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Abstract

This brief paper presents a distributed adaptive fault-tolerant leader-following consensus control scheme for a class of nonlinear
uncertain multi-agent systems under a bidirectional communication topology with possibly asymmetric weights and subject to
process and actuator faults. A local fault-tolerant control (FTC) component is designed for each agent using local measurements
and suitable information exchanged between neighboring agents. Each local FTC component consists of a fault diagnosis
module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-tolerant controllers
activated after fault detection and after fault isolation, respectively. By using an appropriately chosen Lyapunov function,
the closed-loop stability and asymptotic convergence property of leader-follower consensus are rigorously established under
different operating modes of the FTC system.
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1 Introduction

The study of distributed multi-agent systems (MAS)
focuses on the development of control algorithms that
enable a team of interconnected agents to accomplish
desired team missions (see, for instance, Ren and Beard
(2008), and the references cited therein). Adaptive con-
trol methods for achieving consensus in uncertain MAS
have also been proposed by assuming the absence of
faults. For instance, interesting adaptive algorithms
have been presented recently to handle unstructured
uncertainty for undirected graphs by Wang et al. (2017)
and parametric uncertainty for directed graphs by Wang
et al. (2014) and Ding and Li (2016), respectively.
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In order to ensure reliable and safe operations of MAS,
there have been significant research interest in the de-
velopment of distributed fault diagnosis and accommo-
dation schemes. A distributed fault detection and iso-
lation (FDI) strategy is proposed by Arrichiello et al.
(2015) for a team of first-order networked robots, and
Shames et al. (2011) developed a distributed fault de-
tection method for interconnected second-order linear
time-invariant systems. Distributed fault diagnosis and
estimation schemes for systems with more general struc-
tures have also been proposed (see, for instance, Reppa
et al. (2015); Davoodi et al. (2014); Zhang et al. (2015,
2016)). Additionally, several researchers have also inves-
tigated the problem of distributed fault-tolerant control
(FTC) of MAS. Semsar-Kazerooni and Khorasani (2010)
and Li (2013) focus on fault-tolerant consensus control
of MAS with linear dynamics. A fault-tolerant tracking
control method for accommodating actuator faults in
linear and Lipschitz nonlinear MAS was developed by
Zuo et al. (2015). The aforementioned distributed FTC
results are derived based on a critical assumption regard-
ing the interconnection topology, i.e., the corresponding
Laplacian matrix is symmetric. Moreover, detailed fault
information acquired by the fault diagnosis procedure is



very valuable to FTC, since the objective of FTC is to
compensate for the effect of such faults. There exist lim-
ited results on the systematic design of integrated fault
diagnosis and FTC schemes for MAS with both actua-
tor and process faults, especially for nonlinear uncertain
agents under an interconnection topology whose Lapla-
cian matrix is asymmetric .

In this paper, we investigate the problem of integrated
design of fault diagnosis and fault-tolerant leader-
follower consensus control for a class of nonlinear un-
certain MAS, which are interconnected via a bidirec-
tional communication topology with possibly asymmet-
ric weights and are subject to process faults, actuator
faults, and unstructured modeling uncertainties. In
a previous paper (Zhang et al., 2004), a centralized
adaptive FTC method for a class of nonlinear systems
was presented, where the centralized fault-tolerant con-
troller has access to all the measurements in the overall
system. In contrast, the distributed FTC problem for
leader-follower multi-agent systems considered in this
paper is much more challenging. First, the interconnec-
tion topology between follower agents are considered to
be bidirectional but possibly with asymmetric weights.
The resulting asymmetric Laplacian matrix significantly
increases the complexity of the stability analysis. For
instance, the methods for stability analysis presented in
(Khalili et al., 2015; Wang et al., 2012; Cao and Ren,
2012; Wang et al., 2017), which utilizes the symmetric
property of the Laplacian matrix to solve the leader-
follower consensus problem for undirected symmetric
graphs, are no longer applicable. It is also worth not-
ing that the asymmetric weights of the graph under
consideration don’t assume the critical detail-balanced
condition considered in the literature (Chen et al., 2011;
Zhang et al., 2013b), which makes the stability analysis
more challenging. Second, in the leader-following topol-
ogy considered in this paper, the time-varying leader
only communicates to a small subset of followers, and
each follower exchanges measurement information only
with its neighbors through an unbalanced interconnec-
tion topology. This makes it more difficult to accomplish
the asymptotic convergence property of leader-following
consensus error in the presence of faults and modeling
uncertainty. For instance, the well-known Lyapunov
function given in Zhang et al. (2012) (Lemma 12) would
only guarantee uniformly ultimately bounded (UUB)
results, where the consensus errors will be dependent
on bounds on the fault functions and modeling uncer-
tainties.

In the presented fault diagnosis and accommodation
architecture, a local FTC component is designed for
each agent by utilizing local measurements and state
information exchanged between neighboring agents.
Each local FTC component consists of a baseline con-
troller and two adaptive fault-tolerant controllers. The
baseline controller guarantees robust leader-following
performance with respect to modeling uncertainty. A
decentralized fault diagnosis component is used for de-
tecting and isolating faults in each local agent. Based on
local fault diagnostic information, two adaptive fault-
tolerant controllers are utilized after fault detection
and after fault isolation, respectively. An appropriately
chosen Lyapunov function is presented to circumvent

the technical difficulty in the design and analysis of
the fault-tolerant leader-following controllers. Based on
adaptive approximation and adaptive bounding con-
trol techniques, the closed-loop asymptotic stability
property of leader-following consensus is rigorously es-
tablished under different operating modes of the FTC
system, including the time-period before fault occur-
rence, between fault detection and possible isolation,
and after fault isolation.

The rest of this brief paper is organized as follows. The
problem formulation is given in Section 2. The design
and analysis of the fault-tolerant control algorithms be-
tween fault detection and isolation, and after fault isola-
tion are rigorously investigated in Sections 3 and 4, re-
spectively. In Section 5, a simulation example is used to
illustrate the effectiveness of the FTC method. Finally,
Section 6 provides some concluding remarks.

2 Problem Formulation

2.1 Graph Theory Notations

A directed graph G is a pair (V, E), where V =
{v1, · · · , vP } is a set of nodes, E ⊆ V×V is a set of edges,
and P is the number of nodes. An edge is an ordered
pair of distinct nodes (vj , vi) meaning that the ith node
can receive information from the jth node, and vj is a
neighbor of vi. An undirected graph is a special case of
a directed graph where (vi, vj) ∈ E implies (vj , vi) ∈ E
for any vi, vj ∈ V. A graph contains a directed spanning
tree if there exists a node called the root such that the
node has directed paths to all other nodes in the graph.

