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Abstract

In explaining the winner’s curse, recent approaches have focused on
one of two cognitive processes: conditional reasoning and belief formation.
We provide the first joint experimental analysis of the role of these two
obstacles. First, we observe that overbidding decreases significantly between
a simple common-value auction and a transformed version of this auction
that does not require conditional reasoning. Second, assistance in belief
formation leads to comparable behavioral changes in both games. The
two effects are of similar magnitude and amplify each other when jointly
present. We conclude that the combination and the interaction of the two
cognitive processes in auctions lead to relatively low strategic sophistication
compared to other domains. The study’s focus on games’ objective cognitive
challenges is potentially useful for predictions across games and complements
the common focus on behavioral models and their explanatory power.
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1 Introduction

The “winner’s curse” (WC) in common-value auctions (CVA) refers to the system-
atic overbidding relative to the Bayesian Nash equilibrium (BNE) that leads to
losses for winners in field settings and laboratory experiments.1 This phenomenon
is one of the most important and robust findings in empirical auction analysis and
has generated ample theoretical work.

Two main departures from the BNE have been modeled. Both maintain the
assumption that players best respond to their beliefs but relax the requirement
of consistency of beliefs. First, in equilibrium models such as cursed equilibrium
(CE, Eyster and Rabin, 2005), behavioral equilibrium (Esponda, 2008), and the
application of analogy-based expectation equilibrium to auctions (Jehiel, 2005;
Jehiel and Koessler, 2008), beliefs do not fully take into account what bids tell about
underlying signals, capturing that agents do not optimally adjust for the information
revealed by winning. Second, the level-k model assumes non-equilibrium beliefs
that result from iterated best responses (Nagel, 1995; Stahl and Wilson, 1995).
It has been applied to private information games such as auctions and zero-sum
betting (Crawford and Iriberri, 2007; Brocas, Carrillo, Wang, and Camerer, 2014).
When one assumes beliefs of uninformed play, this approach can implicitly capture
that agents do not fully account for revealed information.

Doubts have been cast on the sufficiency of these belief-based models to explain
auction behavior. With an innovative semi-computerized version of the maximal
game, Ivanov, Levin, and Niederle (2010, ILN) experimentally study whether
these models can explain the WC and claim that they cannot. Along these lines,
Charness and Levin (2009, CL) use computerized sellers in an acquiring-a-company
game and document that subjects have a more general problem with conditional
reasoning – drawing appropriate conclusions from hypothetical events – that seems
not to be fully captured by the relaxation of beliefs.

In turn, however, Costa-Gomes and Shimoji (2015) criticize ILN’s use of
game theoretical concepts when the interaction with a known computer program
is a single-person decision problem. They argue that belief-based models are
indeed compatible with some observations from ILN’s experiment. Moreover,
Camerer, Nunnari, and Palfrey (2015) suggest on the basis of the Quantal Response

1See Capen, Clapp, and Campbell (1971) and Roll (1986) for evidence from the oil industry
and corporate takeovers, respectively, and Bazerman and Samuelson (1983), Kagel and Levin
(1986), Avery and Kagel (1997), Goeree and Offerman (2002), Lind and Plott (1991), Grosskopf,
Bereby-Meyer, and Bazerman (2007), and the literature discussed in Kagel and Levin (2002) for
experimental evidence.
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Equilibrium (QRE, McKelvey and Palfrey, 1995) that imprecise best responses
combined with non-equilibrium beliefs could explain observed behavior.

This discussion shows that no consensus has been reached on how to explain
the WC. In this study, we do not test concrete models of reasoning, but take a
step back and focus on two objective game complexities whose relative importance
in causing the WC is – as shown above – disputed in the literature: the needs for
conditional reasoning and for belief formation. Both activities are indispensable to
reach a best response. In any strategic situation, subjects have to form beliefs about
their opponents’ behavior in order to know what to best respond to. In CVAs,
best responding further requires conditioning on hypothetical situations induced
by the game’s structure. For example, one’s bid is only relevant when winning,
which implies that all others have bid less. Crucially, which of the two complexities
poses a more substantial challenge for bidders in CVAs remains an open empirical
question. By providing the first joint experimental analysis that disentangles the
impact of these two cognitive processes in a CVA setting, we are able to determine
– as our paper’s main contribution – whether the WC is predominantly driven
by conditional reasoning or belief formation. Studying strategic behavior with
a focus on objective game complexities enables us to establish how two of these
complexities – which can be found in a variety of important game – generally affect
behavior. Notably, this analysis is not constrained by a more specific structure
on how people think about these problems. Physics can predict the bending of a
horizontal steel bar due to vertical forces without a detailed model of the tensions
inside the bar. Similarly, we propose to relate deviations from equilibrium play
to objective game complexities such as the need for conditional reasoning or for
elements of belief formation. This approach has potential for improving predictions
across very different games, an area of study so far put in second place.

Our starting point is a simple first-price CVA adapted from Kagel and Levin
(1986). At the core of our investigation is a transformation of this game that
maintains the strategic nature of the original auction game in terms of best
response functions and equilibria but removes the need to engage in conditional
reasoning. This allows us to cleanly identify the effect that this cognitive activity
has on bidding behavior and the WC. Independently of this variation, we further
change the need to form beliefs in two ways. First, we fully remove the need
to form beliefs by letting subjects play against naïve computer opponents that
follow a known simple strategy. Second, we partially remove crucial parts of belief
formation but maintain the strategic uncertainty associated with human opponents
when we let subjects play against human opponents after they played the computer.
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The preceding encounter with the naïve computer provides subjects with a first
scenario or basic belief about how opponents could behave.

Following our focus on objective cognitive complexities, we provide a simple
formalization to measure the complexities’ behavioral impact in a flexible and
general way. Defining a measure µ on the action space, we normalize the distance
to 1 between equilibrium play, µe = 0, and uninformed random play, µu = 1. We
judge a cognitive complexity by the sign and magnitude of the change ∆µ caused
in the direction away from optimal behavior.

In the modified auction setting that requires neither conditional reasoning nor
belief formation for optimal behavior, we observe bids that are close to equilibrium
play with µ of 0.29. From there, we obtain three main results. First, introducing
the need to condition – without requiring any belief formation – increases bids
significantly and moves them further away from optimal play with ∆µ = 0.18. In
addition, it increases the incidence of the WC by 15 percentage points. Second,
requiring partial or full belief formation – in the absence of conditional reasoning –
leads to remarkably similar increases in bids, ∆µ of 0.15 and 0.20, and raises the
number of subjects falling prey to the WC by 8 to 11 percentage points, respectively.
Interestingly, the partial belief manipulation suggests that the mere need to form a
first belief, at a given level of strategic uncertainty, already proves challenging for
subjects. Third, no generally significant differences emerge when comparing the
magnitude of the effects of conditional reasoning and belief formation. Although
both effects individually worsen game play, the fraction of plausible bids still
remains non-negligible. Combining conditional reasoning and full belief formation
results in behavior fairly far away from equilibrium, µ = 0.81, as usually observed
in CVA settings. Interestingly, the combination of both effects, ∆µ = 0.52, leads
further away from equilibrium than expected by the sum of the two individual
effects, ∆µ = 0.38, implying that the two strengthen each other and exhibit what
we call cognitive diseconomies.

The two cognitive complexities jointly produce an extreme case of game-
dependent sophistication that is not fully captured by belief-based models. This
explains why CL and ILN do not find support for those models when at the same
time such support is abundant in other domains in which conditional reasoning is
not required (see Crawford, Costa-Gomes, and Iriberri, 2013).

A number of further papers are closely related to our work. Levin et al. (2016)
analyze the conditioning problem in the WC in more detail by separating the
involved Bayesian updating from non-probabilistic reasoning. In particular, the
authors compare results from a first-price auction with a strategically equivalent
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Dutch-CVA that makes the conditioning problem more salient. Relatedly, but in
non-auction settings, Esponda and Vespa (2014), Louis (2015), and Ngangoue and
Weizsäcker (2015) have analyzed conditioning in more depth by separating two
involved steps – hypothetical thinking per se and conditioning on hypothetical
events – and comparing behavior in simultaneous and sequential games. With
our transformation, we propose a complementary way of studying conditional
reasoning in auction settings. Crucially, we do not provide a differentiated analysis
of conditional reasoning itself but relate the impact of the overall conditioning effect
in causing the WC to the impact of belief formation. Moreover, Charness, Levin,
and Schmeidler (2014) observe the WC in a generalized information environment
in which bidders hold identical and public information. Their innovative design
allows them to disentangle the influence of heterogeneity in estimating the common
value from non-optimal bidding behavior. They show that both are relevant for the
WC. Complementing their results, our study only focuses on the bidding behavior
but additionally disentangles the role of conditional reasoning and belief formation.
Finally, Levin and Reiss (2012) construct a behavioral auction design in which
the payment rule incorporates the adverse selection problem that is at the origin
of the WC. They observe that the WC is still present in their data. The authors
adjust the payment rule but do not transform the auction game as we do.

Due to our method of transformation, our paper also relates to the broad set of
studies that investigate behavior using strategically very similar games. The largest
fraction of those studies considers framing effects that influence subjects’ behavior
but do not result from the strategic nature of the situation (for example Tversky
and Kahneman, 1986; Osborne and Rubinstein, 1994; Chou et al., 2009). Another
methodologically interesting instance of strategic equivalence is the experimental,
so-called “strategy method” in which participants make contingent decisions for all
decision nodes that they will possibly encounter in a game (Brandts and Charness,
2011). In a different manner, strategically equivalent versions of a game can
facilitate the investigation of particular aspects of behavior. For example, Nagel
and Tang (1998) use a repeated, normal-form centipede game to investigate learning
behavior without aspects of sequential reciprocity.

In our study, we craft two similar games that differ in the cognitive process
under investigation: conditional reasoning. To the best of our knowledge, our
experiment is the first that uses such a transformation as a means to investigate
the impact of this particular cognitive activity in strategic reasoning. By this
virtue, our approach opens further avenues for investigation in settings with similar
cognitive processes. For example, conditioning on being pivotal in a jury decision
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is part of strategic voting (Feddersen and Pesendorfer, 1998) and conditioning on
message selection is part of being optimally persuaded (Glazer and Rubinstein,
2004).

2 Design and Hypotheses

In our experimental design, we will use two different games: a simplified standard
auction game that serves as the basis for constructing a transformed game which
does not require conditional reasoning. The starting point for both games is a
standard CVA setting as in Kagel and Levin (1986). At the beginning of each
period, the common value of the auctioned item W ∗ ∈ [W,W ] is randomly chosen,
with all values equally likely. Each of the n bidders receives a private signal
xi ∈ [W ∗ − δ,W ∗ + δ], with δ > 0, which is informative about this common value.
Bidders make bids ai in a sealed-bid first-price auction in which the highest bidder
wins the auction and pays his bid. The payoff of the highest-bidding player is
ui = W ∗ − ai. In case a bidder does not make the highest bid, his payoff is ui = 0.

2.1 The Games

2.1.1 Auction Game

We simplify this general setting – to be able to later construct the transformed
game – mainly by allowing only for two signals and two players n = 2. The
common value W ∗ is uniformly distributed in the interval [25, 225]. Bidders receive
a private binary signal xi ∈ {W ∗ − 3,W ∗ + 3} drawn without replacement. Thus,
when receiving signal xi, the set Ωi of possible item values W ∗|xi has only two
elements {xi − 3, xi + 3} that are equally likely (when disregarding boundary
signals). Let us denote the state of i’s world by ωi = {h, l}, indicating whether
W ∗ is high or low relative to i’s signal, so that W ∗|h = xi + 3 and W ∗|l = xi − 3.2

Notably, W ∗|h implies that i has received the lower of the two possible signals and,
thus, xj|h = xi + 6, while W ∗|l reflects that i received the higher signal, implying
xj|h = xi−6. Moreover, it thus follows that potential item values differ for the two
players, Ωi 6= Ωj. To ensure an equilibrium in pure strategies, we only allow bids
ai ∈ [xi−8, xi +8]. As a tie-breaker in case of identical bids, the lower-signal player
wins the auction. As in Kagel and Levin (1986), bids are made in a first-price
sealed bid auction.

2In the remainder, for ease of exposition, any state indication ω will refer to ωi and not ωj .
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Figure 1: The example in the auction game.

Consider the following example as illustrated in figure 1. The male player
i receives the signal xi = 125. Hence, i’s bids are limited to ai ∈ [117, 133].
Moreover, i knows that with 0.5 probability the value of the item is W ∗|h = 128
or W ∗|l = 122, Ωi = {122, 128}. When subjects make their decisions in the
experiment, the computer presents these two values to the subjects as shown in
figure 2. Player i now has to understand that his female opponent j either has
received the signal xj|l = 119 or xj|h = 131.3 When finding the best response to
his beliefs, i has to condition on these two hypothetical events.

Figure 2: Screenshot auction game: “Trading period 1: Your private information
signal is 125.00 Taler. Hence, the true commodity’s value is either 122.00 or 128.00
Taler. How much do you want to bid?”

To further illustrate our game, let us now consider the example of symmetric
bidding: player i thinks player j makes the same bid relative to her signal as
he does, i.e. i thinks that j either bids aj = ai + 6 or aj = ai − 6, depending
on the state of the world. Due to the construction of the game, i knows that
signals are always exactly 6 points apart but he does not know ω. In this case,
if i wins the auction, i has to infer that j’s bid must have been aj = ai − 6
and that, for this reason, xi > xj. In a next step, i has to infer that the item
value is lower than i’s signal, w = l. Put differently, for the case of symmetric
bidding, the conditional value of the item E[W ∗|win, xi] = xi − 3, is lower than
the unconditional one, E[W ∗|xi] = xi and player i has to take this into account

3If xj = 119, then Ωj = {116, 122}. If xj = 131, then Ωj = {128, 134}.
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when deriving the best response. As outlined in more detail below, both players
bid −8 in equilibrium. Due to this symmetric bidding the discussed difference in
expectations then matters.

2.1.2 Transformed Game

Let us now consider a different game, our transformed game. It is constructed as a
CVA without private signals but with special auction rules and has the following
structure: We again have two players. These players do not receive any signals
but are instead informed about the two possible values an item can take, W ∗

l or
W ∗

h = W ∗
l + 6. Similar to the auction game, subjects are allowed to underbid W ∗

l

by 5 units and overbid W ∗
h by 5 units, ai ∈ [W ∗

l − 5,W ∗
h + 5]. In analogy to the

auction game, the ranges of the values are W ∗
l ∈ [25, 219] and W ∗

h ∈ [31, 225].4

Subjects are told that the realization of the two possible values depends on
chance and on both players’ bids. More precisely, instead of a simple first-price
auction rule, subjects are provided with three special auction rules. First, if i
overbids j by at least 6 units, he wins the auction for sure and either value realizes
with probability of 0.5 (“rule 1”). Second, if i underbids j by at least 6 units,
he does not win the auction and his payoff is 0 for sure (“rule 2”). Third, if the
difference between both players’ bids is smaller than 6 units, then the winning
probability of each individual player is 0.5, and the smaller value W ∗

l realizes
irrespective of which player wins the auction. The loser obtains a payoff of 0 (“rule
3”).

125122
W ∗

l

128
W ∗

h

117 133

W ∗
l +W ∗

h

2
ai

Figure 3: The example in the transformed game.

Before analyzing how the two presented games relate to each other, we illustrate
the transformed game by considering an example as before (see figure 3). Player i
as well as his opponent j are informed that the auctioned item either has value
W ∗

l = 122 or W ∗
h = 128. In the experiment, the decision screen presents these two

values as shown in figure 4. Players’ bids are limited to ai ∈ [117, 133]. Notably,
4We choose the intervals such that the lowest and highest realizations are the same across

the two games. Other ways of drawing this analogy are conceivable, however, this way is a
straightforward one.
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since there is no signal structure, player i does not have to think about hypothetical
situations induced by the game structure. This has profound implications as can
be seen by again considering the case of symmetric bidding. In the absence of
individually varying signals, symmetric play simply implies that player i thinks
that player j will bid aj = ai. Notably, in this case, the third rule is applicable
and directly reveals – without requiring any further inferences as in the auction
game – that the item value is low, W ∗

l , completely independent of whether i or j
wins. Put differently, the conditional and unconditional value of the item are the
same for the case of symmetric bidding, E[W ∗|win] = E[W ∗] = W ∗

l . As shown
below, this matters in equilibrium where players symmetrically bid −8, just like in
the auction game.

Figure 4: Screenshot transformed game: “Trading period 1: The true commod-
ity’s value is either 122.00 Taler or 128.00 Taler. The value depends on your bid,
the other participant’s bid and chance. How much do you want to bid?”

2.1.3 Connection Between the Two Games

To see how the transformed game and the auction game relate to each other, we
will analyze the underlying structure of the auction game in more detail. For this
purpose, we express subjects’ strategies by relative bids. This is done with respect
to their signal for the auction game, bi = ai − xi, and with respect to the mean of
the two potential item values for the transformed game, bi = ai −

W ∗
l +W ∗

h

2 . Due
to their relevance, we will call these relative bids bi just “bids” in the remainder
and always specify when we talk about absolute bids ai. Their use is only for
analytical purposes, the instructions exclusively use absolute bids for both games
and subjects make all their decisions in the same absolute metric.

Relative to the other player’s bid bj, i’s strategies bi lead to three kinds of
interactions in the auction game, as illustrated in figure 5(i). First, if player i
overbids player j – in relative terms – by at least 6 units, bi ≥ bj + 6, he always
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xixj|l xj|h
ai

aj|h

aj|l

131

119

bi

bjbj − 6 bj + 6

win in lnever win win in {l, h}
(i)

(iv)

(iii)

(ii)

Figure 5: Three sets of relative bids bi (i) induced by the relative position of signals
xi, xj|l, and xj|h, illustrated for the case of bj = 0 (ii-iv).

wins the auction (“win in {l, h}”). Such a bid bridges the distance even to xj|h
implying that i wins both in l and h. Second, conversely, if i underbids player j
by at least 6 units, bi ≤ bj − 6 , he never wins the auction (“never win”). Third, if
i bids less than 6 units away from j’s bid, bi ∈ (bj − 6, bj + 6), he only wins the
auction in l, i.e. he only wins with the higher signal implying a low item value
W ∗|l but not with the lower signal when the item value is high W ∗|h (“win in l”).
This asymmetry reflects the standard adverse selection problem common to CVAs.

Figures 5(ii)-(iv) show how the three kinds of interaction derive from the
position of signals. In particular, if player i has received a signal of 125 and believes
that his opponent j just bids her signal, bj = 0, player i has to infer that player j’s
absolute bid is either 119 or 131. Based on this inference, in case player i makes
an absolute bid of at least 131, or bi = 6, he will always win the auction. Bidding
weakly below 119, or bi = −6, results in never winning the auction. Finally, bidding
above 119 but below 131 leads to winning only with the higher signal and, hence,
with 50% chance. This results in an optimal bid of 119 + ε, with a small ε > 0, for
this set of strategies. Thus, within the “win in l” set, the winner always receives
the higher signal and the smaller item value realizes.

