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Abstract

We study spaces of modelled distributions with singular behaviour near the boundary of a

domain that, in the context of the theory of regularity structures, allow one to give robust

solution theories for singular stochastic PDEs with boundary conditions. The calculus of

modelled distributions established in Hairer (Invent. Math. 198, 2014) is extended to this

setting. We formulate and solve fixed point problems in these spaces with a class of kernels

that is sufficiently large to cover in particular the Dirichlet and Neumann heat kernels.

These results are then used to provide solution theories for the KPZ equation with Dirichlet

and Neumann boundary conditions and for the 2D generalised parabolic Anderson model

with Dirichlet boundary conditions.

In the case of the KPZ equation with Neumann boundary conditions, we show that,

depending on the class of mollifiers one considers, a “boundary renormalisation” takes

place. In other words, there are situations in which a certain boundary condition is applied

to an approximation to the KPZ equation, but the limiting process is the Hopf-Cole solution

to the KPZ equation with a different boundary condition.
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1 Introduction

The theory of regularity structures, recently developed in [Hai14], was in large part moti-

vated by, and very successful in dealing with, singular stochastic partial differential equa-

tions (SPDEs). These SPDEs are typically semilinear perturbations of the stochastic heat

equation, with their formal right-hand side including expressions that are not well-defined

even for functions that are as regular as the solution of the linear part. One well-known

example is the KPZ equation

∂tu = ∆u + (∂xu)2 + ξ,

where ξ is the 1 + 1-dimensional space-time white noise. From the linear theory we know

that u is not expected to have better (parabolic) regularity than 1/2, so its spatial derivative

is a distribution, which, in general, one cannot take the square of. The theory developed

in [Hai14] provided a robust concept of solution to equations like KPZ [Hai13], Φ4
3
, the

parabolic Anderson model in both two [Hai14] and three [HP15] dimensions, the dynamical

Sine-Gordon model [HS16] on the torus, or such equations on the whole Euclidean space

[HL15]. As neither the torus nor the whole space has boundaries, the spatial behaviour

in these examples are ‘uniform’, and the only blow-up of the generalised abstract Taylor

expansions - also referred to as ‘modelled distributions’ - that describe the solutions occur

at the {t = 0} hyperplane of the initial time.

The aim of the present article is to provide a framework within the context of this

theory, with which one can provide solution theories for initial-boundary problems for

singular SPDEs. The appropriate spaces of modelled distributions introduced here are

flexible enough to account for singular behaviour at the spatial boundary. These are similar

to the singularities at the initial time treated in [Hai14] and indeed a similar calculus can

be built on them. One could hope that, provided such a generalisation of the abstract

calculus is obtained, coupling it with rest of the theory automatically gives solution theories

of the same equations that were previously considered without or with periodic boundary

conditions, now with for instance Dirichlet or Neumann boundary conditions. However, a

subtle-looking but notable difference is that the codimension 2 of the initial time hyperplane

is replaced by the codimension 1 of the spatial boundary, and therefore dual elements of

spaces of test functions supported away from the boundary which are uniformly ‘locally

in Cα’ for α < −1 have no canonical extensions as bona fide distributions - a simple

example for such situation is the function 1/|x |, considered as an element of D′(R \ {0}).
As elements with (local) regularity less than −1 are quite common in applications (unlike

elements with regularity less than −2), for each such object one has to make sense of their

extensions, in a consistent way so that the sufficient continuity properties are preserved.

Although, unlike the rest of the theory, the treatment of this issue is not performed in a

systematic way, the methods used to treat the examples discussed in the next section are

likely to be relevant to different situations.



Introduction 3

1.1 Applications

We now give a few examples of singular SPDEs to which the framework developed in this

article can be applied. The proofs of the results stated here are postponed to Section 6.

Our first example is the Dirichlet problem for the two-dimensional generalised parabolic

Anderson model given by

∂tu = ∆u + fi j (u)∂iu∂ju + g(u)ξ on R+ × D,

u = 0, on R+ × ∂D,

u = u0. on {0} × D

(1.1)

Here ξ denotes two-dimensional spatial white noise, g and fi j , i, j = 1, 2 are smooth

functions, D is the square (−1, 1)2, and u0 belongs to Cδ(D̄) for some δ > 0 and vanishes

on ∂D.

Take a smooth compactly supported function ρ on R2 integrating to 1, define ρε(x) =
ε−2ρ(ε−1x) and set ξε = ρε ∗ ξ. Consider then the renormalised approximating initial /

boundary value problem

∂tu
ε
= ∆uε + fi j(uε)(∂iuε∂juε − δi jCεg2(uε))
+ g(uε)(ξε − 2Cεg

′(uε)) on R+ × D,

uε = 0, on R+ × ∂D,

uε = u0, on {0} × D,

(1.2)

for some constants Cε. One can solve (1.2) in the classical sense, and in the ε → 0 limit

this provides a concept of local solution to (1.1) in the following sense.

Theorem 1.1. There exists a choice of diverging constants Cε and a random time T > 0 such

that the sequence uε1[0,T ] converge in probability to a continuous function u. Furthermore,

provided that the constants Cε are suitably chosen, the limit does not depend on the choice

of the mollifier ρ.

Remark 1.2. We believe that the choice D = (−1, 1)2 is not essential, the restriction to the

square case is mostly for the sake of convenience: it is easier to verify our conditions when

the explicit form of the Greens function is known.

Remark 1.3. One could easily deal with inhomogeneous Dirichlet data of the type uε = g

on ∂D by considering the equation for uε − ĝ, where ĝ is the harmonic extension of g to all

of D.

Our next example is the KPZ equation with 0 Dirichlet boundary condition. Write

this time ξ for space-time white noise and choose u0 ∈ Cδ([−1, 1]) for some δ > 0 with

u0(±1) = 0. Taking a smooth, compactly supported function ρ integrating to 1, define

ρε(t, x) = ε−3ρ(ε−2t, ε−1x) and set ξε = ρε ∗ ξ. The approximating equations then read as

∂tu
ε
=

1
2
∂2
xuε + (∂xuε)2 − Cε + ξε on R+ × [−1, 1],

uε = 0, on R+ × {±1},
uε = u0 on {0} × [−1, 1].

(1.3)

Remark 1.4. We have chosen to include the arbitrary constant 1
2

in front of the term ∂2
xu so

that the corresponding semigroup at time t is given by the Gaussian with variance t.
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We then have the following analogous result on local solvability.

Theorem 1.5. If ρ satisfies the condition ρ(x, t) = ρ(−x, t), then the statement of Theo-

rem 1.1 also holds for uε defined in (1.3).

Remark 1.6. If the additional symmetry on ρ fails, then an analogous result holds, but an

additional drift term appears in general, see for example [HS15].

A more interesting situation arises when trying to define solutions to the KPZ equation

with Neumann boundary conditions. First, in this case, it is much less clear a priori what

such a boundary condition even means since solutions are nowhere differentiable. It is

however possible to define a notion of “KPZ equation with Neumann boundary conditions”

via the Hopf-Cole transform. Indeed, it suffices to realise that, at least formally, if u solves

∂tu =
1
2
∂2
xu + (∂xu)2 + ξ , ∂xu(t,±1) = c± , (1.4)

then the process Z = exp(2u) solves

∂t Z =
1
2
∂2
xZ + 2Z ξ , ∂xZ(t,±1) = 2c±Z(t,±1) . (1.5)

The latter equation is well-posed as an Itô stochastic PDE in mild form [DPZ92] (with

the boundary condition encoded in the choice of heat semigroup for the mild formulation),

so that we can define the “Hopf-Cole solution” to (1.4) by u = 1
2

log Z with Z solving

(1.5). This is the point of view that was taken in [CS16] where the authors showed that

the height function associated to a large but finite discrete system of particles performing

a weakly asymmetric simple exclusion process converges to the solutions to (1.4) with

boundary conditions c± that are related to the boundary behaviour of the discrete system in

a straightforward way. In particular, if the ‘net flow’ of particles at each boundary is 0, then

c± = 0.

One of the main results of the present article is to show that the values of c± are very

“soft” in the sense that they in general depend in a rather non-trivial way on the fine details

of the particular approximation one considers for (1.4). This is not too surprising: after all,

the solution itself is not differentiable, so it is not so clear what we mean when we impose

the value of its derivative at the boundary. To formulate this more precisely, consider

ξε = ρε ∗ ξ and û0 ∈ Cδ([−1, 1]) as before (except that we do not impose that û0 vanishes

at the boundaries) and let ûε be the solution to

∂t û
ε
=

1
2
∂2
x ûε + (∂x ûε)2 + ξε on R+ × [−1, 1],

∂x ûε = b̂±, on R+ × {±1},
ûε = û0 on {0} × [−1, 1].

(1.6)

We then have the following result.

Theorem 1.7. There exist constants Cε with limε→0 Cε = ∞, as well as constants a, c ∈ R
such that, setting

uε(t, x) = ûε(t, x) − Cεt − cx , (1.7)

the sequence uε converges, locally uniformly and in probability, to a limit u solving the

KPZ equation (1.4) in the Hopf-Cole sense with boundary data b± = b̂± − c ± a and with

initial condition u0(x) = û0(x) − cx. In the particular case where ρ(x, t) = ρ(−x, t), one

has c = 0.
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Remark 1.8. Even in the symmetric case, one can have a , 0, so that one can end up with

non-zero boundary conditions in the limit, although one imposes zero boundary conditions

for the approximation.

Remark 1.9. The effect of subtracting cx in (1.7) is the same as that of adding a drift term

2c∂xuε to the right hand side of (1.6) and changing the boundary condition ĉ± into ĉ± − c,

which is the reason for the form of the constants c±.

Remark 1.10. At first sight, this may appear to contradict the results of [BBF15] where the

authors consider the three-dimensional parabolic Anderson model in a rather general setting

which covers that of domains with boundary. Since this scales in exactly the same way as

the KPZ equation (after applying the Hopf-Cole transform), one would expect to observe a

similar “boundary renormalisation” in this case. The reason why there is no contradiction

with our results is that there is no statement on the behaviour of the renormalisation term

λε in [BBF15, Thm 1] as a function of position. What our result suggests is that, at least in

the flat case, one should be able to take λε of the form λε = Cε + µ, where Cε is a constant

and µ is some measure concentrated on the boundary of the domain.

Remark 1.11. The recent result [GPS17] is consistent with our result in the sense that it

shows that the “natural” notion of solution to (1.4) with homogeneous Neumann boundary

condition (i.e. c± = 0) does not coincide with the Hopf-Cole solution with homogeneous

boundary data. In this particular case, one possible interpretation is that, for any fixed

time, the solution to the KPZ equation is a forward / backwards semimartingale (in its

own filtration) near the right / left boundary point. It is then natural to define the “space

derivative” at the boundary to be the derivative of its bounded variation component. When

performing the Hopf-Cole transform, one then picks up an Itô correction term, which

is precisely what one sees in [GPS17]. Note however that it is not clear at all whether

the homogeneous Neumann solution of [GPS17] can be obtained by considering (1.6) with

b̂± = 0 for some mollifier ρ. This is because, with our conventions for units, this corresponds

to the Hopf-Cole solution with b± = ±1, while in our case one has |a | ≤ 1
2

as a consequence

of the explicit formula (1.8) for typical choices of the mollifier, i.e. those with ρ ≥ 0.

One has explicit expressions for c and a in terms of ρ: with the notation ρ̄(s, y) =
ρ(−s,−y) and Erf standing for the error function, one has the identities

a =

∫

R2

(ρ̄ ∗ ρ)(s, y)
(1

2
− 1

2
Erf

( |y |
√

2|s |

)

− 2|y |N(y, s)
)

ds dy , (1.8)

c = 2

∫

R2

(ρ̄ ∗ ρ)(s, y) yN(y, s) ds dy , (1.9)

where Ndenotes the heat kernel, see Section 6.3 below. Note that in both cases the function

integrated against ρ̄ ∗ ρ vanishes at s = 0 for any fixed value of y, so that a = c = 0 if we

consider the KPZ equation driven by purely spatial regularisations of white noise. To the

best of our knowledge, this is the first observed instance of “boundary renormalisation” for

stochastic PDEs. On the other hand, it is somewhat similar to the effects one observes in

the analysis of (deterministic) singularly perturbed problems in the presence of boundary

layers, see for example [Hin91, Hol13].

The remainder of the article is structured as follows. After recalling some elements of

the theory of regularity structures in Section 2, mostly to fix our notations, we introduce in

Section 3 the spaces of modelled distributions that are relevant for solving singular stochastic



6 Elements of the theory of regularity structures

PDEs on domains. Section 4 is then devoted to a rederivation of the calculus developed in

[Hai14], adapted to these spaces, with an emphasis on those aspects that actually differ in

the present context. In Section 5, we then “package” these results into a rather general fixed

point theorem, which is finally applied to the above examples in Section 6.
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2 Elements of the theory of regularity structures

First let us summarise the relevant definitions, constructions, and results from the theory of

regularity structures that we will need in the sequel.

2.1 Main definitions

Definition 2.1. A regularity structure T = (A,T,G) consists of the following elements.

• An index set A ⊂ R which is locally finite and bounded from below.

• A graded vector space T =
⊕

α∈A Tα with each Tα a finite-dimensional normed

vector space.

• A group G of linear operators Γ : T → T , such that, for all Γ ∈ G, α ∈ A, a ∈ Tα,

one has Γa − a =
⊕

β<α Tβ.

We will furthermore always consider situations where T0 contains a distinguished element

1 of unit norm which is fixed by the action of G.

Definition 2.2. Given a regularity structure and α ≤ 0, a sector V of regularity α is a

G-invariant subspace of T of the form V =
⊕

β∈A Vβ such that Vβ ⊂ Tβ and Vβ = {0} for

β < α.

With V as above, we will always use the notations V+α =
⊕

γ≥α Vγ and V−α =
⊕

γ<α Vγ,

with the convention that the empty direct sum is {0}. Some further notations will be useful.

For a ∈ T , its component in Tα will be denoted either by Qαa or by (a)α and the norm of

(a)α in Tα is ‖a‖α. The projection onto T−α is denoted by Q−α. The coefficient of 1 in a is

denoted by 〈1, a〉.
We henceforth fix a scaling s on Rd, which is just an element of Nd . We use the

notations |s | = ∑d
i=1 si, and, for any d-dimensional multiindex k, we write |k |s =

∑d
i=1 siki.

A scaling also induces a metric on Rd by ds(x, y) =
∑d

i=1 |xi − yi |1/si , and this quantity

will also sometimes be denoted by ‖x − y‖s . This is homogeneous under the mappings Sδ
s

defined by

Sδs (x1, . . . , xd) = (δ−s1 x1, . . . , δ
−sd xd)

in the sense that ‖Sδs x‖s = δ−1‖x‖s. The ball with center x and radius r, in the above sense,

is denoted by B(x, r). We also define the mapping Sδs,x, acting on L1(Rd) by

(Sδs,xϕ)(y) = δ−|s |ϕ(Sδs (y − x)).

We will also sometimes use the shortcut ϕδx = Sδs,xϕ.
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One important regularity structure is that of the polynomials in d commuting variables,

which we denote by X1, . . . , Xd. For any nonzero multiindex k, we denote

Xk
= X

k1

1
· · · Xkd

d
,

and also use the notation X0
= 1. We define the index set Ā = N, for any n ∈ N, the

subspaces

T̄n = span{Xk : |k |s = n},

and for any h ∈ Rd, the linear operator Γ̄h by

(Γ̄hP)(X) = P(X + h).

It is straightforward to verify that this defines a regularity structure T̄ , with structure group

Ḡ = {Γ̄h : h ∈ Rd} ≈ Rd.

In most of the following we consider d, T , and s to be fixed. We will always assume that

our regularity structures contain T̄ in the sense of [Hai14, Sec. 2.1]. A concise definition of

the Hölder spaces of all (non-integer) exponents that are used in the sequel is the following.

Definition 2.3. A distribution ξ ∈ D′(Rd) is said to be of class Cα, if for every compact

set K ⊂ Rd it holds that

|ξ(ϕδx)| . δα (2.1)

uniformly over δ ≤ 1, x ∈ K, and over test functions ϕ supported on B(0, 1) that furthermore

have all their derivatives up to order (⌈−α⌉+1)∨0 bounded by 1 and satisfy
∫

ϕ(x)xk dx = 0

for every multiindex |k | < α. The best proportionality constant in (2.1) is denoted by ‖ξ ‖α;K.

We shall also use the notation Br for smooth functions ϕ supported on B(0, 1) and

having derivatives up to order r bounded by 1.

Definition 2.4. A model for a regularity structure T on Rd with a scaling s consists of the

following elements.

• A map Γ : Rd ×Rd → G such that ΓxyΓyz = Γxz for all x, y, z ∈ Rd.

• A collection of continuous linear maps Πx : T → S′(Rd) such that Πx = Πy ◦ Γxy
for all x, y ∈ Rd.

Furthermore, for every γ > 0 and compact K ⊂ Rd, the bounds

|(Πxa)(Sδ
s,xϕ)| . ‖a‖lδl, ‖Γxya‖m . ‖a‖l‖x − y‖l−m

s
(2.2)

hold uniformly in x, y ∈ K, δ ∈ (0, 1], ϕ ∈ Br , l < γ, m < l, and a ∈ Tl . Here, r is the

smallest integer such that l > −r for all l ∈ A.

The best proportionality constants in (2.2) are denoted by ‖Π‖γ,K and ‖Γ‖γ,K, respec-

tively.

We shall always assume that all models under consideration are compatible with the

polynomials in the sense that (ΠxXk)(y) = (y − x)k for any multiindex k. A central notion

of the theory is that of a modelled distribution, spaces of which are defined as follows.
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Definition 2.5. Let V be a sector and (Π, Γ) be a model. Then, for γ ∈ R, the space

Dγ(V ; Γ) consists of all functions f : Rd → V−γ such that, for every compact set K,

||| f |||γ,K = sup
x,y∈K
‖x−y ‖s≤1

sup
l<γ

‖ f (x) − Γxy f (y)‖l
‖x − y‖γ−ls

< ∞, (2.3)

where the supremum in l runs over elements of A.

Although the spaces Dγ depend on Γ, in many situation, where there can be no confusion

about the model, this dependence will be omitted in the notation. The name ‘modelled

distribution’ is justified by the following result.

Theorem 2.6. Let V be a sector of regularity α and let r = ⌈−α + 1⌉. Then for any γ > 0

there exists a continuous linear map R : Dγ(V) → Cα such that for every C > 0, the

bound

|(R f − Πy f (y))(ψλx )| . λγ ||| f |||γ,suppψλ
x
, (2.4)

holds locally uniformly over x ∈ Rd and uniformly over ψ ∈ Br , over λ ∈ (0, 1], over

y ∈ suppψλx , and over models satisfying ‖Π‖γ,B(x,2) ≤ C. Furthermore, (2.4) specifies R f

uniquely.

It is clear from (2.4) that the reconstruction operator R is local, so in particular one can

‘reconstruct’ modelled distributions that only locally lie in Dγ.

Remark 2.7. While in [Hai14] in the bound (2.4), y = x is assumed, this version is essentially

equivalent: for all y ∈ suppψλx , one can simply rewrite ψλx as ψ̄2λ
y with some ψ̄ ∈ Br .

Let us also note that in the literature the use of the notation ||| · ||| is slightly incon-

sistent: sometimes it is defined as in (2.3), in some other instances it includes the term

supx∈K supl<γ ‖ f (x)‖l . We will also be guilty of this: while for now, in the unweighted

setting, (2.3) is convenient since that is what appears in the bounds for reconstructions like

(2.4) above and (2.11) below, the weighted versions of ||| · ||| introduced in Section 3 do

include controls over ‖ f (z)‖.

Definition 2.8. A continuous bilinear map ⋆ : T × T → T is called a product if, for a ∈ Tα
and b ∈ Tβ, one has a ⋆ b ∈ Tα+β , and 1⋆ a = a ⋆ 1 for all a ∈ T . The products arising in

this article will always be associative and commutative, at least on some sufficiently large

subspace.

A pair of sectors (V,W) is said to be γ-regular with respect to the product ⋆ if (Γa)⋆
(Γb) = Γ(a⋆ b) for all Γ ∈ G and a ∈ Vα, b ∈ Wβ, satisfying α + β < γ. A sector is called

γ-regular, if the pair (V,V ) is γ-regular. Given two T-valued functions f and f̄ , we also

denote by f ⋆γ f̄ the function x → Q−γ ( f (x)⋆ f̄ (x)).