The set of neighbors of node υi is denoted by Ni =
{j : (υj , υi) ∈ E}. The weighted adjacency matrix A =
[aij ] ∈ <P×P associated with the directed graph G is
defined such that aii = 0, aij > 0 if (υj , υi) ∈ E , and
aij = 0 otherwise. The topology of an intercommuni-
cation graph G is said to be fixed if each node has a
fixed neighbor set and aij is fixed. For undirected graphs

aij = aji and for balanced graphs
∑P
j=1 aij =

∑P
j=1 aji.

The Laplacian matrix L = [lij ] ∈ <P×P is defined as
lii =

∑
j∈Ni

aij and lij = −aij , i 6= j. Both A and L
are symmetric only for balanced undirected graphs. The
sum of the elements on each row of the Laplacian ma-
trix is zero, therefore 0 is an eigenvalue of the Laplacian
matrix. The directed graph G has a spanning tree if and
only if the Laplacian matrix of the graph G has a sim-
ple zero eigenvalue. More detailed description of graph
theory can be found in Ren and Beard (2008).

2.2 Distributed Multi-Agent System Model

Consider a set of M follower agents with the dynamics
of the ith agent, i = 1, · · · ,M , being described by

ẋi = φi(xi) + ui + ηi(xi, t) + βi(t− Tiu)θiui
+βi(t− Tif )fi(xi) (1)
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where xi ∈ <n and ui ∈ <n are the state vector and in-
put vector of the ith agent, respectively, φi : <n 7→ <n,
ηi : <n × <+ 7→ <n and fi : <n 7→ <n are smooth vec-
tor fields. Specifically, ηi and φi represent the modeling
uncertainty and known nonlinearity, respectively.

The term βi(t − Tif )fi(xi) in (1) denotes the change
in the dynamics of ith agent due to the occurrence of
a process fault. Specifically, βi(t − Tif ) represents the
time profile of the process fault which occurs at some
unknown time Tif . In this paper, the time profile func-
tion βi(·) is assumed to be a step function, which rep-
resents an abrupt fault. Additionally, for isolation pur-
poses, we assume that there are ri − 1 types of possi-
ble nonlinear process fault functions associated with the
ith agent; Specifically, each process fault function fwi ,
w = 1, · · · , ri − 1, is described by

fwi (xi)
4
= [
(
θwi1
)T
gwi1(xi), · · · ,

(
θwin
)T
gwin(xi)]

T , (2)

where θwip, for i = 1, · · · ,M , and p = 1, · · · , n, is an un-
known parameter vector assumed to belong to a known
compact set Θw

ip (i.e., θwip ∈ Θw
ip ⊆ <z

w
ip), and gwip : <n 7→

<z
w
ip is a known smooth vector field. As described in

Zhang et al. (2004), the process fault model described
by (2) characterizes a general class of nonlinear process
faults where the vector field gwip represents the functional
structure of the wth process fault, and the unknown pa-
rameter vector θwip characterizes the fault magnitude.

Furthermore, the term βi(t − Tiu)θiui in (1) repre-
sents the changes in the dynamics of ith agent due
to the occurrence of an actuator fault. Specifically,
θi = diag{θi1, · · · , θin} represents the actuator fault
magnitude, where θip ∈ [θ̄ip, 0] is an unknown param-
eter characterizing the occurrence of a partial loss of
effectiveness fault in actuator uip, for i = 1, · · · ,M ,
p = 1, · · · , n. Additionally, βi(t − Tiu) is the time pro-
file of the actuator fault which occurs at some unknown
time Tiu. The case of θip = 0 corresponds to a healthy
actuator, whereas the case of θ̄ip ≤ θip < 0 implies that
the actuator is partially faulty. Note that the constant
θ̄ip ∈ (−1, 0) is a known lower bound needed to maintain
the controllability of the distributed agents.

Based on the process faults described by (2) and actuator
fault model described above, the fault class associated
with agent i under consideration is given by

Fi
4
= {f1

i (xi), · · · , f (ri−1)
i (xi), θiui} . (3)

The system model (1) allows the occurrence of faults in
multiple agents, but it is assumed that there is only a
single fault in each agent at any time. In this paper, we
denote G as the fixed graph of the overall MAS and kij as
weights of the adjacency matrix. The leader only com-
municates to a small subset of followers, and each fol-
lower only communicates to its neighboring agents. The
following assumptions are made throughout the paper:

Assumption 1 The unstructured modeling uncer-

tainty of each agent, represented by ηi(xi, t) in (1), has
a known upper bound, i.e., ∀p = 1, · · · , n, ∀xi ∈ <n,

|ηip(xi, t)| ≤ η̄ip(xi, t) ,

where η̄ip is a known bounding function.

Assumption 2 Consider G to be the fixed communica-
tion topology of the overall system including the leader,
where the intercommunication among followers is bidi-
rectional but with possibly asymmetric weights. It is as-
sumed that the leader has directed paths to all followers.

Assumption 3 The derivative of the leader’s time-
varying state is bounded, i.e., ∀p = 1, · · · , n, |ẋrp(t)| ≤
κp, where κp is an unknown constant.

Assumption 1 characterizes the class of modeling uncer-
tainty under consideration. The bound on the modeling
uncertainty is needed in order to distinguish between
the effects of faults and modeling uncertainty during the
fault diagnosis process (Zhang et al., 2004). Note that
the bounding function η̄ip can possibly be obtained by
making use of certain limited knowledge on the model-
ing uncertainty under the worst-case scenario (see, for
instance, an aircraft engine fault diagnosis application
considered in Zhang et al. (2013a)). Assumption 2 is
needed to ensure that the information exchange among
agents is sufficient for the team to achieve the desired
team goal. The leader is only required to be a neigh-
bor of a subset of followers but has paths to all followers
through the intercommunication topology. Additionally,
note that the intercommunication graph under consid-
eration is more general than the detail-balanced graph
considered in the literature (Chen et al., 2011; Zhang
et al., 2013b), because the critical detail-balanced con-
dition on graph weights is not required. Assumption 3
requires an unknown constant bound on the derivative
of the leader’s time-varying state, which is needed to
achieve consensus (Li et al., 2013). An adaptive algo-
rithm will be designed to estimate the unknown bound.