The transformed game is constructed such that W ∗
l (= W ∗|l) and W ∗

h (= W ∗|h)
correspond to the possible item values from the perspective of a signal W ∗

l +W ∗
h

2

in the auction game. Since relative bids only differ by a constant from absolute
bids in the transformed game, the special rules of the transformed game exactly
reflect the underlying structure of the auction game, as expressed in relative bids.
Rule 1 captures overbidding by six points, bi ≥ bj + 6 (“win in {l, h}”). Rule 2
reflects underbidding by six points, bi ≤ bj − 6 (“never win”), and rule 3 reflects
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bi ∈ (bj − 6, bj + 6) (“win in l”).
Let us reconsider the previous example from the perspective of the transformed

game: Player i believes that his opponents j just bids the mean value of the item,
aj = 125 or bj = 0. Just by consulting the auction rules, i knows that bidding
at least 131, or bi = 6, will result in always winning the auction, bidding weakly
below 119, or bi = −6, will result in never winning the auction, and bidding in
between will result in winning the item with the lower value with 50% chance.

The analysis of the underlying structure of the two games provides an intuition
why the equilibrium of the two games is that both players bid −8. In this case,
each player wins the auction with 50% chance (“win in l” – “rule 3”) and the
low item value realizes from the perspective of the winner, W ∗|l = x − 3 = W ∗

l .
Deviating from this strategy is not profitable for two reasons. First, always winning
the auction (“win in {l, h}” – “rule 1”) with a six point higher bid of b = −2
leads to losses in state l that are not sufficiently compensated in state h. Second,
“never win” (“rule 2”) cannot result in positive profits. Notably, we ensure this
equilibrium in pure strategies by restricting the action set to b ∈ [−8, 8].5

The equilibria of the two games coincide because the special rules of the
transformed game exactly reflect the underlying structure of the auction game,
and we, thus, maintain the strategic nature of the latter game. Crucially, we
remove the need to engage in what we call conditional reasoning in the transformed
game. In the auction game, subjects first have to be able to think in hypothetical
situations that are induced by the game’s structure. In our design, they have
to realize that due to the signal structure two different hypothetical situations
are possible: one’s own signal could be derived from a high or low item value.
Afterwards, subjects have to condition on these two hypothetical events jointly
when drawing appropriate conclusions about how to behave. In particular, they
have to condition on the event of winning the auction. Crucially, the rules of the
transformed game already reflect these two hypothetical events and present the
conditional inferences from these events in form of winning probabilities and the
realized item value. In other words and as illustrated in the example of symmetric
bidding above, the rules spell out consequences explicitly.

The differences observed for the case of symmetric bidding hold more generally
for the “win in l” set and the associated “rule 3”: In “rule 3” of the transformed
game, the lower item value realizes and captures that in “win in l” the winning
player has the higher signal and finds the lower item value realized. Crucially,
there is – unlike in the auction game – no difference between the conditional and

5Due to this structure, deviations to “never win” and “win in {l, h}” are not always possible.
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unconditional value in the transformed game that players have to take into account.
Let γ denote the set of both own actions bi and beliefs about the opponents action
bj such that the auction is in the range “win in l” or that equivalently “rule 3” is
applied in the transformed game. Notably, the equilibrium strategy lies in this set.6

Then, it holds that the conditional value of the item, E[W ∗|win, γ, xi] = xi − 3,
is lower than the unconditional one, E[W ∗|γ, xi] = xi, in the auction game. This
difference highlights that an adverse selection problem is present in the auction
game. If bidders ignore this and bid b > −3, they lose money on average.7

This distinction between conditional and unconditional expectation is, however,
obsolete in the transformed game, E[W ∗|win, γ] = E[W ∗|γ] = Wl, since the lower
conditional value of item is already incorporated in “rule 3” independently of who
wins the item.8

Crucially, “rule 3” makes the conditional item value explicit, but at the same
time the special auction rules of the transformed game fully reflect the underlying
structure of the auction game. For this reason, best response functions in the two
games describe the same optimal behavior when abstracting from boundary signals
and assuming that players – as is true in equilibrium – bid type-independently in
the auction game. Hence, by construction, equilibrium bids in the transformed
game coincide with values of the equilibrium bid function in the auction game.
Additionally, players in the two games face identical uncertainty, so that more
general risk preferences than risk neutrality do not change the equivalence of the
equilibrium strategies. Further important consequences are that noise as modeled
for example in Quantal Response Equilibrium cannot account for differences

6Similarly, α (β) would denote that action and belief are such that the auction is in the range
“win in {l,h}” (“never win”) or that “rule 1” (“rule 2”) is applied in the transformed game.

7Some researchers define the WC as deviations from equilibrium bidding with less than normal
profits (Crawford and Iriberri, 2007, CL). Kagel and Levin (1986) associate the WC with bids in
excess of the conditional value since this entails negative profits on average, a more stringent
definition. Empirically, we can analyze the differences between treatments in many ways, we
report them both in terms of actual losses as well as differences from equilibrium. Kagel and
Levin (1986) use the difference in strategic discounting between common-value and private-value
settings as an indicator of the adverse selection problem. They show that for two players there
is no difference in strategic discounting. This remains true in our setting as −8 remains the
equilibrium strategy when signals determine the private value of bidders. For our purposes,
however, this equilibrium comparison obstructs the view on important out-of-equilibrium effects
of adverse selection, as still reflected by the difference of the conditional and the unconditional
item value.

8Notably, as pointed out by a reviewer, there is no such distinction for the “win in {l, h}”
set and “rule 1”. For this set, the conditional and unconditional value are the same both in the
auction game, E[W ∗|win, α, xi] = E[W ∗|α, xi] = xi, and the transformed game, E[W ∗|win, α] =
E[W ∗|α] = (Wl +Wh)/2. This is true since the chance of the winning player that either the low
or the high item value realizes is equally 50% (as when not winning at all) in both games. For
“never win” or “rule 2” a conditional expectation on winning cannot be calculated.
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between the two games, neither can the fact that the equilibrium strategy is at
the lower end of the action space, b = −8 (see also Charness and Levin 2009).9

Proposition 1. The unique Nash equilibrium in the transformed game for both
players is to bid be = −8.

The Nash equilibrium relative bid function for both players in the auction game
is denoted be = b∗. For signals x ∈ [46, 228], any b∗ takes the value

b∗(x) = −8. (1)

Proof. See appendix A.3.
Note that the transformation generates common knowledge of the possible

values of the item while the auction game’s signal structure prevents this. Therefore,
signals close to the end-point value of 25 reveal the value of the item fully to one
player, providing incentives not to bid according to equation 1. For signal values
up to 46, subjects’ optimal bid function can be influenced through higher-order
beliefs by those incentives as detailed in appendix A.3. We disregard the few
observations that fall in this small range when analyzing our data and further
discuss the matter in section 3.5. Outside of this range, the differences in the
information structure between the two games do not influence equilibrium behavior.
Notably, the revelation of the item value through signals close to the upper bound
of 225 creates further incentives for bidding low and thus does not change the
equilibrium strategy.

Overall, the comparison of the auction and the transformed game allows us to
identify how the complexity of conditional reasoning affects the WC. We do not
conceptualize conditional reasoning in a formal model since our focus is not on the
cognitive process of the subject but on the objective challenges posed by the game.
Nonetheless, it is important to point out that conditional reasoning refers – in
our understanding – to thinking and conditioning on hypothetical situations that
are induced by the game structure and that possibly put the focus on particular
states of the world such as the event of winning the auction. Under this definition,
we do not subsume the formation of beliefs like it occurs even in the transformed
game when subjects form beliefs about the opponents’ behavior and “condition”
on those beliefs to best respond. Although the expected value in the transformed

9Charness and Levin (2009) implement a corner equilibrium as well as an internal equilibrium
and find no qualitative difference between them. In our auction game, no such simple modification
is available because allowing for lower bids gives rise to a mixed strategy equilibrium. Importantly,
we are mainly interested in treatment differences between similarly structured games, not absolute
bid levels in individual games.
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game still depends on beliefs, no further information about a state of the world
can be inferred under this standard belief formation. In our definition, we follow
the literature which emphasizes the problem of conditional reasoning exclusively
in common value auctions, jury voting, persuasion, etc. (Charness and Levin 2009;
Esponda and Vespa 2014).

2.2 Experimental Treatments and Procedures

The games implemented in the experiment differ along two dimensions. The first
relates to conditional reasoning, which subjects have to deal with in the auction
game but not in the transformed game. The second dimension addresses belief
formation and varies the extent to which subjects have to form beliefs about
their opponent. The difficulty of belief formation has been the subject of the large
level-k literature which provides models and plenty of evidence of heterogeneous and
inconsistent beliefs (Crawford et al., 2013). We provide two different manipulations:
While the “full belief manipulation” represents the more conventional approach to
manipulate beliefs, the “partial belief manipulation” is more explorative and tries
to shed some light on why forming beliefs is problematic.

In the full belief manipulation, subjects are confronted with naïve computer
opponents, whose strategies are known. In sharp contrast to facing fellow human
opponents, the need to form beliefs and to cope with strategic uncertainty is fully
removed. The subjects are informed that the computer follows the naïve strategy
bC = 0. In absolute terms, this implies that it bids according to the signal or the
mean value of the item, respectively. In the experiment, subjects have to round
their bids to one cent of a unit. The best response is thus BR(bC) = −5.99 (“win
in l”). We deliberately do not implement a more complex or realistic strategy for
the computer opponents due to their role in the next manipulation. Furthermore,
subjects do not necessarily have to be able to best respond to complex belief
distributions against human opponents either. When subjects realize in a first step
that underbidding by BR(bC) = −5.99 is the best response to naïve play, they
might recognize the equilibrium strategy – which in turn is the best response to
−5.99 – in a second step.

In the partial belief manipulation, subjects face human opponents subsequently
to interacting with the computer without receiving any payoff feedback in-between.
The preceding encounter with a deterministically acting, naïve opponent already
places subjects in a simple scenario providing a first basic belief how opponents
may act. Subjects can extend this simple scenario to craft a belief about human
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Sequence of games
Part I Part II

Treatment 1 2 3 4 Game identifiers:
AH AH ACAH THAH TCAH A auction game
T H TH TCT H AHT H ACT H T transformed game
AC AC AHAC TCAC THAC H human opponent
T C TC TH T C ACT C AHT C C computer opponent

Notes: In order to distinguish games by the treatment they belong to, we add a treatment
subscript, e.g.AHAC , whenever it is not the first game in the treatment. Our analysis focusses
mainly on the six games in boldface.

Table 1: Sequence of games in the four treatments.

opponents featuring strategic uncertainty. Interestingly, this setting provides a valid
alternative belief formation manipulation to the single-person decision problem
of facing computer opponents (see ILN, Costa-Gomes and Shimoji, 2015). While
our manipulation clearly provides subjects with a basic scenario, the idea that
this scenario helps subjects to play against humans rests on the assertion that the
computer scenario is simple enough for subjects to gain a better understanding of
the game which in turn should improve bids against humans.10

Our manipulations of conditional reasoning and – full – belief formation provide
us with four basic games: the auction game either played against human, AH , or
computer opponents, AC , and the transformed game either played against humans,
TH , or computer opponents, TC . We use a within- and between-subject design, in
which all subjects play all four different basic games in different sequences. Table 1
illustrates our four treatments. The treatment name is derived from the first game
in each treatment. Each treatment is divided in parts I and II. The A treatments
start with the auction games (A) in part I and have the transformed games (T ) in
part II. In the T treatments, this sequence is reversed. Within each part of these
H treatments, the opponents switch from human (H) to computer opponents (C).
Subjects are instructed before each particular game. Hence, they know about the
computer opponent and its strategy only after they have finished the initial game.
In the C treatments, this switch is reversed from C to H. Hence, subjects face
human after computer opponents (?H?C).11 Thus, the games AHAC and TH T C

10If this assertion is not true, one could conjecture that the preceding encounter against
computerized opponents might even worsen subjects’ play or at least not improve it: subjects
could just imitate the computer, playing 0, or be confused because they perceive the computer
behavior as unrepresentative and unhelpful for bids against humans. Although we cannot a priori
rule out that subjects’ play could be worsened by our manipulation, we strongly conjectured
otherwise and empirical evidence supports this conjecture.

11An expression with ? refers to both A and T games, e.g. ?H stands for the two games AH
and TH. H alone refers generally to human opponents (including e.g. AHAC).
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capture our partial belief manipulation.
Our design generates data for clear between-subject comparisons and also allows

for rich within-subject analyses. The six games in boldface allow us to disentangle
the effects of conditional reasoning and belief formation on game play using a
between-subject analysis. The remaining games in part I, ACAH and TCT H, allow
us to analyze within-subject bid transitions from human to computer opponents.
Part II provides further within-subject data on the learning transfer between
auction and transformed games and vice versa as analyzed in appendix B.2. Data
from all 16 games will be used to quantify the effect of cognitive complexities in a
regression analysis. Overall, our interest is not so much in absolute levels of bids
but in relative treatment differences between games.

In all treatments, the general instructions and the instructions for the games
are read out aloud. We do not provide a control questionnaire because meaningful
questions might highlight the adverse selection problem underlying the games.
Instead, frequently asked questions that summarize main points of the games are
read aloud. These FAQs have been generated based on trial sessions. Subjects
play each specific game for three consecutive periods against randomly rematched
subjects or the computer. Subjects are informed that they will first make all 12
decisions in the experiment before receiving any feedback.12 We deliberately rule
out that subjects get any payoff information after each game to illuminate the
mechanism behind the WC, undisturbed from learning through feedback. It has
been shown that experiences with losses and simple learning strategies enable
subjects to eventually avoid the WC. Crucially, they seem to do this without
overcoming the underlying cognitive complexities insofar as they do not transfer
knowledge to similar situations in the future (see Kagel and Levin, 2002, p. 337).
Although it is interesting in itself to analyze how subjects adapt in the long run even
without a deep understanding, our core interest is in (a) whether people’s failure
to overcome certain cognitive complexities causes the WC in the first place and in
(b) which complexity is to blame. Focussing on initial responses allows tackling
these questions and moreover enables a meaningful within-subject analysis. At
the end of our analysis, we will provide a robustness check analyzing the influence
of the two complexities on the rate and degree of convergence when feedback is
provided (see section 3.4).

The experiments were conducted at the University of Mannheim in Spring and
12Because subjects do not receive any feedback after playing one period, in principle, it would

have been possible to just implement one period per game. However, implementing three periods
allows us to see whether subjects consistently play the same strategy across three periods for
different values of the signal.
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Autumn 2014. Overall, 12 sessions with 10 to 22 subjects in each session were
run. In total, 182 subjects participated.13 Participants received a show-up fee of
4e. We used “Taler” as an experimental currency where each Taler was worth
0.50e. Subjects received an initial endowment of 8 Taler in each of the two parts
from which losses were subtracted and to which gains were added. Participants
that made losses in both parts still kept their show-up fee, following standard
procedures as implemented by Kagel and Levin (1986) and ILN. Sessions lasted on
average 60-75 minutes and subjects earned on average 14.40e. Instructions and
FAQs are reprinted in appendices B.4 and B.5.

2.3 Formalizing the Impact of Cognitive Complexities

The primitive of our approach is the focus on the objective game characteristics
rather than a model of subjects’ reasoning. We provide a brief formalization of the
quantitative impact on behavior caused by the objective game complexities studied
here. If two game situations G ∈ {G0, G1}, differ only in the need to engage in
one particular cognitive complexity D, we propose to evaluate this complexity
based on the difference it generates in behavior between these games. For example,
G0 = TH and G1 = AH differ only in the need to engage in conditional reasoning.
We describe behavior s ∈ S as a probability measure over the action space of G or
as a statistic thereof. We define the distance between observed behavior s and a
benchmark behavior such as equilibrium se as µ̃(s, se), where µ̃(·, ·) : S × S 7→ R

is an appropriately chosen divergence or metric.14

We define D’s impact on behavior as

∆µ̃(D;G0) ≡ µ̃(s(G1), se)− µ̃(s(G0), se), (2)

and can interpret D as follows. If the presence of D keeps behavior further away
from equilibrium play (as we hypothesize for conditional reasoning), ∆µ̃(D) > 0, we
call it a cognitive bad. The presence of a cognitive good results in ∆µ̃(D) < 0. Such
a good can be viewed as resulting from a simplification (or negative complexity)
like, potentially, repeated game play or the substitution of probabilities with

13The experimental software was developed in z-Tree (Fischbacher, 2007). For recruitment,
ORSEE was used (Greiner, 2004).

14While this use of the distance is convincing in our particular games, we understand that this
principle is not universally valid, in particular, outside of the class of games with continuous
strategy space. At the same time, the creation of a distance metric analogue to our concept
on the basis of a ranking of expected payoffs or rationalizability would still be in line with our
concept and could certainly be helpful. Also, in case the benchmark behavior or action spaces
are different between G0 and G1, an appropriate normalization can assure comparability.
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frequencies in games with Bayesian reasoning (Gigerenzer and Hoffrage, 1995).
For simplicity, we omit the dependence of D’s impact on circumstances (·;G0)
when it is of minor importance. When comparing TH and AH, for example, these
circumstances include that subjects in G0 = TH (as well as in G1 = AH) have to
form beliefs.

Two activities D1 and D2 (for example, conditional reasoning and belief forma-
tion) are related to each other depending on the difference between the joint effect
and the sum of the individual effects. Define

∆2µ̃(D1, D2) ≡ ∆µ̃({D1, D2})− (∆µ̃(D1) + ∆µ̃(D2)) , (3)

where {D1, D2} indicates the need to engage in both cognitive processes. Two
activities exhibit cognitive diseconomies if their joint effect is larger than their
summed individual effects, ∆2µ̃(D1, D2) > 0. They exhibit cognitive economies if
this difference is negative. This definition adapts the idea of diseconomies of scope
∆2C of multi-input cost functions, C(a1, a2) = C(a1, 0) +C(0, a2) + ∆2C(a1, a2; 0).

The strategy space in our games is a subset of the metric space of the real
numbers. We summarize the action distribution in terms of relative bids with
the mean statistic and can resort to the simple Euclidean distance as metric.
We normalize to 1 the distance between uninformed random play µu(su, se) = 1
and equilibrium or optimal play µe(se, se) = 0. In particular, we use a simple
normalization

µ(s, se) ≡
∣∣∣∣∣ b̄− be

b̄u − be

∣∣∣∣∣ , (4)

where b̄ is the average behavior, and be and b̄u are equilibrium or optimal play
and uninformed random play averages, respectively. In our games, be

?H = −8,
be

?C = −5.99 and b̄u = 0.
As we will detail in the following, figure 6 illustrates how the game complexities

in our design relate. For our study, we denote the activity of conditional reasoning
as DA. As the dotted lines in figure 6 indicate, it is the additional complexity in the
auction game compared to the transformed game. We distinguish different types
of cognitive complexities in the context of belief formation. First, we denote as DB

the forming of any first scenario or belief that is provided in ?H?C by the experience
with the computer but not in ?H games. Independent of whether a basic scenario
or belief is provided to subjects or not, any belief has to take strategic uncertainty
into account, DSU , whenever subjects face human opponents.