For γ > 0, a sector V of regularity 0, a product ⋆ such that V ⋆V ⊂ V , and a smooth

function F : Rn → R one can then define a function F̂γ : Vn → V by setting

F̂γ(a) = Q−γ
∑

k

DkF(ā)
k!

ã⋆k, (2.5)

where the sum runs over all possible n-dimensional multiindices, with the conventions

ā = 〈1, a〉, ã = a − ā, k! = k1! · · · kn!, ã⋆k = ã
⋆k1

1
⋆ · · ·⋆ ã

⋆kn
n for k , 0, and ã⋆0

= 1.

The abstract version of differentiation is quite straightforward.
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Definition 2.9. Given a sector V , a family of operators Di : V → V with i = 1, . . . , d is

called an abstract gradient if for every i, every α and every a ∈ Vα, one has Dia ∈ Tα−si
and ΓDia = DiΓa for all Γ ∈ G.

A model (Π, Γ) is called compatible with D , if for all a ∈ V , x ∈ Rd, and for all i, it

holds that

DiΠxa = ΠxDia,

where Di is the usual distributional differentiation in the i-th unit direction.

The final important operation on modelled distribution is the integration against singular

kernels, the aim of which is to ‘lift’ convolutions with Green functions to the abstract setting.

The first ingredient is the abstract integral operator.

Definition 2.10. Given a sector V , a linear map I : V → T is an abstract integration map

of order β > 0 if:

• I(Vα) ⊂ Tα+β for all α ∈ A.

• Ia = 0 for all a ∈ V ∩ T̄ .

• IΓa − ΓIa ∈ T̄ for all a ∈ V and Γ ∈ G.

In our applications β will always be 2, but for most of the analysis the one important

property required of β is that for each α ∈ A, α+ β ∈ Z implies α ∈ Z. In particular, under

this assumption, I does not produce any components in integer homogeneities. The class

of kernels we will want to lift is characterised as follows.

Definition 2.11. For β > 0 the class Kβ of functions Rd × Rd \ {x = y} → R consists

of elements K that can be decomposed as K(x, y) = ∑

n≥0 Kn(x, y), where the functions Kn

have the following properties:

• For all n ≥ 0, Kn is supported on {(x, y) : ‖x − y‖s ≤ 2−n}.
• For any two multiindices k and l, |Dk

1
Dl

2
Kn(x, y)| . 2n( |s |+ |k+l |s−β), where the

proportionality constant only depends on k and l, but not on n, x, y.

• For any two multiindices k and l, y ∈ Rd, i = 1, 2, it holds, for all n ≥ 0,

�

�

�

∫

Rd

(x − y)lDk
i Kn(x, y)dx

�

�

� . 2−βn

where the proportionality constant only depends on k and l.

• For a given r > 0,
∫

Rd Kn(x, y)P(y)dy = 0, for all n ≥ 0, x ∈ Rd, and every

polynomial P of (scaled) degree at most r.

To introduce the appropriate ‘remainder’ terms, we set J(x)a, for a ∈ Tα as

J(x)a =
∑

n≥0

J(n)(x)a =
∑

n≥0

∑

|k |s<α+β

Xk

k!
(Πxa)(Dk

1 Kn(x, ·)). (2.6)

Definition 2.12. Given a sector V and an abstract integration map I acting on V we say

that a model (Π, Γ) realises K for I if, for every α ∈ A, every a ∈ Vα, every x ∈ Rd one

has the identity

ΠxIa =

∫

Rd

K(·, z)(Πxa)(dz) − ΠxJ(x)a.
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Note that both sides are distributions, so the equality should be understood in the

distributional sense. For γ > 0 we also define an operator Nγ which maps any f ∈ Dγ into

a T̄-valued function by

(Nγ f )(x) =
∑

n≥0

(N(n)γ f )(x) =
∑

n≥0

∑

|k |s<γ+β

Xk

k!
(R f − Πx f (x))(Dk

1 Kn(x, ·)). (2.7)

The key result on a Schauder-type estimate for integration on Dγ then reads as follows.

Theorem 2.13. Let K ∈ Kβ for some β > 0, let I be an abstract integration map acting

on V , and let (Π, Γ) be a model realising K for I. Then, for γ > 0, the operator Kγ defined

by

(Kγ f )(x) = If (x) +J(x) f (x) + (Nγ f )(x), (2.8)

maps Dγ(V) into Dγ+β and the identity

RKγ f = K ∗R f (2.9)

holds for every f ∈ Dγ.

2.2 Preliminaries

For negative values of γ, a statement similar to Theorem 2.6 still holds, but the “uniqueness”

part is lost. It will be useful for our purposes to have a family of “reconstruction operators”

defined similarly to [Hai14, Eq. 3.38], but depending additionally on some small cut-off

scale. We define the sets Λn
s
=

{
∑d

j=1 2−ns j k jej : k j ∈ Z
}

, where ej is the j-th unit vector

of Rd, j = 1, . . . , d, and we use the notation

ηn,sx = 2−n |s |/2η2−n
x

for locally integrable functions η. Then, as shown in [Dau88], for any integer r > 0, there

exist a compactly supported Cr function ϕ and a finite family of compactly supported Cr

functions Ψ with the following properties.

• For each m, the set {ϕm,sx : x ∈ Λm
s } ∪ {ψn,s

x : n ≥ m, x ∈ Λn
s , ψ ∈ Ψ} forms an

orthonormal basis of L2(Rd).
• For every ψ ∈ Ψ and polynomial P of degree at most r, one has

∫

ψ(x)P(x)dx = 0.

In fact much more is known about these functions, but this will suffice for our purposes.

We then set

Rm f =
∑

n≥m

∑

x∈Λn
s

∑

ψ∈Ψ
(Πx f (x))(ψn,s

x )ψn,s
x +

∑

x∈Λm
s

(Πx f (x))(ϕm,sx )ϕm,ss . (2.10)

With this notation, we have the following result which is a strengthening of the γ < 0 part

of [Hai14, Thm 3.10].

Lemma 2.14. Let γ < 0, m ≥ 0 be an integer, f ∈ Dγ(V) with a sector V of regularity

α ≤ 0. Then Rm f ∈ Cα and for every r > |α | there exists c such that, uniformly over

η ∈ Br and λ ∈ (0, 1] and locally uniformly over x, one has the bound

|(Rm f − Πx f (x))(ηλx )| . λγ−α(λ ∧ 2−m)α ||| f |||γ,B(x,cλ+2−m ) . (2.11)
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Proof. The fact that Rm f ∈ Cα is immediate, since the above construction only differs by

a Cr function from the reconstruction operator given in [Hai14, Eq. 3.38]. To show (2.11),

we assume without loss of generality that ||| f |||γ,B(x,λ+2−m ) ≤ 1. Note first that

|(ψn,s
y , ηλx )| . 2n |s |/2

(

2nλ ∨ 1
)−|s |−r

,

and that (ψn,s
y , ηλx ) = 0 for ‖x − y‖s ≥ λ + c2−n for some fixed constant c. We also have, for

n ≥ m, and for ‖x − y‖s ≤ λ + 2−n,

|(Rm f − Πx f (x))(ψn,s
y )| = |(Πy f (y) − Πx f (x))(ψn,s

y )| = |(Πy( f (y) − Γyx f (x))(ψn,s
y )|

.

∑

l<γ

‖x − y‖γ−ls 2−n |s |/2−nl . (2.12)

Denoting the first (triple) sum in (2.10) by Rm
0

, and the projection of Πx f (x) to span{ψn,s
y :

y ∈ Λn
s
, n ≥ m} by (Πx f (x))0, we can write

|(Rm
0 f − (Πx f (x))0)(ηλx )| =

∑

n≥m

∑

y∈Λn
s

∑

ψ∈Ψ
|(Rm f − Πx f (x))(ψn,s

y )(ψn,s
y , ηλx )| =:

∑

n≥m
In .

We consider the cases 2−m ≷ λ separately. If λ < 2−m, then considering that for 2−n ≤ λ,

the number of nonzero terms in the sum over y ∈ Λn
s

is of order λ |s |2n |s |, by estimating

each of them using the bounds above, we have

∑

2−n≤λ
In .

∑

2−n≤λ
λ |s |2n |s |2−n |s |/2−nrλ−|s |−r

∑

l<γ

(λ + 2−n)γ−l2−n |s |/2−nl . λγ, (2.13)

due to r + l > 0. On the other hand, for λ < 2−n, the number of nonzero terms in the sum

over y is of order 1, so we can write

∑

λ<2−n ≤2−m
In .

∑

λ<2−n ≤2−m
2n |s |/2

∑

l<γ

(λ + 2−n)γ−l2−n |s |/2−nl . λγ, (2.14)

where we used the negativity of γ, and this bound is of the required order.

In the case 2−m ≤ λ, then similarly to before

∑

n≥m
In .

∑

n≥m
λ |s |2n |s |2−n |s |/2−nrλ−|s |−r

∑

l<γ

(λ + 2−n)γ−l2−n |s |/2−nl

.

∑

l<γ

2−m(r+l)λγ−l−r ≤
∑

l<γ

2−mlλγ−l, (2.15)

and since l ≥ α, this gives the required bound.

For the second sum in (2.10), denoted for the moment by Rm
1

and the projection of

Πx f (x) to span{ϕm,sy : y ∈ Λm
s }, denoted by (Πx f (x))1, we proceed similarly. This time,

one has

|(ϕm,sy , ηλx )| . 2m |s |/2
(

2mλ ∨ 1
)−|s |

,

and (ϕm,sy , ηλx ) = 0 for ‖x − y‖s ≥ λ + c2−m, that is, for all but of order 2m |s |λ |s | instances

of y ∈ Λm
s in the case 2−m ≤ λ, and for all but of order 1 instances of y ∈ Λm

s in the case
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λ < 2−m. The quantity (Rm f − Πx f (x))(ϕm,sy ) can then be bounded exactly as in (2.12).

Combining these bounds, we arrive at

|(Rm
1 f − (Πx f (x))1)(ηλx )| =

∑

y∈Λm
s

|(Rm f − Πy f (y))(ϕm,sy )(ϕm,sy , ηλx )|

. 2m |s |/2
∑

l<γ

(λ + 2−m)γ−l2−m |s |/2−ml

. λγ−α2−mα ∨ 2−mγ . λγ−α2−mα ∨ λγ , (2.16)

as required. Here, the last inequality comes from the fact that γ < 0 and that the second

term dominates when 2−m ≥ λ, so that 2−mγ ≤ λγ. �

Next we recall some results on extending dual elements of a space of smooth functions

that are supported away from a submanifold, to distributions, at least locally. This is

essentially the content of [Hai14, Prop. 6.9], but we slightly reformulate the statements in

order to fit the needs of Section 4.3 below better.

Whenever here and in the sequel we refer to a ‘boundary’ P, we mean the following.

Assume that Rd is decomposed as Rd
= Rd1 × · · · × Rdm , such that s1 = · · · = sd1

,

sd1+1 = · · · = sd2
, etc. We then assume P to be of the form

P = M1 × · · · × Mm

where each Mi is either Rdi or is a piecewise C1 boundary of a domain, satisfying the

strong cone condition. Denoting the codimension of Mi by mi, the codimension of P is

then defined to be
∑m

i=1 misdi−1+1, with the convention d0 = 0. We will need the following

version of a well-known “folklore” fact:

Proposition 2.15. Let P be a boundary of codimension m, D ⊂ Rd be a bounded domain

and let ξ be an element of the dual of smooth functions compactly supported in D \ P.

Suppose furthermore that 0 ≥ α > −m and for an integer r > |α | one has

|ξ(ψλx )| . λα (2.17)

uniformly over x ∈ D \ P, over ψ ∈ Br , and over λ ∈ (0, 1] satisfying furthermore

2λ ≤ ds(x, P) and suppψλx ⊂ D. Then there exists a unique element ξ ′ in the dual of

smooth functions compactly supported in D that agrees with ξ on test functions supported

away from P and for which the bound (2.17) holds with ξ ′ in place of ξ, uniformly in x, in

ψ ∈ Br , and in λ ∈ (0, 1] satisfying suppψλx ⊂ D.

Proof. By considering a suitable partition of unity, thanks to the strong cone condition, we

see that for any compact set K ⊂ D with diameter λ, and any n with 2−n ≤ λ, we can find

smooth functions Φn : K → [0, 1] such that Φn(y) = 1 if ds(y, P) ∈ [21−n, 22−n], Φn(y) = 0

if ds(y, P) < [2−n, 23−n], and satisfying the following property. For every n ≥ 1, one can

find sequences {xk}Nk=1
with N ≤ Cλ |s |−m2( |s |−m)n and functions φk, φ̃k ∈ Br such that,

setting µ = 2−n, one has

Φn = µ
|s |

N
∑

k=1

φ
µ

k,xk
, Φn − Φn+1 = µ

|s |
N
∑

k=1

φ̃
µ

k,xk
. (2.18)
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Fix now a test function of the type ψλx with support K ⊂ D, then the sequence ξ(ψλx (1−
Φn)) is Cauchy since

|ξ(ψλx (Φn+1 − Φn))| ≤
N
∑

k=1

µ |s |ξ(ψ̃λxφ
µ

k,xk
) . λ−|s |Nµα+ |s | ≤ Cλ−|s |λ |s |−m2( |s |−m)nµα+ |s |

= Cλ−m2−(m+α)n , (2.19)

where in the second inequality we made use of the bound (2.17). Thanks to the assumption

α+m > 0, the right-hand side of (2.19) which converges to 0 exponentially fast, as claimed.

The same bound also shows that the limit is bounded by some constant times λ−α as required.

The uniqueness of ξ ′ follows in a similar way by comparing ξ ′(ψ(1 − Φn)) to ξ ′(ψ) and

using the first identity of (2.18). �

3 Definition of D
γ,w

P
and basic properties

Our main tool for dealing with domains is to introduce spaces analogous to the spaces Dγ,η

used in [Hai14] to deal with initial conditions, but allowing for blow-ups at the boundary

of the domain as well. One subtlety arises in the handling of the “double singularity”

arising on the boundary at time 0. Let P0 and P1 be two fixed boundaries with respective

codimensions m0, m1 and such that P∩ = P0 ∩ P1 is itself a boundary of codimension

m = m0+m1. We also write P = P0∪P1 and we assume that P satisfies the (uniform) cone

condition, which forces the two boundaries to intersect in a transverse manner. For i = 1, 2,

denote

|x |Pi
= 1 ∧ ds(x, Pi), |x, y |Pi

= |x |Pi
∧ |y |Pi

,

and for any compact set K,

KP = {(x, y) ∈ (K \ P)2 : x , y and 2‖x − y‖s ≤ |x, y |P0
∧ |x, y |P1

}.

To slightly ease notation, in the following w will always stand for an element in R3, with

coordinates w = (η, σ, µ), corresponding to exponents for the ‘weights’ at P0, P1, and their

intersection, respectively.

Remark 3.1. It might be at first sight surprising to have not two, but three different orders

of singularity. While in the subsequent calculus the use of exponent µ will become clear,

it is worth mentioning a simple example when the singularities at the different boundaries

do not in any way determine the one at the intersection: Consider the solution of ∂tu = ∆u,

u0 ≡ 1, with 0 Dirichlet boundary conditions on some domain D. Then, while away from

the “corner” {(0, x) : x ∈ ∂D}, all derivatives of u are continuous up to both the temporal

and the spatial boundaries, the k-th derivative exhibits a blow-up of order |k |s at the corner.

Definition 3.2. Let V be a sector, γ > 0 and w = (η, σ, µ) ∈ R3. Then the space D
γ,w

P
(V)

consists of all functions f : Rd \ P → V−γ such that for every compact set K ⊂ Rd one has

||| f |||γ,w;K := sup
(x,y)∈KP

sup
l<γ

‖ f (x) − Γxy f (y)‖l
‖x − y‖γ−ls |x, y |

η−γ
P0
|x, y |σ−γ

P1
(|x, y |P0

∨ |x, y |P1
)µ−η−σ+γ

+ sup
x∈K: 0< |x |P0

≤ |x |P1

sup
l<γ

‖ f (x)‖l

|x |µ−l
P1

( |x |P0

|x |P1

) (η−l)∧0
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+ sup
x∈K: 0< |x |P1

≤ |x |P0

sup
l<γ

‖ f (x)‖l

|x |µ−l
P0

( |x |P1

|x |P0

) (σ−l)∧0
< ∞. (3.1)

The sum of the second and third term above will also be denoted by ‖ f ‖γ,w;K. Similarly to

before, these spaces do depend on the model, but if no confusion can arise, this dependence

will not be denoted. For two models (Π, Γ) and (Π̄, Γ̄), and for f ∈ D
γ,w

P
(V ; Γ) and

f̄ ∈ D
γ,w

P
(V ; Γ̄), we also set

||| f ; f̄ |||γ,w;K = sup
(x,y)∈KP

sup
l<γ

‖ f (x) − f̄ (x) − Γxy f (y) + Γ̄xy f̄ (y)‖l
‖x − y‖γ−ls |x, y |

η−γ
P0
|x, y |σ−γ

P1
(|x, y |P0

∨ |x, y |P1
)µ−η−σ+γ

+ ‖ f − f̄ ‖γ,w;K .

This notation is slightly ambiguous since the knowledge of P does of course not imply the

knowledge of P0 and P1. One should therefore really interpret the instance of P appearing

in D
γ,w

P
as meaning P = {P0, P1} rather than P = P0∪P1, which is used whenever we view

P as a subset of Rd. It will also sometimes be useful to consider functions in D
γ,w

P
that are

slightly better behaved when approaching one of the two boundaries. This is the purpose

of the following definition.

Definition 3.3. We denote by D
γ,w

P, {0} the set of those elements f ∈ D
γ,w

P
for which the

map x 7→ Q−η f (x) extends continuously to Rd \ P1 in such a way that Q−η f (x) = 0 for all

x ∈ P0 \ P1. The space D
γ,w

P, {1} is defined analogously. Finally, writing K0 = {x ∈ K : 0 <

|x |P0
≤ |x |P1

} and similarly for K1, we set

[] f []γ,w, {0};K = sup
x∈K0

sup
l<γ

‖ f (x)‖l

|x |µ−l
P1

( |x |P0

|x |P1

)η−l + sup
x∈K1

sup
l<γ

‖ f (x)‖l

|x |µ−l
P0

( |x |P1

|x |P0

) (σ−l)∧0
,

and also define [] f []γ,w, {1};K in the same way, but with the exponents η − l and (σ − l) ∧ 0

replaced by (η − l) ∧ 0 and σ − l respectively.

We shall assume throughout the article that these exponents satisfy η ∨ σ ∨ µ ≤ γ.

Remark 3.4. Denoting the regularity of the sector V by α, the definition is set up so that,

when µ ≤ α and there exists an x with |x |P0
∼ |x |P1

∼ 1 and supl<γ ‖ f (x)‖l ∼ 1, then

the first term in (3.1) bounds the second and third. For µ > α, one would actually need

to add |x |(µ−l)∧0

P1
to the denominator in the second term and |x |(µ−l)∧0

P0
in the third. As this

would make the calculations significantly longer, we omit this modification and deal with

the slight difficulties arising from this restriction later.

Proposition 3.5. LetV be a sector of regularityα, and f ∈ D
γ,w

P, {1}(V ). Suppose furthermore

that K is a compact set such that for each x ∈ K the line connecting x and the closest point

to x on P1 is contained in K. Then it holds that

[] f []γ,w, {1};K . ||| f |||γ,w;K . (3.2)

If (Π̄, Γ̄) is another model for T and f̄ ∈ D
γ,w

P, {1}(V ; Γ̄), then one has

[] f − f̄ []γ,w, {1};K . ||| f ; f̄ |||γ,w;K + ‖Γ − Γ̄‖γ;K(||| f |||γ,w;K + ||| f̄ |||γ,w;K), (3.3)
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and, for any κ ∈ [0, 1],

||| f ; f̄ |||γ̄,w̄;K . [] f − f̄ []κγ̄,w, {1};K(||| f |||γ,w;K + ||| f̄ |||γ,w;K)1−κ, (3.4)

where γ̄ = (1 − κ)γ + κα and w̄ = (η̄, σ, µ) with η̄ = η + κ((α − η) ∧ 0).

