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Brain-computer interfacing (BCI) has recently been applied as a rehabilitation approach

for patients with motor disorders, such as stroke. In these closed-loop applications, a

brain switch detects the motor intention from brain signals, e.g., scalp EEG, and triggers

a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements,

thus re-establishing the compromised sensory-motor control loop and promoting neural

plasticity. In this context, single trial detection of motor intention with short latency is

a prerequisite. The performance of the event detection from EEG recordings is mainly

determined by three factors: the type of motor imagery (e.g., repetitive, ballistic), the

frequency band (or signal modality) used for discrimination (e.g., alpha, beta, gamma,

and MRCP, i.e., movement-related cortical potential), and the processing technique (e.g.,

time-series analysis, sub-band power estimation). In this study, we investigated single

trial EEG traces during movement imagination on healthy individuals, and provided a

comprehensive analysis of the performance of a short-latency brain switch when varying

these three factors. The morphological investigation showed a cross-subject consistency

of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor

rhythms during repetitive tasks. The detection performance had the greatest accuracy

when using ballistic MRCP with time-series analysis. In this case, the true positive rate

(TPR) was ∼70% for a detection latency of ∼200ms. The results presented here are of

practical relevance for designing BCI systems for motor function rehabilitation.

Keywords: brain-computer interface, motor intention detection, ballistic and repetitive task, movement-related

cortical potential, sensory-motor rhythm

INTRODUCTION

In the past decade, non-invasive brain-computer interfacing (BCI) based assistive technology has
been proposed as a novel rehabilitation tool for people suffering of motor disorders (Daly and
Wolpaw, 2008; Shih et al., 2012), such as stroke (Ramos-Murguialday et al., 2013) and spinal cord
injury (Enzinger et al., 2008). In BCI systems for neurorehabilitation, the volition of subjects is
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detected from brain signals. Such a brain switch is used
to control a neuroprosthetic device, such as an electrical
stimulator (Niazi et al., 2012; King et al., 2014) or a robotic
system (Xu et al., 2014b), to close the sensory-motor loop for
either restoring motor function or modulating neural pathways
(Shih et al., 2012).

As the first step of these closed-loop systems, accurate online
detection of motor intention is a crucial and challenging
task for non-invasive neural recordings such as scalp
electroencephalography (EEG), mainly due to its low spatial
resolution and poor signal-to-noise ratio. For neuroprosthesis
control in general, the acceptable delay between intention
and action is ∼200ms (Lauer et al., 2000). In particular, the
detection latency is crucial in inducing Hebbian associative
neural plasticity for rehabilitation purposes (Hebb, 1949). The
efficiency of plasticity induction would be extremely slow, if at
all possible, when the artificially afferent triggered by the brain
switch arrived at the cortical level either too early or too late
relative to motor intention (Mrachacz-Kersting et al., 2012).

Several signal processing approaches have been proposed for
motor intention detection from EEG (Venkatakrishnan et al.,
2014). Among these methods, two main EEG signal modalities
have been explored for the purpose of motor rehabilitation:
sensory motor rhythms (SMRs; Yuan and He, 2014) and
movement related cortical potentials (MRCPs; Xu et al., 2014a), a
type of slow cortical potential.

SMR corresponds to an increase or decrease in power at
various subbands of EEG signals recorded over the sensory
motor cortex (e.g., Cz for foot movements), prior to, during
and after movement, or movement imagination (Yuan and
He, 2014). The increase of subband power implies that the
neurons in the corresponding cortical area discharge more
synchronously than at baseline and therefore it is referred to
as event-related synchronization (ERS; Pfurtscheller and Lopes
Da Silva, 1999). Conversely, the decrease of subband power
corresponds to less synchronous neural activity, termed event-
related desynchronization (ERD; Pfurtscheller and Lopes Da
Silva, 1999). Immediately after movement imagination, an ERS
is usually observed in the beta-band (∼20Hz; Pfurtscheller and
Solis-Escalante, 2009). This is also referred to as beta-rebound.
In most SMR-based BCI studies for neurorehabilitation, the
movement imagery that the subjects were instructed to perform
was repetitive movement, such as foot tapping, with a few
exceptions (Pfurtscheller and Solis-Escalante, 2009).