We can relate these complexities to our two belief manipulations. Our full belief
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Figure 6: Differences between games with complexities added to TC in {·}.

manipulation varies the necessity of forming beliefs against humans, DH . This is
done by comparing human settings ?H to computerized settings ?C, as indicated
by the solid lines in figure 6. It entails adapting one’s belief to an environment
featuring strategic uncertainty DSU , but as well entails forming a basic belief, DB.
Thus, DH = {DB, DSU}. While it seems reasonable that strategic uncertainty
DSU complicates the situation compared to naïve computer play, it is a priori less
clear whether subjects really have a problem of forming a basic first belief DB in
the case we find that DH worsens play significantly. Inspired by the level-k idea
of iterated best responses, our underlying conjecture is that it might be easier
in our games to start with a simple (e.g. naïve) belief and extent it to a more
sophisticated one than building a belief from scratch. But, notably, DB could be
unproblematic because subjects easily craft a basic scenario themselves or because
they can develop consistent beliefs featuring strategic uncertainty without the need
of any first belief. Thus, the underlying idea of our partial belief manipulation is to
provide some indication whether the forming of a first belief DB actually provides
an obstacle that can explain part of the overall effect of full belief formation, DH .
Since DB cannot be an obstacle when playing against humans after computers
in ?H?C but can be an obstacle when just playing against humans in ?H, the
comparison of the two games enables us to identify DB, as indicated by the dashed
lines in figure 6.

Each individual cognitive complexity can be measured with at least two game
comparisons since overall three manipulations are implemented. This reflects that
the magnitude of an effect depends on circumstances, G0. In the results section, we
will analyze all depicted comparisons and also use a regression analysis to precisely
quantify each cognitive complexity, controlling for interaction effects and thus
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circumstances.
Our approach deliberately disregards the mechanisms behind subjects’ inability

to overcome a complexity D. We only assume that game complexity influences
the distance of observed play to the equilibrium strategy. We remain agnostic
as to whether it is the difficulty to form beliefs exactly as modeled in the level-k
model or the obstacle of conditional reasoning as specifically modeled in CE. It
turns out that in our specific games neither of the two predicts differences between
treatments. Appendix B.1 shows that except for the level-k model with truthful
level-0, these models predict the equilibrium bid of be = −8.

2.4 Hypotheses

The large literature on belief formation and conditional reasoning undoubtedly
suggests that the two processes analyzed in this paper are cognitive bads. Addi-
tionally, they could interact and might exhibit cognitive diseconomies that distance
behavior further from optimal play.

Hypothesis 1 (Conditional reasoning): Due to the added need of condi-
tional reasoning, subjects make higher bids and fall prey to the WC more fre-
quently in the auction game compared to the transformed game, both with computer
and human opponents as well as when facing human after computer opponents:
∆µ(DA) > 0.

Hypothesis 2a (Full belief manipulation) Due to the added need of full
belief formation, subjects make higher bids and fall prey to the WC more frequently
in both games when playing against human opponents than when playing against
computerized opponents: ∆µ({DB, DSU}) > 0.

Hypothesis 2b (Partial belief manipulation): Due to the added need of
forming a basic first belief, subjects make higher bids and fall prey to the WC more
frequently with human opponents in both games if the game is played first compared
to when it is played after the setting with computer opponents: ∆µ(DB) > 0.

Hypothesis 3 (Magnitudes, cognitive diseconomies): The effects of DH

and DA are different in magnitude: ∆µ(DA) 6= ∆µ(DH). Similarly, ∆µ(DA) 6=
∆µ(DB). Subjects make higher bids and fall prey to the WC more frequently when
both DA and DH are present than predicted by ∆µ(DA;TC) and ∆µ(DH ;TC)
alone. In other words, we observe cognitive diseconomies ∆2µ(DA, DH ;TC) > 0.
Weaker diseconomies are observed for DB instead of DH .
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3 Results

The following summary statistics and tests use the average bids and payoffs over
the three periods of each specific game.15 Only the percentage of winners incurring
losses is calculated using the per-period information.

Since means and distributions only proxy for the plausibility of bids, we
also report bids in four meaningful categories. They can account for the fact
that equilibrium or optimal bids are different between the settings with human
and computer opponents. These categories are determined by whether bids can
be a valid best response. In the H games, the important thresholds are at
bi = −8,−5,−3. The first category is the equilibrium strategy, bidding bi = −8.16

The next threshold is the best response to a naïve strategy, bj = 0, which we
round up from the precise value bi = −5.99 to bi = −5 because some subjects
only bid integer values. Finally, bidding bi > −3 is a weakly dominated strategy.
Intuitively, whenever j bids very high values (bj ≥ 3), no positive payoffs can be
obtained, and any bid bi ≤ bj − 6 is a best response. Whenever positive payoffs
can be achieved for lower bids of j, some strategy bi < −3 always leads to higher
expected payoffs than bidding above −3. Overall, we think that bids bi ∈ [−8,−5]
represent plausible behavior. Bids bi ∈ (−5,−3] might be a best response but only
to some forms of fairly implausible beliefs; bids above are weakly dominated.

For the C games, a similar picture emerges in which we distinguish plausible
behavior, bi ∈ [−5.99,−5], respectively, from implausible behavior with either
bi < −5.99 or bi > −5.17

3.1 Conditional Reasoning (Hypothesis 1)

With respect to conditional reasoning, we are interested in comparisons between
the auction and the transformed games in settings ?H, ?C, and ?H?C. For all three
comparisons, a higher percentage of winners in the auction game faces losses than

15In the few cases in which we drop observations due to a signal realization below 46, the
average is over 2 bids.

16Given the empirical distribution of subjects’ behavior, equilibrium play is not a best response,
but it is close. In AH, bidding bi = −7.97 is the best response. In TH, bidding bi = −7.99 is the
best response.

17When performing between-treatment comparisons below, we will use Fisher’s exact tests
that only rely on the two categories: plausible vs. implausible play. First, comparing human
and computer settings with four categories is not desirable due to different category boundaries.
Second, for similar within-subject comparisons, the McNemar’s test is used that only relies on
binary categories. Importantly, using four categories for testing whenever feasible leads to very
similar results, suggesting that our analysis is robust at least with respect to the number of
categories used.
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Table 2: Summary statistics.

Means Wilcoxon
(Std. deviation) A T p-value
?H AH TH

Bids –1.80 –4.00 0.000
(2.63) (2.61)

Payoffs –0.56 0.55 0.001
(1.55) (1.37)

?C AC TC
Bids –2.83 –4.18 0.079

(3.65) (2.90)
Payoffs –0.12 0.37 0.099

(1.99) (2.11)
?H?C AHAC THT C

Bids –2.62 –4.64 0.024
(4.15) (2.83)

Payoffs –0.57 0.82 0.003
(2.46) (1.56)

?H vs. ?C Bids 0.022 0.323
Wilcoxon
p-value Payoffs 0.033 0.434
?H vs. ?H?C Bids 0.166 0.173
Wilcoxon
p-value Payoffs 0.303 0.116
Notes: The last column and the last rows report two-sided p-values of Wilcoxon
rank sum tests that evaluate whether the distribution of bids and payoffs is
different between games/treatments. Noteworthy, the difference in equilibria
biases against observing a difference when comparing ?H (−8) vs. ?C (−5.99).

in the transformed game: 61% do so in AH but only 32% in TH ; 45% do so in AC
but only 24% in TC. Finally, 52% do so in AHAC but only 21% in THT C.18 These
outcomes follow from bidding behavior illustrated in table 2. Average bids in T are
significantly lower and thus closer to the equilibrium or optimal behavior compared
to A, in ?H, ?C, and ?H?C. The differences in payoffs are also significantly different
irrespective of the opponents. In A, subjects on average lose money while they
gain in T. In all six games shown in table 2, bids and payoffs are highly negatively

18When discussing the extent of the WC, we refer to actual probabilities with which winners
face losses. Table 3 and Figures A.1-A.4 nonetheless show that very similar percentages emerge
when looking instead at those who bid above the conditional item value: bi > −3. Especially
for AH, the extent of the WC would even be higher under the latter measure (72% vs. 61%):
bidding above −3 may not lead to losses in case someone else bids even higher.
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correlated with each other.19

Figure 7 reports subjects’ bid distributions in the relevant games. The his-
tograms in figure 7a and 7b reflect that subjects play lower bids more often in TH
than they do in AH. Actually, the bidding behavior in AH gives the impression of
normally distributed bids that do not reflect the equilibrium strategy of bi = −8
at all. In contrast, bidding behavior in TH at least partially reflects that the
equilibrium is the lowest possible bid. For ?C, figures 7c and 7d show that a larger
number of subjects is able to find the exact equilibrium when strategic uncertainty
is absent. Finally, figures 7e and 7f show a similar difference between A and T
when subjects play against humans after a preceding interaction with the computer,
?H?C.

Table 3 shows data on plausible behavior. It reveals that 39% of subjects (18 of
46) bid plausibly in TH while only 12% (6 of 50) do so in AH (Fisher’s exact test,
p = 0.004).20 Consistently, 57% (24 of 42) bid plausibly in THT C but only 39% (17
of 44) do so in AHAC (Fisher’s exact test, p = 0.083). Moreover, a plausible action
is played by 64% (27 of 46) in TC but only by 43% of subjects (19 of 44) in AC
(Fisher’s exact test, p = 0.090).21 Hence, even if subjects exactly know how their
opponents act, conditional reasoning is still a problem, at least for some subjects.

Table 3: Category frequencies and percentages of bids.

[−8] (−8,−5] (−5,−3] (−3, 8] Total
AH 0 (.00) 6 (.12) 8 (.16) 36 (.72) 50 (1)
TH 6 (.13) 12 (.26) 12 (.26) 16 (.35) 46 (1)
AHAC 1 (.02) 16 (.36) 6 (.14) 21 (.48) 44 (1)
THT C 4 (.10) 20 (.48) 9 (.21) 9 (.21) 42 (1)

[−8,−6] [−5.99] (−5.99,−5] (−5, 8] Total
AC 1 (.02) 12 (.27) 7 (.16) 24 (.55) 44 (1)
TC 1 (.02) 16 (.38) 11 (.26) 14 (.33) 42 (1)
Notes: Plausible play in bold. Percentages in parenthesis. All in the text reported
tests of differences in plausibility are 2× 2 tests of equality.

The analysis so far has focused on the six individual games illustrated in figure
19AH : −.77, TH : −0.74, AC : −.77, TC : −.88, AHAC : −0.84, THT C : −0.88, all p-values <

0.001.
20All reported tests in this paper are two-sided.
21In the computer setting, more subjects seem to understand the game and make lower but not

excessively low bids under −5.99. This result speaks against the idea that potential differences in
framing between the two games lead to more cautious, mechanically low play in the transformed
game.
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(a) AH, N = 50. (b) TH, N = 46.

(c) AC, N = 44. (d) TC, N = 42.

(e) AHAC , N = 44. (f) THT C , N = 42.

Figure 7: Histograms of bids.
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6. Our design also allows us to study within-subject bid transitions between H and
C as illustrated in table 4. Figures A.1 – A.4 graphically illustrate the individual
data. Two important features are noteworthy. First, in AH (but also in AC), 19
subjects play bids in the top-right cell, that is, higher than −3 in H and higher
than −5 in C. This kind of bidding is less common in T H and T C where only 5
and 7 players do this. Second, in AH, of those 27 subjects playing plausibly in
C, 17 or 63% bid above −3 in H, a weakly dominated strategy. Only 11 out of
37 (30%) do this in T H. This suggests that beyond the ability to best respond,
the need to reason conditionally increases the difficulty of belief formation. In AH
compared to TH, relatively more subjects who are in C able to best respond fail
to form adequate beliefs about human opponents and to best respond to them. In
the C treatments when the simpler ?C games are played first we do not observe
such a difference.

Clearly, the results so far indicate that conditional reasoning is a cognitive
bad as it distances behavior from optimal play, ∆µ(DA) > 0. We relegate the
discussion of the magnitudes and its comparisons across complexities to section 3.3
where we can base it on the regression results. Table A.1 on page 48 calculates the
magnitudes for various effects and environments based on the average bids seen
until now.

Result 1: For all three settings, ?H, ?C, and ?H?C, we find that, with
conditioning, subjects bid higher and avoid the WC less, ∆µ(DA) > 0.
Hence, even in CVA setting with human opponents, we find evidence
that the difficulty of conditional reasoning is one reason behind the
WC.

We find another consequence of the need to condition when we analyze subjects’
behavior over the three periods of each game. When we test the equality of the
distribution of bids in the first and the last period of each game, only 2 out of
the 16 games of table 1 show significant differences. Subjects bid significantly
closer to the equilibrium in the third compared to the first period only when the
transformed game is played as the first game (TH, p=0.001, and TC, p=0.067).
Therefore, only without the need of conditional reasoning, subjects are able to
improve their behavior even though they do not receive feedback.22

22Our central results regarding conditional reasoning and belief formation remain in general
robust to considering first or third period bids instead of mean bids, although differences are less
pronounced as single period data is naturally more noisy. Appendix B.2 provides further details.
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Table 4: Frequency and percentage of bid transition by categories (Part I).

bi ∈ [. . .] H

C [−8] (−8,−5] (−5,−3] (−3, 8] Total
AH treatment

(−5, 8] 0 (.00) 0 (.00) 4 (.08) 19 (.38) 23 (.46)
(−5.99,−5] 0 (.00) 1 (.02) 0 (.00) 8 (.16) 9 (.18)
[−5.99] 0 (.00) 5 (.10) 4 (.08) 9 (.18) 18 (.36)
[−8,−6] 0 (.00) 0 (.00) 0 (.00) 0 (.00) 0 (.00)
Total 0 (.00) 6 (.12) 8 (.16) 36 (.72) 50 (1.0)

T H treatment
(−5, 8] 0 (.00) 1 (.02) 2 (.04) 5 (.11) 8 (.17)
(−5.99,−5] 2 (.04) 2 (.04) 5 (.11) 4 (.09) 13 (.28)
[−5.99] 4 (.09) 9 (.20) 4 (.09) 7 (.15) 24 (.52)
[−8,−6] 0 (.00) 0 (.00) 1 (.02) 0 (.00) 1 (.02)
Total 6 (.13) 12 (.26) 12 (.26) 16 (.35) 46 (1.0)

AC treatment
(−5, 8] 0 (.00) 4 (.09) 1 (.02) 19 (.43) 24 (.55)
(−5.99,−5] 0 (.00) 3 (.07) 4 (.09) 0 (.00) 7 (.16)
[−5.99] 0 (.00) 9 (.20) 1 (.02) 2 (.02) 12 (.27)
[−8,−6] 1 (.02) 0 (.00) 0 (.00) 0 (.00) 1 (.02)
Total 1 (.02) 16 (.37) 6 (.14) 21 (.47) 44 (1.0)

T C treatment
(−5, 8] 0 (.00) 3 (.07) 4 (.10) 7 (.17) 14 (.33)
(−5.99,−5] 1 (.02) 10 (.24) 0 (.00) 0 (.00) 11 (.26)
[−5.99] 3 (.07) 6 (.14) 5 (.12) 2 (.05) 16 (.38)
[−8,−6] 0 (.00) 1 (.02) 0 (.00) 0 (.00) 1 (.02)
Total 4 (.10) 20 (.48) 9 (.21) 9 (.21) 42 (1.0)
Notes: Plausible play in bold. Percentages in parenthesis.
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3.2 Belief Formation (Hypothesis 2)

With respect to full belief formation, comparing ?H with ?C, we observe the
following results: In AH, 61% of the auction winners face losses whereas only 43%
do so in AC. In TH, 32% of the winning subjects face losses whereas in TC only
24% do so. Table 2 shows that in the A games subjects bid significantly lower
and make significantly higher profits in ?C then in ?H. No statistical difference is
observed for the T games. Note, however, that the difference in the optimal bid
between C (−5.99) and H (−8) biases against observing a difference.

In contrast, measures of plausible play can be compared better, leading to a
cleaner measure. Judging by the categories of table 3, 6 out of 50 subjects, or 12%,
behave plausibly in AH while 19 out of 44, or 43%, do so in AC (Fisher’s exact
test, p < 0.001). In TH, 18 out of 46 subjects, or 39%, behave plausibly while 27
out of 42, or 64%, do so in AC (Fisher’s exact test, p = 0.011).

Result 2a: We find that basic belief formation and strategic uncer-
tainty jointly provide an additional obstacle for avoiding the WC both
in the auction and in the transformed game, ∆µ({DB, DSU}) > 0.23

The strong impact of the removal of both strategic uncertainty, DSU , and basic
belief formation, DB, may not be surprising. However, within-subject analyses
of the AH and T H treatments in table 4 (figures A.1 and A.3) provide first
evidence that strategic uncertainty alone may not be able to explain the differences
between settings. In both cases, out of those respective 27 and 37 subjects that
approximately best respond in C, still a substantial fraction of 17 and 11 players,
respectively, plays a weakly dominated strategy in H. This suggests that, although
many subjects best respond in C, they seem not to form (and best respond to)
equilibrium beliefs in H. We see different potential explanations for subjects’
behavior. On the one hand, subjects may not perceive computer behavior as an
accurate representation of human behavior and consequently form very particular
beliefs of others bidding higher than the signal (bj ≥ 3) that could rationalize
even weakly dominated strategies as a best response. Or subjects may develop
particularly complex beliefs – a full belief distribution – that, unlike the simple
belief in C, overstrain their best-response abilities, leading to dominated play.

23Crucially, the partial belief manipulation discussed below also shows that result 2a cannot
exclusively be driven by the possibility that subjects have different preferences for computerized
opponents compared to human opponents, when they, for example, experience a higher “joy
of winning” with human opponents than with computer opponents. Notably, unlike the full
manipulation, the partial manipulation compares two settings of exclusively human interaction.
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On the other hand, subjects may already have problems to form any basic belief,
impeding any best-response logic. The remaining two analyses in this section bring
more evidence on this point and, in our opinion, favor the latter possibility that
subjects have problems to form any a basic and, thus, any belief.

Under partial belief manipulation, 52% of subjects winning the auction in
AHAC face losses while 61% of subjects do so in AH. Moreover, 21% do so in THT C
and 32% in TH. Table 2 shows that bids differ in the expected direction between
AH and AHAC, but this difference is not significant (p = 0.166). Importantly,
table 3, however, shows that plausible bids below −5 are more frequent in AHAC
than in AH (Fisher’s exact test, p = 0.004).

The bid transition analysis in table 4 (figure A.2) shows further that – just
like in the AH treatment – numerous subjects place bids in the top-right cell in
AC as well. More interestingly, in AC, out of the 19 subjects approximately best
responding in C, only 2 bid higher than −3 in H. As mentioned, in AH, out of 27
that play a best response in C, 17 bid higher than −3 in H. Therefore, pairing
the general ability to best respond with a little help in the belief formation – the
computer providing a first basic belief – has a strong influence on the bids placed
against human opponents.

