 7. Initial situation for solid suspension simulation. Spherical particles (all with diameter d) fill up 
the lower portion of a square tank with side length W and height H=0.83W. The impeller has a diameter 

0.4 43.6D W d= = . The number of particles is such that the overall, tank-averaged solids volume fraction 
is 0.138φ = .  
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Figure 8. Start of the solids suspension process in the mixing tank. Only the particles with their center in 
a vertical slice with thickness 10d are displayed. The colors in the plane perpendicular to the slice indicate 
liquid speed relative to the impeller tip speed vtip . The snapshots are 1, 4, 16 and 40 impeller revolutions 

after starting the impeller (from panel (a) to (d) respectively).  

 


