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Abstract

We develop a general framework for spatial discretisations of parabolic stochastic

PDEs whose solutions are provided in the framework of the theory of regularity

structures and which are functions in time. As an application, we show that the

dynamical Φ4

3
model on the dyadic grid converges after renormalisation to its

continuous counterpart. This result in particular implies that, as expected, the Φ4

3

measure with a sufficiently small coupling constant is invariant for this equation

and that the lifetime of its solutions is almost surely infinite for almost every initial

condition.

Keywords: Stochastic PDEs, discretisations, regularity structures, stochastic quanti-

zation equation, invariant measure.
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1 Introduction

The aim of this article is to develop a general framework for spatial discretisations

of the parabolic stochastic PDEs of the form

∂tu = Au+ F (u, ξ) ,

http://arxiv.org/abs/1511.06937v2


2 INTRODUCTION

where A is an elliptic differential operator, ξ is a rough noise, and F is a non-linear

function in u which is affine in ξ. The class of spatial discretisations we work with

are of the form

∂tu
ε = Aεuε + F ε(uε, ξε) ,

with the spatial variable taking values in the dyadic grid with mesh size ε > 0,

where Aε, ξε and F ε are discrete approximations of A, ξ and F respectively.

A particular example prototypical for the class of equations we are interested

in is the dynamical Φ4 model in dimension 3, which can be formally described by

the equation

∂tΦ = ∆Φ+ (∞− a)Φ− λΦ3 + ξ , Φ(0, ·) = Φ0(·) , (Φ4
3)

on the torus T3 def
= (R/Z)3 and for t ≥ 0, where ∆ is the Laplace operator on T

3,

a ∈ R is a fixed constant, λ > 0 is a “coupling constant”, Φ0 is some initial data,

and ξ is the space-time white noise over L2(R×T
3), see [DPZ14].

Here, ∞ denotes an “infinite constant”: (Φ4
3) should be interpreted as the limit

of solutions to the equation obtained by mollifying ξ and replacing ∞ by a con-

stant which diverges in a suitable way as the mollifier tends to the identity. It was

shown in [Hai14] that this limit exists and is independent of the choice of molli-

fier. The reason for the appearance of this infinite constant is that solutions are

random Schwartz distributions (this is already the case for the linear equation, see

[DPZ14]), so that their third power is undefined. The above notation also correctly

suggests that solutions to (Φ4
3) still depend on one parameter, namely the “finite

part” of the infinite constant, but this will not be relevant here and we consider this

as being fixed from now on.

In two spatial dimensions, a solution theory for (Φ4
3) was given in [AR91,

DPD03], see also [JLM85] for earlier work on a closely related model. In three

dimensions, alternative approaches to (Φ4
3) were recently obtained in [CC13] (via

paracontrolled distributions, see [GIP15] for the development of that approach),

and in [Kup15] (via renormalisation group techniques à la Wilson).

It is natural to consider finite difference approximations to (Φ4
3) for a number of

reasons. Our main motivation goes back to the seminal article [BFS83], where the

authors provide a very clean and relatively compact argument showing that lattice

approximations µε to the Φ4
3 measure are tight as the mesh size goes to 0. These

measures are given on the dyadic grid T
3
ε ⊂ T

3 with the mesh size ε > 0 by

µε(Φ
ε)

def
= e−Sε(Φε)

∏

x∈T3
ε

dΦε(x)/Zε , (1.1)

for every function Φε on T
3
ε , where Zε is a normalisation factor and

Sε(Φ
ε)

def
= ε

∑

x∼y

(Φε(x)−Φε(y))2−
(C (ε)

λ − a)ε3

2

∑

x∈T3
ε

Φε(x)2+
λε3

4

∑

x∈T3
ε

Φε(x)4 ,

(1.2)
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with C (ε)
λ being a “renormalisation constant” and with the first sum running over all

the nearest neighbours on the grid T
3
ε , when each pair x, y is counted twice. Then

the Φ4
3 measure µ can be heuristically written as

µ(Φ) ∼ e−S(Φ)
∏

x∈T3

dΦ(x) , (1.3)

for Φ ∈ S ′ and for S begin a limit of its finite difference approximations (1.2):

S(Φ) =

∫

T3

(

1

2
(∇Φ(x))2 −

∞− a

2
Φ(x)2 +

λ

4
Φ(x)4

)

dx .