The treatment T C indicates that this effect is not due to the learning of
conditioning during the preceding play in C. Table 2 shows that the absolute
difference in bids between TH and THT C is 0.64 with a p-value of 0.173, very
similar to the A treatments.24 The changes in the transition between C and H
(table 4 and figure A.4) are similar to the A treatments.25

Result 2b: Although the observed difference in mean bids is not sig-
nificant, playing first against computer opponents leads to significantly
more plausible play against human opponents, suggesting that subjects
already have problems to form a basic belief irrespective of strategic
uncertainty, ∆µ(DB) > 0.26

24Due to the overall lower bidding in the T treatments, there is no significant difference between
categories as depicted in table 4 (Fisher’s exact test, p = 0.134). If we, however, only consider
those subjects who at least approximately best respond, bi ∈ [−5.99,−5], in C, more subjects
play plausibly in THT C than in TH (Fisher’s exact test, p = 0.056).

25Unsurprisingly, playing against humans first does not help playing against the computer
in ACAH or TCT H. No significant differences between ACAH and AC arise (bids, p = 0.524;
payoffs, p = 0.825; plausible play, p = 0.310). The same is true for TCT H compared to TC (bids,
p = 0.135; payoffs, p = 0.301; plausible play, p = 0.281).

26A potential concern with our partial belief manipulation is that improvements are not due
to the previous computer interactions but to the experience from 3 preceding periods played in
?H?C compared to none in ?H. Our data allows us to provide a robustness check by comparing
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Although the usefulness of the computer interaction for subsequent behavior
against humans makes the explanation with particular or complex beliefs less
plausible, we want to provide additional evidence on what subjects think when
making their bidding decision in the auction game. For that purpose, we implement
the auction games AH and AHAC with an intra-team communication design as in
Burchardi and Penczynski (2014). In this design, teams of two players communicate
about the bidding decision in a way that subjects have an incentive to share their
reasoning about the game. Appendix A.4 discusses the details of the design and
the results.

The communication data supports the conclusions previously drawn from our
experimental design: Subjects have problems with belief formation (and conditional
reasoning27): The data shows that only 15% of subjects deliberate – either in
fairly concrete terms or vaguely – the other team’s decision. Less sophisticated
deliberations including e.g. a tendency for cautionary bidding and a reference to the
unconditional mean value do not require subjects to form belief and are overall more
frequent. Looking at the few subjects that deliberate about others’ behavior does
not reveal any evidence that subjects have beliefs of particularly high bids. They
seem to form complex beliefs but these beliefs do not necessarily impede them from
best responding. Although we cannot ultimately rule out that subjects may have
beliefs that they choose not to discuss, we do observe that those teams mentioning
beliefs bid on average much closer to equilibrium (∆: -2.93), suggesting that
our communication analysis captures meaningful motives. In addition, subjects
deliberate about others’ behavior much more frequently against the computer, as
expected.

Overall, we see this as an additional indication that subjects may actually
have problems to form even a basic belief. Although we acknowledge that it is
difficult to determine what subjects actually think, two independent approaches –
our partial manipulation and our communication analysis – favor this idea.

behavior in the third, last round of ?H with the first period of ?H?C (the fourth period of the ?C
treatments) instead of using averages. While this robustness check supports our findings in the
A treatments, it indeed shows a smaller difference in the T treatments. The reason is simple.
Subjects already play fairly well in TH. In addition, their learning from period 1 to 2 does not
leave much space for further improvements. Notably, in AH – which is our game of ultimate
interest – subjects do not learn. Therefore, our robustness check shows that a preceding encounter
with a computer opponent improves subjects’ behavior in the A treatments, independent of the
measure on which we base the analysis.

27Although 56% of subjects acknowledge in their messages the two possible states of the world,
fewer subjects understand their implications: Only 34% state the implied possible information
signals of the other team and only 24% mention that bid ranges differ. Those teams acknowledging
the two states bid significantly lower (∆: −2.46).
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3.3 Conditioning vs. Belief Formation (Hypothesis 3)

To conclude our main analysis, we investigate which of the two complexities, the
necessity to condition or the necessity to form beliefs, has a stronger impact on
subjects’ behavior and how they relate to each other. Quantifying the treatment
differences is necessarily a more challenging task than just establishing qualitative
differences. Despite these concerns, we note, however, that the two different
analyses presented below lead to broadly similar conclusions.

We start by looking at conditional reasoning and full belief formation. Figure
8 shows the empirical cumulative distribution functions (CDF) of the first games
in all four treatments, capturing the manipulation of beliefs, DH , and conditional
reasoning, DA (see the solid and dotted lines in figure 6). For an undistorted
comparison, we adjust bids in C games such that the optimal bid is always reflected
by b̃ = −8, the equilibrium bid in H games.28 The leftmost distribution closest to
equilibrium shows behavior in TC without either complexity. Then, no significant
differences emerge when we compare playing against human opponents which
requires belief formation, TH, to playing in an auction setting which requires
conditional reasoning, AC (plausible play: 39% vs. 43%, p = 0.831; adjusted bids:
−4.00 vs. −3.97; payoffs: 0.55 vs. −0.12, p = 0.289). Only a Kolmogorov-Smirnov
test – testing for first-order stochastic dominance – suggests a difference in the
underlying distributions, namely that higher values are bid in TH compared to
AC (adjusted bids p = 0.016). The distribution of AH reflects clearly the behavior
furthest from equilibrium.29

In TC, without both complexities, 24% of winners face losses, 32% do so in TH
with the belief formation problem, 39% with the conditioning problem in AC, and
61% when facing both in AH. The difference in fractions of winners facing losses
between TH and AC is not significant according to a proportion test (p = 0.399).

Figure 9 shows the CDFs of bids in the four ?H and ?H?C games used to analyze
the partial belief formation manipulation (see the dashed and dotted lines in figure
6). This time, the least complex game THT C involves only strategic uncertainty,

28This adjustment makes use twice of the normalization proposed in equation 4. First, we
normalize bids in C using be = −5.99 and then invert the normalization for H games in order to
map normalized bids into [-8,8]. Our interest in the quantitative comparison of magnitudes of
effects motivates this adjustment at this point. The qualitative results established in previous
sections are even stronger with this adjustment.

29Noteworthy, not adjusting bids leads to very similar results because the significance level of
non-parametric tests between TH and AC does not change (bids: −4.00 vs. −2.83, p = 0.336).
Moreover, a Kolmogorov-Smirnov test with unadjusted bids is unable to detect a difference, which
is even more in line with our general conclusion that there is no difference between conditional
reasoning and belief formation.
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Figure 8: CDFs of subjects’ adjusted bids: conditioning and full removal of belief
formation

DSU , and results in the leftmost CDF closest to equilibrium. From there, moving
to TH captures the difference of forming a first belief, DB, and moving to AHAC
captures the difference of conditional reasoning. Here, the measurement of both
added complexities already includes the interaction with strategic uncertainty.
Interestingly, there is no significant difference between AHAC and TH in plausible
behavior or bids and only a marginally significant difference in payoffs (plausible
play 39% vs. 34%, p = 1.000; bids: −4.00 vs. −2.62, p = 0.148; payoffs: 0.55 vs.
−0.57, p = 0.060). Again, a Kolmogorov-Smirnov test suggests a difference in the
underlying distributions (p = 0.062). This time, however, bids in TH are lower
than bids in AHAC.30

In THT C, 21% of winners face losses, 32% do so in TH, 52% do so when the
conditioning problem in AHAC is activated, and 61% when facing both conditional
reasoning and belief formation in AH. The difference between TH and AHAC is
significant according to a proportion test (p = 0.016), highlighting that if we observe
a difference in the partial manipulation at all, it is with respect to payoffs. Overall,
considering both the partial and the full belief manipulation, the quantification
of effects suggests that there is no clear difference in the effect magnitudes of
conditional reasoning and belief formation. Most comparisons are insignificant.

30As noted earlier, having subjects play first in C seems to help those that are able to best
respond, but it does not help those who have a more fundamental problem understanding the
game. For this reason, the CDF of AHAC is very similar to the CDF of the behavior in TH in
the interval [−8,−5]. Further right, however, the former CDF approaches the CDF of AH.
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Figure 9: CDFs of subjects’ bids: conditioning and partial removal of belief
formation

While DH is – if anything – a slightly higher obstacle than DA, DB is – if anything
– a slightly lower obstacle.

For a final overview, table 5 shows random-effects panel regressions in which
the dependent variable is the bid. These regressions allow us to quantify the impact
of the considered cognitive complexities ∆µ(·) and at the same time to control
for interaction effects and thus circumstances. All regressions include dummies
that indicate the presence of the need to condition in auction games, DA, the
presence of the belief formation problem when playing against human opponents,
DH , and the interaction term of the two dummies, ({DA, DH}). Moreover, to
additionally capture the partial belief formation, a dummy indicates whether
subjects play against human opponents after playing against computer opponents,
−DB, removing DB. Additionally, an interaction of the latter dummy with the
conditioning problem is added, ({DA,−DB}).

While regressions 1, 3, and 5 only use part I data, regressions 2, 4, and 6 also
include part II data. They additionally control for learning by including a part
II-dummy, an interaction with the treatments T C/T H and a dummy for the last
game in the treatment. Regressions 3 and 4 adjust bids as before for the fact that
the optimal bid against the computer is different from the equilibrium bid against
humans. This difference distortedly dampens the effect of the human opponents
in 1 and 2. Finally, regressions 5 and 6 use normalized bids, allowing for an easy
quantification of the effects in terms of µ and ∆µ. Since the adjustment in 3 and
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Table 5: Panel regression on bids

Bids Adjusted bids Normalized bids
Variables Part I Parts I&II Part I Parts I&II Part I Parts I&II
Related complexity (1) (2) (3) (4) (5) (6)

Auction games 1.49∗∗∗ 1.32∗∗∗ 1.89∗∗∗ 1.48∗∗∗ 0.24∗∗∗ 0.18∗∗∗
DA (0.46) (0.46) (0.61) (0.53) (0.08) (0.07)

Human opponents 0.86∗∗ 0.36 2.37∗∗∗ 1.57∗∗∗ 0.30∗∗∗ 0.20∗∗∗
DH (0.37) (0.29) (0.41) (0.33) (0.05) (0.04)

Auction × Human 0.63 1.02∗∗∗ 0.21 1.11∗∗∗ 0.03 0.14∗∗∗
{DA, DH} (0.51) (0.36) (0.59) (0.40) (0.07) (0.05)

Human after comp. -1.18∗∗ -1.05∗∗ -1.33∗∗ -1.21∗∗∗ -0.17∗∗ -0.15∗∗∗
−DB (0.51) (0.42) (0.53) (0.44) (0.07) (0.05)

Human a. comp. × Auction 0.01 -0.14 0.04 -0.13 0.00 -0.02
{DA,−DB} (0.71) (0.42) (0.72) (0.42) (0.09) (0.05)

Learning - Part II 0.88∗ 1.11∗∗ 0.14∗∗
(0.47) (0.54) (0.07)

Learning × T C/T H -2.56∗∗∗ -3.04∗∗∗ -0.38∗∗∗
(0.79) (0.92) (0.11)

Lastgame 0.56∗∗ 0.68∗∗ 0.08∗∗
(0.24) (0.29) (0.04)

Constant -4.61∗∗∗ -4.39∗∗∗ -6.04∗∗∗ -5.67∗∗∗ 0.24∗∗∗ 0.29∗∗∗
(0.29) (0.27) (0.38) (0.34) (0.05) (0.04)

N 364 728 364 728 364 728
Subjects 182 182 182 182 182 182
R2 overall .093 .052 .125 .083 .125 .083
Notes: Panel random-effects regressions. The dependent variable is bids. For specifications (3)-(4),
bids have been adjusted for settings with computer opponents to assure consistency of equilibrium
bids (see footnote 28). For specifications (5)-(6), bids are normalized. Cluster-robust standard
errors (subject level as level of independent observation) are provided in parentheses. ***, ** and *
indicate significance at the 1%, 5% and 10% level.

4 is already based on our normalization, coefficients in 5 and 6 can be gained by
dividing those in 3 and 4 by 8 (with the only exception of the constant).

The results confirm that both complexities, DA and DH , individually lead to
higher bids, significantly so when we adjust or normalize bids (regressions 3-6).
Differences between the two coefficients are not significant in regressions 1 and
3-6 (Z-Test, p > 0.2). Additionally, the interaction term always has a positive
sign and is significant when we make use of all available data (regressions 2, 4,
6).31 Moreover, providing a first basic belief by playing first against the computer
significantly improves behavior.

Using all available data, effects can be easily quantified by looking at regression
31The results further support the idea that subjects bid lower in part II when they have played

the transformed games in part I (T C/T H) but not the auction games. Subjects’ performance
deteriorates in the very last game of the experiment, potentially due to exhaustion or loosened
self-restraint. Part II results are in line with the more detailed analysis in appendix B.2.
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6. The constant suggests that behavior without either complexity is relative close to
the normalized equilibrium at 0, µ(b(TC), be) = 0.29 (a bid of −5.67 as regression
4 shows). As indicated by the dummy coefficients, both cognitive complexities
deteriorate behavior by ∆µ(DA;TC) = 0.18 and ∆µ(DH ;TC) = 0.20, respectively.
Moreover, their interaction intensifies this deviation with ∆2µ(DA, DH ;TC) = 0.14.
This reflects the idea that full belief formation and conditioning exhibit cognitive
diseconomies that reinforce the individual problems. All three effects lead to
behavior in AH that is ∆µ({DA, DH};TC) = 0.52 further away from benchmark
play at µ(b(AH), be) = 0.81 (a bid of −1.51 in terms of regression 4).

Similar results emerge for the partial belief manipulation. Naturally, the process
of finding a first belief is less complex than full belief formation, suggesting that
a weaker effect should be observed. Reflecting our results so far, the problem of
finding a first basic belief, irrespective of strategic uncertainty, is still substantial:
∆µ(DB;THT C) = 0.15.32 As expected, cognitive diseconomies between conditional
reasoning and finding a first belief are smaller. They feature a non-significant value
of ∆µ2(DA, DB;THT C) = 0.02.

Result 3: Conditional reasoning is as high an obstacle to optimal play
in an auction context as is belief formation, ∆µ(DA) = ∆µ(DH) and
∆µ(DA) = ∆µ(DB). For partial belief formation we find insignificant
diseconomies. Overall, however, there is significant evidence that the
interaction of the two complexities intensifies the individual effects,
∆2µ(DA, DH) > 0.

3.4 Repeated games with feedback

At the end of our analysis, we provide a robustness check and investigate how the
presence of the two complexities under investigation influences the rate and the
degree of convergence to equilibrium when subjects are provided with feedback.
Unlike previous studies in which the WC was very persistent, we – ex ante – see
the possibility of convergence to equilibrium in our games, because even our most
complex game AH involves only two signals and two bidders and is, thus, simpler
than usually studied CVAs. We therefore let subjects play the games repeatedly
over 30 periods with immediate feedback between periods (AHF , THF , ACF and

32The effect of added conditional reasoning is ∆µ(DA;THT C) = 0.30. Due to the starting point
of THT C , this effect includes the added interaction with strategic uncertainty. µ(b(THT C), se) =
0.34 can be calculated via Constant + Human opponents + Human after comp.. The transition
to AHAC can be calculated by Auction games + Auction × Human + Human a. comp. ×
Auction, resulting in ∆µ(DA;THT C) = 0.30.
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Figure 10: Mean bids in the repeated games with feedback over 30 periods.

TCF ).33 After each period, subjects are randomly rematched in ?HF . Our main
question is whether conditional reasoning remains relevant when subjects learn to
play the game over time. We, thus, conduct three sessions with 10 subjects each for
AHF and THF . Notably, we expect learning to be fundamentally different when
subjects face a computer opponent that invariably uses the same strategy because
the combination of feedback and the simplification of a computerized opponent
creates a very simple learning environment.34 For completeness, we, however, also
implemented one session with 13 and 12 subjects, respectively, for the games ACF

and TCF . For easy comparison, the ?CF results will be given in adjusted bids.
With respect to the effect of conditional reasoning when playing against humans,

figure 10 shows that the mean bids in AHF are higher than in THF throughout
all 30 periods. Non-parametric tests show a significant difference between the two
games (p = 0.0495, N = 3). This also holds for periods 1-15 and 16-30 individually

33In line with Kagel and Levin (1986), we provide extensive feedback. Subjects are not only
informed about the auction winner but also about the other person’s signal and bid. Providing
this feedback is an attempt to keep the informational setting constant between ?CF and ?HF .
In ?CF , subjects can often infer the computer’s bid and signal even when only informed about
who won the auction, while this would not be the case in ?HF .

34This implies that differences between ?HF and ?CF could occur because of differences due
to the underlying complexities or – in their absence – because of the complexities’ different
interaction with the learning from feedback. We leave it for future investigation to clarify this
problem. Although our robustness check might, thus, not be suitable to replicate the fully-fledged
analysis we provide for initial responses (e.g. quantification through our regression analysis), it
can still illuminate how our complexities influence behavior over time and to what extent they
matter even after 30 periods of play.
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Table 6: Panel regression on bids over time (AHF vs. THF )

Periods
Variables 1-30 1-30 1-15 16-30 1-30

(1) (2) (3) (4) (5)

Auction games 1.63∗∗∗ 1.24 0.69 2.16∗∗∗ 0.68
(0.30) (0.83) (0.89) (0.23) (0.89)

Period -0.12∗∗∗ -0.13∗∗∗ -0.22∗∗∗ -0.05
(0.03) (0.05) (0.06) (0.04)

Period × Auction Games 0.02 0.10∗ -0.04
(0.05) (0.06) (0.05)

Period (1-15) -0.22∗∗∗
(0.06)

Period (1-15 × Auction Games 0.10∗
(0.06)

Period (16-30)-Dummy -3.35∗∗∗
(0.89)

Period (16-30)-Dummy 1.45
(0.89)

Period (16-30) -0.05
(0.04)

Period (16-30) × Auction Games -0.04
(0.05)

Constant -3.67∗∗∗ -3.50∗∗∗ -2.79∗∗∗ -6.14∗∗∗ -2.79∗∗∗
(0.47) (0.78) (0.86) (0.04) (0.86)

N 1660 1660 825 835 1660
Subjects 60 60 60 60 60
R2 overall 0.159 0.161 0.010 0.106 0.168
Notes: Panel random-effects regressions using AHF and THF data. The dependent
variable is bids. For all specifications, bids have been adjusted for settings with
computer opponents to assure consistency of equilibrium bids (see footnote 28).
Cluster-robust standard errors (session level as level of independent observations) are
provided in parentheses. A multilevel mixed-effects panel regression that accounts for
variation within session by including random effects not only at the subject but also
at the session level, leads to very similar results (Moffat 2016). ***, ** and * indicate
significance at the 1%, 5% and 10% level.