MRCP is another EEG signal modality observable on the
sensory motor cortex prior to, during and after movement
or movement imagery. It is characterized by a slow negative
deflection of the near-DC component in the EEG signal before
movement or movement imagery, reaching its peak of negativity
near the onset of movement or movement imagination, and
followed by a positive rebound before the signal returns back
to its reference level (Jahanshahi and Hallett, 2003). MRCP is
characterized by a time-series change at a very narrow low
frequency content (0.05–3Hz; Jahanshahi and Hallett, 2003). In
MRCP-based BCI studies, the movement or imagined movement
is usually executed once, often as a brisk or ballistic task, as
opposed to the repetitive movement used in SMR-based studies.

More recently, a combined approach of subband SMR and time-
series MRCP has been proposed (Ibáñez et al., 2014). This fusion
approach yielded improved performance for the detection of
ballistic reaching movement (Ibáñez et al., 2014).

Due to the low signal-to-noise ratio of EEG, spatial filtering
is usually used as a pre-processing step to enhance the desired
feature. Among them, common spatial pattern (CSP) has been
very successful in processing SMRs (Ang et al., 2008; Blankertz
et al., 2008), particularly when the channels are more than 20.
When the channels are less (typically <10), the Laplacian filter
has been widely used for both signal modalities (Müller-Putz and
Kaiser, 2010; Niazi et al., 2011).

The above survey indicates that a motor imagery based
short-latency brain switch is predominantly influenced by three
factors: the type of motor task (ballistic or repetitive), the
frequency band (e.g., MRCP, alpha or beta band) of EEG,
and the corresponding processing technique (subband power
estimation or time-series analysis). In previous studies, the
effect of some of these factors was partly investigated, e.g.,
SMR in brief and sustained movement (Cassim et al., 2000;
Alegre et al., 2003) or MRCP vs. SMR in real movements
(Toro et al., 1994; Babiloni et al., 1999; Filipovic et al., 2001).
More recently, there have been studies on the analyses of the
frequency band in motor intention detection (Garipelli et al.,
2013; Ibáñez et al., 2014; López-Larraz et al., 2014). However,
to date, there has been no direct comparison of advantages
and disadvantages of all the above factors in the context
of a short-latency brain switch for rehabilitation purposes.
In this study on healthy subjects, these factors are directly
compared in their influence on the low latency detection of
movement intention, in an attempt to provide a guideline for
BCI researchers working toward closed-loop neuroprosthetic
applications.

METHODS

Subjects
Ten healthy volunteers (seven male and three female, age:
26.5± 4.6 years) participated in the study. Informed consent was
obtained from all participants, and ethical approval was provided
by the local ethics committee in accordance with the Declaration
of Helsinki.

Experimental Setup
• EEG

Nine channels of EEG were acquired with an active electrode
system (ActiCap, Brain Products, Germany) and 16-channel
EEG amplifier (g.USBamp, gTec GmbH, Austria). The electrodes
were placed in the standard 10–20 locations at Cz, Fz, F3,
F4, C3, C4, P3, P4, and Pz. The ground and reference
located on AFz and the left earlobe, respectively. Sampling
frequency was 1200Hz, with no hardware filter. During all
experiments, the impedances of all channels were monitored
regularly to ensure that they were below the recommended
values indicated by the manufacturers of the active electrode
system.
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• EMG

Surface electromyography (EMG) signals were collected from the
tibialis anterior (TA) muscle of the right foot with disposable
electrodes (Neuroline 720, Ambu). EMG was acquired by the
last channel of the g.USBamp amplifier, with separate ground
and reference electrode from the EEG channels. A monopolar
electrode was placed on the mid-belly of the right TA muscle
while the reference and ground electrodes were placed on the
bony surface of the right knee and right ankle, respectively.

Experimental Procedure
During an experimental session, the subject was comfortably
seated in a chair,∼1m from a computer screen. Participants were
instructed to look at the center of the screen and to follow the cue
presented, minimizing eye movements. During the experiment,
the cue on the screen indicated four states (Figure 1): idle,
focus, preparation, and task. Each trial started from the 5-s idle
phase, during which the subjects could adjust their position as
they wished. In the second phase, the subjects were asked to
focus on the screen without moving. This was followed by the
preparation phase, where the subjects were instructed to follow
the 3-s backwards counting presented on the screen, and to start
imagining the movement immediately when it turned to the task
phase, which lasted for 4 s. One trial ended with the next idle
phase before the next trial commenced.