Since the measures µε with a sufficiently small coupling constant are invariant for

the natural finite difference approximations of (Φ4
3), showing that these converge

to (Φ4
3) straightforwardly implies that any accumulation point of µε is invariant for

the solutions of (Φ4
3). These accumulation points are known to coincide with the

Φ4
3 measure µ [Par77, Thm. 2.1], thus showing that µ is indeed invariant for (Φ4

3),

as one might expect. Another reason why discretisations of (Φ4
3) are interesting is

because they can be related to the behaviour of Ising-type models under Glauber

dynamics near their critical temperature, see [SG73, GRS75]. See also the related

result [MW17] where the dynamical Φ4
2 model is obtained from the Glauber dy-

namic for a Kac-Ising model in a more direct way, without going through lattice

approximations. Similar results are expected to hold in three spatial dimensions,

see e.g. the review article [GLP99].

We will henceforth consider discretisations of (Φ4
3) of the form

d

dt
Φε = ∆εΦε + (C (ε)

λ − a)Φε − λ(Φε)3 + ξε , Φε(0, ·) = Φε0(·) , (Φ4
3,ε)

on the dyadic discretisation T
3
ε of T3 with mesh size ε = 2−N for N ∈ N, where

Φε0 ∈ R
T3

ε , ∆ε is the nearest-neighbour approximation of the Laplacian ∆, ξε

is a spatial discretisation of ξ, and C (ε)
λ is a sequence of diverging, as ε → 0,

renormalization constants depending on λ. We construct these discretisations on a

common probability space by setting

ξε(t, x)
def
= ε−3〈ξ(t, ·),1|·−x|≤ε/2〉 , (t, x) ∈ R×T

3
ε , (1.4)

where |x| denotes the supremum norm of x ∈ R
3. Our results are however flexible

enough to easily accommodate a variety of different approximations to the noise

and the Laplacian.

Existence and uniqueness of global solutions to (Φ4
3,ε) for any fixed ε > 0

follows immediately from standard results for SDEs [Has80, IW89]. Our main

approximation result is the following, where we take the initial conditions Φε0 to be

random variables defined on a common probability space, independent of the noise

ξ. (We could of course simply take them deterministic, but this formulation will be

how it will then be used in our proof of existence of global solutions.)
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Theorem 1.1. Let ξ be a space-time white noise over L2(R×T
3) on a probability

space (Ω,F ,P), let Φ0 ∈ Cη(R3) almost surely, for some η > −2
3
, and let Φ

be the unique maximal solution of (Φ4
3) on [0, T⋆] with fixed constants a ∈ R

and λ > 0. Let furthermore ∆ε be the nearest-neighbour approximation of ∆, let

Φε0 ∈ R
T

3
ε be a random variable on the same probability space, let ξε be given by

(1.4), and let Φε be the unique global solution of (Φ4
3,ε). If the initial data satisfy

almost surely

lim
ε→0

‖Φ0; Φ
ε
0‖

(ε)
Cη = 0 ,

then for every α < −1
2

there is a sequence of renormalisation constants

C (ε)
λ ∼

λ

ε
− λ2 log ε (1.5)

in (Φ4
3,ε) and a sequence of stopping times Tε (which also depend on λ and a)

satisfying limε→0 Tε = T⋆ in probability such that, for every η̄ < η ∧ α, and for

any δ > 0 small enough, one has the limit in probability

lim
ε→0

‖Φ;Φε‖(ε)

Cδ,α
η̄,Tε

= 0 . (1.6)

Remark 1.2. By writing (1.5) we mean thatC (ε)
λ is a sum of two terms proportional

to λ and −λ2 respectively, whose asymptotic divergence speeds are ε−1 and log ε
as ε→ 0.

As a corollary of this convergence result and an argument along the lines of

[Bou94], we have the following result, where we denote by µ the Φ4
3 measure on

the torus with a coupling constant λ > 0 and mass m0 > 0, see [BFS83] for a

definition.