(both p = 0.0495, N = 3).35

The figure further shows that the initial difference is widened over time, suggest-
ing that the learning proceeds quicker in THF . The panel regression – focusing on
AHF and THF data – in table 6 quantifies this perception. The basic specification

35Since subjects receive feedback, observations are only statically independent at the session
level, leaving us with only three observations per treatment. Under these conditions, the above
p-value of 0.0495 is minimal in the sense that all three AHF observations are higher than the three
THF observations. Similarly, both for AHF as well as as THF , average bids in periods 16-30 are
lower than those in 1-15 in all three sessions (implying a minimal p-value of 0.1088). Since we run
only one session for ?CF treatments, comparing AHF /THF to ACF /TCF with non-parametric
tests is only possible when using individual observations. When doing so, differences are always
significant (p < 0.01), for 1-15, 16-30 and 1-30.
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1 shows that the auction game features a significantly higher bid level and bids
decrease in both games. Specification 2 adds an interaction term and, thus, controls
for differences in slope. In this specification, no difference in the slope (and in the
level) is observed. Specification 3, 4, and 5, however, distinguish the first (1-15)
and the second part (16-30) of all periods. For periods 1-15, 3 and 5 show an initial
difference between the two games that is, however, not statistically significant
(∆3 = 0.69, ∆5 = 0.68). Crucially, the learning path is significantly steeper for
THF . This is consistent with subjects’ learning – without feedback – from period
one to three in TH but not in AH. The learning leads to considerable differences
between the two games in later periods (∆4 = 2.16, ∆5 = 2.13[= 0.68 + 1.45] in
period 16). In later periods, however, learning proceeds – if anything – quicker in
AHF , as bidding in THF is already fairly close to the equilibrium bid of −8.

As expected, figure 10 reveals that the difference between a repeated computer
interaction, ?CF , and a repeated human interaction, ?HF , leads to a fundamental
difference in initial periods. While in periods 2 and 3 alone, subjects on average
adjust their bids by −2.09 (−1.55) in ACF (TCF ), learning in ?H is much slower,
with an adjustment of only −0.40 (−0.31) points in AHF (THF ).36 Notably,
despite these fundamental differences between ?CF and ?HF in learning, initial
differences without learning are – although less pronounced – roughly the same
as before, with lowest bids for TC and highest bids for AH with AC and TH

in between. The perspective of 29 additional periods may limit subjects’ initial
deliberations, potentially diminishing initial differences that are, in addition, based
on fewer observations than in the main treatments.

Overall, our data clearly suggests that the need to engage in conditional
reasoning is relevant for the learning process and still matters after 30 periods
with full feedback. More generally, when looking at all four treatments, not only
the rate of convergence but also the final degree of plausible and equilibrium play
differs between treatments. In the last period, only 60% play plausible (26% play
the equilibrium of −8) in AHF , while 90% (50%) do so in THF , 100% (69%) do so
in ACF , and 100% (75%) do so in TCF .37 Thus, our feedback analysis reveals that
the observed difference without feedback translates to a meaningful difference in
the rate and degree of convergence with feedback. Due to our simple environment,

36Even though only one session per ?C treatment was implemented, these differences are either
significant or very close to significance with p-values between 0.043 and 0.138. Here, p-values are
gained from a panel regression similar to specification 5 of table 6.

37Fisher exact tests reveal that the observed differences between AHF and the other treatments
are mostly significant: AHF vs. THF – plausible: p = 0.015, equilibrium: p = 0.110; AHF

vs. ACF – plausible: p = 0.008, equilibrium: p = 0.016; AHF vs. TCF – plausible: p = 0.009,
equilibrium: p = 0.006.
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we potentially observe less persistence in the WC than in other studies. But the
deviation in average behavior from equilibrium behavior in AHF – when both
complexities are present – remains non-neglible.

3.5 Discussion

Most of our analysis is possible thanks to the transformation of the auction game
that removes the need to condition. Certainly, this transformation also removes
private information from the auction and establishes common knowledge of the
possible values. Subjects thus never form higher-order beliefs about players with
different information. While from a theoretical perspective this is clearly not a
conditioning manipulation that leaves everything else the same, there are various
empirical arguments that convince us that the only behaviorally relevant change is
in the need to condition.

First, in the computer treatments, the games only differ in the need to condition
because subjects do not need to form higher-order beliefs in the auction game.
These treatments, however, yield similar differences as in the human opponent
setting. Relatedly, our partial belief manipulation and our communication analysis
provide independent evidence that many subjects have problems to form even a
basic first belief. These subjects surely do not differentiate between opponents
with different signals.

Second, notably, the effect of conditional reasoning ∆µ(DA) can be quantified
based on the comparison between the surely unproblematic computer treatments.
Moreover, the belief formation effect ∆µ(DH) can be quantified by comparing
human and computerized opponents in the transformed game. Thus, only the
interaction effect ∆2µ(DA, DB) inevitably involves the auction game with human
opponents. Thus, the diseconomies between conditional reasoning and belief
formation might be overestimated if the mere possibility of higher-order beliefs
in the auction game makes forming beliefs – even those that do not involve
higher-order beliefs – in general more difficult. Evidence from the partial belief
manipulation does not support this worry. Providing a simple first belief – without
higher-order considerations – leads to a similar improvement in the auction as in
the transformed game. If possible higher-order beliefs made belief formation more
difficult in general, one would expect the partial belief formation to have a smaller
effect in the auction game.

Third, in the range of signals considered in our data analysis, the equilibrium
consists of strategies of constant relative bidding. In our experiments, subjects
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indeed bid in accordance with this feature irrespective of the absolute signal
realization.38 In equilibrium and empirically, there is thus no reason to differentiate
beliefs with respect to the signal value.

Fourth, despite our efforts to frame the games similarly, one might be concerned
that differences in the games’ framing could explain the observed behavioral
differences. Importantly, any framing explanation must be valid for different types
of players. After all, we do not only observe differences in play of weakly dominated
strategies but also observe a sharp difference in plausible play and even equilibrium
play. Assuming e.g. that confused subjects are more likely to anchor their decision
differently between the two games (signal vs. lower item value) does not explain
why many of those players become sophisticated and play the equilibrium strategy
in the transformed game.

Fifth, while it is in principle possible to implement the transformed game as
a fully strategically equivalent game, this is very complicated for subjects since
instructions would involve rules in terms of both absolute and relative bids.39 Then,
subjects might not approach such a fully equivalent game in terms of the described
rules but in terms of the intuitive standard rules of an auction. An advantage of
our transformation is the generation of a distinct setting that is not perceived as a
standard first price-auction, also because it lacks the standard signal structure.

Finally, one could manipulate instructions such that they explicitly explain
the conditioning problem without manipulating the actual auction game. It
is, however, difficult to provide instructions that explain conditioning without
influencing sophistication in terms of belief formation. Overall, therefore, we
believe that the transformation is very useful and its only behaviorally relevant
variation lies in the need to condition.

As a starting point, our transformation requires an auction game that is
simplified compared to more standard CVAs. We restrict the number of subjects
to two and let binary signals be drawn without replacement. While we expect that

38When regressing the relative bids on absolute signals or on the mean value of the item for
each of the four games, we only observe a significant positive effect for the transformed game
with computer opponents. For the same game with human opponents and more importantly for
both auction game settings, positive and negative coefficients arise and are always insignificant.

39Such a game would use the standard signal structure but replace the auction rule with rules
set in terms of relative bids like in the transformed game. It follows that the description of the
game setting would be in absolute bids, whereas the rules would use a relative perspective. Finally,
profit calculations would again have to rely on absolute bids. Implementing and describing these
changes of perspective would be very cumbersome and also constitute a major difference to the
intuitive standard auction. A change of behavior would not be unambiguously attributable to the
need of conditioning or to this change. Introducing common knowledge about the commodity’s
values allows us, however, to avoid a change between relative and absolute bids in the instructions.
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belief formation and conditional reasoning continue to matter similarly in more
typical auctions as both activities likewise remain indispensable to reach a best
response in more complex auctions, it is an open question what exactly the impact
and interaction of added complexities such as a larger number of players or a richer
state space would be. To which extent is a richer state space a cognitive bad?
Does it exhibit cognitive diseconomies with conditional reasoning? If answers to
these questions were known, combining such elements in an extended framework of
cognitive complexities could inform expectations for extensions of auction games
as well as predictions in a large number of other games.

Focusing on conditional reasoning, our transformation can potentially be applied
to other games and environments. In the strategic voting literature, players are
conditioning on being pivotal in a jury decision (Feddersen and Pesendorfer, 1998;
Guarnaschelli, McKelvey, and Palfrey, 2000). Using a computer experiment,
Esponda and Vespa (2014) find that the cognitive difficulty of this operation might
stand in the way of strategic voting.

After all, one might be tempted to turn to the behavioral models with our
data. Recall that both the CE model as well as the level-k model with uniform
level-0 distribution applied to our setting predict the Nash equilibrium behavior
b = −8 (see appendix B.1). A level-k model with truthful level-0 play rationalizes
behavior by attributing 72% of players to level-0 types in the AH game. Only
the transformed games exhibit the standard hump-shaped level-k distribution and
TC features a reasonable level average above 1.02. For this particular model, the
observed difficulty of conditioning as well as the interaction between conditioning
and belief formation might imply that higher levels are generally more difficult
to reach and lower averages are to be expected. These potential dependencies
highlight the value of considering complexities of a game and investigating their
impact on behavior. Thus, our analysis can meaningfully complement studies that
investigate particular models of reasoning such as Crawford and Iriberri (2007).

4 Conclusion

This study jointly analyzes two cognitive complexities associated with the winner’s
curse: conditional reasoning and belief formation. First, we transform a common-
value first-price auction in a way that subjects do not need to condition on
hypothetical future events. Second, we remove the need to form beliefs by letting
subjects play either against naïve computer opponents or against human opponents

40



subsequent to play against the naïve computer.
We provide a simple formalization of the impact of cognitive complexities

on game play and can state the results as follows. Both activities, conditional
reasoning and belief formation, constitute cognitive bads that significantly impair
subjects’ game play to a similar extent. Although their individual impact is limited,
in combination they lead to widespread implausible behavior, exhibiting cognitive
diseconomies as they interact and reinforce each other. Hence, adding the obstacle
of conditional reasoning to the problem of belief formation – as it is done in
many auctions – results in an extreme case of game-dependent sophistication. Our
detailed experimental analysis allows us to reconcile the critique of Ivanov et al.
(2010) of belief-based models with the numerous results in favor of them from other
domains.

In our view, the focus on the elementary cognitive complexities is a useful
complementary approach to the more common focus on behavioral models. Rather
than explaining behavior, a better understanding of games’ objective cognitive
complexities and their effects could particularly improve the prediction across
games. Investigating a wide range of games from this perspective – even in a
meta-analysis of existing data – might be an insightful exercise for future research.
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A Appendix

A.1 Figures: Bid Transitions

Figure A.1: AH treatment - bid transition (Part I), N = 50.

Figure A.2: AC treatment - bid transition (Part I), N = 44.
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Figure A.3: T H treatment - bid transition (Part I), N = 46

Figure A.4: T C treatment - bid transition (Part I), N = 42.
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A.2 ∆µ Calculation

Adj. Av. µ(b(·), be) Adj. Av. µ(b(·), be)
AH TH ∆µ(DA;TH)

-1.80 0.775 -4.00 0.500 0.275
AHAC TH T C ∆µ(DA;THT C)

-2.62 0.672 -4.64 0.420 0.253
AC TC ∆µ(DA;TC)

-3.97 0.504 -5.56 0.306 0.198

∆µ(DB ;AHAC) ∆µ(DB ;THT C) ∆µ({DA, DB};THT C) ∆2µ({DA, DB};THT C)
0.103 0.080 0.355 0.023

∆µ(DH ;AC) ∆µ(DH ;TC) ∆µ({DA, DH};TC) ∆2µ({DA, DH};TC)
0.271 0.194 0.469 0.077

Table A.1: ∆µ(·) and ∆2µ(·) calculated for Part I adjusted averages.

Table A.1 illustrates how µ(·),∆µ(·) and ∆2µ(·) can be calculated using the
mean values of bids in different games. Bids in C games are adjusted as described
in footnote 28. In the main text, we provide calculations for these measures using
the regression analysis of table 5. The regression analysis provides a unifying
framework that allows to quantify the impact of our cognitive complexities and
their interaction using all available data and not only part I data as in table A.1.
Moreover, in the regression the significance of different effects can also be easily
verified.

A.3 Proof of Proposition 1

In the auction game, particularly informative signals close to the boundary of the
item value may influence the optimal strategy. Intuitively, these changes result
from the information obtained about the value of the item. A signal within 3
units of the lower boundary implies that the true value is the higher one, thus
increasing incentives to bid more for the item. However, the influence of this
change of strategy through higher order beliefs vanishes quickly due to the discrete
signals and their fixed distance of 6 in combination with the limited action space,
as we will be outlined below in detail.40 For signals xi ∈ [46, 228], bidding −8
is optimal, as will be shown next. Notably, a signal within 3 units of the upper
boundary implies that the true value can only be the lower one. There is thus no
incentive to change the equilibrium strategy of bidding b = −8.

40In the original setup of Kagel and Levin (1986), signal noise follows a continuous, uniform
distribution and actions are unconstrained. While the magnitude of the boundary effect quickly
decreases, it never fully vanishes.
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Proof. Equilibrium. We will first focus on signals xi ∈ [46, 228] for which higher-
order beliefs do not influence optimal behavior. To analyze optimal behavior in both
the auction game and the transformed game, consider the best response function
to the opponent’s bid bj. When abstracting from boundary signals and assuming
that players bid type-independently, these best response functions describe the
same optimal behavior for both games.41 If player j bids high values, bj ∈ [3, 8],
it is optimal for player i to never win the auction in either the auction game or
the transformed game. The reason is that in this case, winning the auction would
result in (weak) losses for sure in the auction game because the opponent is already
bidding at least the commodity’s value, even when she has received the lower signal.
Analogously in the transformed game, the opponents is already bidding at least
the higher value W ∗

h . Hence, the best response is to bid anything that is relatively
below the opponent’s bid by at least 6 units, BR(bj) ∈ [−8, bj − 6].

If player j bids values bj ∈ [−8, 3), it is optimal for player i to relatively
underbid the opponent by slightly less than 6 points, making sure that he only
wins the auction when he has received the higher signal or with 50% chance (“win
in l”/“rule 3”). Hence, the best response function is BR(bj) = bj − 6 + ε. By
construction, b ∈ [−8, 8], player j cannot bid low enough to cause a best response
of overbidding by at least 6 points and thus always winning the auction (“win
in {l, h}”/“rule 1”). Only if bj ≤ −15 was possible, the best response would be
BR(bj) = bj + 6 since it would be more profitable to always win the auction than
to only “win in l”/“rule 3”.

With the best responses being either to underbid by at least 6 or by nearly
6, the unique equilibrium for both players is to bid be = bi = bj = −8 in the
transformed game. Similarly, any Nash equilibrium bid function takes the value
b∗ = −8 for signals x ∈ [46, 228] (see discussion of boundaries below). Players
then only win the auction when the lower item value realizes (“win in l”/“rule
3”), leading to an expected payoff of Eui = 1

2(−3− bi) = 2.5. If player i, however,
deviated to “win in {l, h}”/“rule 1”, bidding bi = bj + 6 = −2, he would receive an
expected payoff of only Eui = 1

2(−3− bi) + 1
2(+3− bi) = 1

2(−1 + 5) = 2, showing
that bidding −8 is an equilibrium.

Additionally, any equilibrium bid function exclusively takes the value −8 for
signals x ∈ [46, 228] since at least one subject always have incentives to deviate
from any pair of strategies in which not both subjects bid bi = bj = −8. When
both players bid higher values than −8, at least one player has an incentive to
underbid the other player because, as outlined before, best responses are either

41We show below that incentives for type-dependent bidding only exist near the boundary.
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underbidding by at least 6 or nearly 6 (if such an underbidding is possible). These
underbidding incentives only vanish when no underbidding is possible anymore
and subjects bid −8. If only one player bids more than −8, this player has an
incentive to also bid −8 because of the outlined best response functions. These
arguments also imply the uniqueness of the equilibrium in the transformed game.

Boundaries. In order to analyze whether the optimal strategies at the boundary
influence strategies for interior signals in the auction game, we consider five player
types. Player 5 receives a signal x5 ∈ [46, 54). His strategy might be influenced
by his potential opponent with the lower signal: player 4, who receives the signal
x4 = x5 − 6, x4 ∈ [40, 46). But player 4’s strategy might of course be influenced by
player 3 (x3 = x4− 6, x3 ∈ [34, 40)) whose strategy might be influenced by player 2
(x2 = x3 − 6, x2 ∈ [28, 34)) and finally also by player 1 (x1 = x2 − 6, x1 ∈ [22, 28)).

Player 1 receives a signal x1 ∈ [22, 28) from which he can infer that the
commodity’s real value is above his own signal. For this reason, player 1 cannot
make any profits from bidding −8. Instead player 1 tries to overbid42 player
2. But importantly, player 1 bids at most b1 = +3 because otherwise he would
lose money because of overbidding the commodity’s value x1 + 3. Hence, in
equilibrium, player 2 will bid b2 ≥ −3.01 because any bid below would provide
player 1 with an overbidding incentive that would lead player 2 to adjust his bid
upwards. Additionally, player 2 cannot bid more than b2 = 0 because higher bids
would lead to negative expected payoffs. Because of these incentives of player 2, in
equilibrium, player 3 can ensure himself an expected payoff of at least Eui = 1.495
by bidding b3 = −5.99. If player 3 follows this strategy, player 2 cannot gain money
by winning the auction, and, hence, player 2 will not overbid the player 3 and
bids b2 = −3 to avoid losses. This, however, provides an incentive for player 3 to
bid less than −5.99, which in turn provides an incentive for player 2 to overbid
the third player and these overbidding incentives only fully vanish when player
3 bids −5.99 again. Because of this circular incentive structure, in equilibrium,
player 2 and player 3 will mix strategies. We do not fully characterize the exact
mixed strategy equilibrium here, because it is sufficient for our purpose to show
that players will not bid in certain intervals.43

As outlined before, for player 2, strategies above 0 cannot be part of an
equilibrium. Hence player 3 can ensure himself a payoff of at least Eui = 1.495 by

42More precisely, due to the rule we implement concerning equal bids, overbidding in this
context means that player 1 only has to bid exactly player 2’s absolute bid in order win the
auction.