Each experimental session was divided into six runs, which
consisted of three ballistic and three repetitive runs. The ballistic
and repetitive runs were identical, except in the task phase. For
ballistic runs, the subjects were instructed to imagine performing
ballistic dorsiflexions at the beginning of the 4-s task phase; in
repetitive runs, they were continuously repeating motor imagery
for the whole 4-s task phase. The subjects were instructed to
perform the repetitive task at a moderate speed, i.e., around once
per second. The TA muscle activity was monitored through the
EMG recording, and those trials with visible EMG signal were not
included in further analysis. Each run comprised approximately
20 trials of ballistic or repetitive imaginary movements. The
duration of each run was ∼6min. The order of ballistic and
repetitive runs was randomized.

EEG Processing Algorithm
MRCP and SMR Morphology Analysis
The nine channels of EEG were band-pass filtered (2nd order
Butterworth) at 0.05–3Hz for MRCP analysis, (Xu et al., 2014a)
and 4–40Hz for SMR analysis (Planelles et al., 2014). Then a large
Laplacian spatial filter centered at Cz (see Equation 1) was used

to enhance the signal-to-noise ratio of the “virtual” Cz channel,
which was then processed in subsequent steps.

virtual_Cz = Cz −
∑

i
CHi/8 (1)

Where CHi stands for the eight channels around Cz.
In subsequent data segmentation, the data from t = −3 to

t = 6 s, w.r.t. the task onset, of the filtered virtual Cz were
extracted for each trial. For both SMR and MRCP, the reference
interval, from which the baseline value was calculated, was −3
to−2 s (3 to 2 s before motor imagery onset).

1. MRCP morphology analysis

For each subject and each movement type, a statistical
comparison was performed on the characteristics of the
morphorlogy of theMRCP (see details in the Section of Statistical
Methods below).

2. SMR morphology analysis

The power spectral density (PSD) of each trial was calculated
over 1 s windows overlapped for 0.5 s using Hamming windows
(Matlab function pwelch). For each subject and each movement
type, a Bootstrap test was performed between the PSD of the SMR
at each time-frequency point and the reference PSD of the SMR
in a baseline window. The time-frequency SMR characterization
was quantified as follows (Pfurtscheller and Lopes Da Silva,
1999):

SMRf ,t% =
Af ,t − Rf

Rf
(2)

where SMRf ,t% is the relative power of the SMR at time t
and frequency f, Af ,t is the absolute power of the SMR at the
same time-frequency point, and Rf is the power of the reference
interval for the frequency f. A positive SMRf ,t% value indicates
an ERS, while a negative value of SMR indicates an ERD.

Time-Series Feature Extraction and Motor Imagery

Detection
In order to analyze the information content in EEG for
motor intention detection, six types of time-series features were
extracted with band-pass filters at MRCP (0.05–3Hz), Theta (4–
7Hz), Alpha (8–15Hz), Beta (16–30Hz), lower Gamma (31–40),
and the full frequency band (0.05–40Hz), followed by a large
Laplacian filter centered at Cz. In order to evaluate the BCI
performance, a three-fold cross-validation was used, in which
two runs of the virtualCz (either ballistic or repetitive) were taken

FIGURE 1 | Experimental procedure. Each trial began with an idle phase, followed by a 2-s focus phase and a 3-s preparation phase. In the consequential task

phase, the subject was instructed to perform ballistic or repetitive imagination of dorsiflexion.
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as the training set, while the remaining ballistic or repetitive run
was used as the testing set. For the training set, the virtual Cz was
segmented into portions of 2-s segments with 0.1-s increments.
The segments between −1 to 1 s with respect to the task onset
were labeled as “signal” portion, while all the remaining segments
were labeled as “noise” portion. The testing set was treated in a
pseudo-online way, mimicking the real online processing, where
the data arrives continuously with a 2 s-length window and a
refresh step of 0.1 s.