The research objective is to design a distributed fault-
tolerant leader-following control algorithm that guar-
antees each agent’s state converges to the time-varying
bounded reference state of the leader. More specifically,
the distributed FTC architecture is designed to achieve
the following objectives:

(1) In the absence of faults, a distributed local baseline
controller designed for each agent guarantees the
state of the ith agent xi(t) should track the leader’s
time-varying state xr(t), for all i ∈ {1, · · · ,M},
even in the presence of modeling uncertainties.

(2) If a fault is detected in an agent, the local base-
line controller is reconfigured, and the first fault-
tolerant controller is utilized to recover some con-
trol performance by exploiting the information that
a fault has been detected, even though the fault
type is still unknown before fault isolation.

(3) If the fault type in the local agent is isolated, then
the local controller is reconfigured again. The sec-
ond local fault-tolerant controller is designed by ex-
ploiting the information on the functional structure
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of fault (see (2) and (3)) that has been isolated so
as to further improve the control performance.

Due to space limitation, this paper focuses on the design
and analysis of the distributed adaptive FTC algorithms
using FDI information.

3 Accommodation between Fault Detection
and Fault Isolation

3.1 Decentralized Fault Detection

Under normal operating conditions, each local fault
detection estimator (FDE) monitors the corresponding
agent to detect the occurrence of any faults. The decen-
tralized fault detection method can be easily designed
using the results in Zhang et al. (2004). Based on the
agent model described by (1), the FDE for each agent
is chosen as:

˙̂xi = −Hi(x̂i − xi) + φi(xi) + ui , (4)

where x̂i ∈ <n denotes the estimated local state,
Hi = diag{hi1, · · · , hin} is a positive definite matrix,
and −hip < 0 is the estimator pole, for p = 1, · · · , n,
i = 1, · · · ,M . Without loss of generality, let the observer
gain be Hi = hiIn, and In is a n × n identity matrix.

For each local FDE, we define ε0i
4
= xi − x̂i as the state

estimation error of the ith agent. Then, before fault
occurrence (i.e., for 0 ≤ t < Ti), a bounding function on
each component of the state estimation error ε0ip can be

derived. Specifically, it can be shown that |ε0ip| ≤ νip(t),
where νip(t)

4
=
∫ t

0
e−hi(t−τ) η̄ip(xi, τ) dτ + ε̄0ip e

−hit, and

ε̄0ip is a possibly conservative bound on the initial state

estimation error (i.e., |ε0ip(0)| ≤ ε̄0ip). Thus, the decision
on the occurrence of a fault in the ith agent is made
when the absolute value of at least one component of
the state estimation error (i.e., ε0ip(t)) generated by the
local FDE exceeds its threshold νip(t).

3.2 Distributed Fault-Tolerant Controller

Now, assume that a fault is detected in the ith agent at
some time Td; accordingly, the nominal controller is re-
configured to ensure the system stability after fault de-
tection. However, before the fault is isolated, no informa-
tion about the fault type is available. Adaptive approx-
imators such as neural-network models can be used to
estimate the unknown process fault function βifi (Far-
rell and Polycarpou, 2006). Specifically, we consider lin-
early parametrized network (e.g., radial-basis-function
networks with fixed centers and variances) described as
follows: for p = 1, · · · , n,

f̂ip(xi, ϑ̂ip) = ϑ̂Tipϕip(xi) , (5)

where ϕip(·) represents the fixed basis functions, and ϑ̂ip
is the adjustable weights of the nonlinear approximator.

Therefore, the system dynamics (1) can be rewritten as

ẋip = φip + (1 + θip)uip + ηip + f̂ip(xi, ϑip) + δip, (6)

where δip
4
= fip(xi)− f̂ip(xi, ϑip) is the network approx-

imation error, and ϑip is the optimal weight vector de-

fined as ϑip
4
= arg inf

ϑ̂ip∈Θip

{
sup
xi∈Xi

|fip(xi)− f̂ip(xi, ϑ̂ip)|
}

,

where Xi ⊆ <n denotes the set to which the variable
xi belongs for all possible modes of behavior of the con-
trolled system. For each network, we make the following
assumption:

Assumption 4 The network approximation error

|δip(xi)| ≤ αip δ̄ip(xi) , ∀xi ∈ <n (7)

where δ̄ip is a known positive bounding function, and αip
is an unknown constant.

Let the leader be the (M + 1)th agent. The following
lemma is needed for the design and analysis of the adap-
tive fault-tolerant controllers:

Lemma 1 Consider the graph G satisfying Assump-
tion 2. Suppose Ψ ∈ <(M+1)×(M+1) is the Laplacian
matrix of the graph as if the communication between the
leader and followers is bidirectional. Then, the matrices

Ψ̄
4
= QΨ + ΨTQ , (8)

L̄ 4= Ψ̄L̂+ L̂T Ψ̄ , (9)

and L̂ are positive semidefinite and have a simple zero
eigenvalue with 1M+1 as its right eigenvector, whereQ =
diag{q1, q2, · · · , q(M+1)} is a diagonal matrix consist-
ing of the elements of the left eigenvector of Ψ asso-
ciated with the eigenvalue zero (i.e., ΨT q̄ = 0, q̄ =

[q1, q2, · · · , q(M+1)]
T ), the matrix L̂ ∈ <(M+1)×(M+1)

has the same rows as Ψ̄ for the ith row, i = 1, · · · ,M ,
while the last row is a 1 × (M + 1) row vector of zeros,
and 1M+1 is a (M + 1)× 1 column vector of ones.

Proof: Based on Assumption 2 and considering the com-
munication between the leader and followers to be bidi-
rectional, i.e., by adding edges with gains k̄i connect-
ing agent i to the leader if agent i receives information
from the leader, the augmented graph topology of all
the agents including the bidirectional leader becomes
strongly connected. Therefore, based on Lemma 6 and
Lemma 9 in Zhang et al. (2012), the symmetric matrix
Ψ̄ defined in (8) is positive semidefinite and has a simple
zero eigenvalue with 1M+1 as its right eigenvector. More-
over, based on Lemma 9 in Zhang et al. (2012), Ψ̄ can
be considered as the Laplacian matrix of an augmented
undirected graph Ḡ, which has the same node set as the
graph corresponding to Ψ, but with weights qikij +qjkji
connecting agent i and agent j, for j 6= M + 1, as well
as weights qiki(M+1) + q(M+1)k̄i connecting agent i and

4



the leader. Based on the definition of L̂ given in Lemma
1, we can decompose the matrices Ψ̄ and L̂ as follows:

L̂ =

[
L̂11 L̂12

01×M 01×1

]
, Ψ̄ =

[
L̂11 L̂12

L̂T12 L̂22

]
, (10)

where L̂11 ∈ <M×M , L̂12 ∈ <M×1, and L̂22 ∈ <. From
the specific structures of L̂ and Ψ̄ given in (10), we can

see that the topology graph corresponding to L̂ for the
M+1 agents (with the leader being agentM+1) has the
same nodes as Ḡ and a spanning tree with the leader as
its root. Thus, the matrix L̂ has M positive eigenvalues
and has a simple zero eigenvalue with 1M+1 as its right
eigenvector (Ren and Beard, 2008). Now, by using the

specific structure of L̂ given in (10), we can conclude L̂11
is a positive definite matrix.