43The strategy space in our experiment is finite because participants have to round their bids
to the cent-level. But for finite strategy spaces we know that there always exists an equilibrium.
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bidding −5.99. Importantly, strategies that are part of a mixed strategy equilibrium
must lead to a higher payoff than strategies that are not part of this equilibrium.
Hence, bidding b3 ∈ (−5.99,−2) cannot be part of a mixed strategy equilibrium
because it leads to lower payoffs than bidding −5.99, independent of how player
2 exactly mixes pure strategies below b2 = 0. Bidding b3 ∈ [−8,−5.99) could
in principle lead to the same payoff (or even a higher payoff) as bidding −5.99
because the commodity’s real value is underbid by a larger amount. The same
is true for bidding b3 ∈ [−2,−1.50] because player 3 might overbid player 4 with
these bids. By bidding above −1.5, player 3 might still overbid player 4, but
the (maximal) payoff (Eui = 1.49) resulting from these bids is lower than the
payoff of bidding −5.99. Bearing these considerations in mind, player 4 could
always avoid to be overbid by player 3 by bidding b4 = −7.49 and ensuring himself
a payoff of Eu4 = 2.245. Because player 3, however, does not bid −5.99 as a
pure strategy but possibly also mixes strategies over [−8,−5.99] and [−2,−1.50],
player 4 potentially mixes strategies over −8 ≤ b4 ≤ −7.49. Importantly, bidding
above −7.49 cannot be part of an equilibrium because then payoffs are lower than
Eu4 = 2.245. Especially overbidding player 5 even when this player is bidding
b5 = −8 would only lead to an expected payoff of Eu4 = 2.0. For this reason,
the influence on strategies of boundary-signals ends at player 5: This player and
all players with higher signals than player 5 will bid −8 since their lower-signal
opponents do not have an incentive to overbid them. In other words, for any
signal x ∈ [46, 228], any Nash equilibrium relative bid function takes the value
b∗(x) = −8.

Additionally, at the higher boundary of the commodity’s value space, no
problems occur: A player receiving the signal xhigh ∈ (222, 228] knows that the
commodity’s real value is below his own signal. Hence, he has to underbid his
opponent who has a lower signal in order to earn money. But this does not lead to
a change in equilibrium bid function because in case the opponent bids −8, the
player with xhigh also just bids −8 and has no incentive to deviate.

A.4 Communication data

In order to gather further, complementary evidence on belief formation and condi-
tional reasoning, we implement the auction game with a communication design
similar to Burchardi and Penczynski (2014), employing an additional 41 subjects.
In this setting, teams of two players communicate about the bidding decision.
In particular, the team partners first individually suggest a bid and can write a
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justifying message. After this information is simultaneously exchanged, both team
partners indicate – again individually – a final bid in a second step, of which one
is randomly taken as the team’s bid. This randomly chosen bid – in conjunction
with the other team’s bid – then determines both team members’ payoffs. Under
the reasonable assumption that the best way to convince one’s team partner is by
explaining to him the own reasoning, the design gives an incentive to write down
the own reasoning process as fully and clearly as possible.

In this communication treatment, subjects play the first six periods of the AH
treatment: three periods of the auction game against humans, denoted as AHcom,
and then three periods against computers, ACcom

AH . Subjects enter six bids and
messages before any communication is exchanged. This ensures that the bids and
the messages exclusively reflect the subject’s individual reasoning. Our focus is on
analyzing these messages – as an expression of subjects’ reasoning – but we note
that the mean suggested bids are −1.24 (AHcom) and −1.73 (ACcom

AH ), comparable
to our main data (-1.80 in AH and -2.62 in ACAH).44

Based on the classification instructions reprinted in appendix B.6, a research
assistant classified the message content according to various criteria. In contrast
to common practice, we did not employ further research assistants as table A.3
reprints all individual, translated messages sent in AHcom. Thus, readers have
the chance to fully examine messages and classification by themselves. For each
criterion, table A.2 indicates the fraction of messages satisfying it and gives the
mean suggested bid of the players whose message do not (0) and do (1) satisfy the
criterion.

The table shows that 56% of subjects’ acknowledge the two possible states
of the world (criterion Sa).45 More specifically, 34% describe the two possible
information signals of the other team (Sb) and 24% mention that bid ranges differ
between states for the other team (Sc). Other state specific particularities beyond
Sa are discussed by 34% of subjects (Sd). Messages with content according to each
of these criteria are associated with significantly lower mean bids compared to
those without. This shows that the deliberation of the possible states of the world
allows subjects to bid closer to equilibrium. Notably, more specific deliberations
(Sb, Sc, Sd instead of Sa) lead to even lower bids but fewer subjects engage in

44The slight differences are partially due to the first com session, which featured a previous
version of the instructions and non-integer signals and values. The main results hold when
excluding this session and mean bids are −1.31 (AHcom) and −2.35 (ACcom

AH ). Remaining
differences might be due to the additional complexity of the communication setup or due to noise.

45Since subjects make three bids in AHcom, we aggregate subjects’ classification: As long as a
criteria is fulfilled in one of the three messages, a subject fulfills this criteria (with the exception
of I and Empty).
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them, providing further evidence the need to condition provides an obstacle to
subjects.

Only 15% of subjects reflect belief formation by deliberating the other team’s
decisions (Ba). In that deliberation, 5% rule out particular actions (Bb) while 10%
indicate likely choices (Bc). Despite the small number of messages satisfying these
criteria, the significant differences in mean bids show that belief formation leads to
bids much closer to equilibrium (Ba and Bb).

Looking at those 6 out of 41 (15%) subjects in detail does not reveal any
evidence that subjects have particularly high beliefs that would rationalize weakly
dominated play. It appears, however, that the beliefs of the six subjects are more
complex than the degenerated one induced by the computer. Notably, when these
beliefs are fairly concrete (ID 15: “nobody bids more than their information”) – as
arguably in the case of three subjects (IDs 15, 19, 26) – subjects’ best response
ability seems not to be overstrained as those subjects clearly make good decisions
with average bids of −6.22. When these beliefs are fairly vague (ID 17: “all other
teams enter smaller bids”) as in the case of IDs 9, 10, 17, subjects do not play very
successfully due to average bids of −1.29, providing some indication that complex
beliefs can sometimes overstrain best response abilities. Nonetheless, the more
central message seems to be that 35 out of 41 appear not to form beliefs.

In line with this idea, different types of other deliberations – that are often
less sophisticated and do not necessarily require forming beliefs – play a more
prominent role. 22% communicate a tendency towards cautious bidding (Ra – ID 7:
“bid not too high because we risk a loss otherwise”; ID 25: “#bettersafethansorry”)
while 7% argue in favor of aggressive bidding (Rb – ID 40: “bid more”). Further,
10% of subjects include the unconditional expected value of the good in their
argument (M – ID 12: “Try the mean value”). In addition, 20% of subjects only
send messages that do not fulfill any criterion (I), often revealing either directly
(ID 14: “I have no idea how we can decide”) or indirectly (ID 41: “What does the
fuck say”) that their understanding of the game is unsatisfactory.

Since our ultimate interest is in behavior in auction games with human op-
ponents, we focus on subjects’ deliberation in AHcom in this section. We note,
however, that findings in ACcom

AH are generally in line with more sophisticated
behavior, as expected from the results with the main text. As examples, a majority
of subjects, both describes the two possible information signals (56% Sb) and
reflect belief formation (54% Ba).
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Mean rel. bid
Criterion Fraction 0 1 Diff. p-value

Sa 0.56 0.13 -2.33 -2.46 0.005
Sb 0.34 0.06 -3.79 -3.85 0.001
Sc 0.24 -0.52 -3.52 -3.00 0.007
Sd 0.34 -0.29 -3.09 -2.80 0.002
Ba 0.15 -0.82 -3.75 -2.93 0.053
Bb 0.05 -1.01 -5.82 -4.81 0.032
Bc 0.10 -1.09 -2.72 -1.63 0.450
M 0.10 -1.25 -1.23 0.02 0.820
Ra 0.22 -0.75 -3.01 -2.26 0.048
Rb 0.07 -1.48 1.64 3.12 0.075
I 0.20 -1.70 0.63 2.33 0.056

Empty 0.20 -1.34 -0.85 0.49 0.439
Notes: A subject is classified to fulfil one of the above criteria
whenever any of the three messages fulfils the criterion. Only
for “I” and “Empty”, all messages have to fulfil this criterion.
The p-value results from a Wilcoxon ranksum test for equality
of the mean bid between groups with messages that do not
satisfy (0) and do satify (1) the criterion.

Table A.2: Fraction of subjects with satisfied messages criterion and group differ-
ences in mean bids (AHcom, N = 41).
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Table A.3: Individual translated messages and belief classification.

Signal Bid Ba Ba
ID xi bi Message message subject

1 111.47 -1.47 Slightly risk-averse; maybe the others get a low signal; so
less risk of loss, in case of prodit, this is higher; on the other
hand the probability of winning is smaller, but I think it is
worth it

1 155.91 -3.66 Bidding a bit under the mean value, so that the potential
gain is higher and the loss smalles. However smaller chance
of winning but also smaller chance of losses; Chance that
the other team gets another range

1 187.85 -4.60 In the lower end of the range: Higher profit and smaller
loss; However a smaller chance of winning, but better to be
+-0 than to bid too much; Chance that the other team gets
another range

2 108.05 -1.66 I would propose that we stay under our signal to be sure
not to overbid, but also not too far away so that we still
have the highest bid

2 156.40 -1.47 I think one should underbid the signal slightly so to have
the highest bid and still potentially make a profit

2 195.76 -1.64
3 102.35 -2.35 The odds that the price is higher are close to 8:4. I like this

ratio. Loss is crap. I find it more reasonable to walk home
with the endowment than to lose...

3 158.92 -3.92 We should not bid too much. Because 1. the possible gain
is then too small or even negative and 2. we will get paid
money even if we do not get the good

3 187.85 -3.85 We should not bid too much. Because 1. the possible gain
in case we get the good is then small or negative, so that we
should hope to get the good even with this low price and
2. we will get paid money paid even if we do not get the
product

4 112.35 2.65
4 156.18 -1.18 so far no special strategy
4 191.76 -1.76 see before
5 105.50 -5.50
5 159.80 -2.80
5 194.40 -1.40
6 108.95 -3.95
6 158.92 -0.92
6 185.44 0.56

Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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Table A.3: (continued)

Signal Bid Ba Ba
ID xi bi Message message subject

7 105.50 -1.64 My proposal is to not put the bid too high up. Roughly at
100 to 105.

7 155.91 3.86 Purely random.
7 192.51 -3.59 Bid not too high because we risk a loss otherwise
8 102.35 -1.35 In any case a bit under the expected value
8 158.80 -1.80 In any case a little bit below the expected value.
8 195.76 -1.76 In any case a little bit below the expected value.
9 112.35 -4.50 Hey if we played alone, my proposal would be to always take

w*. I think we should end up at 0 then. Since we play against
other, I would reduce the bid by a little bit, maybe 3.50
EUR. If we don’t get the good it doesn’t matter anyways. ...
Or just alternatively choose the minimal amount if 6 EUR
are enough for you? It will probably not get much more...

X

X

9 156.40 -4.50 Same thought.
9 185.44 -3.94 w*-2,94

10 111.47 0.53 I think the aothers will be rather more careful and bid less
in the first round We should make use of that and take
exactly the middle, so that we get the good, the loss should
after all be bearable.

X

X10 158.80 1.20 I would propose to get at it aggressively and make sure we
get the product by bidding above our own price signal.

10 194.40 1.60 Tendency towards the higher value, so that we get the good
Rather getting the good and have a chance to make a profit
than not to be in because of a too small bid.

11 108.05 3.95
11 159.80 5.20 159+ (165-153/2)=165
11 191.76 6.00 The same Logic: 191,76+ (-185,76+197,76/2)=197,76
12 108.95 -0.95 Try the mean value.
12 156.18 0.82
12 192.51 0.49
13 189.00 -4.00 50:50 to be in the lower interval below w* and to be in the

upper interval. If we are in the lower one we can go up until
192. If not it doesn’t look so good.

13 140.00 0.00
13 142.00 -3.00
14 189.00 -4.00 I have no idea how we can decide that
14 140.00 0.00
14 136.00 0.00
Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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Table A.3: (continued)

Signal Bid Ba Ba
ID xi bi Message message subject

15 183.00 -6.00

X
15 146.00 -6.00 When the other team has received the +3 information, we

win nothing, but a 50% chance to win 6 Euro since nobody
bids more than their information will make, therefore always
-6

X

15 142.00 -6.00
16 183.00 -5.00
16 146.00 -1.00
16 142.00 -1.00
17 183.00 0.00 I think the value is 180. I am not fully in with the system

to be honest. I am initially acting according to my feeling.
Think both teams suspect to have gotten the higher signal

X

X17 146.00 -2.00 The chance to make losses is really high That is why all
other teams enter smaller bids, that is why I orient myself
rather far down If we are the same partners my proposal
from round 1 was rubbish, I orient myself towards yours

X

17 136.00 0.00 Pure gut feeling.
18 183.00 -3.00
18 140.00 -3.00 No idea idea?
18 142.00 -3.00 No plan
19 183.00 -7.00 The team that gets the w*+3 information will always win

the auction It only makes sense to bid 3 Euro less in order to
avoid losses. So the other team with the lower information
will also bid at least 3 Euro less than the value that they
have obtained. If we have received the higher value, we
can still win the auction with a bid of 8,90 Euro less and
maximize our profit

X

X

19 146.00 -7.00 It only makes sense to bid less than the info value since the
team with the higher value will win the auction To avoid
losses, the team with the higher information value has to
stay at least 3 Euro below the information value. Therefore
also the other team will bid at least 3 Euro under ist value.
It would be safe to bid 8.90 Euro under our information
value, but only 7 Eur less is allowed.

X

Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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Table A.3: (continued)

Signal Bid Ba Ba
ID xi bi Message message subject

19 142.00 -7.00 The team with the higher information value will win the
auction always. To avoid losses, it is rational for both teams
to at least bid 3 Euro less than the respective information
value. If we have the higher information value, the infor-
mation for the other team is 142-6=136, and they should
maximally bid 133 Euro. With the minimal amount of 135
Euro we would still win the auction and maximize our profit.

X

20 189.00 -7.00 Less profit results at a value of 186 Euro the other team
would have the signal of 183 We could bid around 180? A
little profit is better than none?

20 146.00 -7.00 If the value is 143 we should be relatively close
20 136.00 -4.00 If it is the smaller value, we at least have some profit. At

the higher value even more. I would rather avoid the risk
to suffer a loss.

21 189.00 2.25
21 146.00 -0.77
21 142.00 1.02
22 183.00 3.00
22 140.00 5.00 hopefully it is plus 3, lets see
22 136.00 4.00
23 188.00 0.00 The item’s value is either 185 or 191 Taler. If we choose the

average as a bid, our potential gain and our potential loss
will be the same. In my opinion it is justifiable risk

23 59.00 0.00 The item’s value is either 56 or 62 Taler. If we choose the
average as a bid, our potential gain and our potential loss
will be the same. In my opinion it is justifiable risk.

23 199.00 -0.50 The item’s value is either 56 or 62 Taler. If we choose a bid
slightly below the average, the gain is 3.5 and the loss is 2.5.
In my opinion it is justifiable risk.

24 188.00 2.00
24 59.00 0.00 I am sorry, my suggestion is just based on intuition and

unforntunately not on any mathematical facts. I hope you
have a better understanding

24 193.00 0.00 We could change the price after the modification
25 188.00 -2.99 I would like to minimize the risk of losses and hope that we

are shown the higher value. :) #bettersafethansorry
25 59.00 -2.99
25 199.00 -2.99 I would like to minimize the risk of losses and hope that we

are shown thelower value. :) #bettersafethansorry
Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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Table A.3: (continued)

Signal Bid Ba Ba
ID xi bi Message message subject

26 188.00 -7.98 I think it is smart to choose this number. If the item’s value
is 185, a price range of 179-185 will be displayed to the other
team. If it plays safe, it should not be willing to bid more
than 179.

X

X
26 65.00 -5.99 If the value is 62, a price range of 56-62 will be displayed

to the other team. They should not be willing to pay more
than 59 Taler since they otherwise would make losses on
average.

X

26 199.00 -2.98 If the value is 196, a price range of 193-199 will be displayed
to the other team. They should not be willing to pay more
than 196 Taler since they otherwise would make losses on
average.

X

27 188.00 8.00 It always makes sense to bid the item’s value +8. Thus, we
get the item for sure

27 65.00 8.00
27 199.00 7.00 it always makes sense to bid the highest possible item’s

value, thus bid W*+8 to get the item for sure
28 182.00 -2.00
28 65.00 -4.00
28 193.00 -5.00
29 182.00 3.00 Shall we bid the higher one or ?
29 59.00 7.00
29 199.00 3.00
30 182.00 0.01
30 65.00 0.01
30 193.00 0.01
31 188.00 -3.90 I think, this is best to become the seller with a relatively

high probability and at the same time definitely avoiding
losses?

31 65.00 -3.90
31 199.00 -3.90 I think, this is how to be safe, not risking to have a negative

balance between the item’s value and our price later, but at
the same time making a profit

32 182.00 -3.00 If we bid less than 185 and it is below, we will make a loss,
if we bid 179, we will make no gain, if we lose the auction
no loss no gain or rather: 179 is safe, if the true value is 185
we will make a profit and otherwise no loss

32 65.00 -3.00 safe no loss
32 193.00 -3.00 safe no loss
Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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Table A.3: (continued)

Signal Bid Ba Ba
ID xi bi Message message subject

33 182.00 3.10
33 59.00 3.10
33 193.00 2.10 I try to bid as high as possible. Sorry, in case it does not

work out :(
34 182.00 -7.00
34 59.00 -3.00 If our bid is the highest, we will either get 0 or 6 Taler
34 193.00 -3.00 0 or 6 Taler
35 188.00 3.00
35 59.00 -2.00
35 193.00 5.00
36 182.00 -5.00
36 59.00 -5.00 To make a profit, it is not only important to win the bidding

but also to be below the item’s value. Since our profit is
determined by item’s value-bid

36 199.00 -6.00 I suggest those values with the highest gain
37 182.00 -2.00
37 65.00 -1.00 2 loss 4 gain
37 199.00 -1.00 2 loss 4 gain
38 182.00 8.00
38 65.00 -5.00
38 193.00 0.00
39 188.00 -3.50
39 65.00 -3.50 With this bid we will definately not loose any money
39 193.00 -3.50 With this bid we will for sure not lose any money
40 182.00 3.00
40 59.00 6.00
40 199.00 3.00 bid more!!
41 188.00 -3.00 done
41 59.00 -3.00
41 199.00 -3.00 what does the fuck say

Notes: “Ba message” indicates the deliberation of the other team’s decision in the message and “Ba subject”
recognizes the same deliberation in any message of the subject.
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B Online Appendix

B.1 Behavioral Models

B.1.1 Cursed Equilibrium (CE)

CE models a limited ability to infer about types from actions. Therefore, in many
games, a type-dependent action space prevents a meaningful application of CE
(Eyster and Rabin, 2005). In the following, we propose to discuss it in our context
by averaging strategies in the space of possible absolute bids. Due to the symmetry
of our setup around a player’s signal, this approach should be true to the original
idea of CE.

The prediction of full cursedness in our auction game is bCE
i = −8, the same as

in the transformed game and as the Nash equilibrium prediction. The intuition
behind the equilibrium is the following: Player i with signal xi faces an opponent
with signal xj = xi − 6 or xj = xi + 6. Being fully cursed, he thinks that both
potential opponent types bid aj = xi − 6 + bj or aj = xi + 6 + bj with 50% each.
Bidding bi = −8 in response to bj = −8 yields an expected payoff of Eui = 4 (win
in l), whereas bi = −1.99 would only result in Eui = 1.99 (win in {l, h}).46

As outlined in the main text, conditional reasoning, as we understand it, requires
two steps: (a) thinking in hypothetical situations and (b) conditioning on these
hypothetical events when drawing appropriate conclusions on how to behave. In
cursed equilibrium, agents remain able to think hypothetically, but draw misguided
conclusions from these situations. As seen above, this alone is insufficient to explain
overbidding behavior in our game.