For the time-series feature, a manifold-learning based method
called Locality Preserving Projection (LPP; He and Niyogi, 2003),
followed by a Linear Discriminant Analysis (LDA) classifier
was trained and used for detection. LPP-LDA has previously
been implemented for MRCP detection with good performance
(Xu et al., 2014a). The procedure is described briefly here. The
“signal” and “noise” portions were first projected to a lower
dimension using LPP, which maintained the intrinsic structure
in the original manifold with high dimension (He and Niyogi,
2003). A LDA classifier was trained using the LPP projected
training data. Once the LPP-LDA classifier was trained, the
testing segments were projected by the obtained LPP projection,
and the trained LDA was used to classify the testing data into
either “signal” or “noise.” A detection of motor intention would
be registered when a number of continuous windows [referred to
window number (WN)] were classified as “signal.” One detection
would be determined either as a true or false detection according
to the detection latency (DL), i.e., the time difference between
the detection and the task cue. If the DL was between -1 and
1 s, the detection was considered a true detection, otherwise a
false detection. It should be emphasized here that the target of
this study is a short-latency brain switch. Therefore, we only
considered these detections within a few hundredsmicroseconds,
even though signals outside this range may improve the accuracy
for modalities such as Beta rebound. The true positive rate
(TPR), false positive (FP) per minute, and DL were calculated
to quantify the BCI performance. Compared with false positive
rate (or specificity) which is generally used for evaluating binary
classification (Hashimoto and Ushiba, 2013; Jochumsen et al.,
2013) FP/min is more suitable for quantifying the performance
of continuous detection in a (pseudo-) online paradigm, as was
done in Niazi et al. (2011) and Xu et al. (2014a). As any detector,
there is a trade-off between TPR and FP. Both TPR and FP are
constrained by WN, whose increment would make the detection
stricter (more difficult), leading to lower TPR and smaller FP. In
order to objectively compare the BCI performance, we chose the
WN value for which the FP was smaller than or equal to 8/min
for all comparisons. Thus, only the TPR and DL were statistically
compared.

Subband Power Estimation and Motor Imagery

Detection
The subband power was also used as a direct feature for
classification. For this purpose, the powers of the virtual Cz
channel at the six frequency bands were estimated using the
Welch periodogram with a resolution of 1Hz. As for the time-
series features, the window duration was of 2 s, with increments
of 0.1 s. “Signal” and “noise” portions were the same as for the

time-series features, and the same three-fold cross-validation
method was used to test performance.

Since the dimensions of the subband power features are small,
no dimension reduction method was used. The “signal” and
“noise” portions were directly used to train a LDA classifier,
which was used for detection of motor intention from the testing
set. All BCI performance criteria were calculated with the same
steps as in the time-domain processing, and analyzed using the
statistical methods described in the following.

Statistical Methods
A paired t-test was performed for MRCP morphology analysis.
The comparison was between the amplitude of the MRCP for the
reference interval (i.e., mean value of−3 to−2 s w.r.t. task onset)
and the magnitude of each 0.1 s-length segments of the virtual
Cz outside the reference interval. A Holm-Bonferroni correction
was performed for this multiple comparison, and the significance
level was set to 0.05.

Three-way repeated ANOVA was used to investigate the
effect of the three factors on BCI performance. The independent
variables were TPR and DL. The three main factors were
motor task (ballistic and repetitive imagination), frequency band
(MRCP, Theta, Alpha, Beta, Gamma, and full frequency bands),
and processing technique (time-series analysis and subband
power estimation). A full model ANOVA with all interaction
terms was performed first and, when significant interactions
were detected, post-hoc tests (Tukey simultaneous test with
significance level of 0.05) were performed.

RESULTS

Signal Morphology
MRCP Morphology
The MRCPs of a typical subject performing the two types of
motor imageries are shown in Figures 2A,B. For the ballistic
task (Figure 2A), theMRCP started to decrease approximately 2 s
prior to the task onset, reached the negative peak around t = 0
s, and returned to the baseline in approximately 2 s after the task
onset. In the repetitive task, the MRCP (Figure 2B) had a similar
shape to that of the ballistic case before t = 0 s but the rebound
phase was much longer in duration. Before task onset, both the
ballistic and repetitive MRCP showed significant differences to
the baseline starting from −1 s. However, the characteristics of
the two motor tasks were different for the rebound part. No
significant difference was found between the ballistic MRCP and
the baseline from the time of 1 s, indicating it already returned
back to the baseline. On the other hand, the repetitive MRCP still
showed significance as late as 4 s after the task onset.

The above difference between ballistic and repetitive tasks
was consistent across all subjects, as shown in Figure 2C. These
results indicate a strong predictive power of MRCPs in detection
of movement intention of the subjects for both types of motor
imageries.