Let χ be an eigenvalue of L̄. From (9) and (10), we have

|χIM+1−L̄| =

∣∣∣∣∣χIM − 2L̂2
11 −2L̂11L̂12

−2L̂T12L̂11 χ− 2L̂T12L̂12

∣∣∣∣∣ , where IM+1

represents a (M + 1) × (M + 1) identity matrix. Using∣∣∣∣∣A B

C D

∣∣∣∣∣ = |A| · |D − C A−1B|, we obtain

|χIM+1 − L̄|= |χIM − 2L̂2
11| · |χ− 2L̂T12L̂12

−4L̂T12L̂11(χIM − 2L̂2
11)−1L̂11L̂12| .

Note that the eigenvalues of L̄ satisfying |χIM−2L̂2
11| =

0 are all positive, because L̂11 and 2L̂2
11 are positive

definite as proved above. Furthermore, χ = 0 satisfies
|χ − 2L̂T12L̂12 − 4L̂T12L̂11(χIM − 2L̂2

11)−1L̂11L̂12| = 0.

Additionally, it can be shown L̄1M+1 = Ψ̄L̂1M+1 +

L̂T Ψ̄1M+1 = 0, since it has been proved that L̂ and
Ψ̄ both have a simple zero eigenvalue with 1M+1 as
its right eigenvector. Thus, the proof can be concluded.

Remark 1. This important lemma provides a skill-
fully chosen symmetric positive definite matrix Ψ̄,
which is crucial for designing an appropriate Lyapunov
function for deriving the asymptotic fault-tolerant
leader-following consensus property of the MAS under
a bidirectional communication topology with general
asymmetric weights. The appropriately constructed
Laplacian matrix Ψ for the augmented graph with a
bidirectional leader makes the graph topology of all
the agents including the leader strongly connected and
therefore allows us to compute the positive gains ql,
l = 1, · · · ,M + 1, which can be used to derive appro-
priate controller gains for ensuring the convergence of
leader-following consensus error. It is worth noting that
the Laplacian matrix Ψ for a bidirectional leader is only
considered for the purpose of controller performance
analysis, while the underlying communication topology
has a directed leader since the leader is only sending the
data and does not receive any data from other agents.

Now, based on (5), (6), and Assumption 4, the following
distributed control algorithm can be chosen:

uip =
1

1 + θ̂ip
ūip , (11)

ūip =−φip −
∑
j∈Ni

(
ρij x̃ij

)
− f̂ip(xi, ϑ̂ip(t))− ψip

−(η̄ip + κ̂ip)sgn

( ∑
j∈Ni

ρij x̃ij

)
, (12)

˙̂
ϑip = Γip

∑
j∈Ni

ρij x̃ijϕip(xi) , (13)

ψip = α̂ipδ̄ip(xi)sgn

( ∑
j∈Ni

ρij x̃ij

)
, (14)

˙̂αip = Υip

∣∣ ∑
j∈Ni

ρij x̃ij
∣∣ δ̄ip(xi) , (15)

˙̂κip = Ῡip

∣∣ ∑
j∈Ni

ρij x̃ij
∣∣ , (16)

˙̂
θip =Pθ̄ip

{
Γ̄ip

∑
j∈Ni

ρij x̃ijuip

}
, (17)

where x̃ij
4
= xip − xjp, p = 1, · · · , n, i = 1, · · · ,M , uip

and xip are the pth component of the input and state
vectors of the ith agent, respectively, ρij are constant de-

sign gains to be defined later in (20), θ̂ip is an estimation
of the actuator fault magnitude parameter θip with the

projection operator P restricting θ̂ip to the correspond-

ing set [θ̄ip, 0], ϑ̂ip is an estimation of the neural network

parameter vector ϑip, ϕip
4
= col(ϕj : j = 1, · · · , %) is

the collective vector of fixed basis functions, α̂ip is an
estimation of the unknown constant αip (see Assump-
tion 4), κ̂ip is an estimation of the unknown positive
constant bound κp on |ẋrp| (see Assumption 3), Γip is a

symmetric positive definite matrix, Γ̄ip, Υip and Ῡip are
positive learning rate constants, and sgn(·) is the sign
function defined to take zero value at zero. Note that we
can rewrite (11) as uip = ūip − θ̂ipuip. Therefore, Based
on (6), the closed-loop system dynamics are given by

ẋip = φip + ūip − θ̂ipuip + θipuip + ηip + δip(xi)

+f̂ip(xi, ϑip) . (18)

By using (12) and (18), we have

ẋip =−
∑
j∈Ni

ρij x̃ij− f̂ip(xi, ϑ̂ip)+ f̂ip(xi, ϑip)+δip − ψip

+ηip − (η̄ip + κ̂ip)sgn

(∑
j∈Ni

ρij x̃ij

)
+ θ̃ipuip , (19)

where θ̃ip = θip − θ̂ip is the actuator fault magnitude
estimation error.
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We choose the following positive distributed controller
gains: for i = 1, · · · ,M , and j ∈ Ni,

ρij =

{
qikij + qjkji , for j 6= M + 1

qiki(M+1) + q(M+1)k̄i , for j = M + 1

(20)
where qi is defined in Lemma 1, k̄i is a constant de-
signed to make the graph corresponding to Ψ strongly
connected (i.e., k̄i > 0 if the leader directly communi-
cates to follower agent i in the graph G, and k̄i = 0 oth-
erwise), kij and kji are positive constants denoting the
weights on the intercommunication graph G. Using (19)

and (20) and the definition of L̂ in Lemma 1, we can
represent the collective closed-loop state dynamics as

ẋp = −L̂xp + ζp − ζ̄p + f̃p + δp − ψp +$p , (21)

where xp ∈ <M+1, p = 1, · · · , n, is comprised of the pth
component of the M + 1 agents, including the leader as
the (M+1)th agent, i.e., xp = [x1p, x2p, · · · , xMp, x

r
p ]T ,

L̂ is defined in Lemma 1, the terms ζp ∈ <M+1, ζ̄p ∈
<M+1, f̃p ∈ <M+1, δp ∈ <M+1, ψp ∈ <M+1 and $p ∈
<M+1 are defined as