Corollary 1.3. If a = m2
0 > 0 and if the coupling constant λ > 0 in (Φ4

3) is

sufficiently small, then for µ-almost every initial condition Φ0 and for every T > 0,

the solution of (Φ4
3) constructed in [Hai14] belongs to Cδ,αη̄ ([0, T ],T3), for δ, α

and η̄ as in (1.6). In particular, this yields a reversible Markov process on Cα(T3)
with an invariant measure µ.

In order to prove this result, we will use regularity structures, as introduced in

[Hai14], to obtain uniform bounds (in ε) on solutions to (Φ4
3,ε) by describing the

right hand side via a type of generalised “Taylor expansion” in the neighbourhood

of any space-time point. The problem of obtaining uniform bounds is then split

into the problem of on the one hand obtaining uniform bounds on the objects play-

ing the role of Taylor monomials (these require subtle stochastic cancellations, but

are given by explicit formulae), and on the other hand obtaining uniform regularity

estimates on the “Taylor coefficients” (these are described implicitly as solutions

to a fixed point problem but can be controlled by standard Banach fixed point argu-

ments).
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In order to treat the discretised equation (Φ4
3,ε), we introduce a discrete ana-

logue to the concept of “model” introduced in [Hai14] and we show that the cor-

responding “reconstruction map” satisfies uniform bounds analogous to the ones

available in the continuous case. One technical difficulty we encounter with this

approach is that the set-up is somewhat asymmetric since time is continuous while

space is discrete. Instead of considering a fixed model as in [Hai14], we will con-

sider a family of models indexed by the time parameter and satisfying a suitable

regularity property. This idea requires some modification of the original theory, in

particular of the “abstract integration” operation [Hai14, Sec. 5] and of the corre-

sponding Schauder-type estimates.

As this article was nearing its completion, Zhu and Zhu [ZZ15] independently

obtained the convergence of solutions to (Φ4
3,ε) to those of (Φ4

3) using different

methods. Additionally, Gubinelli and Perkowski [GP17] recently obtained a sim-

ilar result for the KPZ equation. One advantage of the approach pursued here

is that it is quite systematic and that many of our intermediate results do not

specifically refer to the Φ4
3 model. This lays the foundations of a systematic

approximation theory which can in principle be applied to many other singular

SPDEs, e.g. stochastic Burgers-type equations [Hai11, HMW14, HM16], the KPZ

equation [KPZ86, BG97, Hai13], or the continuous parabolic Anderson model

[Hai14, HL15].

Structure of the article

In Section 2 we introduce regularity structures and inhomogeneous models (i.e.

models which are functions in the time variable). Furthermore, we prove here

the key results of the theory in our present framework, namely the reconstruction

theorem and the Schauder estimates. In Section 3 we provide a solution theory for

a general parabolic stochastic PDE, whose solution is a function in time. Section 4

is devoted to the development of a discrete analogue of inhomogeneous models,

which we use in Section 5 to analyse solutions of discretised stochastic equations.

In Section 6 we analyse models, built from a Gaussian noise. Finally, in Section 7,

we prove Theorem 1.1 and Corollary 1.3.

Notations and conventions

Throughout this article, we will work in R
d+1 where d is the dimension of space

and 1 is the dimension of time. Moreover, we consider the time-space scaling

s = (s0, 1, . . . , 1) of Rd+1, where s0 > 0 is an integer time scaling and si = 1,

for i = 1, . . . , d, is the scaling in each spatial direction. We set |s|
def
=

∑d
i=0 si,

denote by |x| the ℓ∞-norm of a point x ∈ R
d, and define ‖z‖s

def
= |t|1/s0 ∨ |x| to

be the s-scaled ℓ∞-norm of z = (t, x) ∈ R
d+1. For a multiindex k ∈ N

d+1 we

define |k|s
def
=

∑d
i=0 siki, and for k ∈ N

d with the scaling (1, . . . , 1) we denote the

respective norm by |k|. (Our natural numbers N include 0.)