Proof. We prove separately for Ki = K ∩ {|x |Pi
≤ |x |P1−i }.

For K1, further introducing Kn
1
= K1 ∩ {2−n ≤ |x |P0

≤ 2−n+1}, the bounds for Kn
1

in

place of K follow immediately from Lemmas 6.5 and 6.6, [Hai14], uniformly in n. Since

there is no dependence on n in the bounds, and for any pair (x, y) ∈ (K1)P , the indices nx

and ny for which x ∈ Knx

1
, y ∈ Kny

1
, differ by at most 1, the estimates carry through for K1.

For K0, the bounds (3.2) and (3.3) are trivial. As for (3.4), we have

‖ f (x)− f (x)−Γxy f (y)+ Γ̄xy f (y)‖l ≤ (||| f |||γ,w;K0
+ ||| f̄ |||γ,w;K0

)‖x− y‖γ−ls |x, y |
η−γ
P0
|x, y |µ−η

P1

as well as

‖ f (x) − f (x) − Γxy f (y) + Γ̄xy f (y)‖l . [] f − f̄ []γ,w, {1};K0
|x, y |µ−l

P1

( |x, y |P0

|x, y |P1

) (η−l)∧0

.

Therefore, we can bound the quantity ‖ f (x)− f (x)−Γxy f (y)+ Γ̄xy f (y)‖l by the right-hand

side of (3.4) times

‖x − y‖(1−κ)(γ−l)s |x, y |(1−κ)(µ−η)+κ(µ−l)−κ((η−l)∧0)
P1

|x, y |(1−κ)(η−γ)+κ((η−l)∧0)
P0

,

. ‖x − y‖γ̄−ls ‖x − y‖κ(l−α)s |x, y |µ−η−κ(l−η+(η−l)∧0)
P1

|x, y |η−γ̄+κ(α−η+(η−l)∧0)
P0

.

Considering that ‖x− y‖s ≤ |x, y |P0
and that the minimum value of al := (l −η+ (η− l)∧0)

is aα = (α − η) ∧ 0, we can estimate the right-hand side above by

‖x − y‖γ̄−ls |x, y |
µ−η̄
P1
|x, y |κ(aα−al )

P1
|x, y |η̄−γ̄

P0
|x, y |κ(al−aα )

P0
,

and since we are in the situation |x, y |P0
≤ |x, y |P1

, this gives the required bound. The

estimate for ‖ f (x) − f̄ (x)‖l , x ∈ K0 is straightforward, since one has the bound

‖ f (x) − f̄ (x)‖l

|x |µ−l
P1

( |x |P0

|x |P1

) (η−l)∧0
. [] f − f̄ []γ,w, {1};K ∧ (||| f |||γ,w,K + ||| f̄ |||γ,w;K) ,

thus concluding the proof. �

Proposition 3.6. If f ∈ D
γ,w

P, {1} then, for any δ > 0 and compact K ⊂ {|x |P1
∨ δ ≤ |x |P0

≤
2δ}, it holds that

||| f̂ |||σ;K . δ
µ−σ ||| f |||γ,w;K , (3.5)

with f̂ = Q−σ f . In particular, away from P0, f̂ locally belongs to Dσ.

Proof. We assume without loss of generality ||| f |||γ,w;K ≤ 1. For 2‖x − y‖s ≤ |x, y |P1
,

simply by the definition of the spaces D
γ,w

P
we get

‖ f̂ (x) − Γxy f̂ (y)‖l
‖x − y‖σ−ls

. ‖x − y‖γ−σs |x, y |σ−γ
P1
|x, y |µ−σ

P0
≤ δµ−σ . (3.6)
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since σ ≤ γ. In the case |x, y |P1
≤ 2‖x − y‖s, then noting that |x |P1

∨ |y |P1
≤ 3‖x − y‖s

we can write, using the estimate (3.2) again

‖ f̂ (x) − Γxy f̂ (y)‖l ≤ ‖ f̂ (x)‖l +
∑

l≤m<σ
‖x − y‖m−ls ‖ f̂ (y)‖m

≤ δµ−σ |x |σ−lP1
+

∑

l≤m<σ
‖x − y‖m−l

s
δµ−σ |y |σ−mP1

. δµ−σ ‖x − y‖σ−l,

as required.

The fact that f̂ is locally in Dσ then follows, since on {δ ≤ |x |P0
≤ |x |P1

}, f actually

belongs to Dγ, so its projection f̂ belongs to Dσ, and δ > 0 was arbitrary. �

Remark 3.7. One simplification that we will often use is based on the fact that for pairs

(x, y) ∈ KP , we have

|x |Pi
∼ |y |Pi

∼ |x, y |Pi

for i = 0, 1. As a consequence, in the proofs of Section 4 below we will repeatedly

interchange the above quantities without much explanation. Also, for such pairs, even

though |x |P0
≤ |x |P1

does not imply |y |P0
≤ |y |P1

or |x, y |P0
≤ |x, y |P1

, it holds that

‖ f (y)‖l . ‖ f ‖γ,w,K |y |µ−lP1

( |y |P0

|y |P1

) (η−l)∧0

,

and

‖ f (x) − Γxy f (y)‖l . ||| f |||γ,w,K ‖x − y‖γ−ls |x, y |
η−γ
P0
|x, y |µ−η

P1
.

This, and the corresponding symmetric implications (swapping the roles of P0 and P1), will

also often be used.

4 Calculus of the spaces D
γ,w

P

In order to reformulate our stochastic PDEs as fixed point problems in D
γ,w

P
, one first needs

to know how the standard operations like multiplication, differentiation, or convolution with

singular kernels, act on these spaces. The aim of this section is to recover the calculus of

[Hai14] in the present context.

Remark 4.1. This of course means that repetition of arguments to a certain degree is

inevitable. We shall try to minimise the overlap and concentrate on the aspects that are

different due to the additional weights and don’t just follow trivially from [Hai14]. This

in particular applies to the continuity statements: since the space of models is not linear,

boundedness of the operations do not imply their continuity. However, in practice they

usually follow from the same principles, with an added level of notational inconvenience.

We therefore only give the complete proof of continuity for the multiplication, after which

the reader is hopefully convinced that obtaining the other similar continuity results is a

lengthy but straightforward combination of the corresponding arguments in [Hai14] and

the treatment of the additional weights as described in the ‘boundedness’ part of the

corresponding statements. Alternatively, the continuity statements can also be obtained by

using the trick introduced in the proof of [HP15, Prop. 3.11], which allows to some extent

to “linearise” the space of models.
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Remark 4.2. Let us mention an important point on how integration against singular kernels

will be handled. While Green’s functions of boundary value problems are not translation

invariant, they typically can be decomposed into a translation invariant part and a smooth

one, which however is singular at the boundary. The most simple example of this is the

1 + 1-dimensional Neumann heat kernel on (R+)2:

G((t, x), (s, y)) = 1
√

4π(t − s)

(

e
− (x−y)

2

4(t−s) + e
− (x+y)

2

4(t−s)
)

,

for a more general discussion see Example 4.15 below. The advantage of such a decompo-

sition is that only the former part plays a role in constructing the regularity structure itself

and the corresponding admissible models, for which one can use the general machinery

of [BHZ16, CH16, Hai14]. Integration against the latter part simply produces functions

described by polynomial symbols, albeit with blow-ups at the boundaries which need to be

sufficiently controlled.

4.1 Multiplication

Lemma 4.3. For i = 1, 2, let fi ∈ D
γi,wi

P
(Vi) with γi > 0, where Vi is a sector of regularity

αi ≤ 0. Suppose furthermore that the pair (V1,V2) is γ := (γ1 + α2) ∧ (γ2 + α1)-regular

with respect to the product⋆. Then f := f1⋆γ f2 belongs to D
γ,w

P
, where w = (η, σ, µ) with

µ = µ1 + µ2 and

η = (η1 + α2) ∧ (η2 + α1) ∧ (η1 + η2) ,
σ = (σ1 + α2) ∧ (σ2 + α1) ∧ (σ1 + σ2) .

Moreover, if (Π̄, Γ̄) is another model for T , and gi ∈ D
γi,wi

P
(Vi; Γ̄) for i = 1, 2, then, for

g = g1 ⋆γ g2 and any C > 0

||| f ; g |||γ,w;K . ||| f1; g1 |||γ1,w1;K + ||| f2; g2 |||γ2,w2;K + ‖Γ − Γ̄‖γ1+γ2;K, (4.1)

holds uniformly in fi and gi with ||| fi |||γi,wi ;K
+ |||gi |||γi,wi ;K

≤ C and models with ‖Γ‖γ1+γ2;K+

‖Γ̄‖γ1+γ2;K ≤ C.

Proof. We fix a compact K and assume, without loss of generality, that both f1 and f2 are

of norm 1 on K. Then, for |x |P0
≤ |x |P1

and l < γ,

‖ f (x)‖l ≤
∑

l1+l2=l

‖ f1(x)‖l1 ‖ f2(x)‖l2 ≤
∑

l1+l2=l

|x |µ1+µ2−l1−l2
P1

( |x |P0

|x |P1

) (η1−l1)∧0+(η2−l2)∧0

≤ |x |µ−l
P1

∑

l1+l2=l

( |x |P0

|x |P1

)−l+η1∧l1+η2∧l2
.

It remains to notice that, since for i = 0, 1, li ≥ αi, we have η1 ∧ l1 + η2 ∧ l2 ≥ η ∧ l, by

construction, and hence

‖ f (x)‖l . |x |µ−lP1

( |x |P0

|x |P1

) (η−l)∧0

.

Next we bound f (x) − Γxy f (y). As usual, we assume |x, y |P0
≤ |x, y |P1

. For l < γ, the

triangle inequality yields

‖ f (x) − Γxy f (y)‖l ≤ ‖Γxy f (y) − (Γxy f1(y))⋆ (Γxy f2(y))‖l
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+ ‖(Γxy f1(y) − f1(x))⋆ (Γxy f2(y) − f2(x)‖l
+ ‖(Γxy f1(y) − f1(x))⋆ f2(x)‖l
+ ‖ f1(x)⋆

(

Γxy f2(y) − f2(x)
)

‖l . (4.2)

Thanks to the γ-regularity of (V1,V2), the first term in this expression can be bounded by

A := ‖Γxy f (y) − (Γxy f1(y))⋆ (Γxy f2(y))‖l
≤






∑

m+n≥γ
(ΓxyQm f1(y))⋆ (ΓxyQn f2(y))







l

≤
∑

m+n≥γ

∑

β1+β2=l

‖ΓxyQm f1(y)‖β1
‖ΓxyQn f2(y)‖β2

≤
∑

m+n≥γ

∑

β1+β2=l

‖Γ‖2γ1+γ2
‖ f1(y)‖m‖ f2(y)‖n‖x − y‖m+n−β1−β2

s . (4.3)

The factor ‖Γ‖2γ1+γ2
can course be incorporated into the proportionality constant, but it will

be useful in the sequel to view the dependence on it as above. We can continue by writing

A .
∑

m+n≥γ
‖x − y‖m+n−l

s
‖ f1(y)‖m‖ f2(y)‖n

≤ ‖x − y‖γ−ls
∑

m+n≥γ
‖x − y‖m+n−γs |y |µ1+µ2−m−n

P1

( |y |P0

|y |P1

) (η1−m)∧0+(η2−n)∧0

≤ ‖x − y‖γ−ls |y |
µ

P1
|y |−γ

P0

∑

m+n≥γ
|y |m+nP0

|y |−m−nP1

( |y |P0

|y |P1

)(η1−m)∧0+(η2−n)∧0

= ‖x − y‖γ−ls |y |
µ

P1
|y |−γ

P0

∑

m+n≥γ

( |y |P0

|y |P1

)η1∧m+η2∧n
, (4.4)

where we used ‖x − y‖ ≤ |y |P0
to get the third line. As before, we have η1 ∧ m + η2 ∧ n ≥

η ∧ γ = η, and recalling that |y |Pi
∼ |x, y |Pi

we see that this is indeed the bound we need

in (3.1). The second term on the right-hand side of (4.2) is bounded by a constant times
∑

m+n=l

‖Γxy f1(y) − f1(x)‖m‖Γxy f2(y) − f2(x)‖n

≤
∑

m+n=l

‖x − y‖γ1+γ2−m−n
s |x |µ1+µ2−η1−η2

P1
|x |η1+η2−γ1−γ2

P0

. ‖x − y‖γ−ls |x |
µ−η1−η2

P1
|x |η−η1−η2

P0
|x |η−γ1−γ2

P0
‖x − y‖γ1+γ2−γ

s .

Since γ1 + γ2 ≥ γ, η1 + η2 ≥ η, and ‖x − y‖s ≤ |x |P0
≤ |x |P1

, this gives the required bound.

The third term on the right-hand side of (4.2) is bounded by a constant times
∑

m+n=l

‖Γxy f1(y) − f1(x)‖m‖ f2(x)‖n

.

∑

m+n=l

‖x − y‖γ1−m
s |x |µ1−η1

P1
|x |η1−γ1

P0
|x |µ2−n

P1

( |x |P0

|x |P1

) (η2−n)∧0

≤ ‖x − y‖γ−l
∑

m+n=l

‖x − y‖γ1+n−γ
s |x |µ−η1−η2∧n

P1
|x |η1−γ1+η2∧n−n

P0
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. ‖x − y‖γ−ls |x |
µ−η
P1

∑

m+n=l

‖x − y‖γ1+n−γ
s |x |η−η1−η2∧n

P1
|x |η1−γ1+η2∧n−n

P0
. (4.5)

Inside the sum, the exponent of ‖x−y‖s is nonnegative, due to the relation γ ≤ γ1+α2, while

the exponent of |x |P1
is nonpositive, due to η ≤ η1+η2∧α2. Using ‖x− y‖s ≤ |x |P0

≤ |x |P1

as before, we get the required bound. Finally, the fourth term on the right-hand side of (4.2)

is bounded similarly, reversing the roles played by f1 and f2.

To prove the continuity estimate (4.1), we of course need only consider the first part of

the definition of |||·; ·|||, the bound on the second already follows from above by linearity.

We then write

f (x) − g(x) − Γxy f (y) + Γ̄xyg(y)
= −Γxy f (y) + Γxyg(y) + Γxy f1(y)⋆ Γxy f2(y) − Γ̄xyg1(y)⋆ Γ̄xyg(y)
+ ( f1(x) − g1(x) − Γxy f1(y) + Γ̄xyg1(y))⋆ f2(x)
+ Γxy f1(y)⋆ ( f2(x) − g2(x) − Γxy f2(y) + Γ̄xyg2(y))
+ Γ̄xy(g1(y) − f1(y))⋆ (Γ̄xyg2(y) − g2(x))
+ (Γ̄xy f1(y) − Γxy f1(y))⋆ (Γ̄xyg2(y) − g2(y))
+ (g1(y) − Γ̄xyg1(y))⋆ ( f2(x) − g2(x)).
=: T0 + T1 + T2 + T3 + T4 + T5 (4.6)

For T0, repeating the argument in (4.3), we need to estimate, for m + n ≥ γ, terms of the

form

ΓxyQm f1(y)⋆ ΓxyQn f2(y) − Γ̄xyQmg1(y)⋆ Γ̄xyQng2(y)
= ΓxyQm f1(y)⋆ (Γxy(Qn f2(y) − Qng2(y))
+ ΓxyQm f1(y)⋆ (ΓxyQng2(y) − Γ̄xyQng2(y))
+ Γxy(Qm f1(y) − Qmg1(y))⋆ Γ̄xyQng2(y)
+ (ΓxyQmg1(y) − Γ̄xyQmg1(y))⋆ Γ̄xyQng2(y).

Continuing as in (4.3), we get

‖T0‖l .
∑

m+n≥γ
‖x−y‖m+n−l

s

[

‖ f1(y)‖m ‖ f2(y) − g2(y)‖n + ‖ f1(y)‖m‖Γ − Γ̄‖γ1+γ2
‖g2(y)‖n

+ ‖ f1(y) − g1(y)‖m‖g2(y)‖n + ‖Γ − Γ̄‖γ1+γ2
‖g1(y)‖m‖g2(y)‖n

]

.

From here we get the desired bound (4.1) by repeating the calculation in (4.4).

For the further terms, we shall make use of the fact that for any γ̄, w̄, h ∈ D
γ̄,w̄

P
, and for

pairs (x, y) under consideration, Γxyh(y) satisfies analogous bounds to h(x):

‖Γxyh(y)‖l ≤
∑

m≥l
‖x − y‖m−ls ‖h(y)‖m .

∑

m≥l
‖x − y‖m−ls |y |µ̄−m

P1

( |y |P0

|y |P1

) (η̄−m)∧0

. |x |µ̄−l
P1

( |x |P0

|x |P1

) (η̄−l)∧0

. (4.7)

For T1, we write

‖T1‖l . ||| f1; g1 |||γ1,w1

∑

m+n=l

‖x − y‖γ1−m |x |µ1−η1

P1
|x |η1−γ1

P0
|x |µ2−n

P1

( |x |P0

|x |P1

)(η2−n)∧0

,
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and as we recognise the sum from (4.5), the required bound follows.

For T2, we use (4.7) with h = f1, and then proceed just like for T1, with the role of the

indices reversed.

To bound T3, we use (4.7), this time with h = g1 − f1, to get

‖T3‖l ≤ ‖ f1 − g1‖γ1,w1

∑

m+n=l

|y |µ1−m
P1

( |y |P0

|y |P1

)(η1−m)∧0

‖x − y‖γ2−n
s |x |µ2−η2

P1
|x |η2−γ2

P0
,

and the sum is again of the same form.

The bound for the term T5 goes similarly to T3, with the indices reversed, and so does

T4, with the only difference that the prefactor of the sum is ‖Γ − Γ̄‖γ1+γ2
||| f1 |||γ1,w1

. �

4.2 Composition with smooth functions

Lemma 4.4. Let V be a sector of regularity 0 with V0 = 〈1〉 that is γ-regular with respect

to the product ⋆ and furthermore V ⋆V ⊂ V .

Let f1, . . . , fn ∈ D
γ,w

P
(V ) with w = (η, σ, µ) such that η, σ, µ ≥ 0. Let furthermore

F : Rn → R be a smooth function. Then F̂γ( f ) belongs to D
γ,w

P
(V ). Furthermore,

F̂γ : D
γ,w

P
→ D

γ,w

P
is locally Lipschitz continuous in any of the seminorms ‖ · ‖γ,w;K and

||| · |||γ,w;K.

Remark 4.5. If two modelled distributions f , f̄ are such that f − f̄ ∈ D
γ,w

P, {1}, then clearly

F̂γ( f ) − F̂γ( f̄ ) also has 0 limit at P1 \ P0. In this case the analogous Lipschitz bound for F̂

in the seminorms [] · []γ,w;K also holds.

Remark 4.6. One can use the same construction as in [HP15, Prop. 3.11] to obtain local

Lipschitz continuity when comparing two modelled distributions modelled on two different

models.

Proof. We only give a sketch of the proof, as the majority of the argument is exactly the

same as that of the proof of Theorem 4.16 and Proposition 6.12 in [Hai14]. We prove the

main estimates which are somewhat different due to the additional weights and refer the

reader to [Hai14] to confirm that these indeed imply the theorem.

As usual, we consider the situation 2‖x − y‖s ≤ |x, y |P0
≤ |x, y |P1

. We denote L =

⌊γ/ζ⌋, where ζ is either the lowest nonzero homogeneity such that Vζ , {0}, or if that

index is larger than γ, then we set ζ = γ. The essential quantities to bound are

R1 :=
∑

l:
∑

li≥γ
ΓxyQl1 f̃ (y)⋆ · · ·⋆ ΓxyQln f̃ (y),

Rf := Γyx f (x) − f (y),
R2 :=

∑

|k | ≤L
(Γyx f̃ (x))⋆k − (Γyx f̃ (x) + Rf )⋆k,

R3 :=
∑

|k | ≤L
| f̄ (x) − f̄ (y)|γ/ζ−|k |( f̃ (y) − ( f̄ (y) − f̄ (x))1)⋆k,

each of which has to be estimated in the following way, for all β < γ:

‖Ri ‖β . ‖x − y‖γ−βs |x, y |µ−η
P1
|x, y |η−γ

P0
. (4.8)
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Note that there is a slight abuse of notation here in that Rf is vector-valued. By (4.8) we then

understand that such an estimate holds for each coordinate, and this convention is applied

in the other analogous situations below whenever vector-valued functions are considered.