SMR Mapping
The SMR maps for three representative subjects for the two
types of movement imageries are shown in Figure 3. For subject

Frontiers in Neuroscience | www.frontiersin.org 4 January 2016 | Volume 9 | Article 527

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Xu et al. Factors of Influence on a Short-Latency Brain Switch

FIGURE 2 | MRCP corresponding to (A) ballistic (BAL) and (B) repetitive (REP) motor imagery from a typical subject. The dashed lines indicate the

logarithmic p-value of the paired t-test between the MRCP (either ballistic or repetitive) and its reference between −3 and −2 s., while the solid horizontal line indicates

significance level. (C): The average MRCP over the 10 subjects. The black line corresponds to ballistic imagery and the red line to the repetitive motor imagery.

FIGURE 3 | SMR mapping from three representative subjects. (A) subject A; (B) subject B; (C) subject C. BAL and REP stand for ballistic and repetitive task,

respectively. Only those points with significance in bootstrap test are presented. Red area indicates ERS, while blue area is ERD.

A, there was an evident ERD starting slightly earlier than
the task onset, between the Beta and the lower Gamma band
(above ∼20Hz) for the ballistic imagery, while it corresponded
to a larger bandwidth for repetitive imagery. There was also
an evident ERS in the Alpha and Beta bands for both tasks,
but the repetitive ERS occurred much later than the ballistic
one. However, the SMR landscape was very different for subject
B, whose ERD and ERS mainly appeared in the Alpha and
lower Gamma band, respectively. Subject C showed still other
characteristics. The ERD occurred over almost the full band for
the ballistic imagery, whereas it did not present a clear pattern in
the repetitive imagery. Moreover, for all subjects, both the ERD

and ERS occurred earlier in case of ballistic imagery with respect
to repetitive imagery. ERS appeared before imagery onset in both
ballistic and repetitive tasks of subject B, and also in the repetitive
task of subject C.

In summary, the SMR mapping differed substantially among
the subjects, thus a general average across the subjects would not
be meaningful and therefore is not reported.

BCI Performance
The BCI performance in detection of motor imagery is
summarized in Table 1. The WN is shown in Figure 4. The
ballistic MRCP with time-series analysis reached the highest TPR
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TABLE 1 | BCI performance.

Frequency band Time-series analysis Subband power estimation

BAL REP BAL REP

TPR% DL/ms TPR% DL/ms TPR% DL/ms TPR% DL/ms

MRCP 70 ± 20 267± 121 44± 13 197± 201 47±18 389±113 47± 25 239± 228

Theta 41±8 64± 151 41± 9 132± 127 47±21 369±128 43± 20 204± 230

Alpha 32±8 37± 138 28± 8 83± 180 48±18 260±218 48± 16 230± 176

Beta 32±10 106± 144 32± 9 36± 113 57±19 282±198 50± 16 142± 243

Gamma 37±8 40± 97 36± 10 37± 161 53±16 256±121 48± 16 210± 111

Full 54±18 224± 108 30± 7 185± 202 51±19 192±195 46± 11 254± 174

BAL and REP stand for ballistic and repetitive imagery, respectively. True positive rate (TPR) is the ratio between true detection and the total number of trials in the testing set. Detection

latency (DL) is the timing difference between the detection point and the task onset. The TPR and DL were chosen where false positive ≤8min−1. The positive DL indicates that the

detection happened after the task onset. The best accuracy is indicated in bold.

FIGURE 4 | Window number (WN). WN is chosen where false positive

≤ 8min−1. T-BAL and T-REP represent ballistic and repetitive task with time

serial analysis, while S-BAL and S-REP stand for these two motor task with

subband power estimation.

(70 ± 20%), followed by ballistic Beta band with subband power
estimation (57 ± 19%). SMRs with time-series analysis yielded
shorter DL (<100ms), however the corresponding detection
accuracy was extremely low (∼30%). For each frequency band
of either motor task (except the full band of the ballistic task),
the time-domain technique resulted in shorter DL than the
frequency-domain technique.

A representative segment of detecting ballistic MRCP with
time-serial analysis was shown in Figure 5. Three black stars
stand for the onsets of three consecutive tasks. For the first two,
the detector successfully identifies them, which were labeled as
Green stars. Moreover, this method demonstrated its robustness
again moderate variation which appeared after the second trial
(∼25 s). In spite of this, there is still a false detection (labeled as a
red star) when huge noise was introduced during the third trial.