For r > 0, we denote by Cr(Rd) the usual Hölder space on R
d, by Cr0(Rd) we

denote the space of compactly supported Cr-functions and by Br0(Rd) we denote
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the set of Cr-functions, compactly supported in B(0, 1) (the unit ball centered at

the origin) and with the Cr-norm bounded by 1.

For ϕ ∈ Br0(Rd), λ > 0 and x, y ∈ R
d we define ϕλx(y)

def
= λ−dϕ(λ−1(y − x)).

For α < 0, we define the space Cα(Rd) to consist of ζ ∈ S ′(Rd), belonging to the

dual space of the space of Cr0-functions, with r > −⌊α⌋, and such that

‖ζ‖Cα
def
= sup

ϕ∈Br
0

sup
x∈Rd

sup
λ∈(0,1]

λ−α|〈ζ, ϕλx〉| <∞ . (1.7)

Furthermore, for a function R ∋ t 7→ ζt we define the operator δs,t by

δs,tζ
def
= ζt − ζs , (1.8)

and for δ > 0, η ≤ 0 and T > 0, we define the space Cδ,αη ([0, T ],Rd) to consist of

the functions (0, T ] ∋ t 7→ ζt ∈ Cα(Rd), such that the following norm is finite

‖ζ‖
Cδ,α
η,T

def
= sup

t∈(0,T ]

|t|−η0 ‖ζt‖Cα + sup
s 6=t∈(0,T ]

|t, s|−η0

‖δs,tζ‖Cα−δ

|t− s|δ/s0
, (1.9)

where |t|0
def
= |t|1/s0∧1 and |t, s|0

def
= |t|0∧|s|0. The space C0,α

η ([0, T ],Rd) contains

the function ζ as above which are continuous in time and is equipped with the norm

defined by the first term in (1.9).

Sometimes we will need to work with space-time distributions with scaling s.

In order to describe their regularities, we define, for a test function ϕ on R
d+1, for

λ > 0 and z, z̄ ∈ R
d+1,

ϕλ,sz (z̄)
def
= λ−|s|ϕ(λ−s0(z̄0 − z0), λ−1(z̄1 − z1), . . . , λ−1(z̄d − zd)) , (1.10)

and we define the space Cαs (Rd+1) similarly to Cα(Rd), but using the scaled func-

tions (1.10) in (1.7).

In this article we will also work with discrete functions ζε ∈ R
Λd
ε on the dyadic

grid Λdε ⊂ R
d with the mesh size ε = 2−N for N ∈ N. In order to compare them

with their continuous counterparts ζ ∈ Cα(Rd) with α ≤ 0, we introduce the

following “distance”

‖ζ; ζε‖(ε)
Cα

def
= sup

ϕ∈Br
0

sup
x∈Λd

ε

sup
λ∈[ε,1]

λ−α|〈ζ, ϕλx〉 − 〈ζε, ϕλx〉ε| ,

where 〈·, ·〉ε is the discrete analogue of the duality pairing on the grid, i.e.

〈ζε, ϕλx〉ε
def
=

∫

Λd
ε

ζε(y)ϕλx(y) dy
def
= εd

∑

y∈Λd
ε

ζε(y)ϕλx(y) . (1.11)

For space-time distributions / functions ζ and ζε, for δ > 0 and η ≤ 0, we define

‖ζ; ζε‖(ε)

Cδ,α
η,T

def
= sup

t∈(0,T ]

|t|−η0 ‖ζt; ζ
ε
t ‖

(ε)
Cα + sup

s 6=t∈(0,T ]

|s, t|−η0

‖δs,tζ; δs,tζε‖(ε)

Cα−δ

(|t− s|1/s0 ∨ ε)δ
.

(1.12)
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Furthermore, we define the norm ‖ζε‖(ε)

Cδ,α
η,T

in the same way as in (1.7) and (1.9), but

using the discrete pairing (1.11), the quantities |t|ε
def
= |t|0∨ε and |s, t|ε

def
= |s|ε∧|t|ε

instead of |t|0 and |s, t|0 respectively, and |t− s|1/s0 ∨ ε instead of |t− s|1/s0 .