We further invoke two elementary inequalities from the proof of [Hai14, Prop 6.12]:

for η ≥ 0, n ∈ N, l1, . . . , ln ∈ N, we have

n
∑

i=1

(η − li) ∧ 0 ≥
(

η −
n
∑

i=1

li

)

∧ 0, (4.9)

and for any multiindex k with |k | ≤ L, integer 0 ≤ m ≤ |k |, real numbers 0 < ζ ≤ γ,

0 ≤ β, η ≤ γ, and integers l1, . . . , lm satisfying
∑

li = β and li ≥ ζ , it holds

N + M :=
[

(|k |ζ − γ − |k |η + (γη/ζ)) ∧ 0
]

+

[

β − ζm + (|k | − m)((η − ζ) ∧ 0) +
m
∑

i=1

(η − li) ∧ 0
]

≥ η − γ. (4.10)

The term R1 looks very similar to what we encountered in (4.3), and indeed by the same

argument we can write

‖R1‖β .
∑

∑

li≥γ
‖x − y‖

∑

li−β
s

∏

i

‖ f̃ (y)‖li

. ‖x − y‖γ−βs
∑

∑

li≥γ
‖x − y‖

∑

li−γ
s

∏

i

|y |µ−li
P1

( |y |P0

|y |P1

) (η−li )∧0

. ‖x − y‖γ−βs
∑

∑

li≥γ
|y |−γ

P0
|y |nµ

P1

( |y |P0

|y |P1

)

∑(η−li )∧0+
∑

li

.

By (4.9), the exponent of the fraction above is bounded from below by η ∧ ∑

li = η, and

since nµ ≥ µ due to µ being nonnegative, this yields the required bound.

The bound for Rf follows from the definition. For R2, notice that

‖Γyx f̃ (x)‖l .
∑

l′≥l
‖x − y‖l′−ls ‖ f̃ (x)‖l′

.

∑

l′≥l
‖x − y‖l′−ls |x |

µ−l′
P1

( |y |P0

|y |P1

) (η−l′)∧0

. ‖x − y‖−ls .

Therefore, for any nonzero multiindex m and any multiindex m′,

‖R⋆mf ⋆ (Γyx f̃ (x))⋆m′ ‖β .
∑

l1+...+lm
+l′

1
+...+l′

m′=β

|m |
∏

i=1

‖x − y‖γ−lis |x |µ−η
P1
|x |η−γ

P0

|m′ |
∏

i′=1

‖x − y‖−l′i′

. ‖x − y‖γ−βs |x |µ−η
P1
|x |η−γ

P0

(

‖x − y‖γs |x |
µ−η
P1
|x |η−γ

P0

) |m |−1

,

and since the quantity in the parentheses is of order one due to γ, η, µ ≥ 0 and ‖x − y‖s ≤
|x, y |P0

≤ |x, y |P1
, the bound (4.8) for R2 follows.
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For R3, fix k and first write

| f̄ (x) − f̄ (y)| ≤ ‖Γxy f̃ (y)‖0 + ‖ f (x) − Γxy f (y)‖0

.

∑

ζ ≤l≤γ
‖x − y‖l

s
|x |µ−l

P1

( |x |P0

|x |P1

) (η−l)∧0

, (4.11)

where l runs over indices in A ∪ {γ} in the specified range. If the exponent of ‖x − y‖s
were l − ζ instead of l, we would be in the exact same situation as in (4.7). Taking this extra

‖x − y‖ζs out of the sum, we therefore get the bound

| f̄ (x) − f̄ (y)| . ‖x − y‖ζ |x |µ−ζ
P1

( |x |P0

|x |P1

)(η−ζ )∧0

, (4.12)

and, recalling the notation N from (4.10),

| f̄ (x) − f̄ (y)|γ/ζ−|k | . ‖x − y‖γ−|k |ζs |x |(γ/ζ−|k |)(µ−ζ )
P1

( |x |P0

|x |P1

)N

. (4.13)

Moving to the other constituent of R3, by (4.12) and the bounds on f̃ (y) from the definition

of the spaces D
γ,w

P
, the we can write

‖( f̃ (y) − ( f̄ (y) − f̄ (x))1)⋆k ‖β

.

∑

0≤m≤ |k |

∑

∑m
i=1

li=β

li≥ζ

‖x − y‖ζ ( |k |−m)s |x |(µ−ζ )( |k |−m)
P1

( |x |P0

|x |P1

)((η−ζ )∧0)( |k |−m)

×
m
∏

i=1

|x |µ−li
P1

( |x |P0

|x |P1

) (η−li)∧0

.

As the sum has finitely many terms, it suffices to treat them separately, and therefore we fix

m and li as above. Then, since β =
∑

li ≥
∑

ζ = mζ , we can get a bound

‖x − y‖ζ |k |−βs |x |β−mζ
P0

|x | |k |µ−ζ |k |
P1

|x |mζ−β
P1

( |x |P0

|x |P1

)((η−ζ )∧0)( |k |−m)+∑(η−li)∧0

Moving the second and fourth factor into the fifth one, we get that the exponent of the

fraction above becomes M , as defined in (4.10). Combining this with (4.13), we get

‖R3‖β . ‖x − y‖γ−β |x |(γ/ζ )µ−γ
P1

( |x |P0

|x |P1

)N+M

,

and by (4.10) and the fact (γ/ζ)µ ≥ µ, we arrive at (4.8) for R3. �

4.3 Reconstruction

Recall that, since reconstruction is a local operation, there exists an element R̃ f in the

dual of smooth functions supported away from P such that the bound (2.4) is satisfied if

λ ≪ |x |P0
∧ |x |P1

. A natural guess for the target space of the extension of the reconstruction

operator acting on D
γ,w

P
(V) would be Cη∧σ∧µ∧α . While this certainly does hold, we need

some finer control over the behaviour at the different boundaries. To this end, we introduce

weighted versions of Hölder spaces as follows.
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Definition 4.7. Let a = (a0, a1, a∩) ∈ R3
−, write a∧ = a0 ∧ a1 ∧ a∩, and let P = (P0, P1) as

above. Then, we define Ca
P

as the set of distributions u ∈ Ca∧ that furthermore satisfy the

following two properties.

(a) For any x ∈ {|x |P0
≤ 2|x |P1

}, λ ∈ (0, 1] satisfying 2λ ≤ |x |P1
, and every ψ ∈ Br ,

where r = ⌈−a0 + 1⌉,
|u(ψλx )| . |x |

a∩−a0

P1
λa0 . (4.14)

(b) For any x ∈ {|x |P1
≤ 2|x |P0

}, λ ∈ (0, 1] satisfying 2λ ≤ |x |P0
, and every ψ ∈ Br ,

where r = ⌈−a1 + 1⌉,
|u(ψλx )| . |x |

a∩−a1

P0
λa1 . (4.15)

For a compact K, the maximum of the best proportionality constants in (4.14) and (4.15)

over x ∈ K is denoted by ‖u‖a;K.

Proposition 4.8. Let u ∈ D′(Rd \ (P0 ∩ P1)) be such that the bounds (4.14)-(4.15) are

satisfied. Then, provided a∧ > −m, there exists a unique distribution u′ ∈ Ca
P

that agrees

with u on test functions supported away from P0 ∩ P1.

Proof. Such a u′ clearly satisfies (a)-(b) of Definition 4.7, so it only needs to be shown that

there exists a unique extension of u in Ca∧ . By Proposition 2.15, it suffices to obtain the

bound

|u(ψλx )| . λa∧ , (4.16)

uniformly overψ ∈ Br (for some fixed large enough r) and λ ∈ (0, 1], for cλ ≤ ds(x, P0∩P1)
with some fixed c > 1. For sufficiently large c (depending only on the dimension), one can

find smooth functions φ
(λ)
i

with i = 0, 1 with the following properties:

(i) The φ
(λ)
i

are supported on {x : |x |Pi
≥ 4λ, 2|x |Pi

≥ |x |P1−i }.

(ii) If x ∈ Rd is such that ds(x, P0 ∩ P1) ≥ (c − 1)λ, then φ
(λ)
0
(x) + φ(λ)

1
(x) = 1.

(iii) For any multiindex k, the bound |Dkφ
(λ)
i
(x)| . λ−|k |s is satisfied for all x ∈ Rd.

The functions ψλxφ
(λ)
i

then satisfy the bounds

sup
y∈Rd

|Dk(ψλx φ
(λ)
i
)(y)| . λ−|s |− |k |s

and have support with diameter less than 2λ |s |. One can therefore find points zi with

2|zi |Pi
≥ |zi |P1−i ∨ 8λ, as well as functions ξ(i,λ) ∈ Br such that ψλxφ

(λ)
i
= ξ

(i,λ),2λ
zi .

Applying the estimates (4.14) and (4.15) to ξ(1,λ) and ξ(0,λ), respectively, we get

|u(ψλx )| ≤ |u(ξ
(0,λ),2λ
z0

)| + |u(ξ(1,λ),2λz1
)| . λ(a∩−a1)∧0+a1

+ λ(a∩−a0)∧0+a0,

and since the minimum of the two exponents on the right-hand side is a∧, (4.16) holds

indeed. �
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Theorem 4.9. Let f ∈ D
γ,w

P
(V), where V is a sector of regularity α and suppose that

η ∧ α > −m0, σ ∧ α > −m1, µ > −m . (4.17)

Then, setting a = (η ∧ α, σ ∧ α, µ), there exists a unique distribution

R f ∈ Ca
P

such that (R f )(ψ) = (R̃ f )(ψ) for smooth test functions that are compactly supported away

from P. In particular, R f ∈ Ca∧ .

Moreover, if (Π̄, Γ̄) is another model for T and f ∈ D
γ,w

P
(V, Γ), f̄ ∈ D

γ,w

P
(V, Γ̄), then

one has the bounds, for any C > 0 and K compact

‖R f −R f̄ ‖a;K . ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ,K̄ + ‖Γ − Γ̄‖γ,K̄, (4.18)

uniformly in f , f̄ , and the two models being bounded by C, where K̄ denotes the 1-fattening

of K.

Proof. By virtue of Proposition 4.8, it suffices to extend R̃ f to an element of D′(Rd \
(P0 ∩ P1)) in such a way that (4.14)-(4.15) hold with the desired exponents.

By (2.4), it holds, uniformly in x ∈ {|x |P0
≤ 2|x |P1

} over compacts, uniformly in

ψ ∈ Br , and uniformly in λ ∈ (0, 1] such that 4λ ≤ |x |P0
, that

|(R̃ f − Πx f (x))(ψλx )| . λγ |x |
η−γ
P0
|x |µ−η

P1
. λη |x |µ−η

P1
. (4.19)

Also, in the same situation, we have

|(Πx f (x))(ψλx )| .
∑

l

λl |x |µ−l
P1

( |x |P0

|x |P1

) (η−l)∧0

. (4.20)

Since λ . |x |P0
∧ |x |P1

, this sum is of the same form that we encountered before, for

example in (4.11). By the same argument we get

|(Πx f (x))(ψλx )| . λα |x |
µ−α
P1

( |x |P0

|x |P1

)(η−α)∧0

. λη∧α |x |µ−(η∧α)
P1

. (4.21)

Combining this with (4.19), by Proposition 2.15 we can extend R̃ f to an element R̃0 f ∈
D′(Rd \ P1) such that the bound

|(R̃0 f )(ψλx )| . λη∧α |x |
µ−(η∧α)
P1

(4.22)

holds uniformly in x ∈ {|x |P0
≤ 2|x |P1

} over compacts, uniformly inψ ∈ Br , and uniformly

in λ ∈ (0, 1] such that 2λ ≤ |x |P1
.

One can similarly construct R̃1 f ∈ D′(Rd\P0) such that |(R̃1 f )(ψλx )| . λσ∧α |x |
µ−(σ∧α)
P1

holds in the symmetric situation. Since R̃0 f and R̃1 f agree on the intersection of their

domains, they can be pieced together to get the claimed extension of R̃ f . The proof of

continuity is again analogous and is omitted here. �
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Keeping in mind that our goal will be to apply this calculus for singular SPDEs with

boundary conditions on some domain D, P1 will typically stand forR×∂D. With a parabolic

scaling we havem1 = 1 and so condition (4.17), in particular requiring σ∧α > −1 is rather

strict and will often be violated. In these situations, a C
(η∧α,σ∧α,µ)
P

extension R̃ f is not

unique and hence sometimes it will be more suggestive to write R̂ f for particular choices

of such extensions. On some occasions this choice will be made ‘by hand’, but there is also

another generic situation when a canonical choice can be made, as follows.

Theorem 4.10. Let f ∈ D
γ,w

P, {1}, where V is a sector of regularity α and let γ > 0 and w be

such that

0 > σ > −m1 ≥ α, η ∧ α > −m0, µ > −m . (4.23)

Then there exists a unique distribution R̂ f ∈ C
(η∧α,α,µ)
P

such that for smooth functions ψ

compactly supported away from P, R̂ f (ψ) = R̃ f (ψ) and that furthermore,

|R̂ f (ψλx )| . λσ |x |
µ−σ
P0

(4.24)

holds uniformly in x over relatively compact subsets of P1 \P0, in ψ ∈ Br , and in λ ∈ (0, 1]
such that 2λ ≤ |x |P0

.

Moreover, if (Π̄, Γ̄) is another model for T and f ∈ D
γ,w

P, {1}(V, Γ), f̄ ∈ D
γ,w

P, {1}(V, Γ̄),
then one has the bound, for all C > 0 and compact K

‖R̂ f − ˆ̄R f̄ ‖η∧α,α,µ;K . ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ,K̄ + ‖Γ − Γ̄‖γ,K̄ . (4.25)

uniformly in f , f̄ , and the two models being bounded by C, where K̄ denotes the 1-fattening

of K.

Finally, if for all a ∈ V , Πxa is a continuous function, then

R̂ f (ψ) =
∫

Rd\P
(Πx f (x))(x)ψ(x) dx . (4.26)

Proof. First notice that such a R̂ f has to be unique: any two extensions of R̃ f differ by

a distribution concentrated on P, which, due to the conditions on the exponents and the

constraint (4.24), has to vanish.

An extension R̃0 f with the ‘right behaviour’ on Rd \ P1 is constructed in the proof of

Theorem 4.9. Concerning the behaviour outside P0 we claim that, with f̂ = Q−σ f , it suffices

to construct an extension R̂1 f ∈ D′(Rd \ P0) of R̃ f that satisfies the bound

|(R̂1 f − Πx f̂ (x))(ψλx )| . λσ |x |
µ−σ
P0

(4.27)

uniformly in x ∈ {|x |P1
≤ 2|x |P0

} over compacts, uniformly in ψ ∈ Br , and uniformly in

λ ∈ (0, 1] such that 2λ ≤ |x |P0
. Indeed, (4.24) then follows from the fact that f̂ (x) = 0 for

x ∈ P1 \ P0 by the definition of D
γ,w

P, {1}. Furthermore, by Propositions 3.6 and 3.5, we have

|Πx f̂ (x)(ψλx )| .
∑

α≤l<σ
|x |µ−σ

P0
|x |σ−lP1

λl . |x |µ−α
P0

λα ,

where the last bound follows from the facts that |x |P1
≤ |x |P0

, α ≤ l, and λ ≤ |x |P0
.

Therefore, by (4.27), the same bound holds for R̂1 f , and so piecing R̃0 f and R̂1 f together,
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the resulting element of D′(Rd \ (P0 ∩ P1)) satisfies the conditions of Proposition 4.8 with

a0 = η ∧ α, a1 = α, and a∩ = µ. Applying the proposition, we get the claimed R̂ f .

Further notice, that in fact it is enough to show (4.27) for each m ∈ N in the case where

x is further restricted to run over Am := {|x |P0
∈ [2−m−2, 2−m]}. Indeed, all functions ψλx

that are considered in (4.27) have support that intersects at most two Am’s, and therefore

a straightforward partition of unity argument, like for instance the one in the proof of

Proposition 4.8 completes the proof.

To get R̂1 f on Am, first consider Rm f̂ defined as in (2.10), which is a meaningful

expression thanks to Proposition 3.6. Furthermore, by (2.11) and using Proposition 3.6,

one has the bound

|(Rm f̂ − Πx f̂ (x))(ψλx )| . λσ−α(λ ∧ |x |P0
)α |x |µ−σ

P0
. λσ |x |µ−σ

P0
, (4.28)

uniformly in x ∈ {|x |P1
≤ 2|x |P0

} ∩ Am over compacts, uniformly over ψ ∈ Br , and

uniformly over λ ∈ (0, 1] such that 4λ ≤ |x |P1
. One also has, by (2.4) and the basic

properties of the model,

|(R̃ f − Πx f̂ (x))(ψλx )| ≤ |(R̃ f − Πx f (x))(ψλx )| + |(Πx f (x) − Πx f̂ (x))(ψλx )|
. λγ |x |σ−γ

P1
|x |µ−σ

P0
+

∑

l>σ

λl |x |µ−σ
P0
|x |σ−lP1

. λσ |x |µ−σ
P0

(4.29)

with the same uniformity. Thus the same bound holds for the difference R̃ f −Rm f̂ , which

therefore, by Proposition 2.15, has a unique extension ∆mR f ∈ D′({|x |P1
≤ 2|x |P0

}∩ Am)
for which the same bound holds even when λ is only restricted by 2λ ≤ |x |P0

. Hence

Rm f +∆mR f satisfies the required bound (4.27) (on Am), and it trivially agrees with R̃ f

on functions supported away from P.

As for the last statement of the theorem, one simply has to check that the right-hand

side of (4.26) satisfies the claimed properties. It trivially coincides with R̃ f away from P,

and the bound (4.24) follows from the fact that, thanks to Proposition 3.5

|(Πx f (x))(x)| . |x |µ−σ
P0
|x |σP1

if |x |P1
≤ |x |P0

, where in this particular case the proportionality constant also depends

on the local supremum bounds of the continuous functions Πxa. Since this additional

dependency doesn’t affect the uniqueness part of the statement, the proof is complete. �

4.4 Differentiation

Lemma 4.11. Let D be an abstract gradient and let f ∈ D
γ,w

P
(V ), where γ > si and

w = (η, σ, µ) ∈ R3. Then Di f ∈ D
γ−si,(η−si,σ−si,µ−si )
P

.

This lemma is a direct consequence of the definition of abstract gradients, and since the

proof is a trivial modification of that of [Hai14, Prop 5.28], it is omitted here.

4.5 Integration against singular kernels

As seen above, in certain situations the distribution R f is not uniquely defined as there

might be many distributions ζ with the appropriate regularity that extend R̃ f . For any such

ζ , let us denote by N
ζ
γ f and K

ζ
γ f the modelled distributions defined analogously to Nγ f

and Kγ f , but with R f replaced by ζ .
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Before stating the result on the integration operator in the weighted spaces, let us recall

the following identities from [Hai14], which hold for any multiindex k, with the usual

convention that empty sums vanish

(ΓxyNζ,(n)
γ f (y))k =

1

k!

∑

|k+l |s<γ+β

(x − y)l
l!
(ζ − Πx f (x))(Dk+l

1 Kn(y, ·)),

(ΓxyJ(n)(y) f (y))k = (J(n)(x)Γxy f (y))k =
1

k!

∑

δ> |k |s−β
(ΠxQδΓxy f (y))(Dk

1 Kn(x, ·)).
(4.30)

In particular, choosing x = y, these identities also cover the formulas for the coefficient of

Xk in N
ζ,(n)
γ f (x) and J(n)(x) f (x), respectively.

Another nontrivial rearrangement of terms gives

k!(ΓxyNζ,(n)
γ f (y) + ΓxyJ(n)(y) f (y) −Nζ,(n)

γ f (x) −J(n)(x) f (x))k
= (Πy f (y) − ζ)(Kk,γ

n;xy)
−

∑

δ≤ |k |s−β
(ΠxQδ(Γxy f (y) − f (x)))(Dk

1 Kn(x, ·)), (4.31)

where we define, for α ∈ R,

K
k,α
n;xy(z) = Dk

1 Kn(y, z) −
∑

|k+l |s<α+β

(y − x)l
l!

Dk+l
1 Kn(x, z).