ζp
4
= [ η1p, · · · , ηMp, ẋ

r
p ]T , (22)

ζ̄p
4
= [ ζ̄1p, · · · , ζ̄Mp, 0 ]T , (23)

f̃p
4
= [ (ϑ̃1p)

Tϕ1p, · · · , (ϑ̃Mp)
TϕMp, 0 ]T , (24)

δp
4
= [ δ1p, · · · , δMp, 0 ]T , (25)

ψp
4
= [ψ1p, · · · , ψMp, 0 ]T , (26)

$p 4= [ θ̃1pu1p, · · · , θ̃MpuMp, 0 ]T , (27)

and ζ̄ip
4
= (η̄ip + κ̂ip)sgn

(∑
j∈Ni

ρij x̃ij
)
, i = 1, · · · ,M ,

ϑ̃ip
4
= ϑip−ϑ̂ip and ϕip are the neural network parameter

estimation error and basis functions, respectively.

To derive the adaptive FTC algorithm, we consider the
following Lyapunov function candidate:

Vp = xpT Ψ̄xp + (ϑ̃p)T (Γp)−1ϑ̃p + (α̃p)T (Υp)−1α̃p

+(θ̃p)T (Γ̄p)−1θ̃p + (κ̃p)T (Ῡp)−1κ̃p , (28)

where Ψ̄ is defined in (8), ϑ̃p = [ ϑ̃T1p, · · · , ϑ̃TMp ]T

is the collective parameter estimation errors, α̃p =
[ α̃1p, · · · , α̃Mp ]T is the collective bounding param-
eter estimation errors defined as α̃ip = αip − α̂ip,

θ̃p = [ θ̃1p, · · · , θ̃Mp ]T is the collective actuator
fault magnitude parameter estimation errors, κ̃p =
[ κ̃1p, · · · , κ̃Mp ]T is the collective bounding parameter
estimation errors defined as κ̃ip = κp − κ̂ip, and Γp =
diag{Γ1p, · · · ,ΓMp}, Υp = diag{Υ1p, · · · ,ΥMp}, Γ̄p =
diag{Γ̄1p, · · · , Γ̄Mp}, and Ῡp = diag{Ῡ1p, · · · , ῩMp}
are constant matrices.

Remark 2. Based on the definition of Ψ̄ in (8), it can

be shown that xpT Ψ̄xp =
∑M
i=1

∑
j∈Ni

ρij(x̃ij)
2, which

is positive definite with respect to the relative tracking
error x̃ij by following a similar reasoning logic given in
(Ren, 2009). Additionally, based on Lemma 1, Ψ̄ is posi-
tive semidefinite and have a simple zero eigenvalue with
1M+1 as its right eigenvector, which implies the only xp

that makes xpT Ψ̄xp in (28) zero satisfies xip = xjp = xpr ,
for i = 1, · · · ,M , j ∈ Ni.

Then, the time derivative of the Lyapunov function (28)
along the solution of (21) is

V̇p =−xpT L̄xp + 2xpT Ψ̄(ζp − ζ̄p + f̃p + δp − ψp +$p)

+(ϑ̃p)T(Γp)−1 ˙̃
ϑp+(α̃p)T(Υp)−1 ˙̃αp+(θ̃p)T(Γ̄p)−1 ˙̃

θp

+(κ̃p)T (Ῡp)−1 ˙̃κp , (29)

where L̄ is defined in (9). Based on (22) - (27), and by
using the left eigenvector property, i.e.,

∑
j∈Ni

qikij =∑
j∈Ni

qjkji, we have

xpT Ψ̄ζp =

M∑
i=1

∑
j∈Ni

ρij x̃ijηip+ẋrp

M∑
i=1

ρi(M+1)(x
r
p − xip),

xpTΨζ̄p =

M∑
i=1

∑
j∈Ni

ρij x̃ij(η̄ip + κ̂ip)sgn
(∑
j∈Ni

ρij x̃ij
)
,

xpTΨf̃p =

M∑
i=1

∑
j∈Ni

ρij x̃ij(ϑ̃ip)
Tϕip ,

xpTΨδp =

M∑
i=1

∑
j∈Ni

ρij x̃ijδip ,

xpTΨψp =

M∑
i=1

∑
j∈Ni

ρij x̃ijψip ,

xpTΨ$p =

M∑
i=1

∑
j∈Ni

ρij x̃ij θ̃ipuip .

Note that we have
∑M
i=1

∑
d ρidx̃id = 0, for d ∈ Ni, d 6=

M + 1. Therefore, we have

ẋrp

M∑
i=1

ρi(M+1)(x
r
p − xip) = −ẋrp

M∑
i=1

∑
j∈Ni

ρij x̃ij .

By using the above seven equations and (29), we obtain

V̇p =−xpT L̄xp+2

M∑
i=1

[
ϑ̃Tip

(∑
j∈Ni

ρij x̃ijϕip−(Γip)
−1 ˙̂
ϑip

)
+
∑
j∈Ni

ρij x̃ij

(
ηip − η̄ipsgn

( ∑
j∈Ni

ρij x̃ij
))

+
∑
j∈Ni

ρij x̃ij

(
−ẋrp−κ̂ipsgn

( ∑
j∈Ni

ρij x̃ij
))
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−κ̃ip(Ῡip)
−1 ˙̂κip + θ̃ip

( ∑
j∈Ni

ρij x̃ijuip − (Γ̄ip)
−1 ˙̂
θip

)
+
∑
j∈Ni

ρij x̃ij(δip − ψip)− α̃ip(Υip)
−1 ˙̂αip

]
. (30)

Based on Assumption 1, we have

ηip
( ∑
j∈Ni

ρij x̃ij
)
−η̄ip

( ∑
j∈Ni

ρij x̃ij
)
sgn
( ∑
j∈Ni

ρij x̃ij
)
≤ 0 .

(31)
Therefore, by applying the above inequality to (30) and

selecting the adaptive algorithm for ϑ̂ip and θ̂ip as (13)
and (17), respectively, we have

V̇p ≤−xpT L̄xp + 2

M∑
i=1

[
− κ̃ip(Ῡip)

−1 ˙̂κip

+
∑
j∈Ni

ρij x̃ij

(
−ẋrp−κ̂ipsgn

( ∑
j∈Ni

ρij x̃ij
))]

+2

M∑
i=1

( ∑
j∈Ni

ρij x̃ij(δip − ψip)− α̃ip(Υip)
−1 ˙̂αip

)
.