Finally, we denote by ⋆ and ⋆ε the convolutions on R
d+1 and R × Λdε respec-

tively, and by x . y we mean that there exists a constant C independent of the

relevant quantities such that x ≤ Cy.
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2 Regularity structures

In this section we recall the definition of a regularity structure and we introduce

the inhomogeneous models used in this article, which are maps from R (the time

coordinate) to the usual space of models as in [Hai14, Def. 2.17], endowed with

a norm enforcing some amount of time regularity. Furthermore, we define inho-

mogeneous modelled distributions and prove the respective reconstruction theo-

rem and Schauder estimates. Throughout this section, we work with the scaling

s = (s0, 1, . . . , 1) of R
d+1, but all our results can easily be generalised to any

non-Euclidean scaling in space, similarly to [Hai14].

2.1 Regularity structures and inhomogeneous models

The purpose of regularity structures, introduced in [Hai14] and motivated by [Lyo98,

Gub04], is to generalise Taylor expansions using essentially arbitrary functions/distributions

instead of polynomials. The precise definition is as follows.

Definition 2.1. A regularity structure T = (T ,G) consists of two objects:

• A model space T , which is a graded vector space T =
⊕

α∈A Tα, where

each Tα is a (finite dimensional in our case) Banach space and A ⊂ R is a

finite set of “homogeneities”.

• A structure group G of linear transformations of T , such that for every

Γ ∈ G, every α ∈ A and every τ ∈ Tα one has Γτ − τ ∈ T<α, with

T<α
def
=

⊕

β<α Tβ.

In [Hai14, Def. 2.1], the set A was only assumed to be locally finite and

bounded from below. Our assumption is more strict, but does not influence any-

thing in the analysis of the equations we consider. In addition, our definition rules

out the ambiguity of topologies on T .
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Remark 2.2. One of the simplest non-trivial examples of a regularity structure is

given by the “abstract polynomials” in d+ 1 indeterminates Xi, with i = 0, . . . , d.

The set A in this case consists of the values α ∈ N such that α ≤ r, for some

r < ∞ and, for each α ∈ A, the space Tα contains all monomials in the Xi of

scaled degree α. The structure group Gpoly is then simply the group of translations

in R
d+1 acting on Xk by h 7→ (X − h)k.

We now fix r > 0 to be sufficiently large and denote by Tpoly the space of such

polynomials of scaled degree r and by Fpoly the set {Xk : |k|s ≤ r}. We will only

ever consider regularity structures containing Tpoly as a subspace. In particular, we

always assume that there’s a natural morphism G → Gpoly compatible with the

action of Gpoly on Tpoly →֒ T .

Remark 2.3. For τ ∈ T we will write Qατ for its canonical projection onto Tα,

and define ‖τ‖α
def
= ‖Qατ‖. We also write Q<α for the projection onto T<α, etc.

Another object in the theory of regularity structures is a model. Given an ab-

stract expansion, the model converts it into a concrete distribution describing its

local behaviour around every point. We modify the original definition of model in

[Hai14], in order to be able to describe time-dependent distributions.

Definition 2.4. Given a regularity structure T = (T ,G), an inhomogeneous model

(Π,Γ,Σ) consists of the following three elements:

• A collection of maps Γt : Rd ×R
d → G, parametrised by t ∈ R, such that

Γtxx = 1 , ΓtxyΓ
t
yz = Γtxz , (2.1)

for any x, y, z ∈ R
d and t ∈ R, and the action of Γtxy on polynomials is

given as in Remark 2.2 with h = (0, y − x).

• A collection of maps Σx : R×R → G, parametrized by x ∈ R
d, such that,

for any x ∈ R
d and s, r, t ∈ R, one has

Σttx = 1 , Σsrx Σrtx = Σstx , Σstx Γ
t
xy = ΓsxyΣ

st
y , (2.2)

and the action of Σstx on polynomials is given as in Remark 2.2 with h =
(t− s, 0).

• A collection of linear maps Πtx : T → S ′(Rd), such that

Πty = ΠtxΓ
t
xy , (ΠtxX

(0,k̄))(y) = (y−x)k̄ , (ΠtxX
(k0,k̄))(y) = 0 , (2.3)

for all x, y ∈ R
d, t ∈ R, k̄ ∈ N

d, k0 ∈ N such that k0 > 0.