We will also make use of the fact that following Taylor remainder formula holds:

K
k,α
n;xy(z) =

∑

l∈∂Aα

∫

Rd

Dk+l
1 Kn(ȳ, z)Ql(x − y, d ȳ), (4.32)

where all we need from the yet undefined objects is that ∂Aα is a finite set of multiindices

l which all satisfy |l |s ≥ α + β − |k |s and that Ql(x − y, ·) is a measure supported on the set

{ ȳ : ‖x − ȳ‖s ≤ ‖x − y‖s}, with total mass bounded by a constant times ‖x − y‖ |l |ss . For a

proof of this, see for example [Hai14, Appendix A].

Lemma 4.12. Fix γ > 0, w = (η, σ, µ), let V be a sector of regularity α, and set a =

(η ∧ α, σ ∧ α, µ).
(i) Let f ∈ D

γ,w

P
(V) and let K be as in Theorem 2.13 for some β > 0 and abstract

integration map I. Let ζ ∈ Ca such that ζ(ψ) = (R̃ f )(ψ) for all ψ ∈ C∞
0
(Rd \ P) and set

γ̄ = γ+β, η̄ = (η∧α)+β, σ̄ = (σ∧α)+β, µ̄ ≤ (a∧+β)∧0, ᾱ = (α+β)∧0. (4.33)

Suppose furthermore that none of γ̄, η̄, σ̄, or µ̄ are integers and that these exponents satisfy

the condition (4.17). Then K
ζ
γ f ∈ D

γ̄,w̄

P
, where w̄ = (η̄, σ̄, µ̄).

Furthermore, if (Π̄, Γ̄) is a second model realising K for Iand f̄ ∈ D
γ,w

P
(V, Γ̄), ζ̄ ∈ Ca

are as above, then for any C > 0 the bound

|||Kζ
γ f ; K̄

ζ̄
γ f̄ |||

γ̄,w̄;K
. ||| f ; f̄ |||γ,w;K̄ + ‖Π − Π̄‖γ;K̄ + ‖Γ − Γ̄‖γ̄;K̄ + ‖ζ − ζ̄ ‖a,K̄

holds uniformly in models and modelled distributions both satisfying ||| f |||γ,w;K̄ + ‖Π‖γ;K̄ +

‖Γ‖γ̄;K̄ + ‖ζ ‖a,K̄ ≤ C, where K̄ denotes the 1-fattening of K.
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Finally, the identity

RK
ζ
γ f = K ∗ ζ (4.34)

holds.

(ii) If f ∈ D
γ,w

P, {1} and the coordinates of w satisfy (4.23), then choosing R̂ f in the above

in place of ζ , the same conclusions hold, but with the definition of σ̄ in (4.33) replaced by

σ̄ = σ + β.

Proof. The argument showing that N
ζ
γ f (and therefore K

ζ
γ f ) is actually well-defined is

exactly the same as in [Hai14]. Also, the fact that the required bounds trivially hold for

components of (Kζ
γ f )(x) and (Kζ

γ f )(x)−Γyx(Kζ
γ f )(y), whose homogeneity is non-integer,

does not change in our setting.

For integers homogeneities, we shall make use of the decomposition of K and use

different arguments on different scales. We start by bounding the second term in (3.1). First

consider the case 2−n+2 ≤ |x |P0
≤ |x |P1

. We then have, for any multiindex l, due to (2.4)

|(R̃ f − Πx f (x))(Dl
1Kn(x, ·))| . 2n( |l |s−β−γ) |x |η−γ

P0
|x |µ−η

P1
. (4.35)

After summation over the relevant values of n, we get a bound of order

|x |η+β−|l |s
P0

|x |µ−η
P1
≤ |x |µ+β−|l |s

P1

( |x |P0

|x |P1

)η+β−|l |s
,

as required, since µ̄ ≤ µ + β. As for J(n)(x) f (x), for any integer l we have

‖J(n)(x) f (x)‖l .
∑

δ>l−β
2n(l−β−δ) |x |µ−δ

P1

( |x |P0

|x |P1

)(η−δ)∧0

.

Summing over n, we get

∑

2−n+2≤ |x |P0

‖J(n)(x) f (x)‖l .
∑

δ>l−β
|x |δ+β−l

P0
|x |µ−δ

P1

( |x |P0

|x |P1

)(η−δ)∧0

=

∑

δ>l−β
|x |β−l

P0
|x |µ

P1

( |x |P0

|x |P1

)η∧δ
. |x |µ+β−l

P1

( |x |P0

|x |P1

)η∧α+β−l
,

where we made use of δ ≥ α in the last step.

Next, consider the case |x |P0
≤ 2−n+2 ≤ |x |P1

. Since then ds(supp Dl
1
Kn(x, ·), P1) ∼

|x |P1
, we can invoke part (a) of Definition 4.7. For any multiindex l, we get

|(ζ − Πx f (x))(Dl
1Kn(x, ·)) + (J(n)(x) f (x))l |
≤ |ζ(Dl

1Kn(x, ·))| +
∑

δ≤ |l |s−β
|(ΠxQδ f (x))(Dl

1Kn(x, ·)|

. 2n( |l |s−β−η∧α) |x |µ−η∧α
P1

+

∑

δ≤l−β
2n( |l |s−β−δ) |x |µ−δ

P1

( |x |P0

|x |P1

) (η−δ)∧0

.

Notice that here in fact we only use estimates of ζ tested against functions centred on the

boundary, this observation useful in particular in the proof of part (ii) of the lemma. Let us
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denote the two terms above by An and Bn. Summing An over the relevant values of n, we

have two cases, depending on the sign of |l |s − β − (η ∧ α) = |l |s − η̄. If this exponent is

positive, we get, after summation

|x |(η∧α)+β−|l |s
P0

|x |µ−(η∧α)
P1

≤ |x |µ+β−|l |s
P1

( |x |P0

|x |P1

) η̄−|l |s
,

which gives the required bound. If, on the other hand, |l |s − η̄ < 0 (equality cannot occur, by

assumption), then the sum of the An’s over the relevant values of n is bounded by a constant

times

|x |(η∧α)+β−|l |s+µ−η
P1

,

which is also of the required order. The treatment of Bn is momentarily postponed.

In the final case, |x |P0
≤ |x |P1

≤ 2−n+2. Similarly as above, recalling that ζ ∈ Ca∧ , we

get

|(ζ − Πx f (x))(Dl
1Kn(x, ·)) + (J(n)(x) f (x))l |
≤ |ζ(Dl

1Kn(x, ·))| +
∑

δ≤ |l |s−β
|(ΠxQδ f (x))(Dl

1Kn(x, ·)|

. 2n( |l |s−β−a∧) +
∑

δ≤l−β
2n( |l |−β−δ) |x |µ−δ

P1

( |x |P0

|x |P1

) (η−δ)∧0

. (4.36)

Recognising the second term as Bn, we consider its sum over the values of n in both this

and in the second case. Notice that the exponent of 2n is strictly positive: indeed, δ+ β ∈ N
implies δ ∈ N, but since Kn and its derivatives annihilate polynomials, such terms have no

contribution to the sum. The resulting quantity is bounded by a constant times

∑

δ≤l−β
|x |β+δ−|l |s

P0
|x |µ−δ

P1

( |x |P0

|x |P1

)(η−δ)∧0

≤
∑

δ≤l−β
|x |µ+β−|l |s

P1

( |x |P0

|x |P1

) (η∧δ)+β−|l |s

. |x |µ+β−|l |s
P1

( |x |P0

|x |P1

) (η∧α)+β−|l |s

as required. Moving on to the first term on the right-hand side of (4.36), recall that

µ̄ ≤ a∧ + β, and hence

∑

n

2n( |l |s−β−a∧) ≤
∑

n

2n( |l |s−µ̄) . |x |µ̄−|l |s
P1

, (4.37)

where the sum runs over the relevant values of n, and we also made use of the fact that µ̄ ≤ 0

holds, and in fact, by assumption, with strict inequality. This concludes the estimation of

the second, and by symmetry, third term in (3.1).

Turning to bounding ‖Kζ
γ f (x) − ΓxyKζ

γ f (y)‖, recall that we need only consider pairs

(x, y) where 2‖x − y‖s ≤ |x, y |P0
≤ |x, y |P1

. As before, this implies |x |Pi
∼ |y |Pi

∼ |x, y |Pi
.

We separate into different scales again, starting by 2−n+2 ≤ 2‖x − y‖s ≤ |x, y |P0
≤

|x, y |P1
. As in (4.35), we have

|(Nζ,(n)
γ f (x))l | . 2n( |l |s−β−γ) |x |η−γ

P0
|x |µ−η

P1
.
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Summing over the relevant values of n, we get a bound of order

‖x − y‖γ+β−|l |ss |x |η−γ
P0
|x |µ−η

P1
,

as required. Similarly,

|(ΓxyNζ,(n)
γ f (x))l | .

∑

|k+l |s<γ+β
‖x − y‖ |k |ss 2n( |k+l |s−β−γ) |x |η−γ

P0
|x |µ−η

P1
,

which, after summation, yields an estimate of order

∑

|k+l |s<γ+β
‖x − y‖ |k |ss ‖x − y‖γ+β−|k+l |ss |x |η−γ

P0
|x |µ−η

P1
,

which is again of the required order. Next, using (4.30), we have

|(J(n)(x) f (x) − ΓxyJ(n)(y) f (y))l | ≤
∑

δ> |l |s−β
(ΠxQδ( f (x) − Γxy f (y))(Dl

1Kn(x, ·))

.

∑

δ> |l |s−β
‖x − y‖γ−δs |x |η−γ

P0
|x |µ−η

P1
2n( |l |s−β−δ) .

Summing over the relevant values n, we get the bound
∑

δ> |l |s−β
‖x − y‖γ−δs |x |η−γ

P0
|x |µ−η

P1
‖x − y‖δ+β−|l |s,

as required.

Moving on to larger scales, we will then use the identity (4.31). Starting with the second

term,

|
∑

δ≤ |l |s−β
(ΠxQδ(Γxy f (y) − f (x)))(Dl

1Kn(x, ·))| .
∑

δ≤ |l |s−β
‖x − y‖γ−δ |x |η−γ

P0
|x |µ−η

P1
2n( |l |s−β−δ).

This can be treated for all the remaining scales at once: summing over n such that ‖x− y‖s ≤
2−n+2 (the strict positivity of the exponent of 2n can be argued exactly as in the previous

similar situation), we get a bound of order
∑

δ≤ |l |s−β
‖x − y‖γ−δ |x |η−γ

P0
|x |µ−η

P1
‖x − y‖δ+β−|l |s,

which is of required order.

We are left to estimate

|(Πy f (y) − ζ)(Kk,γ
n;xy)|.

Rewriting the above quantity as in the formula (4.32), and making use of the properties

mentioned following it, we have

|(Πy f (y) − ζ)(K l,γ
n;xy)|

≤
∑

|k |s≥γ+β−|l |s

‖x − y‖ |k |ss sup
‖x−ȳ ‖s≤‖x−y ‖s

|(Πy f (y) − ζ)(Dk+l
1 Kn(ȳ, ·))|

≤ ‖x − y‖γ+β−|l |ss

∑

|k |s≥γ+β−|l |s

‖x − y‖ |k+l |s−γ−βs sup
‖x−ȳ ‖s≤‖x−y ‖s

|(Πy f (y) − ζ)(Dk+l
1 Kn(ȳ, ·))|.
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Therefore it remains to show that, for any k multiindex satisfying |k |s ≥ γ + β − |l |s and

any ȳ satisfying ‖x − ȳ‖s ≤ ‖x − y‖s , the following bound holds.

‖x − y‖ |k+l |s−γ−βs |(Πy f (y) − ζ)(Dk+l
1 Kn(ȳ, ·))| . |x |η̄−γ̄P0

|x |µ̄−η̄
P1

. (4.38)

Notice that in particular, as before, |x |Pi
∼ | ȳ |Pi

∼ |x, ȳ |Pi
. To show (4.38) we again

treat the remaining different scales separately. First, take n such that ‖x − y‖s ≤ 2−n+2 ≤
|x, y |P0

≤ |x, y |P1
. We write

|(Πy f (y) − ζ)(Dk+l
1 Kn(ȳ, ·))| ≤ |(Πȳ f (ȳ) − ζ)(Dk+l

1 Kn(ȳ, ·)|
+ |(Πȳ(Γȳy f (y) − f (ȳ))(Dk+l

1 Kn(ȳ, ·))|. (4.39)

Summing the first term over the relevant values of n, we get a bound of order

∑

n

2n( |k+l |s−β−γ) |x |η−γ
P0
|x |µ−η

P1
. ‖x − y‖−|k+l |s+γ+βs |x |η−γ

P0
|x |µ−η

P1
,

so the prefactor in (4.38) cancels and we get the required bound. Similarly to before, we

used that while we only required |k |s ≥ γ + β − |l |s, in fact equality can not occur due to

the assumptions of the theorem, so the exponent of 2n is strictly positive. The second term

in (4.39) is estimated by

∑

δ≤γ
‖x − y‖γ−δs |x |η−γ

P0
|x |µ−η

P1
2n( |k+l |s−β−δ).

After summation over n, we get the bound

∑

δ≤γ
‖x − y‖γ−δs |x |η−γ

P0
|x |µ−η

P1
‖x − y‖−|k+l |s+β+δs ,

which, just as before, is of required order.

Turning to the scale ‖x − y‖s ≤ |x, y |P0
≤ 2−n+2, we estimate the the actions of the two

distributions acting on the left-hand side of (4.38) separately. First,

|(Πy f (y))(Dk+l
1 Kn(ȳ, ·))| .

∑

α≤δ≤γ
|x |µ−δ

P1

( |x |P0

|x |P1

) (η−δ)∧0

2n( |k+l |s−β−δ).

As before, the exponent of 2n is strictly positive. Therefore

∑

|x,y |P0
≤2−n+2

‖x − y‖ |k+l |s−γ−βs (Πy f (y))(Dk+l
1 Kn(ȳ, ·))

.

∑

α≤δ≤γ
|x | |k+l |s−γ−β

P0
|x |µ−δ

P1

( |x |P0

|x |P1

) (η−δ)∧0

|x |−|k+l |s+β+δ
P0

.

∑

α≤δ≤γ
|x |µ−δ−(η−δ)∧0

P1
|x |η∧δ−γ

P0
. |x |µ−η

P1
|x |η∧α−γ

P0
,

as required.
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To treat the other distribution in (4.38), we further divide the scales, and consider first

‖x− y‖s ≤ |x, y |P0
≤ 2−n+2 ≤ |x, y |P1

. In this case the support of Kn(ȳ, ·) is separated away

from P1, so we have

|ζ(Dk+l
1 Kn(ȳ, ·))| . 2n( |k+l |s−β−(η∧α)) |x |µ−(η∧α)

P1
.

After summation on n and multiplying by the prefactor in (4.38), using ‖x − y‖s ≤ |x |P0
,

we obtain a bound of order

|x | |k+l |−γ−β
P0

|x |(η∧α)+β−|k+l |s
P0

|x |µ−(η∧α)
P1

,

which is again of required order.

Finally, when ‖x − y‖s ≤ |x, y |P0
≤ |x, y |P1

≤ 2−n+2, we can write

|ζ(Dk+l
1 Kn(ȳ, ·))| . 2n( |k+l |s−β−a∧) ≤ 2n( |k+l |s−µ̄).

Summing over n and multiplying by the prefactor in (4.38), we arrive at the bound

|x | |k+l |−γ−β
P0

|x |µ̄−|k+l |s
P1

= |x |η̄−γ̄
P0
|x | |k+l |s−η̄

P0
|x |µ̄−|k+l |s

P1
, (4.40)

and since |k + l |s − η̄ ≥ 0, the middle term can be estimated by |x | |k+l |s−η̄
P1

, and the proof is

finished.

The proof of continuity again goes in an analogous way and is omitted here.

As for the identity (4.34), inspecting the proof of [Hai14, Thm 5.12], one can notice

that this boils down to obtaining the estimate

�

�

�

∑

n≥0

∫

(Πx f (x) − R̃ f )(K0,γ
n,yx)ψλx (y) dy

�

�

� . λ
γ+β

for λ ≪ |x |P0
∧ |x |P1

. This however is a local statement and therefore the argument in

[Hai14] carries through for our case virtually unchanged.

(ii) In the f ∈ D
γ,w

P, {1} case, when repeating the above arguments, one should only pay

attention in order to get the improved exponent σ̄ = σ + β in place of (σ ∧ α) + β = α + β.

This improvement is the consequence of the improved bound on ‖ f (x)‖l near P1, thanks

to Proposition 3.5, and of the improved regularity of R̂ f when tested against functions

centred on P1, thanks to (4.24). �

Remark 4.13. The “slight difficulty” foreshadowed in Remark 3.4 is the constraint µ̄ ≤ 0 in

the above lemma. Indeed, in all three of the concrete examples mentioned in the introduction,

it turns out one needs to choose µ̄ > 0. Note that the only two places in the proof where the

condition µ̄ ≤ 0 was used are (4.37) with l = 0 and (4.40). In the latter case one, actually

only needs µ̄ ≤ γ̄, which holds as soon as we choose γ sufficiently large so that µ ≤ γ.

Therefore, provided that ζ is such that the bound
∑

2−n+2≥ |x |P1

|ζ(Dl
1Kn(x, ·))| . |x |µ̄−|l |sP1

,

holds for |x |P0
≤ |x |P1

, and the corresponding symmetric bound holds for |x |P1
≤ |x |P0

, for

all |l |s ≤ µ̄, and µ̄ ≤ a∧ + β, then the conclusions of Lemma 4.12 still hold. This appears to

be a very strong condition, but in the standard case where K is a non-anticipative kernel and

ζ is supported on positive times, it is actually quite reasonable, see Proposition 5.1 below.
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4.6 Integration against smooth remainders with singularities at the boundary

From this point on we move to a more concrete setting, and in particular P0 and P1 will play

different roles. We shall view Rd as R × Rd−1, denoting its points by either z or by (t, x),
where t ∈ R, x ∈ Rd−1. Furthermore we assume that P0 is given by {(0, x) : x ∈ Rd−1}

Definition 4.14. Denote by Zβ,P the set of functions Z : (Rd \P)2 → R that can be written

in the form Z(z, z′) = ∑

n≥0 Zn(z, z′) where, for each n, Zn satisfies the following

• Zn is supported on {(z, z′) = ((t, x), (t ′, x′)) : |z |P1
+ |z′ |P1

+ |t − t ′ |1/s0 ≤ C2−n},
where C is a fixed constant depending only on the domain D.

• For any (d-dimensional) multiindices k and l,

|Dk
1 Dl

2Zn(z, z′)| . 2n( |s |+ |k+l |s−β),

where the proportionality constant may depend on k and l, but not on n, z, z′.

The relevance of this definition is illustrated by the following example, which shows

that if we consider a heat kernel on a domain obtained by the reflection principle, then it

can always be decomposed into an element of Kβ and an element of Zβ,P .

Example 4.15. Our main example will be of the following form. Suppose that G0 is a

function on Rd ×Rd \ {(z, z′) : z = z′} with the following properties:

• We have a decomposition G0
= K0

+ R0, where K0 ∈ Kβ, while R0 is a globally

smooth function.

• For any two multiindices k and l and any number a, there exists a constant Ck,l,a

such that it holds that |Dk
1

Dl
2
R0(z, z′)| ≤ Ck,l,a(|x − x′ | ∨ 1)a .

As it is shown in [Hai14], the heat kernel in any dimension satisfies these conditions with

β = 2. Suppose then that we have a discrete group Gof isometries of Rd−1 with a bounded

fundamental domain D, and with the property that the following implication holds

g ∈ G\ {id}, x, y ∈ D, ‖x − g(y)‖s ≤ 2−n ⇒ ds(x, ∂D) ∨ ds(y, ∂D) ≤ 2−n.

Let a : G→ {−1, 1} be a group morphism and write

G((t, x), (s, y)) =
∑

g∈G
agG0((t, x), (s, g(y))). (4.41)

A concrete example to have in mind is when D = [−1, 1] and G is generated by the maps

y 7→ −2 − y and y 7→ 2 − y. Then, the trivial morphism ag ≡ 1 yields the Neumann heat

kernel on D, while the morphism with kernel given by the orientation-preserving g’s yields

the Dirichlet heat kernel. Obvious higher dimensional analogues include the Neumann and

Dirichlet heat kernels on (d − 1)-dimensional cubes.