Following CL, one has to assume a more general problem of conditional reasoning
to explain behavior. In particular, subjects may not be able to think in hypothetical
situations. More in line with our empirical results, a potential modeling approach
could, hence, assume that subjects are not even able to distinguish between the
two different hypothetical opponent types. Implicitly averaging bids for these types
would then lead player i to believe that player j’s bid is aj = xi + bj . If we assume
that player i processes the two possible item values in the same fashion and expects
it to be xi, the best response to bj = −8 is to overbid j with bi = −7.99. These
overbidding incentives only vanish when both players bid b = 0.

46We choose to describe the “win in {l, h}” deviation to be bi = −1.99 since the response
bi = −2 requires an understanding of the type-dependent tie-breaker. Moreover, the best response
against the computer is the same with and without cursedness by a similar logic as outlined
above.
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B.1.2 Level-k Model

The level-k prediction for players with positive level-k that hold a uniform random
level-0 belief is bk = −8. The intuition is the following: Against a uniform random
level-0 player, bidding bi = −8 implies winning only in state l with a probability
of 3/8 and leads to an expected payoff of Eui = 1

2 ·
3
8 · 5. Deviating to higher

bids, however, leads to a reduction in the winning payoff that is not compensated
by the increase of the winning probability. Since best response functions do not
differ between the auction and the transformed game, there is no difference in
the equilibrium across games.47 It thus turns out that in our auction game, the
type-dependence of the action space limits the interpretation of the level-k model.
In particular, level-1 players do not reflect informational naïveté. Otherwise,
type-independent random level-0 play would lead to level-1 play that could be
interpreted as informational naïve since it cannot extract information about signals
(Crawford et al., 2013, p. 28). In our case, by the definition of a best response, a
level-1 player engages in conditional reasoning since the type determines the limits
of the level-0 bid distribution.48

A model with a level-0 belief of truthful play, b0 = 0, suffers from the same
interpretative limitation. We can use it, however, as an exercise to look at the
types emerging on the basis of such non-strategic and naïve behavior. Higher level
players only differ in their beliefs. They all engage in conditional reasoning and,
hence, do not suffer from inferential naïveté.

In particular, such a model predicts average bids b0 = 0, b1 = −5.99, and
bk = −8, if k ≥ 2, for both the auction and the transformed game. If we take noisy
behavior into account in the simplest way and draw the line between types in the
middle of their predicted bids, we get to predicted intervals as shown in table B.1.
By treatment, the table further shows the number and fraction lk of subjects falling
into these categories for the games played against human opponents in part I.

In the presence of both conditioning and belief formation (AH ), the estimated
fraction of level-0 players is very high, unlike many level-k distributions previously
estimated. Removing the need to condition and to form beliefs step by step leads
to a normalization of the level-k distribution to a point where is has a standard
hump-shape and an average level of at least 1.02 (TC ).

47Against computerized opponents, since beliefs are fixed and level-k maintains the best
response assumption, no overbidding is predicted.

48We abstract from any influence the differences between the games could have on the level-0
belief.
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Table B.1: Estimated level-k distribution.

AH TH AC TC
Level-k bk N lk N lk N lk N lk

0 (−3, 8] 36 0.72 16 0.35 21 0.48 9 0.21
1 (−7,−3] 12 0.24 22 0.48 15 0.34 23 0.55

≥ 2 [−8,−7] 2 0.04 8 0.17 8 0.18 10 0.24
Total 50 46 44 42

Notes: ?C bids are adjusted (see footnote 28).

B.2 Learning without feedback

In this section, we first provide evidence that our central results regarding condi-
tioning and belief formation remain robust when considering single periods and not
the average of the three periods per game, as done in the main text. Afterwards,
we additionally analyze the data from part II of the AH and the T H treatment,
as the main text only analyzes data from part I of our treatments.

B.2.1 Single Period Play

In general, using the mean values for the three periods of each game leads to less
noisy data than using single values. Moreover, the fact that subjects learn over
time in some games but not in others should be interpreted as an additional result
and not as weakness of our design. Nonetheless, we can explicitly incorporate this
learning in our comparisons. As already outlined in the main text, subjects only
improve their behavior in TH and TC (when these games are played first in T H
and T C). Thus, we only have to check comparisons involving these two games.

Regarding conditional reasoning, we want to analyze whether we observe a
difference in ?H and ?C when we control for learning in TH and TC. When we
compare bidding behavior and payoffs in ?H and this time base this comparison only
on the first period, subjects still bid significantly less (and earn significantly more)
in TH (Wilcoxon rank sum, bids – p = 0.018, payoffs – p = 0.050). Additionally,
plausible behavior is more likely in TH (Fisher’s exact test, p = 0.011) than in
AH. When comparing behavior in ?C and considering only the first period, results
still have the expected direction but are not generally significant (Wilcoxon rank
sum, bids - p = 0.146, payoffs - p = 0.388; Fisher’s exact test, p = 0.057).

Regarding belief formation, we want to analyze whether subjects still improve
their behavior in TC compared to TH even if we incorporate that subjects learn
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in the three periods of the TH. When we compare TH and TC and focus on third
periods (to incorporate learning), the differences between the two settings naturally
diminish and bids and payoffs are not significantly different any more (Wilcoxon
rank sum, bids – p = 0.621, payoffs – p = 0.442). Importantly, we have different
equilibria in both settings. This biases against observing a difference in bids or
payoffs. Hence, the more reliable measure to consider is whether the percentage
of subjects playing plausible in both settings change. Indeed, more subjects play
plausibly in the TC setting compared to TH and this difference remains highly
significant (Fisher’s exact test, p = 0.000). Hence, as expected, results become
slightly weaker when incorporating that subjects learn in the transformed games,
but even then the overall pattern of the results remains intact.

Finally, we observe that learning in TH (when played first in T H) leads to a
similar effect on subjects bids as playing this game after the computerized version,
THT C (TH – third period bid: −4.68 vs. THT C – mean bid: −4.64). A possible
explanation for this effect is that in TH subjects might use their first period bid
as a first belief for the consecutive periods in similar fashion as the play against
the computer provides a first belief.

B.2.2 Part II Analysis

In the main text, our analysis focused on part I of the four treatments. In this
section, we will additionally analyze part II of AH and T H. If problems with
conditional reasoning are at the origin of the WC, we should observe a different
learning pattern from part I to part II between the two treatments. If conditional
reasoning is an obstacle for understanding the A games (both in H and C), playing
these game before the T games should not per se improve behavior in T . Subjects
should not gain a better understanding of T via A simply because participants do
not understand the A games because of the problems with conditional reasoning.
Additionally, those subjects who manage to avoid the WC in A would most likely
already play rationally in T if this game is played first. Playing T first, however,
might very well facilitate playing A. By understanding the structure of T , a better
understanding of the setting in which conditional reasoning on future events is
necessary might arise. Hence, different patterns of learning behavior between the
two treatments should be observed:

Hypothesis 4: In AH, no learning effect is observed in part II. Playing
the T games after playing the A games leads to similar results as playing
T first. In T H, however, a learning effect is observed: Playing the A
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Table B.2: Summary statistics - AH & T H treatments (Part I & Part II)

Part I Part II
Mean AH T H AH T H
(Std. dev.) A T T A
H Bids –1.80 –4.00 –3.66 –3.77

(2.63) (2.61) (4.05) (2.88)
Payoffs –0.56 0.55 0.05 0.29

(1.55) (1.37) (2.29) (1.90)
C Bids –3.37 –5.00 –3.04 –4.48

(3.30) (2.53) (3.74) (2.66)
Payoffs 0.17 0.81 –0.16 0.68

(1.53) (1.56) (2.09) (1.53)

games after the T games leads to more plausible behavior than playing
the A games first.49

We focus on AH and T H because both treatments potentially provide a better
comparison for the predicted learning effect than AC and T C. In the latter
treatments, subjects also first play C in the second part which in principle could
have an influence on H, which is at the very end of each treatment.50

Table B.2 provides the mean values for subjects’ bids and payoffs for part II
of both treatments. Figure B.1 additionally shows histograms of subjects’ bids in
AH and T H for both parts.

When the auction game (against humans) is played after both T games, AHT H,
only 28% of those subjects who win the auction face losses compared to 61% in AH.
In line with this observation, bids in AHT H are lower than in AH, whereas payoffs
are higher (Mean values - bids: −3.77 vs. −1.80; payoffs +0.29 vs. −0.56).51

Hence, there is clear evidence that playing the T games in T H before the A games
helps subjects to avoid the WC in AHT H. Because of learning, we also do not

49Our design can, however, not distinguish whether such a learning effect is driven by the fact
that subjects really understand the conditional reasoning because they played T first, or whether
alternatively, subjects only understand that bidding low is a good strategy in T which they then
also apply to A. It is, however, noteworthy, that subjects do not receive any monetary feedback
before the end of the experiment.

50In general, results for AC and T C are comparable to those in AH and T H to the extent that
playing A first does not help playing T , whereas playing T first helps playing A afterwards. This
effect is significant in H, whereas in C the effect has the right sign but is insignificant. Hence,
results in AC and T C are in general in line with our learning hypothesis. It might however, not
be so clear, to what extent playing C first still influences these results.

51Wilcoxon rank sum test - bids: p = 0.000; payoffs: p = 0.002. Fisher’s exact test based on
plausible play - p-value = 0.025.
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(a) AH, N = 50. (b) TH, N = 46.

(c) ACAH, N = 50. (d) TCT H, N = 46.

(e) AHT H, N = 46. (f) THAH, N = 50.

(g) ACT H, N = 46. (h) TCAH, N = 50.

Figure B.1: Histograms of bids in AH and AH.
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observe the treatment effect between the two games within-subject in the T H
treatment: Bids and payoffs are roughly the same between TH and AHT H (Mean
values - bids: −4.00 vs. −3.79; payoffs: 0.55 vs. 0.29).52

Do we also observe this learning effect for C? When the auction game is played
after both T games, ACT H, only 22% of those subjects who win the game face
losses compared to 45% in ACAH. In line with this observation, bids in ACT H

are lower than in ACAH, whereas payoffs are higher (Mean values - bids: −4.48
vs. −3.37; payoffs +0.68 vs. +0.17), although not all differences are statistically
significant.53 Additionally, unlike in the case of H, the learning effect seems not
to be strong enough to totally prevent a within-subject treatment effect.54 Hence,
there is some evidence for a learning effect in C of the T H treatment, but this
learning effect is weaker than in the H setting.

For the AH treatment, we hypothesized above that subjects do not benefit from
playing A before T . For THAH, 47% of those subjects who win the game face losses
compared to 32% in TH. Additionally, bids in THAH are even slightly higher than
in TH, whereas payoffs are lower (mean values - bids: −3.66 vs. −4.00; payoffs
+0.05 vs. +0.55). Differences, however, are small and not statistical significant.55

Because subjects do not learn in the AH treatment, we also observe the
treatment effect between the two games within-subject in this treatment: Bids are
higher in AH compared to THAH, whereas payoffs are lower (mean values - bids:
−1.80 vs. −3.66; payoffs: −0.56 vs. +0.05)56

How does the behavior in C evolve in the AH treatment? For TCAH, 43%
of those subjects who win the game face losses compared to only 13% in TCT H.
In line with this observation, bids in TCAH are higher than in TCT H, whereas
payoffs are lower (Mean values - bids: −3.04 vs. −5.00; payoffs −0.16 vs. +0.81).57

Hence, in the setting with computer opponents, we do not observe a learning
effect, subjects in the AH treatment perform even slightly worse than in the T H

52Wilcoxon signed rank test - bids: p = 0.814; payoffs: p = 0.833. Additionally, a McNemar’s
test (p = 0.6072) based on plausible play reveals no significant difference.

53Wilcoxon rank sum test - bids: p = 0.076; payoffs: p = 0.054. But: Fisher’s exact test based
on plausible play: p = 0.301.

54Again, the statistical analysis is fairly inconclusive. A Wilcoxon signed rank test just reveals
no significant difference (bids: p = 0.101; payoffs: p = 0.371) between TCT H and ACT H, but
a McNemar’s test based on plausible play reveals such a difference with marginal significance
(p-value = 0.065).

55Wilcoxon rank sum test: Bids - p = 0.848; payoffs - p = 0.293. Additionally, a Fisher’s exact
test based on plausible play supports this finding (p = 0.834).

56Wilcoxon signed rank tests: bids - p = 0.000; payoffs - p = 0.003. This result is also supported
by a McNemar’s test (p = 0.002) based on plausible behavior.

57Wilcoxon rank sum test: bids - p = 0.033; payoffs - p = 0.007. Fisher’s exact test based on
plausible play - p = 0.001.
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treatment. For this reason, we also do not observe the treatment effect between
the two games within-subject in the AH treatment: Bids and payoffs are fairly
similar in ACAH compared to TCAH (mean values - bids: −3.37 vs. −3.04; payoffs:
+0.17 vs. −0.16).58

Result 4: In theH setting, we observe a learning effect as hypothesized:
Playing the T games first facilitates playing the A games, whereas the
reverse is not true. In C, a similar but weaker learning effect is observed
in the T H treatment. Overall, however, plausibility levels in the last
game of both treatments are lower than expected. Exhaustion or
increased confusion might be responsible for this result.

58Wilcoxon signed rank test: bids - p = 0.980; payoffs - p = 0.205. McNemar’s based on
plausible play - p = 0.549.
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B.3 Figures: Individual Data

For completeness, figures B.2, B.3, B.4, and B.5 provide individual bids for all 12
periods of the experiment for all subjects of the four treatments. These figures
support the evidence presented so far that subjects only improve their behavior in
the transformed game when this game is played in part I of the experiment.
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B.4 Instructions: AH treatment

Welcome to the experiment!

Introduction

I welcome you to today’s experiment. The experiment is funded by the University
of Mannheim. Please follow the instructions carefully.

For participating, you first of all receive a participation fee of 4e. Additionally,
you may earn a considerable amount of money. Your decisions and the decisions
of other participants determine this additional amount. You will be instructed in
detail how your earnings depend on your decisions and on the decisions of other
participants. All that you earn is yours to keep, and will be paid to you in private,
in cash, after today’s session.

It is important to us that you remain silent and do not look at other people’s
screens. If you have any questions or need assistance of any kind, please raise your
hand, and an experimenter will come to you. If you talk, shout out loud, etc., you
will be asked to leave.

The experiment consists of three parts. For all three parts, you will receive
separate instructions. You will first make your decisions for all three parts and
only afterwards at the very end of the experiment get to know which payments
resulted from your decisions. The currency used in all three parts of the experiment
is called Taler. Naturally, however, you will be paid in Euro at the end of the
experiment. Two Taler will then convert to one Euro.

If you have any questions at this point, please raise your hand.

Part I

The first part of the experiment consists of 2 × 3 trading periods (thus trading
periods 1-3 and trading periods 4-6). These instructions describe the decision
problem as it is present in trading periods 1-3. This decision problem will be
slightly modified in the trading periods 4-6. You will be informed about the details
of this modification at the end of trading periods 1-3.

In this part of the experiment, you will act as a buyer of a fictitious commodity.
In each trading period, you will have the opportunity to submit a bid for one unit
of the commodity. Importantly, not only you will have this opportunity to make a
bid for the commodity. In each trading period, you will be matched with another
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participant of this experiment. This participant will also have the opportunity to
make a bid for the commodity. Importantly, you will always bid against another
randomly determined participant in each trading period.

Your task is to submit bids for the commodity in competition with the other
participant. The precise value of the commodity at the time you make your bids
will be unknown to you. Instead, you and the other participant will receive an
information signal as to the value of the item which you should find useful in
determining your bid. Which kind of information you will receive, will be described
below.

The value of the auctioned commodity (W ∗) will always be an integer and
will be assigned randomly. This value can never be below 25 Taler and never
be above 225 Taler.59 Additionally, the commodity’s value W ∗ is randomly and
independently determined from trading period to trading period. As such a high
W ∗ in one period tells you nothing about the likely value in the next period

Private Information Signals: Although you do not know the precise value of
the commodity, you and the participant who is matched with you will receive
an information signal that will narrow down the range of possible values of the
commodity. This information signal is either W ∗ – 3 or W ∗ + 3, where both values
are equally likely. In addition, it holds that when you receive the information signal
W ∗ – 3, the person who is matched to you will receive the information signal W ∗

+ 3. If in contrast, you receive the information signal W ∗ + 3, the other person
gets the information signal W ∗ – 3.

For example, suppose that the value of the auctioned item (which is initially
unknown to you) is 128.00 Taler. Then you will either receive a) the information
signal W ∗ − 3 = 125.00 Taler or b) the information signal W ∗ + 3 = 131.00. In
both cases, the other person will receive the opposite information signal, in case
of a) the information signal W ∗ + 3 = 131.00 and in case of b) the information

59The instructions do not specify explicitly that the item value is uniformly distributed. This
is, however, done implicitly by stating below that the item value is either three points above or
below players’ signals with equal probability. We followed this implementation to minimize the
difference between the auction and the transformed game. The rules of the transformed game
only state the two probabilities with which the lower or the higher item value realize but do
not need to explain what a uniform distribution – a potentially problematic concept – is. We
inform subjects about the uniform distribution after the example and do not discuss the unequal
probabilities at the boundaries. Since no participant ever asked a question about this particular
part of the instructions, participants must have inferred that probabilities naturally differ at the
boundaries from the signal generation process shown in the example.
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signal W ∗ − 3 = 125.00 Taler. The line diagram below shows what’s going on in
this example.

25.00 Taler 225.00 TalerW ∗= 128.00 Taler

W ∗ − 3 = 125.00 Taler W ∗ + 3 = 131.00 Taler

It also holds that the commodity’s value W ∗ is equal to the signal – 3 or the
signal + 3 with equal probability. The computer calculates this for you and notes
it.

Your signal values are strictly private information and are not to be revealed
to the other person. In addition, you will only be informed about the commodity’s
value W ∗ and the other participant’s bid at the end of the whole experiment (when
also the second and the third part of the experiment are completed).

It is important to note that no participant is allowed to bid less than the signal
– 8 and more than the signal + 8 for the commodity. Every bid between these
values (including these values) is possible. Bids have at least to be rounded to
one cent. Moreover, it holds that the participant who submits the higher bid gets
the commodity and makes a profit equal to the differences between the value of
the commodity and the the amount he or she bids. That is,

• Profit = W ∗ (128.00 Taler) – higher bid

for the higher bidding person. If this difference is negative, the winning person
looses money. If you do not make the higher bid on the item, you will neither make a
profit nor a loss. You will earn zero profits. If you and the other participant submit
the same bid, the person who received the lower signal will get the commodity and
he or she will be paid according to his or her bid.