Moreover, for any γ > 0 and every T > 0, there is a constant C for which the

analytic bounds

|〈Πtxτ, ϕ
λ
x〉| ≤ C‖τ‖λl , ‖Γtxyτ‖m ≤ C‖τ‖|x− y|l−m , (2.4a)

‖Σstx τ‖m ≤ C‖τ‖|t− s|(l−m)/s0 , (2.4b)
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hold uniformly over all τ ∈ Tl, with l ∈ A and l < γ, all m ∈ A such that m < l,
all λ ∈ (0, 1], all ϕ ∈ Br0(Rd) with r > −⌊minA⌋, and all t, s ∈ [−T, T ] and

x, y ∈ R
d such that |t− s| ≤ 1 and |x− y| ≤ 1.

In addition, we say that the map Π has time regularity δ > 0, if the bound

|〈(Πtx −Πsx)τ, ϕ
λ
x〉| ≤ C‖τ‖|t− s|δ/s0λl−δ , (2.5)

holds for all τ ∈ Tl and the other parameters as before.

Remark 2.5. For a model Z = (Π,Γ,Σ), we denote by ‖Π‖γ;T , ‖Γ‖γ;T and

‖Σ‖γ;T the smallest constants C such that the bounds on Π, Γ and Σ in (2.4a) and

(2.4b) hold. Furthermore, we define

|||Z|||γ;T
def
= ‖Π‖γ;T + ‖Γ‖γ;T + ‖Σ‖γ;T .

If Z̄ = (Π̄, Γ̄, Σ̄) is another model, then we also define the “distance” between two

models

|||Z; Z̄|||γ;T
def
= ‖Π− Π̄‖γ;T + ‖Γ− Γ̄‖γ;T + ‖Σ− Σ̄‖γ;T . (2.6)

We note that the norms on the right-hand side still make sense with Γ and Σ viewed

as linear maps on T . We also set ‖Π‖δ,γ;T
def
= ‖Π‖γ;T +C , where C is the smallest

constant such that the bound (2.5) holds, and we define

|||Z|||δ,γ;T
def
= ‖Π‖δ,γ;T + ‖Γ‖γ;T + ‖Σ‖γ;T .

Finally, we define the “distance” |||Z; Z̄|||δ,γ;T as in (2.6).

Remark 2.6. In [Hai14, Def. 2.17] the analytic bounds on a model were assumed

to hold locally uniformly. In the problems which we aim to consider, the models

are periodic in space, which allows us to require the bounds to hold globally.

Remark 2.7. For a given model (Π,Γ,Σ) we can define the following two objects

(Π̃(t,x)τ)(s, y) = (ΠsxΣ
st
x τ)(y) , Γ̃(t,x),(s,y) = ΓtxyΣ

ts
y = Σtsx Γ

s
xy , (2.7)

for τ ∈ T . Of course, in general we cannot fix the spatial point y in the definition

of Π̃, and we should really write ((Π̃(t,x)τ)(s, ·))(ϕ) = (ΠsxΣ
st
x τ)(ϕ) instead, for

any test function ϕ, but the notation (2.7) is more suggestive. One can then easily

verify that the pair (Π̃, Γ̃) is a model in the original sense of [Hai14, Def. 2.17].

2.2 Inhomogeneous modelled distributions

Modelled distributions represent abstract expansions in the basis of a regularity

structure. In order to be able to describe the singularity coming from the behaviour

of our solutions near time 0, we introduce inhomogeneous modelled distributions

which admit a certain blow-up as time goes to zero.
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Given a regularity structure T = (T ,G) with a model Z = (Π,Γ,Σ), values