For functions f and g on (Rd)2, write f ∼ g if f (z) = g(z) for z ∈ ([0, 1] × D)2. We

claim that, setting P1 = R × ∂D, there exist K ∈ Kβ, Z ∈ Zβ,P , such that G ∼ K + Z .

First, due to the decay properties of R0, the sum R̃ =
∑

g agR0((t, x), (s, g(y))) converges

and defines a globally smooth function which we can truncate in a smooth way outside of

([0, 1] × D)2, so that it belongs to Zβ,P . For K0, we divide the sum

∑

g∈G
agK0((t, x), (s, g(y)))
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into three parts. For g = id, we simply set K = K0 which belongs to Kβ by assumption.

The terms with g such that y ∈ D implies ds(g(y), D) > 1 may safely be discarded since

they are supported outside of ([0, 1] × D)2. For the remaining finitely many terms, say

g1, g2, . . . , gm, we use our assumption on G, by which we can write

K0
n((t, x), (s, gm(y))) ∼ ϕn(x, y)K0

n((t, x), (s, gm(y))) .

where ϕn is 1 on {(x, y) : ds(x, ∂D)∨ds(y, ∂D) ≤ 2−n}, is supported on {(x, y) : ds(x, ∂D)∨
ds(y, ∂D) ≤ 2−n+1}, and for all multiindices k and l, Dk

1
Dl

2
ϕ is bounded by 2n( |k+l |s), up

to a universal constant. Let furthermore ϕ be a smooth compactly supported function that

equals 1 on D × D. We can then set

Z0((t, x), (s, y)) =
m
∑

i=1

ϕ(x, y)K0
0 ((t, x), (s, gi(y))) + ϕ(x, y)R̃,

and for n > 0

Zn((t, x), (s, y)) =
m
∑

i=1

ϕn(x, y)K0
n((t, x), (s, gi(y))),

which does indeed yield an element of Zβ,P .

Lemma 4.16. Let a ∈ R3
− and a∧ be as in Definition 4.7, u ∈ Ca

P
and Z ∈ Zβ,P . Then the

function

v : z 7→
∑

n≥0

〈u, Zn(z, ·)〉 (4.42)

is a smooth function on Rd \ P, and its lift to T̄ via its Taylor expansion, which we also

denote by v, belongs to D
γ,w

P
(T̄), where σ = a1 + β, γ ≥ σ ∨ 0, and η and µ satisfy

η ≤ γ, µ ≤ (a∧ + β) ∧ 0, (4.43)

provided neither of σ nor µ are integers.

If u furthermore satisfies 〈u, ψλz 〉 . λā1 |z |a∩−ā1

P0
for z ∈ P1 \ P0 and 2λ ≤ |z |P0

with

some ā1 ≥ a1, then the conclusions hold with the definition of σ replaced by σ = ā1 + β.

Proof. Notice that in (4.42) only the terms where 2−n ≥ |z |P1
give nonzero contributions.

In particular, since the sum is finite, any differentiation on v can be carried inside. If

|z |P0
≤ 2|z |P1

, then we simply use the fact that u ∈ Ca∧ , to get, for any multiindex l

|Dl
v(z)| .

∑

2−n≥ |z |P1

2n( |l |s−β−a∧) ≤
∑

2−n≥ |z |P1

2n( |l |s−µ) ≤ |z |µ−|l |s
P1

, (4.44)

where we used µ ≤ a∧+ β as well as µ < 0. If 2|z |P1
≤ |z |P0

, then we distinguish two cases.

First, if 2|z |P1
≤ 2−n ≤ |z |P0

, then the support of Zn(z, ·) is away from P0, and so we make

use of part (b) of the definition of Ca
P

:

| 〈u,Dl
1Zn(z, ·)〉 | ≤ 2n( |l |s−β−a1) |z |a∩−a1

P0
. (4.45)

If σ = a1 + β < |l |s , then the summing up yields

∑

2 |z |P1
≤2−n ≤ |z |P0

| 〈u,Dl
1Zn(z, ·)〉 | . |z |σ−|l |sP1

|z |a∩−a1

P0
= |z |a∩−a1+σ−|l |s

P0

( |z |P1

|z |P0

)σ−|l |s
,
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which is as required, since −a1 + σ = β. If, on the other hand, σ > |l |s, then

∑

2 |z |P1
≤2−n ≤ |z |P0

| 〈u,Dl
1Zn(z, ·)〉 | . |z |a∩+β−|l |sP0

.

On the scale, 2|z |P1
≤ |z |P0

≤ 2−n, when we simply use the fact u ∈ Ca∧ again in the same

way as before, to get

∑

|z |P0
≤2−n
| 〈u,Dl

1Zn(z, ·)〉 | .
∑

|z |P0
≤2−n

2n( |l |s−β−a∧) ≤ |z |µ−|l |s
P0

. (4.46)

Putting the above estimates together, we conclude that

‖v(z)‖ |l |s =
1

k!
|Dl

v(z)| . |z |µ−|l |s
P1

( |z |P0

|z |P1

) (η−|l |s)∧0

(4.47)

if |z |P0
≤ |z |P1

, and the corresponding symmetric estimate holds when |z |P1
≤ |z |P0

. In

particular, the second and third terms in (3.1) are finite for any finite γ. To bound the first

term, it remains to recall that since v is the lift of a smooth function, for any positive integer

γ and (z, z′) ∈ KP

‖v(z) − Γzz′v(z′)‖l ≤ ‖z − z′‖γ−ls sup
z̄∈K: |z |Pi

∼|z̄ |Pi
∼|z,z′ |Pi

|Dγ
v(z̄)|.

Applying (4.47) (and its symmetric counterpart) with l = γ, we get

|Dγ
v(z̄)| . |z |η−γ

P0
|z |σ−γ

P1
(|z |P0

∨ |z |P1
)µ−η−σ+γ,

as required. For γ non-integer, it suffices to apply the above with γ replaced by γ̄ = ⌈γ⌉ and

to note that, for every γ ∈ (γ̄ − 1, γ̄), one has D
γ̄,w

P
⊂ D

γ,w

P
. (To see this, write f = f ⋆γ 1

and apply Lemma 4.3, noting that 1 ∈ D
γ,w̄

P
with η̄ = η ∨ 0, σ̄ = σ ∨ 0 and µ̄ = 0.) For the

last statement of the lemma, one can simply notice that in (4.45) u is tested against functions

centred on P1 \ P0, and use the additional assumption on u. �

Remark 4.17. The mapping u→ Q−
γ+β

v, where v is as in (4.42), will also be denoted by Zγ.

As all models that we consider act the same on polynomials, the usual continuity estimates

are in this case direct consequences of the above result.

Remark 4.18. It is again worth pointing out that the µ < 0 condition, used in (4.44) and

(4.46), can be omitted if one can derive

∑

2−n+2≥ |z |P1
∨|z |P0

| 〈u,Dl
1Zn(z, ·)〉 | . (|z |P1

∨ |z |P0
)µ−|l |s

for |l |s ≤ µ by some other means.

One can easily verify that the action of Kγ and Zγ are compatible in the following sense:

take f ∈ D
γ,w

P
and an extension ζ of R̃ f as in Lemma 4.12 (i). Then Zγ+βζ ∈ D

γ+β,w̄

P
,

where w̄ is as in Lemma 4.12 (i).
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5 Solving the abstract equation

In addition to the setting of Section 4.6 we now assume that, for a bounded domain D ⊂ Rd−1

with a Lipschitz boundary ∂D satisfying the cone condition, P1 is given by P1 = R × ∂D.

We shall denote by D̄ the 1-fattening of the closure of D, and we introduce the T-valued

function

R
D
+
(t, x) =

{

1, if t > 0, x ∈ D,

0, otherwise.

It is straightforward to see that R
D
+
∈ D

∞,(∞,∞,0)
P

, and in particular that multiplication by

R
D
+

maps any D
γ,w

P
space into itself.

5.1 Non-anticipative kernels

In a typical situation of an application of the theory to SPDEs, one important property of

the kernel K that we have, further to the quite general setting in Definition 2.11, is that it is

non-anticipative in the sense that

t < s ⇒ K((t, x), (s, y)) = 0. (5.1)

We shall use the notations O = [−1, 2] × D̄ and Oτ = (−∞, τ] × D̄ as well as the shorthand

||| f |||γ,w;τ for ||| f |||γ,w;Oτ
and similarly for other norms involving dependence on compact

sets.

First of all, this allows us to improve our conditions on µ.

Proposition 5.1. (i) In the setting of Lemma 4.12 (i), suppose that K is non-anticipative,

that f is of the form R
D
+
g for some g ∈ D

γ,w

P
, and that ζ annihilates test functions

supported on negative times. Let furthermore ε > 0 such that m0 − β + ε > 0 and

assume a∧ +m0 ≥ 0. Then, modifying the condition on µ̄ from (4.33) to

µ̄ ≤ a∧ + β − ε,

the conclusions of Lemma 4.12 (i) still hold.

(ii) The analogous statement holds for Lemma 4.12 (ii), where the modified condition on

µ̄ reads as

µ̄ ≤ η ∧ µ ∧ α + β − ε.

(iii) In the setting of Lemma 4.16, suppose that Z is non-anticipative and that u annihilates

test functions supported on negative times and let ε > 0 be as above. Then, modifying

the condition on µ from (4.43) to

µ ≤ a∧ + β − ε,

the conclusion of Lemma 4.16 still hold.

Proof. (i) By Remark 4.13, we only need to obtain the bound

∑

2−n+2≥ |z |P1
∨|z |P0

|ζ(Dl
1Kn(z, ·))| . (|z |P1

∨ |z |P0
)µ̄−|l |s (5.2)
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for |l |s ≤ µ̄. For all m ∈ N, define the grid

Λm = {(s, y) : s = 2−mm0, y =

d−1
∑

j=1

2−ms j k jej, k j ∈ Z},

where ej is the j-th unit vector of Rd−1, j = 1, . . . , d − 1. Let furthermore ϕ be a function

that satisfies
∑

y∈Λ0

ϕ(t, x − y) = 1 ∀t ∈ [−1, 2], x ∈ Rd−1,

and define ϕ
m,s
y = 2−m |s |ϕ2−m

y .

To show (5.2), we first write, with setting 2−m ≤ |z |P0
≤ 2−m+1,

ζ(Dl
1Kn(z, ·)) =

∑

y∈Λm

ζ(ϕm,sy (·)Dl
1Kn(z, ·)).

Indeed, the function Dl
1
Kn(z, ·) −

∑

y∈Λm
ϕ
m,s
y Dl

1
Kn(z, ·) is supported on strictly negative

times, and therefore vanishes under the action of ζ . Each of the functions ϕ
m,s
y Dl

1
Kn(z, ·)

has support of size of order 2−m |s | and its kth derivative is bounded by 2n( |s |+ |l |s−β)2m |k |s .
Recalling that ζ ∈ Ca∧ , this yields

|ζ(ϕm,sy (·)Dl
1Kn(z, ·))| . 2−ma∧2−m |s |2n( |s |+ |l |s−β) .

Combining this with the fact that the number of points y ∈ Λm for which the support of

ϕ
m,s
y actually intersects the support of Dl

1
Kn(z, ·), is of order 2−n( |s |−m0)2m( |s |−m0), we get

|ζ(Dl
1Kn(z, ·))| . 2−m(a∧+m0)2n(m0+ |l |s−β).

By multiplying with 2nε , we only increase the right-hand side, and by our assumptions this

guarantees that the exponent of 2n becomes positive. Therefore, recalling that 2−m ∼ |z |P0
,

we obtain

∑

2−n+2≥ |z |P1
∨|z |P0

|ζ(Dl
1Kn(z, ·))| . |z |a∧+m0

P0
(|z |P1

∨ |z |P0
)β+ε−m0−|l |s,

which, using a∧ +m0 ≥ 0, gives the required bound.

The proof of (ii) goes in the same way, and, in light of Remark 4.18, so does that of

(iii). �

The other important consequence of the non-anticipativity of our kernel is the following

short-time control.

Lemma 5.2. In the setting of Proposition 5.1 (i), suppose that K is non-anticipative. Set,

for a κ > 0, w′ = (η′, σ ′, µ′) := (η̄ − κ, σ̄, µ̄ − κ). Then it holds, for any C > 0

|||Kζ
γR

D
+
g |||

γ̄,w′;τ . τ
κ/s0(|||g |||γ,w;τ + ‖ζ ‖a;τ),

|||Kζ
γR

D
+
g; K̄

ζ̄
γR

D
+
ḡ |||

γ̄,w′;τ . τ
κ/s0(|||g; ḡ |||γ,w;τ + ‖Π − Π̄‖γ,O + ‖Γ − Γ̄‖γ,O
+ ‖ζ − ζ̄ ‖a;τ) (5.3)
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uniformly in τ ∈ (0, 1] and in models bounded by C. For the second bound, g and ḡ are

also assumed to be bounded by C.

If we are instead in the situation of Proposition 5.1 (ii), then the analogous statement

holds, with ζ replaced by R̂ f , and hence the last term on the right-hand side of (5.3) can

be omitted.

Proof. First, by the fact that K is non-anticipative, using (2.4) we can improve Lemma 4.12

to

|||Kζ
γR

D
+
g |||

γ̄,w̄;τ
. |||g |||γ,w;τ + ‖ζ ‖a;τ .

This already takes care of bounding the first and third term in (3.1), since, using the

shorthand F =K
ζ
γR

D
+
g, for (z, z′) ∈ (Oτ)P

‖F(z) − Γzz′F(z′)‖l
‖z − z′‖γ̄−ls |z, z′ |

η′−γ̄
P0
|z, z′ |σ̄−γ̄

P1
(|z, z′ |P0

∨ |z, z′ |P1
)µ′−η′−σ̄+γ̄

. |z, z′ |η̄−η
′

P0
|||F |||γ̄,w̄;τ,

where we used that µ′ − η′ = µ̄ − η̄. Similarly, for z ∈ Oτ ∩ {|z |P1
≤ |z |P0

},

‖F(z)‖l

|z |µ′−l
P0

( |z |P1

|z |P0

) (σ̄−l)∧0
. |z |µ

′−µ̄
P0
|||F |||γ̄,w̄;τ .

Keeping in mind that |z |P0
≤ t1/s0 , by the definition of the exponents w

′, these are indeed

the required bounds. Similarly, we have for z ∈ Oτ ∩ {|z |P0
≤ |z |P1

}

‖F(z)‖l

|z |µ′−l
P1

( |z |P0

|z |P1

) (η′−l)∧0
≤ ‖F(z)‖l
|z |µ′−η′

P1
|z |η′−l

P0

. |z |η
′−η̄

P0
[]F[]γ̄,w̄, {0};τ,

and hence, by virtue of Proposition 3.5, the proof is complete if we can show that F =

K
ζ
γR

D
+
g ∈ D

γ̄,w̄

P, {0}. This, on the other hand, follows from the proof of [Hai14, Thm 7.1],

given that away from P1, ζ belongs to Cη∧α, which is exactly the situation considered

therein. The bound on the difference again follows in an analogous way. �

The corresponding results hold for the singular remainder as well.

Lemma 5.3. Let Z ∈ Zβ,P , f , ζ , γ, γ̄, w, and w
′ be as in Lemma 5.2. Then it holds, for

any C > 0

|||Zγζ |||γ̄,w′;τ . τ
κ/s0 ‖ζ ‖a;τ,

uniformly in τ ∈ (0, 1].

Proof. The proof goes precisely as in the previous lemma, with the only difference that we

cannot refer to [Hai14] to argue that F := Zγ̄ζ ∈ D
γ,w̄

P, {0}. We therefore need to show that

(F)k has limit 0 at points of P0 \ P1 whenever |k |s ≤ η ∧ α + β. This is simply due to the

fact that, for such k, the function

z→ ζ(Z(z, ·))

is continuous away from P1, and is 0 for negative times. �
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5.2 On initial conditions

The class of admissible initial conditions depends on the particular choice of the kernel

in that in addition to the regularity, some boundary behaviour may be required. In the

setting of Example 4.15, which is general enough to cover all of our examples, this can be

formalised as follows.

Lemma 5.4. Let Gand G be as in Example 4.15 and let u0 be a function on D such that

the function ū0 defined by

ū0(x) = agū0(g−1x)
for the g ∈ G such that g−1x ∈ D, has a continuous extension that belongs to Cα(Rd−1).
Then the function

v(t, x) =
∫

D

G((t, x), (0, y))u0(y)dy

is smooth on (0,∞) × D and extending it by 0 to Rd \ (0,∞) × D, for any multiindex l, the

pointwise lift of its l-th derivative via its Taylor expansion belongs to D
γ,(α−|l |s,σ,(α−|l |s )∧0)
P

for any 0 ≤ σ ≤ γ.

Proof. We can write

v(t, x) =
∫

Rd

G0((t, x), (0, y))ū0(y)dy.

By assumption, the conditions of [Hai14, Lem 7.5] are satisfied, and hence v satisfies the

bounds

|Dl
v(t, x)| . |z |(α−|l |s)∧0

P0
.

This already gives the right bounds for ‖Dl
v(z)‖k , k = 0, 1, . . .. From this one can deduce the

bound for the quantity ‖Dl
v(z)−Γzz′Dl

v(z′)‖k precisely as in the proof of Lemma 4.16. �

5.3 The fixed point problem

At this point everything is in place to solve the abstract equations that will arise as ‘lifts’

of equations similar to the ones in Section 1.1. As the notation is already quite involved,

we refrain from the full generality concerning the kernel K + Z and the scaling s and only

state the result in a form that is sufficient to treat nonlinear perturbations of the stochastic

heat equation with some boundary conditions. Our main goal is to formulate a fixed point

argument that is just general enough to cover the examples mentioned in the introduction,

as well as some related problems.

Our setup will involve families of Banach spaces depending on some parameter τ > 0

(which will represent the time over which we solve our equation). We will henceforth

talk of a “time-indexed space V” for a family V = {Vτ}τ>0 of Banach spaces as well as

contractions πτ′←τ : Vτ → Vτ′ for all τ′ < τ with the property that πτ′′←τ′ ◦πτ′←τ = πτ′′←τ .
We consider V itself as a Fréchet space whose elements are collections {vτ }τ>0 satisfying

the consistency condition vτ′ = πτ′←τvτ and with the topology given by the collections of

seminorms ‖ · ‖τ inherited by the spaces Vτ. We will write πτ : V→ Vτ for the natural

projection.

Given a bounded and piecewise C1 domain D ⊂ Rd−1, a typical example of a time-

indexed space is given by the space V= D
γ,w

P
with πτ given by the restriction to [0, τ] ×D

and norms ‖ · ‖τ given by ||| · |||γ,w;Dτ
, where Dτ = [0, τ] × D. Similarly, we write again

Cw
P

for the time-indexed space consisting of distributions on Rd which vanish outside of
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R+ ×D, endowed with the norms of Definition 4.7, but restricted to test functions ψ, points

x and constants λ such that the support of ψλx lies in (−∞, τ] ×Rd−1.

Given two time-indexed spaces Vand V̄, we call a map A : V→ V̄ ‘adapted’ if there

are maps Aτ : Vτ → V̄τ such that πτA = Aτπτ . If A is linear, we will furthermore assume

that the norms of Aτ are uniformly bounded over bounded subsets of R+. Similarly, we call

A “locally Lipschitz” if each of the Aτ is locally Lipschitz continuous and, for every K > 0

and τ > 0, the Lipschitz constant of Aτ′ over the centred ball of radius K in Aτ′ is bounded,

uniformly over τ′ ∈ (0, τ].
With these preliminaries in place, our setup is the following.

• Fix d ≥ 2, β = 2, the scaling s = (2, 1, . . . , 1) on Rd
= {(t, x) : t ∈ R, x ∈ Rd−1},

and a regularity structure T .

• Let γ, γ0 be two positive numbers satisfying γ < γ0 + 2 and let V be a sector of

regularity α ≤ 0 and such that T̄ ⊂ V .

• Set P0 = {(0, x) : x ∈ Rd−1} and P1 = {(t, x) : t ∈ R, x ∈ ∂D}, where D is a domain

in Rd−1 with a piecewise C1 boundary, satisfying the cone condition.