At the beginning of part I, each individual participant will be given a starting
capital credit balance of 8 Taler. Any profit earned by you in the experiment will
be added to this sum. Any losses incurred will be subtracted from this sum. At
the end of this part of the experiment, all gains and losses will be add up and
the net balance of these transactions will be added to your captital credit balance.
You are permitted to bid in excess of your capital credit balance. Even in case of a
negative captial credit balance, you are still permitted to submit bids. Should your
net balance at the end of this part of the experiment be zero (or less), you will not
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get any payoff from this part of the experiment. But even in case you make losses
in this part of the experiment, you will keep your initial show-up fee of 4e.

Summary:

1. Two participants have the opportunity to submit bids for a fictitious com-
modity. The exact value of the commodity W ∗ is unknown to you. This
value will, however, always be between 25 Taler and 225 Taler. Moreover,
you receive a private information signal concerning the commodity’s value.
This signal is either W ∗ − 3 or W ∗ + 3. The other participant will receive
the other signal. No one is allowed to bid less than the signal – 8 or more
than the signal + 8.

2. The higher-bidding participant gains the commodity and makes the following
profit = commodity’s value - higher bid.

3. Profits will be added to your initial capital starting balance. Losses will be
subtracted from your initial capital starting balance. You can always submit
higher bids than your capital starting balance.

4. This part of the experiment consists of two rounds with overall 6 trading
periods. These instructions describe the decision problem as it occurs in the
trading periods 1-3. There will be a modification of the decision problem for
rounds 4-6, about which you will be informed soon.

If you have read everything, please click the “Ready” button, to start the
experiment.

Modifciation of the decision problem

You have now entered all decisions for the trading periods 1-3. Now, trading
periods 4-6 will follow for which the decision problem so far will be slightly
modified. As up to now the task is to submit bids for a fictitious commodity.
Importantly, the other participant who also has the opportunity to submit bids
will be replaced by the computer. As the other participant in the trading periods
1-3, the computer will also receive a signal about the commodity’s value that is
opposite to your own signal. The computer then decides according to the following
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decision rule: The computer always exactly bids his information signal.
Suppose, for example, that the true value of the commodity is 128.00 Taler. If the
computer receives the information signal 125.00 Taler (commodity’s value – 3), the
computer’s bid is equal to 125.00 Taler. If the computer receives the information
signal 131.00 Taler (commodity’s value + 3), the computer’s bid is equal to 131.00
Taler. Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with
the experiment.

Part II

The second part of the experiment consists of 3 trading periods (trading periods
7-9). In this part of the experiment, you will again act as a buyer of a fictitious
commodity. In each trading period, you will have the opportunity to submit a bid
for one unit of the commodity. Importantly, not only you will have this opportunity
to make a bid for the commodity. In each trading period, you will be matched
with another participant of this experiment. This participant will also have the
opportunity to make a bid for the commodity. Importantly, you will always bid
against another randomly determined participant in each trading period.

Your task is to submit bids for the commodity in competition with the other
participant. In general, the value of the auctioned commodity will always be an
integer and will be randomly determined. This value can never be below 25 Taler
and never be above 225 Taler. At the beginning of each period, you and the other
participant will be informed about the commodity’s value. Importantly, however,
there is a slight uncertainty about the value of the commodity. This value can take
two different specifications in every period. The commodity can either be worth
W ∗

l or W ∗
2 , where both values always differ by 6 Taler and W ∗

l always indicates
the lower value. Which of the two values really realizes depends on chance and
your bid as well as the other participant’s bid and will be explained to you in
more detail below. Both your bid and the other participant’s bid are not allowed
to be lower than W ∗

l − 5 or higher than W ∗
2 + 5. Every bid between these values

(including these values) is possible. Bids have at least to be rounded to one cent.

To make the rules of the auction understandable, they will be explained in
detail with the help of an example. Suppose that at the beginning of one period,
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you are informed that the commodity’s value is either W ∗
l = 107.00 Taler or

W ∗
2 = 113.00 Taler. You and the other participant are not allowed to bid less than

W ∗
l − 5 = 102.00 or more than W ∗

2 + 5 = 118.00 Taler. Who gets the commodity
depends on your bid and the other participant’s bid. Three rules apply:

1. Your bid is 6.00 Taler or more higher than the other participant’s
bid:
In this case, you will get the commodity for sure. With a 50 percent chance
each the commodity’s value then is either W ∗

l (107.00 Taler) or W ∗
2 (113.00

Taler). Hence, your profit is:

• Profit = W ∗
1 (107.00 Taler) – Your bid or

• Profit = W ∗
2 (113.00 Taler) – Your bid

Both scenarios are equally likely and the computer will randomly choose
which scenario occurs. If one of the differences is negative and this scenario
occurs, you will make a loss. The other participant will be paid according to
rule 2.

2. Your bid is 6.00 Taler or more below the other participant’s bid:
In this case, you will not get the commodity in any case and your profit is
zero. The other participant will be paid according to rule 1.

3. Your bid is less than 6.00 Taler above or less than 6.00 Taler below
the other participant’s bid:
In this case, either you or the other participant get the commodity with a 50
percent chance and the computer will make this decision. The commodity’s
value is in any case W ∗

1 (107.00 Taler). Hence, in case you get the commodity,
your profit is:

• Profit = W ∗
1 (107.00 Taler) – Your bid

In this case, the other participant earns zero Taler. If on the contrary, you
do not get the commodity, your profit is zero and the other participant’s
profit is:

• Profit = W ∗
1 (107.00 Taler) – His/her bid

In both cases, it holds for the person who gets the commodity that this
person will make a loss if the difference is negative.
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At the beginning of part II, each individual participant will be given a starting
capital credit balance of 8 Taler. Any profit earned by you in the experiment will
be added to this sum. Any losses incurred will be subtracted from this sum. At
the end of this part of the experiment, all gains and losses will be add up and
the net balance of these transactions will be added to your captital credit balance.
You are permitted to bid in excess of your capital credit balance. Even in case of a
negative captial credit balance, you are still permitted to submit bids. Should your
net balance at the end of this part of the experiment be zero (or less), you will not
get any payoff from this part of the experiment. But even in case you make losses
in this part of the experiment, you will keep your initial show-up fee of 4e.

You will only be informed about the other participant’s bid and which value of
commodity actually has realized at the end of the whole experiment (when also
the third part of the experiment is completed).

Summary:

1. Two participants have the opportunity to submit bids for a fictitious commod-
ity. The value of commodity will always be between 25 Taler and 225 Taler.
Because of uncertainty, the commodity’s value can take two specifications
W ∗

1 and W ∗
2 , where the difference between both values is always 6 Taler. No

one is allowed to bid less than W ∗
1 – 5 and more than W ∗

2 + 5.

2. If one person bids at least 6.00 Taler more than the other person, this persons
gets the commodity for sure and either makes the profit = W ∗

1 – his/her bid
or the profit = W ∗

2 – his/her bid. If one person bids at least 6.00 Taler less
than the the other person, this person does not get the commodity in any
case and makes a profit of zero Taler. If the difference of the bids is less than
6.00 Taler, both participants get the commodity with a 50 percent chance
and make the following profit = W ∗

1 – his/her bid in this case.

3. Profits will be added to your initial capital starting balance. Losses will be
subtracted from your initial capital starting balance. You can always submit
higher bids than your capital starting balance.

4. This part of the experiment consists of 3 trading periods.

If you have read everything, please click the “Ready” button, to continue with
the experiment.
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Part III

The third part of the experiment consists of 3 trading periods (trading periods
10-12). These 3 trading periods are almost identical to the trading periods 7-9 of
part II. In addition, your capital credit balance of the end of part II will be the
starting capital credit balance of this part. Hence, the payoff you receive from
part II and part III of the experiment will finally depend on the amount of the
capital credit balance at the end of this part of the experiment. In part III of
the experiment, the following modification of the decision problem of part II is
implemented: As up to now the task is to submit bids for a fictitious commodity.
Importantly, the other participant who also has the opportunity to submit bids
will be replaced by the computer. As the other participant in the trading periods
7-9, the computer is informed about both possible values of the commodity. The
computer then decides according to the following decision rule: The computer
always exactly bids the mean value of both values of the commodity
(hence W ∗

1 +W ∗
2

2 or W∗
1 + 3 = W∗

2 - 3). Suppose, for example, that the true
value of the commodity is either W ∗

1 = 107.00 Taler or W ∗
2 = 113.00 Taler. The

computer will then bid 110.00 Taler (107+113
2 = 107.00 + 3.00 = 113.00 – 3.00).

Otherwise, everything else does not change.

If you have read everything, please click the “Ready” button, to continue with
the experiment.

B.5 Instructions: Frequently Asked Questions

Auction game

1. When I make my decision about which bid to submit, what kind of specific
information do I have? Do I know the true value of the commodity?
You do not know the commodity’s value W ∗. When making your decision,
you only know your private information signal. You also do not know whether
you received the “high” or the “low” signal. You only receive one number.
With a 50 percent chance, you have received the high signal and with a
50 percent chance you have received the low signal. All this also holds
correspondingly for the other participant.

2. On what does it depend whether I get the commodity and how much do I earn
should this situation arise?
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The person who submits the higher bid gets the commodity. The profit then
is: W ∗ – higher bid. If both bids are exactly the same (meaning bids are
also the same on the cent-level), the person with the lower signal gets the
commodity.

3. Which values am I allowed to bid?
You are allowed to under- and overbid your personal information signal by
up to 8.00 Taler. In addition, it is important that you are not only allowed to
bid integers. For example, you could also bid 30.45 Taler instead of 30 Taler.

Transformed game

1. When I make my decision about which bid to submit, what kind of specific
information do I have? Do I know the true value of the commodity?
When making your decision, you know about two possible specifications of
the commodity’s value: W ∗

1 and W ∗
2 . Which of these values actually realizes

in the end depends on your decision, the other participant’s decision and
chance.

2. On what does it depend whether I get the commodity and how much do I earn
should this situation arise?
If you at least bid 6.00 Taler more than the other person, you will get the
commodity for sure. Your profit will then be W ∗

1 – your bid or W ∗
2 – your

bid, with a 50 percent chance each. Conversely it holds, that if you bid at
least 6.00 Taler less than the other person, you will not get the commodity
and your profit will be zero. If the difference of the bids is smaller than
6.00 Taler, either you or the other participant gets the commodity with a 50
percent chance and the computer will make this decision randomly. If the
computer chooses you as the winner, your profit will be W ∗

1 – your bid.

3. Which values am I allowed to bid?
You are allowed to underbid the lower value of the commodity W ∗

1 by up
to 5.00 Taler and overbid the higher value of the commodity W ∗

2 by up to
5.00 Taler. In addition, it is important that you are not only allowed to bid
integers. For example, you could also bid 30.45 Taler instead of 30 Taler.
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B.6 Classification Instructions: Intra-team communication
treatment

Our classification exercise is slightly more elaborate than the results in appendix
A.4 suggest. First, it comprises three additional criteria (6, 7, 72) that we – due
to space constraints – do not discuss in our analysis. Since these criteria require a
fairly high degree of strategic and game sophistication, not too many subjects fulfilll
them (9%, 15%, 2%). In addition, subjects doing well in these criteria often also
discuss beliefs or deliberate about the state of the world. In particular, whenever
a subject fulfils either criteria 7 and 72, he or she also fulfillls at least one belief
criterion. Thus, our simplified analysis seems still to fully capture the essential
deliberations of our subjects. Second, our coder also classified the sequence in which
specific criteria were reflected in the messages to illuminate how subjects’ reasoning
evolves. It is, however, beyond the scope this paper to analyze this.

Important terms and concepts

First we will give some definitions that should help you to understand the questions
that we ask you in the classification section.

In the following we will describe the classification process for the analysis of
the experiment. Please read this document and the instructions for the experiment
entirely in order to get an overview and then start the classification based on the
player’s sent message and action proposal.

Please read the messages of each player, taking into account his proposed action.
Below you find detailed instructions on how to classify each player. It is important
that you limit yourself to making inferences only from what can clearly be derived
from the message stated, i.e. do not try to think about what the player might have
thought.

IMPORTANT: Please note only those classifications for which you
are certain. Also, confine yourself to the content of the message and
do not fill any gaps by yourself. For example, if the statement indi-
cates to simply keep going in a previously defined manner, then the
classification of such a message is not repeating the one of a previ-
ous message, but simply reflecting that the player wants to stick to
the plan. That’s why nothing is to be indicated if the message is not
containing play-relevant content.

The coding consists of a set of elements that might be found in a message.
These elements and their relationship between each other will be indicated in detail
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below.

Elements possibly reflected in a message

0 The message indicates that the proposal is simply the result of intuition or a
gut feeling. Further deliberation does not exist and the message actively
suggested or acknowledged that further deliberation was not done.
Example: “Gut feeling.”

1a The two possible states of the world in terms of the possible values of the
product are indicated. Either explicitly or implicitly by drawing inferences
that indicate knowledge about the two states.
Examples: “So the item can take values 153 or 159.” “By underbidding the
signal with -1, we either gain 4 or loose 2.”

1b The two possible information signals of the other team are indicated, explicitly
or implicitly.
Example: “They therefore see either signal 150 or 162, right?”

1c The two possible bid intervals are mentioned to be different, explicitly or
implicitly.
Example: “Note that if they have the lower signal, they cannot bid above 158
anyways.”

Logic 1 Generally, it is sufficient to indicate one out of the three elements since
1b implies 1a and 1c implies 1b. Distinctions can be made if the sequence of
the sentence is such that first 1a is indicated and then 1c, for example. See
last point “Sequence" in this list.

2 The unconditional mean value or expected value of the item is mentioned,
calculated or in any way alluded to.
Example: “Well, in expectation we have an item worth 156.” “Should we bid
the mean value -1?”

3 Beyond 1, a difference between the two states/information signals/intervals is
being mentioned or described. Alternatively, one of the two states/../.. is
mentioned or described specifically in detail.
Example: “If we have the higher signal, the product is worth 153 only and we
are likely to win.”
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4a The relevance of the other team’s decision is being acknowledged or indirectly
alluded to.
Example: “If we have the higher signal, the other team has to bid much more
than their signal in order to win the item.”

4b The behavior of the other team is concretely deliberated. In particular, some
actions of the other team are ruled out, for example due to dominance.
Example: “It does not make sense to bid more than the signal-3, so they
won’t do that.”

4c The behavior of the other team is concretely deliberated. In particular, some
actions of the other team are indicated to be likely choices. These actions
could be described in fairly concrete terms or rather vaguely.
Examples: “I am sure that they will just bid their information signal.” “The
others’s bid range is [44,60]. I think they will bid fairly conservative.”

Logic 4 While 4a indicates that the other team’s decision is somehow alluded
to, 4b and 4c require a prediction of behavior to be made, which could be
negative (4b) or positive (4c). 4b and 4c imply 4a. Possible classifications
are thus 4a, 4b, 4c, and 4b+4c.

5a A tendency towards cautious bidding is being communicated which appears to
result from risk aversion, loss aversion or other preferences.
Examples: “We should not bid too high as we run the risk to get the item at
an excessive price.” “Safe!!!”

5b A tendency towards aggressive bidding is being communicated which appears
to result from risk lovingness, auction fever or other preferences.
Examples: “If we bid too low, we are not going to win this auction.” “Let’s
bid high!”

Logic 5 5a and 5b are mutually exclusive.

6 The message communicates the bidding trade-off, namely that a higher bid on
the one hand increases the probability of winning and on the other hand
lowers the profit in the case of winning (and vice versa for a lower bid).
Example: “We should bid a bit lower, while this reduces the chances of
winning, if we win we will earn big.”

7 A strategy that is judged useful is attributed to the other team and shapes the
beliefs about them.
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Example: “We should clearly not bid too high, hence, we should not be worried
that the other team bids high either.”

72 The attribution in 7 occurs more than once.
Example: “We should clearly not bid too high, hence, we should not be worried
that the other team bids high either. At that point, we might just play as low
as possible. If they do that as well, there is no reason for us to change and
one of the two teams will make a handsome profit.”

No indication The attribution of none of those elements to a message implies
that this message was either empty or did not convey any content that was
related to the structure of the game.

Four more general points:

Implicitness In many comments we specifically instructed that the elements
might only be implicitly mentioned. This is a general possibility and should
make you indicate any element as soon as the message implicitly reflects it.

Sequence For a more detailed look into these elements, the sequence with which
they appear might be informative. The entry in the Excel-Sheet will allow
to reflect at which position in the message a given element was found. If one
elements cannot be judged as before or after the other, this can easily be
reflected by giving them the same position number in the sequence.

Example An example is given in the Excel-Sheet. While this gives an example of
the classification method, it is not certain that our view on these messages is
to be adopted like that. Please change the classification of the example if
you disagree with our view on the message content.

Computer The criteria and examples given so far are phrased in terms that one
team faces another team. As you know, teams, however, face a computer
in periods 4-6. Please apply the criteria described so far accordingly. Note
that the knowledge about the computer’s strategy makes 4b an irrelevant
category while 4a and 4b could still be indicated, even though it simply
reiterates what subjects know from the instructions. Communication against
the computer can be fairly implicit. While the following first example – in
which the subject proposes a best response – would require a “1b, 3, 4c”
classification, the second example – in which this not the case – would require
“no indication”, as no clear inferences can be drawn.

86



Example: “If the computer gets the higher value, we can only make losses.
If the computer gets the lower value, it will bid 6 Taler less than our signal.
Thus, we have to bid -5.99"
“We should overbid our signal by 0.01”

87



Entering data in Excel

It is very important to stick to the coding instructions provided here for otherwise
the classification would be useless for future research.

Thus consider the following:

1. It is very important that you double check whether the first 3 columns are
filled correctly, i.e. that you enter the data for the correct subject and round.

2. Any field should be empty or filled with a natural number, indicating the
position number in the sequence, 1, 2, 3, etc.

3. The last column indicated “Comment” is for the case that you want to add
something that is not covered in the instructions for this classification.

4. If you find interesting elements that occur frequently but that have not been
picked up by us, feel free to add a new column and mark all messages that
contain the element. You can then specify to us in an email what exactly
this element is.

If you have any questions please do not hesitate to contact us.
Note that the number of characters refers to the German original sentence.
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Amendments

After the first classification, the following amendments were made orally to the
instructions.

1. In the computer treatment, except for extreme exceptions, there is usually no
difference between 1b and 4c. Indicating the two signals and deliberating the
computer’s actions is equivalent as follows from the experimental instructions.

2. The difference between 1c and 3 is that 1c is specifically referring to the
mentioning of the difference in bid intervals, while 3 is a category that
captures any mentioning above 1.

3. It is not true that 5a or 5b imply any of the three 1 categories. Although
1 reflects an appreciation of the risky structure of the setting, categories 5
only refer to notions of risk attitudes/preferences.

4. The numbers of the categories are purely for identification, they do not reflect
a hierarchy. Any logical connection between categories is explicitly described.

5. Since the classification is supposed to reflect in a structured way the content
of the message, 4c is not automatically ticked in the computer treatment.

6. In the computer treatments, please note an explicit intention to mimic the
computer in the comments.

7. If the message is partly or fully consisting of a reference to arguments written
in previous decisions, this can be noted by indicating category 8. Please do
not tick any category for contents of the references messages.
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