γ, η ∈ R and a final time T > 0, we consider maps H : (0, T ] ×R
d → T<γ and

define

‖H‖γ,η;T
def
= sup

t∈(0,T ]

sup
x∈Rd

sup
l<γ

|t|(l−η)∨0
0 ‖Ht(x)‖l

+ sup
t∈(0,T ]

sup
x 6=y∈Rd

|x−y|≤1

sup
l<γ

‖Ht(x) − ΓtxyHt(y)‖l

|t|η−γ0 |x− y|γ−l
,

(2.8)

where l ∈ A in the third supremum. Then the space Dγ,η
T consists of all such

functions H , for which one has

|||H|||γ,η;T
def
= ‖H‖γ,η;T + sup

s 6=t∈(0,T ]

|t−s|≤|t,s|
s0
0

sup
x∈Rd

sup
l<γ

‖Ht(x) − ΣtsxHs(x)‖l

|t, s|η−γ0 |t− s|(γ−l)/s0
<∞ .

(2.9)

The quantities |t|0 and |t, s|0 used in these definitions were introduced in (1.9).

Elements of these spaces will be called inhomogeneous modelled distributions.

Remark 2.8. The norm in (2.9) depends on Γ and Σ, but does not depend on Π;

this fact will be crucial in the sequel. When we want to stress the dependency on

the model, we will also write Dγ,η
T (Z).

Remark 2.9. In contrast to the singular modelled distributions from [Hai14, Def. 6.2],

we do not require the restriction |x− y| ≤ |t, s|0 in the second term in (2.8). This

is due to the fact that we consider the space and time variables separately (see the

proof of Theorem 2.21, where this fact is used).

Remark 2.10. Since our spaces Dγ,η
T are almost identical to those of [Hai14,

Def. 6.2], the multiplication and differentiation results from [Hai14, Sec. 6] hold

also for our definition.

To be able to compare two modelled distributions H ∈ Dγ,η
T (Z) and H̄ ∈

Dγ,η
T (Z̄), we define the quantities

‖H; H̄‖γ,η;T
def
= sup

t∈(0,T ]

sup
x∈Rd

sup
l<γ

|t|(l−η)∨0
0 ‖Ht(x) − H̄t(x)‖l

+ sup
t∈(0,T ]

sup
x 6=y∈Rd

|x−y|≤1

sup
l<γ

‖Ht(x) − ΓtxyHt(y) − H̄t(x) + Γ̄txyH̄t(y)‖l

|t|η−γ0 |x− y|γ−l
,

|||H; H̄|||γ,η;T
def
= ‖H; H̄‖γ,η;T

+ sup
s 6=t∈(0,T ]

|t−s|≤|t,s|
s0
0

sup
x∈Rd

sup
l<γ

‖Ht(x) − ΣtsxHs(x) − H̄t(x) + Σ̄tsx H̄s(x)‖l

|t, s|η−γ0 |t− s|(γ−l)/s0
.

The “reconstruction theorem” is one of the key results of the theory of regular-

ity structures. Here is its statement in our current framework.
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Theorem 2.11. Let T = (T ,G) be a regularity structure with α
def
= minA < 0

and Z = (Π,Γ,Σ) be a model. Then, for every η ∈ R, γ > 0 and T > 0, there

is a unique family of linear operators Rt : D
γ,η
T (Z) → Cα(Rd), parametrised by

t ∈ (0, T ], such that the bound

|〈RtHt −ΠtxHt(x), ϕλx〉| . λγ |t|η−γ0 ‖H‖γ,η;T ‖Π‖γ;T , (2.11)

holds uniformly in H ∈ Dγ,η
T (Z), t ∈ (0, T ], x ∈ R

d, λ ∈ (0, 1] and ϕ ∈ Br0(Rd)

with r > −⌊α⌋.

If furthermore the map Π has time regularity δ > 0, then, for any δ̃ ∈ (0, δ]
such that δ̃ ≤ (m− ζ) for all ζ,m ∈ ((−∞, γ) ∩ A) ∪ {γ} such that ζ < m, the

function t 7→ RtHt satisfies

‖RH‖
Cδ̃,α
η−γ,T

. ‖Π‖δ,γ;T (1 + ‖Σ‖γ;T )|||H|||γ,η;T . (2.12)

Let Z̄ = (Π̄, Γ̄, Σ̄) be another model for the same regularity structure, and let

R̄t be the operator as above, but for the model Z̄ . Moreover, let the maps Π and Π̄
have time regularities δ > 0. Then, for every H ∈ Dγ,η

T (Z) and H̄ ∈ Dγ,η
T (Z̄), the

maps t 7→ RtHt and t 7→ R̄tH̄t satisfy

‖RH − R̄H̄‖
Cδ̃,α
η−γ,T

. |||H; H̄ |||γ,η;T + |||Z; Z̄|||δ,γ;T , (2.13)

for any δ̃ as above, and where the proportionality constant depends on |||H|||γ,η;T ,

|||H̄|||γ,η;T , |||Z|||δ,γ;T and |||Z̄|||δ,γ;T .