• We assume that we have an abstract integration map I of order 2 as well as non-

anticipative kernels K ∈ K2 and Z ∈ Z2,P . We then construct the operator Zγ and,

for every admissible model (Π, Γ), the operator Kγ as in Sections 4.5 and 4.6.

• We fix a family ((Πε, Γε))ε∈(0,1] of admissible models converging to (Π0, Γ0) as

ε→ 0.

• We fix a collection of time-indexed spaces Vε with ε ∈ [0, 1] endowed with adapted

linear maps R̂ε : Vε →
⊕n

i=0 C
wi

P
and ιε : Vε →

⊕n
i=0 D

γ0,wi

P
(Vi, Γ

ε), where Vi

are sectors of regularity αi, satisfying I(Vi) ⊂ V and wi ∈ R3. Finally, we assume

that for every ε ∈ [0, 1] and every v ∈ Vε, one has
(

R̃R
D
+
ιεv

)

(ψ) =
(

R̂ε
v
)

(ψ) (5.4)

for any ψ ∈ C∞
0
(Rd \ P). Denote C̃ =

⊕n
i=0 C

wi

P
and D̃ =

⊕n
i=0 D

γ0,wi

P
(Vi, Γ

ε),
which are themselves time-indexed spaces equipped with the natural norms.

• We fix a collection of time-indexed spaces Wε of modelled distributions such that

the linear maps

P
(ε)
γ v =

n
∑

i=0

(

K
(R̂εv)i
γ (RD

+
ιεv)i + Zγ(R̂ε

v)i
)

,

are bounded from Vε into Wε with a bound of order τθ for some θ > 0 for its

restriction to time τ ∈ (0, 1], uniformly over ε ∈ [0, 1].
• For ε ∈ [0, 1], we fix a collection of adapted locally Lipschitz continuous maps

Fε : D
γ,w

P
(V, Γε) → Vε.

• There are ‘distances’ |||·; ·|||W;τ (possibly also depending on ε) defined on Wε × W0

that are compatible with the maps Fε and Pγ in the sense that, for u ∈ Vε, v ∈ V0,

and τ ∈ (0, 1], one has

τ−θ |||P(ε)γ u;P
(0)
γ v |||

W;τ
. |||ιεu; ι0v ||| D̃;Dτ

+ ‖R̂εu − R̂0
v‖ C̃;Dτ

+ o(1) ,
as ε → 0. Similarly, uniformly over modelled distributions f ∈ Wε, g ∈ W0

bounded by an arbitrary constant C and uniformly over τ ∈ (0, 1], one has

|||ιεFε( f ); ι0F0(g)||| D̃;Dτ
+ ‖R̂εFε( f ) − R̂0F0(g)‖ C̃;Dτ

. ||| f ; g |||W;τ + o(1) , (5.5)
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as ε → 0.

Remark 5.5. The reader may wonder what the point of this rather complicated setup is. By

choosing for Vε a direct sum of spaces of the type defined in Section 3, it allows us to

decompose the right hand side of our equation into a sum of terms with well-controlled

behaviour at the boundary. This gives us the flexibility to exploit different features of each

term to control the corresponding “reconstruction operator” R̂ε
i
. For example, in the case of

2D gPAM, the term f̂i j(u)⋆Di(u)⋆Dj(u) can be reconstructed because the corresponding

weight exponents are sufficiently large, the term (ĝ(u) − g(0)1) ⋆ Ξ can be reconstructed

because it vanishes on the boundary, and the term g(0)Ξ can be reconstructed because it

corresponds to (a constant times) white noise, multiplied by an indicator function.

We then have the following result.

Theorem 5.6. In the above setting, there exists τ > 0 such that, for every ε ∈ [0, 1] and

every v ∈ Wε, the equation

u = P
(ε)
γ0

Fε(u) + v , (5.6)

admits a unique solution uε ∈ Wε on (0, τ). The solution map Sτ : (v, ε) 7→ uε is

furthermore jointly continuous at (v, 0).

Proof. By assumption P
(ε)
γ0

is an adapted linear map from Vε to Wε with control on its

norm that is uniform over ε ∈ [0, 1]. It has the additional property that, when restricted to

time τ, its operator norm is bounded by O(τθ ) for some exponent θ > 0, uniformly in ε.

Combining this with the uniform local Lipschitz continuity of the maps Fε , it is immediate

that, for every C > 2‖v‖W;1, there exists τ ∈ (0, 1] such that the right hand side of (5.6) is a

contraction and therefore admits a unique fixed point in the centred ball of radius C in Wε.

To show that this is the unique fixed point in all of Wε is also standard: assume by

contradiction that there exists a second fixed point ū (which necessarily has norm strictly

greater than C). Then, for every τ′ < τ, the restrictions of both u and ū are fixed points

in Wε . However, since the norm of Aε is bounded by O(τ̄θ ), one has uniqueness of the

fixed point in a ball of radius C̄(τ′) of Wε with limτ′→0 C̄(τ′) = ∞, so that one reaches

a contradiction by choosing τ′ small enough. The continuity of the solution map at (v, 0)
then follows immediately from (5.5). �

6 Singular SPDEs with boundary conditions

The next three subsections are devoted to the proofs of Theorems 1.1, 1.5, and 1.7, re-

spectively. We do rely on the results of the corresponding statements without boundary

conditions from [Hai13, Hai14], in particular the specific regularity structures, models, and

their convergence do not change in our setting. Therefore we only specify details about

these objects to the extent that is sufficient to cover the new aspects of our setting.

6.1 2D gPAM with Dirichlet boundary condition

The regularity structure for the equation (1.1) is built as in [Hai14, Sec 8], and the models

(Πε, Γε)ε∈[0,1] as in [Hai14, Sec 10], and we will use the notations from there without

further ado. We use the periodic model with sufficiently large period: if the truncated heat

kernel K0 is chosen to have support of diameter 1, then the periodic model on [−2, 2]2
suffices, since convolution with K0 and with its periodic symmetrisation agrees on [−1, 1]2.
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The homogeneity of the symbol Ξ is denoted by −1 − κ, where κ ∈ (0, (1/3) ∧ δ) \Q, with

δ being the regularity of the initial condition.

Our setup to apply Theorem 5.6 is the following. The sectors we are working with are

V = I(T) + T̄, V0 = T+0 ⋆D(V )⋆D(V ), V1 = T+0 ⋆Ξ, V2 = 〈Ξ〉

and we set the exponents γ = 1 + 2κ, γ0 = κ,

α = 0, η = κ σ = 1/2 + κ µ = −κ;
α0 = −2κ, η0 = 2κ − 2, σ0 = 2κ − 1, µ0 = 2κ − 2;

α1 = −1 − κ, η1 = −1, σ1 = −1/2, µ1 = −1 − κ;
α2 = −1 − κ, η2 = −1 − κ, σ2 = −1 − κ, µ2 = −1 − κ.

We then set

Vε = D
γ0,w0

P
(V0, Γ

ε) ⊕ D
γ0,w1

P, {1}(V1, Γ
ε) ⊕ D

γ0,w2

P
(V2, Γ

ε) , (6.1)

and we let ιε be the identity. As for R̂ε, it is chosen to act coordinate-wise, and in the first

two coordinates there is no choice to be made, one simply applies Theorems 4.9-4.10. The

definition of the action of R̂ε on the third coordinate is momentarily postponed.

We take G to be the Dirichlet heat kernel of the domain D = (−1, 1)2 continued to all

of R2 as in Example 4.15. We also consider the decomposition G ∼ K + Z given there and

construct Kγ0
and Zγ0

accordingly. Furthermore, by Schauder’s estimate, it follows that,

for all f ∈ Cα with α > −2, the function

(t, x) 7→
∫

[0,t]×D
G((t, x), (s, y)) f (s, y) ds dy

is continuous and vanishes on R+ × ∂D. In particular, for any v ∈ Vε, the modelled

distribution

h = (K(ε)γ0
+ Zγ0

R̂ε)v
satisfies 〈1, h(t, x)〉 = 0 for all t > 0 and x ∈ ∂D. Since the only basis element in V with

homogeneity lower than σ is 1, we conclude that one has h ∈ D
γ,w

P, {1}. We exploit this by

setting the time-indexed space Wε to be

Wε =
{

u ∈ D
γ,(η,σ,0)
P, {1} : Diu ∈ D

γ−1,(η−1,σ−1,κ−1)
P

, i = 1, 2
}

.

The reason for only imposing a slightly weaker condition on u itself (i.e. we use 0 instead

of κ as the third singularity index) is to be able to deal with initial conditions. Indeed, let v

be the lift of the solution of the linear equation

∂tv = ∆v, v |∂D = 0, v |{0}×D = u0. (6.2)

Combining our assumption that u0 ∈ Cδ with Lemma 5.4 and the definition of the various

exponents, we then note that indeed v ∈ Wε as required, but this would not be the case had

we simply replaced Wε by D
γ,(η,σ,κ)
P, {1} . Due to the above choice of exponents, the required

estimate of order Tθ of the short time norm of P
(ε)
γ from Vε to Wε follows from Lemmas

5.2-5.3, with the choice

||| f ; g |||W;τ := ||| f ; g |||γ,(η,σ,0);τ + |||D f ; Dg |||γ−1,(η−1,σ−1,κ−1);τ .
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We now define the functions Fε . They are given as local operations with formal

expression that do not depend on ε, and we define its three components according to the

decomposition (6.1) separately. We first set

F(0)(u) = f̂i j (u)⋆Di(u)⋆Dj(u).

Here f̂i j are the lifts of the functions fi j in (1.1). By Lemmas 4.4, 4.3, and 4.11, F(0) is indeed

a mapping from Wε to D
γ0,w0

P
(V0). At this stage we note that the fact that the derivatives

of elements of Wε have better corner singularity than µ − 1 is crucial, since otherwise we

would have had to choose µ0 ≤ −2 which would violate the condition µ0 + 2 > (µ ∨ 0)
appearing in the conditions of Theorem 5.6.

Next, set

F(1)(u) = (ĝ(u) − g(0)1)⋆Ξ

Again, using Lemmas 4.4 and 4.3, it is easy to see that F(1) maps from Wε to D
γ1,w1

P
(V1).

To see that it in fact maps to D
γ0,w1

P, {1}(V1), we need only check the coefficient of Ξ, since Ξ

is the only basis element in V1 with homogeneity less than σ1. Since 〈1, u(z)〉 has 0 limit at

P1 \ P0, so does 〈1, (ĝ(u))(z) − g(0)1〉, and therefore so does the coefficient of Ξ in F1(u, v).
Finally, the third coordinate is the constant modelled distribution

F(2)(u) = g(0)Ξ.

It remains to define R̂ε on D
γ0,w2

P
(〈Ξ〉). To this end, let us recall that for the model

constructed for this equation in [Hai14, Sec. 10.4] (which coincides with the canonical

BPHZ model defined more generally in [BHZ16, CH16]) Π0
xΞ is the spatial white noise ξ

for all x, whileΠεxΞ is the smoothed noise ξε for all x. Also notice that any f ∈ D
γ0,w2

P
(〈Ξ〉)

is necessarily constant on R+ × D, and therefore in fact it suffices to define R̂ε(RD
+
Ξ) in

a way that the continuity property (5.5) holds. Defining R̂0(RD
+
Ξ) as 1[0,∞)×Dξ (which is

of course a meaningful expression) and R̂ε(RD
+
Ξ) as 1[0,∞)×Dξε we therefore only need to

show that the convergence

‖1[0,∞)×Dξ − 1[0,∞)×Dξε ‖−1−κ;[0,1]×D
ε→0−−−−→ 0

holds in probability for (5.5) to hold. This however follows in a more or less standard way

from a Kolmogorov continuity type argument, see for example [Hai14, Prop. 9.5] for a very

similar statement.

Therefore we can apply Theorem 5.6 to get that the equation

u = (K(ε)γ0
+ Zγ0

R̂ε)
(

(F(0), F(1), F(2))(u)
)

+ v

has a unique local solution uε ∈ D
γ,w

P, {1}(V, Γ) for each of the models (Πε, Γε), for ε ∈ [0, 1].
The fact that these correspond to the approximating equations in the sense that Ruε is

the classical solution of (1.2), for ε > 0, follows exactly as in [Hai14]: indeed, this is

a property of the models and the compatibility of the abstract integration operators with

the corresponding convolutions, neither of which changed in our setting. One also has, by

Theorem 5.6, that uε converges to u0 in probability, with respect to the ‘distance’ |||·; ·|||γ,w,T .

Therefore, Ruε also converge to Ru0 in probability, which proves Theorem 1.1.
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Remark 6.1. If we replace u0 in (6.2) by (Ru0)(s, ·), s < τ, where τ is the solution time

from Theorem 5.6, then v still belongs to Wε , in fact, one even has

v ∈ D
γ,(1−κ,1−κ,0)
P

, Div ∈ D
γ−1,(−κ,−κ,−κ)
P

, i = 1, 2.

Therefore the solution can be restarted from time s and these solutions can be patched

together by the arguments in [Hai14, Sec. 7.3]. One then sees that the only way that the

solution may fail to be global is if ‖R̂0F(u0)‖−1−κ;s , and consequently, ‖(Ru0)(s, ·)‖1−κ,D̄
blows up in finite time.

6.2 KPZ equation with Dirichlet boundary condition

The construction of the regularity structure and models (as before, with a sufficiently large

period) for the KPZ equation can be for example found in [FH14, Sec. 15]. The homogeneity

of the symbol Ξ is now denoted by −3/2− κ, where κ ∈ (0, (1/8) ∧ δ) \Q, with δ being the

regularity of the initial condition.

Similarly to the previous subsection, we let v be the lift of the solution to the linear

problem with initial condition u0 (and Dirichlet boundary conditions). We also choose

K ∈ K2 and Z ∈ Z2,P , as obtained from G, the Dirichlet heat kernel on the domain

D = (−1, 1) as in Example 4.15. We also set γ = 3/2 + κ, γ0 = κ, and define

Ψ = Ψ
ε
= (K(ε)γ0

+ Zγ0
R̂ε)(RD

+
Ξ), (6.3)

where we define the distributions R̂ε
R

D
+
Ξ as in the previous subsection, with the obvious

modification that ξ now stands for the 1+1-dimensional space-time white noise.

We then write the abstract fixed point problem for the remainder of a one step expansion

u = (Kγ0
+ Zγ0

R̂)((F(0), F(1), F(2))(u)) + v, (6.4)

with

F(0)(u) = (Du)⋆2, F(1)(u) = 2(DΨ)⋆ (Du), F(2)(u) ≡ (DΨ)⋆2.

We further set

V = I(T+−1−2κ) + T̄, V0 = (DV )⋆2, V1 = (DV )⋆T+−1/2−κ, V2 = T+−1−2κ,

which obviously implies α = 0, α0 = −4κ, α1 = −1/2 − 3κ, and α2 = −1 − 2κ. As for the

weight exponents, let

η = κ, σ = 1/2 + 2κ, µ = −κ,
η0 = 2κ − 2, σ0 = 2κ − 1, µ0 = 2κ − 2,

η1 = −3/2, σ1 = κ − 1, µ1 = −3/2,
η2 = −1 − 2κ, σ2 = −1 − 2κ, µ2 = −1 − 2κ.

We then set similarly to above

Wε =
{

u ∈ D
γ,(η,σ,0)
P

: Diu ∈ D
γ−1,(η−1,σ−1,κ−1)
P

, i = 1, 2
}

,

as well as

Vε = D
γ0,w0

P
(V0, Γ

ε) ⊕ D
γ0,w1

P
(V1, Γ

ε) ⊕ 〈RD
+
(DΨε)⋆2〉 ,



Singular SPDEs with boundary conditions 45

and ιε to be the identity. As before, it is straightforward to check that that the conditions

on Vε and Wε satisfied, and also that regarding the first two coordinates of R̂ε one has a

canonical choice given by Theorem 4.9.

It remains to define R̂ε
R

D
+
(DΨ)⋆2. Recall that R̃ stands for the local reconstruction

operator and that the issue with the singularity of low order is that R̃R
D
+
(D(GγΞ))⋆2 does

not have a canonical extension as a distribution in C−1−2κ . Of course, for the approximating

models this is just a bounded function, so it could even be extended as an element of C0,

but these extensions may not converge in the ε → 0 limit. Therefore some modification of

these natural extensions are required at the boundary.

Remark 6.2. This process is very similar to the situation when one takes the sequence of

distributions 1/(|x | + ε). This sequence of course does not converge to any distribution as

ε → 0, but 1/(|x | + ε) + 2 log(ε)δ0 does, in C−1−ρ for any ρ > 0. Moreover, the limiting

distribution agrees with 1/|x | on test functions supported away from 0.

First, for the models (Πε, Γε), ε > 0, we denote by RR
D
+
(DΨ)⋆2 the natural extension

of R̃R
D
+
(DΨ)⋆2 which, as just mentioned, is a bounded function and can be written in the

form

(RR
D
+
(DΨ)⋆2)(z) = Aε2 (z) + Aε0 (z),

where Aε
i
(z) are random variables belonging to the i-th homogeneous Wiener chaos for

i = 0, 2. To write them more explicitly, introduce the notations f̄ (s, y) = f (−s,−y) for any

function f , set

K̃Q,ε(z, z′) = (ρ̄ε ∗ (D1K(z, ·)1Q(·)))(z′),
Z̃Q,ε(z, z′) = (ρ̄ε ∗ (D1Z(z, ·)1Q(·)))(z′),

and define G̃Q,ε = K̃Q,ε + Z̃Q,ε for any Q ⊂ Rd, and with the convention that for ε = 0 we

substitute the convolution ρ̄ε∗ with the identity. We can then write

Aε2 (z) =
∫

(G̃[0,∞)×D,ε)(z, z′)(G̃[0,∞)×D,ε)(z, z′′) ξ(dz′) ξ(dz′′), (6.5)

Aε0 (z) =
∫

(G̃[0,∞)×D,ε(z, z′))2 − K̃2
Rd,ε
(z, z′) dz′. (6.6)

Note that the reason for the subtraction in (6.6) is the renormalisation already built in the

model (Πε, Γε). Similarly, for the limiting model (Π0, Γ0),

R̃R
D
+
(DΨ)⋆2

= A2 + A0,

where A2 and A0 are given by setting ε = 0 with the above mentioned convention in (6.5)

and (6.6), respectively.

The convergence of Aε
2

to A2 in the ε → 0 limit in C−1−κ follows from essentially the

same power counting argument as in the case without boundary conditions. The term Aε
0
(z)

however is more delicate. While it is not difficult to show that it converges pointwise to

the smooth function A0(z) on (0,∞) × D, the convergence in C−1−κ is not a priori clear. In

fact, without using the specific form of G, one cannot even rule out that the limit exhibits a

non-integrable singularity at the spatial boundary. To see how this can be ‘countered’, first

define

Bε0 (z) =
∫

(G̃(−∞,0)×D,ε)(G̃R×D,ε + G̃[0,∞)×D,ε)(z, z′)dz′,
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Cε
0 (z) =

∫

(K̃R×D,ε + Z̃R×D,ε)2(z, z′) − K̃2
Rd,ε
(z, z′)dz′

=

∫

2K̃R×D,ε Z̃R×D,ε(z, z′) + Z̃2
R×D,ε(z, z′) − K̃2

R×Dc,ε(z, z′)

− 2K̃R×Dc,εK̃R×D,ε(z, z′) dz′, (6.7)

for z ∈ (0,∞) × D, and extending them by 0 otherwise, we have Aε
0
= −Bε

0
+ Cε

0
. We can

similarly write A0 = −B0 + C0, where B0 and C0 are defined by formally setting ε = 0 in

the above definitions, that is, replacing the convolution with ρε with the identity.