Since the parameter projection modification can only
make the Lyapunov function derivative more negative,
the stability properties derived for the standard algo-
rithm still hold (Farrell and Polycarpou, 2006). Note
that by using (14) and Assumption 4, we have∑

j∈Ni

ρij x̃ij(δip − ψip) ≤
∣∣ ∑
j∈Ni

ρij x̃ij
∣∣α̃ipδ̄ip . (32)

By using (32) and Assumption 3, we obtain

V̇p ≤ 2

M∑
i=1

[(∣∣ ∑
j∈Ni

ρij x̃ij
∣∣α̃ipδ̄ip − α̃ip(Υip)

−1 ˙̂αip

)
+

(∣∣ ∑
j∈Ni

ρij x̃ij
∣∣κ̃ip − κ̃ip(Ῡip)

−1 ˙̂κip

)]
− xpT L̄xp.

Therefore, by using (15), (16) and after some algebraic
manipulations, we have

V̇p ≤−xpT L̄xp = −2

M∑
i=1

( ∑
j∈Ni

ρij x̃ij

)2

. (33)

Using Lemma 1, we know V̇p is negative semidefinite.

Based on the definition of Vp, we conclude that x̃ij , ϑ̂ip,

θ̂ip, κ̂ip and α̂ip are uniformly bounded. Integrating both
sides of (33), we know that

∑
j∈Ni

ρij x̃ij ∈ L2. Ad-
ditionally, xip is bounded because x̃ij and the leader’s
state xrp are bounded. Therefore, based on (12), (18), and
the smoothness of the function φip, we have ūip ∈ L∞,

ẋip ∈ L∞, and
∑
j∈Ni

ρij ˙̃xij ∈ L∞. Now, based on Bar-

balat’s Lemma, we can conclude that
∑
j∈Ni

ρij x̃ij → 0

as t → ∞, which implies L̂xp → 0. Using Lemma 1,
we know that L̂ has a single zero eigenvalue with 1M+1

as its right eigenvector. Thus, L̂xp → 0 if and only if
xip(t)→ xrp(t), which implies the leader-follower consen-
sus is reached asymptotically. The aforementioned de-
sign and analysis procedure is summarized as follows:

Theorem 1 Suppose that Assumptions 1–4 hold. Then,
if a fault is detected, by using the distributed controller
gains given by (20), the adaptive fault-tolerant law (11),
the weight parameter adaptive law (13), the bounding
parameter adaptive laws (14)-(16), and the actuator fault
parameter adaptive law (17) guarantee

(1) all the signals and parameter estimates are uni-

formly bounded, i.e., x̃ij, ϑ̂ip, θ̂ip, α̂ip and κ̂ip are
bounded;

(2) the leader-follower consensus is achieved asymp-
totically with a time-varying reference state, i.e.,
xi(t)− xr(t)→ 0 as t→∞, for all i = 1, · · · ,M .

Remark 3. Interesting neural-network-based adaptive
consensus algorithms for MAS with first-order agent
dynamics have been presented in Cheng et al. (2010)
and Das and Lewis (2010). The Laplacian matrix of the
topology is assumed to be symmetric in Cheng et al.
(2010), while bidirectional topology with possibly asym-
metric weights is considered in this paper, which makes
the design of adaptive consensus algorithms more chal-
lenging. Additionally, UUB results are derived in Das
and Lewis (2010), where the consensus error bound is
shown to be a function of several constant bounds on
modeling uncertainty, neural network approximation
error and optimal weights, neural network activation
functions, and the derivative of the leader’s state, re-
spectively. In contrast, adaptive algorithms guarantee-
ing asymptotic convergence of the consensus tracking
error is derived in this paper. Moreover, it is also worth
noting that this paper considers both process and actu-
ator faults, while the latter is not considered in Cheng
et al. (2010) and Das and Lewis (2010).

4 Accommodation after Fault Isolation

4.1 Decentralized Fault Isolation

Once the fault is detected at time t = Td, the fault iso-
lation estimators (FIEs) in the local FDI component de-
signed for the ith agent are activated for determining the
fault type that has occurred. Each local FIE is designed
based on the functional structure of one potential fault
type associated with the agent (see (2) and (3)). Specif-
ically, based on the fault class described by (3), the fol-
lowing ri nonlinear adaptive estimators are designed as
FIEs: for s = 1, · · · , ri , and p = 1, · · · , n,

˙̂xsip=−λsip(x̂sip−xip)+φip+uip+ θ̂sTip ḡ
s
ip(xi, ui) (34)

˙̂
θsip =PΘs

ip
{γsip ḡsip(xi, ui) εsip} , (35)

where ḡsip for s = 1, · · · , ri represents the functional

structure of the sth fault (see (3), i.e., ḡsip
4
= gsip for pro-
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cess faults and ḡsip
4
= uip for the actuator fault), θ̂sip is

the estimate of the fault parameter vector for the pth

state component in the ith agent, εsip(t)
4
= xip−x̂sip is the

pth component of the state estimation error generated
by the sth FIE, and γsip and λsip are positive constants.
For notational simplicity, we assume that λsip = λi. The

adaptive law (35) for updating each θ̂sip is derived by us-
ing the Lyapunov synthesis approach (Farrell and Poly-
carpou (2006)), with the projection operator PΘs

ip
re-

stricting θ̂sip to the corresponding known set Θs
ip.

By following the reasoning logic given in (Zhang et al.,
2004), a bound on each component of the state es-
timation error can be obtained as |εsip| ≤ µsip(t),

where µsip(t)
4
=
∫ t
Td
e−λi(t−τ)

[
η̄ip(xi, τ) + ξsip

∣∣ḡsi ∣∣]dτ +

ε̄sip e
−λi(t−Td) , and ε̄sip is a possibly conservative bound

on the initial state estimation error (i.e., |εsip(Td)| ≤ ε̄sip),
and ξsip represents the maximum fault parameter vector

estimation error, i.e., |θsip− θ̂sip(t)| ≤ ξsip. The form of ξsip
depends on the geometric properties of the compact set
Θs
ip (Zhang et al., 2004). Thus, based on the generalized

observer scheme, the following fault isolation decision
scheme is devised: If for each b ∈ {1, · · · , ri}\{s}, there
exist some finite time tb > Td and some p ∈ {1, · · · , n},
such that |εbip(tb)| > µbip(t

b), then the occurrence of fault
s in agent i is concluded.