Analysis of True Positive Rate
For a meaningful comparison between methods, the TPR is
reported in all cases for the same level of false positives

(≤8min−1). The Three-way ANOVA on TPR found no three-
way interaction (p = 0.074). Neither was the interaction between
motor task and processing technique (p = 0.283). However, there
was a significant interaction between motor task and frequency
band (p = 0.015), as well as between processing technique and
frequency band (p < 0.001). Therefore, we performed post-hoc
tests on the significant interactions.

Focusing on the interaction betweenmotor task and frequency
band, the post-hoc comparison revealed that the MRCP of the
ballistic task yielded the highest TPR (60 ± 22%). This was
comparable to the full band of the same task, and significantly
better than all other combinations (no significance was found
among them). In addition, for both the MRCP and the full band,
the ballistic task significantly outperformed the repetitive task.

For the other significant interaction between processing
technique and frequency band, the difference depended on each
factor. MRCP with time-series analysis provided the highest
TPR (57 ± 22%), which was significantly better than all
other frequency bands with the same processing technique. For
the other processing technique, i.e., subband power analysis,
there was no significant difference among frequency bands.
Furthermore, it was observed that, for Alpha and Beta band,
subband power analysis outperformed time-series analysis.

Analysis of Detection Delay
There was no three-factor interaction (p = 0.451), nor
two-factor interactions (p = 0.197, 0.532, 0.081). Both the
processing technique and frequency band were significantly
different (p < 0.001 and p = 0.004, respectively). The post-
hoc comparison revealed that the time-domain technique had
lower DL than the frequency-domain technique (117 ± 169 vs.
252 ± 194ms), while the MRCP resulted in longer DL than
Alpha, Beta, and Gamma band (265 ± 185 vs. 145 ± 205,
129± 193, and 125± 159ms, respectively).

Summary
Based on the above statistical analysis of TPR and DL, we
summarize the influence of the three factors here. The ballistic
task, is preferable over the repetitive task, as it yielded higher
TPR for both MRCP and full band. Even though MRCP’s DL
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FIGURE 5 | Representative detection of MRCP. The blue line is a segment

of virtual Cz from ballistic task. Black stars stand for the task onsets. Green

stars represent true detections, while the red star is a false detection.

was slightly larger than for some SMRs, MRCP was still the best
choice among all six frequency bands, given its highest TPR for
both tasks and for the time-series processing technique. Time-
series analysis outperformed subband power analysis, mainly due
to a significantly shorter DL.

In summary, this comprehensive comparison on motor
intention detection with two motor tasks (ballistic and
repetitive), six frequency bands (MRCP, Theta, Alpha, Beta,
Gamma, and full band), and two processing techniques (time-
series analysis and subband power estimation) showed that
the combination of ballistic, MRCP and time-series analysis
significantly is preferred among all the considered options.

DISCUSSION

As a crucial aspect of closed-loop rehabilitation systems, the
detection of the motor intention from scalp EEG is a central
challenge in motor imagery based BCI. In recent years, there
has been an increasing number of publications of clinical studies
using SMR-based BCI (Ramos-Murguialday et al., 2013; Ang
et al., 2014a,b; Li et al., 2014; Mukaino et al., 2014; Ono
et al., 2014). On the other hand, MRCPs have also been proven
as a promising signal type, particularly for neuromodulation
purposes due to its short detection latency (Mrachacz-Kersting
et al., 2012; Niazi et al., 2012; Xu et al., 2014b). Preliminary studies
of MRCP-based BCI applied to chronic stroke patients have also
been reported (Mrachacz-Kersting et al., 2015).

According to the Hebbian principle of associative plasticity
(Hebb, 1949), neuroplasticity would only be induced when
the motor intention and the task specific afferent feedback,
e.g., passive movement delivered by an orthosis, occur
synchronously in a cause-and-effect fashion. Therefore, an
effective neuromodulation system requires not only accurate
algorithms, but also algorithms that present short detection
latencies, ideally shorter than 300ms.