First we claim that for z ∈ (0,∞) × D

|Bε0 (z)| . 1/(|z |P0
+ ε) = 1/(t1/2

+ ε). (6.8)

It is easy to see that one has the decomposition

(G̃(−∞,0)×D,ε )(z, ·) =
∑

n≥0

G̃(n)(·), (6.9)

where, for each n, the function G̃(n) is supported on {z′ : |z′ |P0
≤ ε, ‖z − z′‖s ≤ 2−n + ε},

and is bounded by 2−n(ε ∨ 2−n)−3. Furthermore, the function (G̃R×D,ε + G̃[0,∞)×D,ε)(z, ·)
is also bounded by 2−n(ε ∨ 2−n)−3 on the support of G̃(n). Hence in the case |z |P0

≥ 3ε,

noting that the only nonzero terms in the sum (6.9) are those where 2−n ≥ (|z |P0
/3), we can

bound

Bε0 (z) .
∫

∑

( |z |P0
/3)≤2−n

2−3n22n22n
. 1/|z |P0

as required. On the other hand, in the case |z |P0
≤ 3ε, we have

Bε0 (z) .
∑

2−n>ε

2−3n22n22n
+

∑

2−n≤ε
ε32−nε32−nε3

. 1/ε,

as required. The estimate |B0(z)| . 1/t1/2 can be obtained analogously. Since Bε
0

(extended

by 0 outside of (0,∞) × D) converges to B0 locally uniformly on (0,∞) × D and since by

the above estimates (Bε
0
)ε∈(0,1] and B0 are uniformly bounded in C−1−κ/2, the convergence

also holds in C−1−κ .
Moving on to Cε

0
, first notice that it only depends on the variable x. Furthermore, by

similar calculations as above, one obtains a bound analogous to (6.8), namely

|Cε
0 (z)| . 1/(|z |P1

+ ε) = 1/
(

(x + 1) ∧ (1 − x) + ε
)

(6.10)

for z ∈ (0,∞) × D. We then define the distribution Ĉε
0

by

(Ĉε
0 , ϕ) :=

∫

Cε
0 (z)[ϕ(z) − χ(x + 1)ϕ(t,−1) − χ(x − 1)ϕ(t, 1)]dz, (6.11)

where χ is a smooth symmetric cutoff function in the x variable which is 1 on {x′ : |x′ | ≤
1/8}, and is supported on {x′ : |x′ | ≤ 1/4}. The estimate (6.10), together with the local

uniform convergence of Cε
0
, then implies that Ĉε

0
converges in C−1−κ to a limit, which we
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denote by Ĉ∗
0
. Moreover, since Ĉε

0
agrees with Cε

0
on test functions supported away from

P, Ĉ∗
0

also agrees with C0 on the same class of test functions. In other words, defining

R̂ε
R

D
+
(DΨ)⋆2

= Aε2 − Bε0 + Ĉε
0 , (6.12)

as well as

R̂0
R

D
+
(DΨ)⋆2

= A2 − B0 + Ĉ∗0, (6.13)

the desired properties (5.4)-(5.5) of (R̂ε)ε∈[0,1] hold

Therefore by Theorem 5.6 we can conclude (6.4) has a unique local solution uε ∈
D
γ,w

P
(V, Γε) for each ε ∈ [0, 1], and R(uε + Ψε) converges to R(u0

+ Ψ
0). To conclude

the proof of Theorem 1.5, it remains to confirm that for ε > 0, R(uε + Ψε) solves (1.3).

This would again follow in exactly the same manner as in [Hai13] if we used the ‘natural’

reconstructions everywhere, which we only steered away from in the previous construction.

However, since R̂ε and R only differ by some (finite) Dirac mass on the boundary, and

since G, the Dirichlet heat kernel, vanishes on the boundary, we have

R(K(ε)γ0
+ Zγ0

R̂ε)RD
+
(DΨε)⋆2

= G ∗ R̂ε(RD
+
(DΨε)⋆2)

= G ∗R(RD
+
(DΨε)⋆2). (6.14)

The previous modification is therefore not visible after the application of the reconstruction

operator, and this concludes the proof of Theorem 1.5.

6.3 KPZ equation with Neumann boundary condition

Most of the arguments of the previous subsection carry through if the Dirichlet heat kernel

is replaced by the Neumann heat kernel, with the sole exception of (6.14). Instead, we have

R(K(ε)γ0
+ Zγ0

R̂ε)RD
+
(DΨε)⋆2

= G ∗ R̂ε(RD
+
(DΨε)⋆2)

= G ∗ (R(RD
+
(DΨε)⋆2) − c−ε δ−1 − c+ε δ1), (6.15)

where δ±1 is the Dirac distribution at x = ±1, and

c−ε =

∫

[−1,−3/4]
Cε

0 (x)χ(x + 1) dx, c+ε =

∫

[3/4,1]
Cε

0 (x)χ(x − 1) dx.

(We henceforth view Cε
0

and C0 as functions of the spatial variable x only, since we already

noted that these functions, as defined in (6.7), do not depend on the time variable.) Since

these Dirac masses now do not cancel, one needs more concrete information about c−ε and

c+ε , and we begin with the former. First, it will be convenient to shift the equation to

the right, so that the left boundary is at x = 0. Furthermore, we note that we can add a

globally smooth component to K and Z in the definitions of Cε
0

and C0 without changing

the conclusion that Ĉε
0

as defined by (6.11) converges to a limit Ĉ∗
0
. In particular, setting

N(x, σ) = 1σ>0√
2πσ

exp
(

− x2

2σ

)

, (6.16)

we can assume that for x ∈ [0, 1/4], one has

K((0, x), (−s, y)) =N(x − y, s), Z((0, x), (−s, y)) =N(x + y, s) .
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With the notations

f
(1)
x (s, y) = 1y>0

x − y

s
N(x − y, s), f

(2)
x (s, y) = 1y>0

x + y

s
N(x + y, s),

as well as f
(3)
x (s, y) = f

(1)
x (s, y) + f

(2)
x (s,−y), and after a trivial change of variables in s, we

can then write, recalling the notation f̄ (s, y) = f (−s,−y) for any function f of time and

space,

Cε
0 (x) =

∫

R2

(ρ̄ε ∗ ( f (1)x + f
(2)
x ))2(s, y) − (ρ̄ε ∗ f

(3)
x )2(s, y) ds dy, (6.17)

C0(x) =
∫

R2

( f (1)x + f
(2)
x )2(s, y) − ( f (3)x )2(s, y) ds dy.

Note that our modifications of K and Z are only valid for x ∈ [0, 1/4], and so (6.17) also

holds for these values of x. But since other values do not play a role in computing c−ε , for

the duration of this computation we can simply define Cε
0
(x) as the right-hand side of (6.17)

for other values of x. We can then write the decomposition

c−ε = c̄−ε − ĉ−ε :=

∫ ∞

0

Cε
0 (x) dx −

∫ ∞

0

(1 − χ(x))Cε
0 (x) dx,

We first show that the second term in this decomposition doesn’t matter.

Proposition 6.3. With the above notations, one has C0(x) = 0 for every x , 0. Furthermore,

for every κ ∈ (0, 1), there exists a constant C such that, for |x | ≥ Cε, one has the bound

|Cε
0
(x)| ≤ Cε1−κ |x |κ−2.

Proof. The first statement follows from the second one since Cε
0
→ C0 locally uniformly,

so it remains to show that the claimed bound on Cε
0
(x) holds. We will assume without the

loss of generality that x > Cε for some sufficiently large C (C = 6 will do) and we write

z = (0, x) and z′ = (s, y). Since f
(3)
x = f

(1)
x + f

(3)
x 1y<0 almost everywhere, one has

Cε
0 (x) =

∫

R2

2(ρ̄ε ∗ f
(1)
x )(ρ̄ε ∗ f

(2)
x ) dz′ +

∫

R2

(ρ̄ε ∗ f
(2)
x )2 − (ρ̄ε ∗ ( f (3)x 1y<0))2 dz′

−
∫

R2

2(ρ̄ε ∗ ( f (3)x 1y<0))(ρ̄ε ∗ ( f (3)x 1y>0)) dz′

=: 2J1 + J2 − 2J3.

With the usual convention ρ̄0∗ standing for the identity, we can furthermore write

J1 =

∫

f
(1)
x f

(2)
x dz′ + 2

∫

(ρ̄ε ∗ f
(1)
x )((ρ̄ε − ρ̄0) ∗ f

(2)
x ) dz′ + 2

∫

((ρ̄ε − ρ̄0) ∗ f
(1)
x ) f (2)x dz′

=: I1 + I2 + I3.

The expression I1 actually vanishes, since

I1 =

∫

s>0

x2 − y
2

s2
N(x, s)N(y, s) dz′ =

∫

s>0

x2 − s

s2
N(x, s) ds

=

∫

r>0

r2 − 1

|x | N(r, 1) dr = 0 .
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To estimate I2, we first note that it follows immediately from the scaling properties of f
(2)
x

and the fact that it only has a discontinuity at y = 0, that one can write

(ρ̄ε − ρ̄0) ∗ f
(2)
x = f

(2,1)
x,ε + f

(2,2)
x,ε ,

where f
(2,2)
x,ε is supported on R × [−2ε, 2ε] and, for any κ ∈ [0, 1], one has the bounds

| f (2,1)x,ε (z′)| .
ε1−κ

‖z′ + z‖3−κ
, | f (2,2)x,ε (z′)| .

1

‖z′ + z‖2
.

1

s + x2
. (6.18)

It follows immediately from standard properties of convolutions (see for example [Hai14,

Lem. 10.14]) that
�

�

�

∫

(ρ̄ε ∗ f
(1)
x ) f (2,1)x,ε dz′

�

�

� . ε
1−κ |x |κ−2 ,

as required. Regarding the term involving f
(2,2)
x,ε , it follows from the support properties of

that function that

�

�

�

∫

(ρ̄ε ∗ f
(1)
x ) f (2,2)x,ε dz′

�

�

� . ε

∫ ∞

0

ds

(s + x2)2
. ε |x |−2 ≤ ε1−κ |x |κ−2 . (6.19)

The term I3 can be bounded in exactly the same way.

To bound J2, we use the notation ρ̃ε(t, x) = ρ̄ε(t,−x). Since ( f (3)x 1y<0)(s, y) =
f
(2)
x (s,−y), we can then rewrite J2 as

J2 =

∫

R2

((ρ̄ε − ρ̃ε) ∗ f
(2)
x )((ρ̄ε + ρ̃ε) ∗ f

(2)
x ) dz′ .

Exactly as above, we can decompose the first factor as

(ρ̄ε − ρ̃ε) ∗ f
(2)
x = f

(2,1)
x,ε + f

(2,2)
x,ε ,

so that the bounds (6.18) hold and f
(2,2)
x,ε (z′) = 0 for y < [−2ε, 2ε]. This time, we exploit

the fact that the second factor itself satisfies the bound

|((ρ̄ε + ρ̃ε) ∗ f
(2)
x )(z′)| . ‖z + z′‖−2 ,

uniformly in ε, and that the support of both factors is included in the set ‖z + z′‖ ≥ |x |/2.

As a consequence, the term involving f
(2,1)
x,ε is bounded by

∫

‖z′ ‖≥ |x |/2

ε

‖z′‖5
dz′ . ε |x |−2 ,

while the other term is bounded exactly as in (6.19).

Finally, regarding J3, the product is supported on R×[−ε, ε] and each factor is bounded

by (s + x2)−1 there, so that the corresponding integral is again bounded as in (6.19), thus

concluding the proof. �

Let us now return to the computation of the constant c̄−ε . Using the identity ( f ∗ g, h) =
(g, f̄ ∗ h)L2(R2) and the commutativity of the convolution, we can rewrite it as

c̄−ε = (ρ̄ε ∗ ρε, F)L2(R2), (6.20)



50 Singular SPDEs with boundary conditions

where

F = F1 + F2 :=

∫

R

f̄
(1)
x ∗ f

(2)
x dx +

1

2

∫

R

( f̄ (1)x ∗ f
(1)
x + f̄

(2)
x ∗ f

(2)
x − f̄

(3)
x ∗ f

(3)
x ) dx.

We will use again the notation (6.16) and we will make use of the identities

N(x, σ)N(y, η) =N(x ± y, σ + η)N
(ηx ∓ σy

σ + η
,
ση

σ + η

)

,

∂xN(x, σ) = −(x/σ)N(x, σ) .

The first identity can be obtained by considering a jointly Gaussian centred random variable

(X,Y ) with Var(Y ) = σ, E(X |Y ) = Y , Var(X |Y ) = η and noting that one then has

Var(X) = σ + η, E(Y | X) = σX
σ+η

, and Var(Y | X) = ση

σ+η
. Exploiting this identity, we can

rewrite F1 as

F1 =

∫

1y′>y∨0
x − y

′
+ y

s′ − s

x + y
′

s′
N(x − y

′
+ y, s′ − s)N(x + y

′, s′) dz′ dx

=

1

4

∫

1y′>y∨0

(2x + y)2 − (2y′ − y)2
s′(s′ − s) N(2y′ − y, 2s′ − s)

×N
(

x +
y

2
− s(2y′ − y)

2(2s′ − s) ,
s′(s′ − s)
2s′ − s

)

dz′ dx .

We now perform the change of variables 2y′ − y 7→ y
′ and 2s′ − s 7→ s′ which in particular

maps dz′ to 1
4
dz′ and s′(s′ − s) to ((s′)2 − s2)/4 so that

F1 =
1

4

∫

1y′> |y |
(2x + y)2 − (y′)2
(s′ + s)(s′ − s) N(y

′, s′)N
(

x +
y

2
− sy′

2s′
,
(s′ − s)(s′ + s)

4s′

)

dz′ dx

=

1

4

∫

1 y′> |y |
s′> |s |

1

s′

(

1 − (y
′)2

s′

)

N(y′, s′) dz′

=

1

4

∫

1 y′> |y |
s′> |s |

1
√

s′

(

1 − (y
′)2

s′

)

N(y′/
√

s′, 1) dz′

s′
.

At this stage, for fixed y
′, we perform the change of variables r = y

′/
√

s′, so that dz′/s′ =
2dy′ dr/r, thus yielding

F1(z) =
1

2

∫ ∞

|y |

1

y′

∫
y′√
|s |

0

(

1 − r2
)

N(r, 1) dr dy′ = −1

2

∫ ∞

|y |

1

y′

∫
y′√
|s |

0

∂2
rN(r, 1) dr dy′

= −1

2

∫ ∞

|y |

1

y′
(∂1N)

(

y
′

√

|s |
, 1
)

dy′ =
1

2

∫ ∞

|y |

1
√

|s |
N
(

y
′

√

|s |
, 1
)

dy′

=

1

2

∫ ∞

|y |√
|s |

N(q, 1) dq =
1

4
− 1

4
Erf

( |y |
√

2|s |

)

.

Let’s now turn to F2. Setting fx(z) = x−y
s
N(x − y, s), a simple calculation shows that

F2(z) =
1

2

∫

fx(z − z′) fx(−z′)
(

1y′<(0∧y) + 1y′>(0∨y) − 1
)

dz′ dx
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= −1

2

∫

fx(z − z′) fx(−z′)1−|y |<2y′−y< |y | dz′ dx

=

1

2

∫

x − y + y
′

s − s′
x + y

′

s′
N(x − y + y

′, s − s′)N(x + y
′,−s′)1 |2y′−y |< |y | dz′ dx

= −1

8

∫ (2x + y
′)2 − y

2

(s′)2 − s2
N(y, s′)N

(

x +
y
′

2
+

ys

2s′
,
(s′)2 − s2

4s′

)

1 |y′ |< |y | dz′ dx

= −1

8

∫ |y |

− |y |

∫ ∞

|s |

( 1

s′
− y

2

(s′)2
)

N(y, s′) ds′ dy′

=

|y |
4

∫ ∞

|s |

1

s′

(

y
2

s′
− 1

)

N(y, s′) ds′ = − |y |
2
N(y, |s |) ,

where the last equality was obtained in exactly the same way as above. Combining these

identities with (6.20) and exploiting the fact that F is 0-homogeneous under the parabolic

scaling, we finally obtain

c̄−ε =

∫

R2

(ρ̄ ∗ ρ)(s, y)
(1

4
− 1

4
Erf

( |y |
√

2|s |

)

− |y |
2
N(|y |, |s |)

)

ds dy =
a

2
, (6.21)

where a is the quantity given in (1.8).

If momentarily one also includes the dependence of c±ε on ρ, one has, by symmetry,

c+ε (ρ) = c−ε (ρ̂), with ρ̂(t, x) = ρ(t,−x). Therefore by (6.21), c+ε = c̄+ε − ĉ+ε , where ĉ+ε → 0

as ε → 0 and c̄+ε is given by

c̄+ε =

∫

R2

( ¯̂ρ ∗ ρ̂)(s, y)F(y, s) ds dy =

∫

R2

(ρ̄ ∗ ρ)(s, y)F(−y, s) ds dy =
a

2
, (6.22)

since F is symmetric in both of its arguments.

We can conclude that, for any fixed constants b̂± ∈ R, setting

R̂ε
R

D
+
(DΨ)⋆2

= Aε2 − Bε0 + Cε
0 −

1

2
1t>0

(

(a − b̂−)δ−1 + (a + b̂+)δ1)
)

, (6.23)

for the models (Πε, Γε) and

R̂0
R

D
+
(DΨ)⋆2

= A2 − B0 + C0 −
1

2
1t>0(b̂+δ1 − b̂−δ−1)

)

, (6.24)

for the limiting model, the desired properties (5.4)-(5.5) of (R̂ε)ε∈[0,1] hold. Similarly to

before, but accounting for the additional Dirac masses, we then see that for any fixed ε > 0

the function hε = R(uε + Ψε) (there is no ambiguity for the reconstruction operator as far

as the solution uε is concerned, it is trivially given simply by the component in the direction

1) solves

∂th
ε
=

1
2
∂2
xhε + (∂xhε)2 + 2c∂xhε − Cε + ξε on R+ × [−1, 1],

∂xhε = ∓a + b± on R+ × {±1},
hε = u0 on {0} × [−1, 1],

(6.25)

where c is given by (6.26) below. Hence, clearly, ĥε = hε + cx + (Cε + c2)t solves (1.6)

with boundary data b̂± = ∓a + b± + c and û0(x) = u0(x) + cx.
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Applying again Theorem 5.6, combined with the results of [HS15] regarding the con-

vergence of the corresponding admissible models, we conclude that, for any choice of b±,
the solution to (6.25) (which is precisely the same as (1.7) provided that the constant Cε is

adjusted in the appropriate way) converges locally as ε → 0 to a limit which depends on

the choice of b± but is independent of the choice of mollifier ρ. It remains to show that this

limit coincides with the Hopf-Cole solution to the KPZ equation with Neumann boundary

data given by b±. This follows by considering the special case ρ(t, x) = δ(t)ρ̂(x), which

is covered by the above proof, the only minor modification being the proof of convergence

of the corresponding admissible model to the same limit, which can be obtained in a way

very similar to [Hai13, Hai14]. As already mentioned at the end of Section 1.1, one has

a = c = 0 in this case, so that in particular b̂± = b±. In this case, we can apply Itô’s formula

to perform the Hopf-Cole transform and obtain convergence to the corresponding limit by

classical means [DPZ92], which concludes the proof.

6.3.1 Expression for the drift term

It follows from [HS15] that the constant c appearing in (6.25) is given by

c = −2〈ρ ∗ ρ̄, ∂xP ∗ ∂xP ∗ ∂xP〉 =: 〈ρ ∗ ρ̄, F0〉 , (6.26)

where P is the heat kernel. Similarly to above, we obtain the identity

(∂xP ∗ ∂xP)(t, x) =
∫

x − y

t − s

y

s
N(y, s)N(x − y, t − s) dy ds

=N(x, t)
∫

x − y

t − s

y

s
N
(

y − sx

t
,

s(t − s)
t

)

dy ds

=N(x, t)
∫ t

0

x2 − t

t2
ds =N(x, t) x

2 − t

t
,

which then implies that the function F0 is indeed given by

F0(t, x) = 2

∫

y
2 − s

s

x − y

t − s
N(y, s)N(x − y, s − t)1s≥0∨t dy ds

= 2

∫

y
2 − s

s

x − y

t − s
N(x, 2s − t)N

(

y − sx

2s − t
,

s(s − t)
2s − t

)

1s≥0∨t dy ds

= 2

∫ (2y2 − r − t)(y − x)
r2 − t2

N(x, r)N
(

y − (r + t)x
2r

,
r2 − t2

4r

)

1r≥ |t | dy dr

=

∫ ∞

|t |

(r + t)x
2r2

(

3 − x2

r

)

N(x, r) dr = Erf(x/
√

2|t |) + 2xN(x, t) .

To obtain (1.9), it remains to note that the first term is odd under the substitution (t, x) ↔
(−t,−x), while ρ ∗ ρ̄ is even, so that this does not contribute to the value of c.
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