4.2 Adaptive FTCs after Fault Isolation

Now, assume that the aforementioned isolation proce-
dure provides the information that fault s has been iso-
lated at time Tisol. The controller is reconfigured again
to further improve the control performance based on the
information of isolated fault type. Below, we investigate
the cases of process fault and actuator fault, respectively.

4.2.1 Adaptive FTC of Process Faults

After the isolation of process fault type s , i.e., t ≥ Tisol,
the dynamics of the system for p = 1, · · · , n, can be
represented as

ẋip = φip + uip + ηip(xi, t) + θsTip g
s
ip(xi) . (36)

The following adaptive FTC scheme is chosen:

uip =−φip −
∑
j∈Ni

(
ρij x̃ij

)
− θ̂Tip gsip(xi)

−(η̄ip + κ̂ip)sgn

( ∑
j∈Ni

ρij x̃ij

)
, (37)

˙̂
θip = Γip

∑
j∈Ni

ρij x̃ijg
s
ip(xi) , (38)

˙̂κip = Ῡip

∣∣ ∑
j∈Ni

ρij x̃ij
∣∣ , (39)

where the controller gains ρij are defined in (20), θ̂ip is
the estimated unknown fault parameter vector, κ̂ip is an
estimation of the unknown constant bound κp on |ẋrp|
(see Assumption 3), Γip is a symmetric positive definite
learning rate matrix, and Ῡip is a learning rate constant.
Then, we have the following:

Theorem 2 Assume that process fault s occurs at time
Tif and that it is isolated at time Tisol. Then, the fault-
tolerant controller (37), the fault parameter adaptive law
(38), and the bounding parameter adaptive law (39) us-
ing the distributed gains (20) guarantee that the leader-
follower consensus is achieved asymptotically with a
time-varying leader, i.e., xi(t) − xr(t) → 0 as t → ∞,
for all i = 1, · · · ,M .

Proof: Based on (36) and (37), the closed-loop system
dynamics are given by

ẋip =−
∑
j∈Ni

(ρij x̃ij) + ηip(xi, t) + θ̃Tip g
s
ip(xi)

−(η̄ip + κ̂ip)sgn

( ∑
j∈Ni

ρij x̃ij

)
.

We can represent the collective output dynamics as

ẋp = −L̂xp + ζp − ζ̄p + f̃sp , (40)

where xp ∈ <M+1, p = 1, · · · , n, is comprised of the
pth component of the M agents and the leader as the
(M + 1)th agent, i.e., xp = [x1p, x2p, · · · , xMp, x

r
p ]T ,

the terms ζp ∈ <M+1 and ζ̄p ∈ <M+1 are defined in

(22) and (23), and f̃sp
4
= [ f̃s1p, · · · , f̃sMp, 0 ]T . Note that

f̃sip
4
= (θ̃ip)

T gsip, where θ̃ip
4
= θip − θ̂ip and gsip are the

parameter estimation error and process fault functions
corresponding to the pth component of the ith agent,
respectively.

We consider the following Lyapunov function candidate:

Vp = xpT Ψ̄xp + θ̃pT (Γp)−1θ̃p + κ̃pT (Ῡp)−1κ̃p , (41)

where Ψ̄ is defined in (8), θ̃p = [ θ̃T1p, · · · , θ̃TMp ]T

is the collective parameter estimation errors, κ̃p =
[ κ̃T1p, · · · , κ̃TMp ]T is the collective bounding parameter

estimation errors, and Γp = diag{Γ1p, · · · ,ΓMp} and
Ῡp = diag{Ῡ1p, · · · , ῩMp} are positive definite adap-
tive learning rate matrices. Then, the time derivative of
the Lyapunov function (41) along the solution of (40) is
given by

V̇p =−xpT L̄xp + 2

M∑
i=1

[
− κ̃ip(Ῡip)

−1 ˙̂κip

+
∑
j∈Ni

ρij x̃ij

(
ηip − ẋrp − (η̄ip + κ̂p)sgn

( ∑
j∈Ni

ρij x̃ij
))

+θ̃Tip

( ∑
j∈Ni

ρij x̃ijg
s
ip − (Γip)

−1 ˙̂
θip

)]
,
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where L̄ is defined in (9). By choosing the adaptive

laws as (38) and (39), we have V̇p ≤ −xpT L̄xp. There-
fore, the proof can be concluded based on the similar
reasoning logic as reported in the proof of Theorem 1.

4.2.2 Adaptive FTC of Actuator Faults

In the case of an actuator fault, i.e., t ≥ Tisol, the dy-
namics of the system takes on the following form: for
p = 1, · · · , n,

ẋip = φip + (1 + θip)uip + ηip(xi, t) . (42)

The following adaptive FTC scheme is adopted:

uip =
1

1 + θ̂ip
ūip , (43)

˙̂
θip =Pθ̄ip

{
Γ̄ip

∑
j∈Ni

ρij x̃ijuip

}
, (44)

˙̂κip = Ῡip

∣∣ ∑
j∈Ni

ρij x̃ij
∣∣ , (45)

where ūip
4
= −

∑
j∈Ni

ρij x̃ij − (η̄ip + κ̂ip)sgn
( ∑
j∈Ni

ρij x̃ij
)

−φip, the controller gains ρij are defined in (20), θ̂ip is
an estimation of the unknown actuator fault magnitude
parameter θip with the projection operator P restricting

θ̂ip to the corresponding set [θ̄ip, 0], κ̂ip is an estimation
of the unknown positive constant bound κp on |ẋrp| (see

Assumption 3), and Γ̄ip and Ῡip are positive learning
rate constants. Then, we have the following:

Theorem 3 Assume that an actuator fault occurs at
time Tiu and that it is isolated at time Tisol. Then, the
fault-tolerant controller (43), fault parameter adaptive
law (44), and the bounding parameter adaptive law (45)
using the distributed gains (20) guarantee that the leader-
follower consensus is achieved asymptotically with a
time-varying leader, i.e., xi(t) − xr(t) → 0 as t → ∞,
for all i = 1, · · · ,M .

Proof: Using some algebraic manipulations, we can

rewrite (43) as uip = ūip − θ̂ipuip. By substituting uip
into (42), the closed-loop system dynamics are given by

ẋip =−
∑
j∈Ni

(ρij x̃ij) + ηip(xi, t) + θ̃ipuip

−(η̄ip + κ̂ip)sgn

( ∑
j∈Ni

ρij x̃ij

)
.

We can represent the collective output dynamics as

ẋp = −L̂xp + ζp − ζ̄p +$p , (46)

where xp ∈ <M+1, p = 1, · · · , n, is comprised of the
pth component of the M agents and the leader as the
(M+1)th agent, i.e., xp = [x1p, x2p, · · · , xMp, x

r
p ]T , and

the terms ζp ∈ <M+1, ζ̄p ∈ <M+1 and $p ∈ <M+1 are
defined in (22), (23) and (27), respectively.