In the past decades, SMR has been the main signal modality
used for detection purposes. TPRs above 80% were reported with
Beta ERS (Müller-Putz and Kaiser, 2010;Wang et al., 2012), while
the performance of ERD was also demonstrated to be above 70%
(Planelles et al., 2014; Yang et al., 2014). However, the issue of
detection latency was largely overlooked in these studies, with
only one exception which reported a latency in the range of
seconds (Hashimoto and Ushiba, 2013). In this study, the best
TPR using SMR was 57%, for the beta band in the ballistic
task using subband power estimation. Compared with previous
studies, the performance here decreased obviously, mainly due
to the limited range of latency. In these previous studies using
SMR, detection latency was rarely reported. Its average latency
can be more than one second if we take into consideration
those detections which occur several seconds after the task onset
(Hashimoto and Ushiba, 2013). On the contrary, in the current
study, short latency detection is essential, as it is mandatory for
the purpose of plasticity induction (Mrachacz-Kersting et al.,
2012). As such, those detections occurring after 1 s were counted
as false detections rather than true ones, resulting in a latency
of several hundred milliseconds as shown in Table 1. Taking
later windows into consideration would likely improve TPR, but
would lead to a long-latency brain switch, which would be out of
the focus of this study.

On the other hand, slow cortical potentials, such as MRCP,
have been investigated for movement intention detection in
recent years (Qian et al., 2010; Bai et al., 2011; Niazi et al., 2011;
Lew et al., 2012; Bulea et al., 2013, 2014; Bhagat et al., 2014;
Xu et al., 2014a). In the current study, the average TPR and
DL was 70% and <300ms for motor imagination, consistent
with the results reported in previous studies (Niazi et al., 2011,
2012; Xu et al., 2014a,b). The relatively good performance in
TPR (>70%) is essential for the high efficiency of MRCP-
based BCI system. In particular, the detection latency of a
few hundred milliseconds was demonstrated to be crucial for
plasticity induction (Mrachacz-Kersting et al., 2012).

In this study, we demonstrated that ballistic motor imagery
task, frequency band of MRCP, and time-series analysis is the
optimal combination in terms of detection performance. Other
options investigated are sub-optimal, mainly due to a trade-off
between TPR and DL.

We also observed that repetitive SMR with subband power
estimation was significantly better in accuracy than the ballistic
one. This is in accordance with the discussion by Pfurtscheller
& Solis-Escalante that SMR in repetitive task is easier to classify
(Pfurtscheller and Solis-Escalante, 2009).

The different EEG features between the ballistic and repetitive
task may be attributed to the difference in their afferent input
(Cassim et al., 2000). As explained by Bear (Bear et al., 2007),
compared to the repetitive task which has sufficient time for the
sensory-motor loop to feedback, the ballistic movement, once
initialized, is too fast to adjust. In addition, this difference may
also be explain by the fact that there is an inhibitory process
immediate following the ballistic task (Alegre et al., 2003), while
this is not the case for the repetitive task.

The morphological difference between ballistic and repetitive
tasks may mainly contribute to the differences in the detection
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performance of the two motor tasks. The prolonged negative
phase in repetitiveMRCP (in Figure 2) makes its rebound feature
after task onset not as distinct as the ballistic one. That is why the
accuracy of repetitive MRCP with time-series analysis is much
lower than the ballistic one. On the other hand, in the case
of subband power analysis, the frequency band did not have a
significant influence on accuracy. This is likely explained due to
the observed variability in the optimal frequency bands among
individual subjects (see Figure 3).

Limitations
The above comparison was performed only on healthy subjects.
Previous findings mostly support the similarity in slow EEG
waves (e.g., MRCP) between healthy and stroke or spinal cord
injured patients (Castro et al., 2007; Mattia et al., 2009; Niazi
et al., 2011; Xu et al., 2014c), despite their non-negligibly distinct
features such as onset and amplitude (Yilmaz et al., 2014),
whereas SMRs trend to have greater difference on patients with
central neural injury (Tran et al., 2004; Gourab and Schmit,
2010; Müller-Putz et al., 2014). Other different factors such as
medication and mental status in patients could be challenging
for clinical measurements. Therefore, further investigation on the
target patient population is necessary.

In addition, the combination of several features with different
processing techniques, such as those presented in Ibáñez et al.
(2014) and López-Larraz et al. (2014), was not investigated in

the current study. This study focused exclusively on a general
comparison without subject-specific optimization, the combined
features, e.g., SMR and MRCP, would be worthy to investigate in
future work.

CONCLUSION

In this study, we performed a comprehensive comparison
of motor task, frequency band, and processing technique, to
investigate their influence on the performance of a short-latency
brain switch. The morphological investigation found cross-
subject consistency in MRCP, which supports its advantage for
a subject-independent use. The BCI detection performance was
maximized by using the ballistic imagery task, the DC bandwidth
(MRCP), and the time-series analysis.
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