Consider the following Lyapunov function candidate:

Vp = xpT Ψ̄xp + θ̃pT (Γ̄p)−1θ̃p + κ̃pT (Ῡp)−1κ̃p , (47)

where Ψ̄ is defined in (8), θ̃p = [ θ̃1p, · · · , θ̃Mp ]T is
the collective actuator fault magnitude parameter es-
timation errors, κ̃p = [ κ̃1p, · · · , κ̃Mp ]T is the collec-
tive bounding parameter estimation errors, and Γ̄p =
diag{Γ̄1p, · · · , Γ̄Mp} and Ῡp = diag{Ῡ1p, · · · , ῩMp} are
positive definite adaptive learning rate matrices. Then,
using the same reasoning logic reported in the proof
of Theorem 1, the time derivative of the Lyapunov
function (47) along the solution of (46) is given by

V̇p =−xpT L̄xp + 2

M∑
i=1

[
− κ̃ip(Ῡip)

−1 ˙̂κip

+
∑
j∈Ni

ρij x̃ij

(
ηip − ẋrp − (η̄ip + κ̂p)sgn

( ∑
j∈Ni

ρij x̃ij
))

+θ̃ip

( ∑
j∈Ni

ρij x̃ijuip − (Γ̄ip)
−1 ˙̂
θip

)]
,

where L̄ is defined in (9). By choosing the adaptive

laws as (44) and (45), we have V̇p ≤ −xpT L̄xp. Then,
the proof can be concluded by using the same rea-
soning logic as reported in the analysis of Theorem 1.

5 Simulation Results

In this section, a simulation example of a team of 5 agents
is considered to illustrate the effectiveness of the dis-
tributed fault-tolerant control method. The dynamics of
each agent, i = 1, · · · , 5, is given by

ẋi = ui + ηi + βi(t− Tif )fi(xi) + βi(t− Tiu)θiui , (48)

where xi = [xi1, xi2]T and ui = [ν̄icos(ψ̄i), ν̄isin(ψ̄i)]
T

are the state and input vector of ith agent, respectively,
ψ̄i and ν̄i in the input vector ui are the orientation and
the linear velocity of each agent representing a ground
vehicle. The ground vehicle model given in (48) is a
standard unicycle-like model that can be controlled with
the orientation ψ̄i and vehicle linear velocity ν̄i. Us-
ing the developed algorithms, the desired orientation
and linear velocity of the ground vehicle can be ob-
tained uniquely. Then, a low-level controller can be de-
signed to track the desired orientation and linear veloc-
ity for driving the ground vehicles to desired positions.
The unknown modeling uncertainty in the local dynam-
ics of the agents are assumed to be sinusoidal signals
ηi = [0.5sin(t), 0.5sin(t)]T bounded by η̄i = [0.6, 0.6]T .
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The intercommunication graph of agents plus leader
is shown in Figure 1. As can be seen, the leader
only communicates with agent 2. It can be shown
that the detail-balanced condition described in (Chen
et al., 2011; Zhang et al., 2013b) is not satisfied.
We choose k̄2 = 0.5. Then, the left eigenvector
of Ψ̄ associated with the zero eigenvalue is q̄ =
[0.142, 0.212, 0.402, 0.521, 0.566, 0.425]T . The objective
is for each agent to follow the leader’s position described
by xr = [xr1, x

r
2]T = [5 + sin(t), 5 + cos(t)]T .

Fig. 1. Communication graph

Before the fault is detected in the ith agent, the follow-
ing nominal controller is employed which guarantees the
leader-follower consensus in the absence of faults.

uip =−
∑
j∈Ni

ρij x̃ij − φip − (η̄ip + κ̂ip) sgn
( ∑
j∈Ni

ρij x̃ij
)

˙̂κip = Ῡip

∣∣ ∑
j∈Ni

ρij x̃ij
∣∣ .

Note that the baseline controller is a special case of the
adaptive FTC described in Section 3. The fault class
under consideration is defined as follows

(1) A process fault described by f1
i = θ1

i g
1
i , where g1

i =
x2
i cos(xi), and the fault magnitude θ1

i ∈ [0, 1].
(2) An actuator fault described by f2

i = θ2
i g

2
i , where

g2
i = ui, and the fault magnitude θ2

i ∈ [−0.8, 0].

A radial basis function (RBF) neural network (see (5))
used for approximation of the process fault function con-
sists of 21 neurons. The center of RBFs are equally dis-
tributed on the interval [−10, 10] with a variance of 0.5.
We set the learning rate as Γi = 10 and consider a con-
stant bound on the network approximation error, i.e.,
δ̄i = 1. The adaptive gains in (15), (16) and (17) are
chosen as Υi = 3, Ῡ = 1 and Γ̄i = 1, respectively. After
fault isolation, the controller is reconfigured to accom-
modate the specific fault that has been isolated. We set
the adaptive gain Γi = 10 with a zero initial condition
(see (38)).

The first fault type (i.e., f1
1 = θ1

1g
1
1) with a magni-

tude of 0.3 occurs to agent 1 at Ti = 5 second and
agent 3 at Ti = 10 second, respectively. The fault detec-
tion and isolation results are omitted here due to space
limitation. Regarding the performance of the adaptive
fault-tolerant controllers, as can be seen from Figure 2,

the leader-following consensus is achieved using the pro-
posed adaptive FTC scheme, while the agents cannot
follow the leader without the FTC controllers after fault
occurrence (see Figure 3). Thus, the benefits of the FTC
method can be clearly seen. The tracking error of the
agents is shown in Figure 4, when the second adaptive
fault tolerant controller is not exploited. Compared with
Figure 2, it can be seen that the second FTC designed
with simpler structure and less assumptions provides
better tracking performance.
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Fig. 2. Tracking errors with both FTCs
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Fig. 3. Tracking errors without the adaptive FTC algorithm

6 Conclusion

Distributed integrated FTC and FDI design for a class
of nonlinear uncertain multi-agent systems was investi-
gated in this paper. Under certain assumptions, asymp-
totic leader-follower consensus properties were rigor-
ously established in the presence of faults and modeling
uncertainty. The extension to high-order systems (e.g.,
the class of systems in output feedback form considered
by Wang et al. (2017)) and directed graphs (see, for
instance, Wang et al. (2014); Ding and Li (2016)) are
interesting topics for future research.
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