Proof. Existence and uniqueness of the maps Rt, as well as the bound (2.11), fol-

low from [Hai14, Thm. 3.10]. The uniformity in time in (2.11) follows from the

uniformity of the corresponding bounds in [Hai14, Thm. 3.10].

To prove that t 7→ RtHt belongs to C δ̃,αη−γ([0, T ],Rd), we will first bound

〈RtHt, ̺
λ
x〉, for λ ∈ (0, 1], x ∈ R

d and ̺ ∈ Br0(Rd). Using (2.11) and properties

of Π and H we get

|〈RtHt, ̺
λ
x〉| ≤ |〈RtHt −ΠtxHt(x), ̺λx〉|+ |〈ΠtxHt(x), ̺λx〉|

. λγ |t|η−γ0 +
∑

ζ∈[α,γ)∩A

λζ |t|(η−ζ)∧0
0 . λα|t|η−γ0 , (2.14)

where the proportionality constant is affine in ‖H‖γ,η;T ‖Π‖γ;T , and α is the mini-

mal homogeneity in A.

In order to obtain the time regularity of t 7→ RtHt, we show that the distribu-

tion ζstx
def
= ΠtxHt(x) −ΠsxHs(x) satisfies the bound

|〈ζstx − ζsty , ̺
λ
x〉| . |t− s|δ̃/s0 |s, t|η−γ0 |x− y|γ−δ̃−αλα , (2.15)

uniformly over all x, y ∈ R
d such that λ ≤ |x − y| ≤ 1, all s, t ∈ R, and for any

value of δ̃ as in the statement of the theorem. To this end, we consider two regimes:

|x− y| ≤ |t− s|1/s0 and |x− y| > |t− s|1/s0 .
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In the first case, when |x− y| ≤ |t− s|1/s0 , we write, using Definition 2.4,

ζstx − ζsty = Πtx
(

Ht(x) − ΓtxyHt(y)
)

−Πsx
(

Hs(x) − ΓsxyHs(y)
)

, (2.16)

and bound these two terms separately. From the properties (2.4a) and (2.9) we get

|〈Πtx(Ht(x) − ΓtxyHt(y)), ̺λx〉| .
∑

ζ∈[α,γ)∩A

λζ‖Ht(x) − ΓtxyHt(y)‖ζ

.
∑

ζ∈[α,γ)∩A

λζ |x− y|γ−ζ |t|η−γ0 . λα|x− y|γ−α|t|η−γ0 , (2.17)

where we have exploited the condition |x − y| ≥ λ. Recalling now the case we

consider, we can bound the last expression by the right-hand side of (2.15). The

same estimate holds for the second term in (2.16).

Now, we will consider the case |x− y| > |t− s|1/s0 . In this regime we use the

definition of model and write

ζstx − ζsty = (Πtx −Πsx)(Ht(x) − ΓtxyHt(y)) + Πsx(1− Σstx )(Ht(x) − ΓtxyHt(y))

−Πsx(Hs(x) − ΣstxHt(x)) + Πsy(Hs(y) − Σsty Ht(y)) . (2.18)

The first term can be bounded exactly as (2.17), but using this time (2.5), i.e.

|〈(Πtx −Πsx)(Ht(x) − ΓtxyHt(y)), ̺λx〉| . λα−δ |x− y|γ−α|t|η−γ0 |t− s|δ/s0 .

In order to estimate the second term in (2.18), we first notice that from (2.4b)

and (2.9) we get

‖(1− Σstx )(Ht(x) − ΓtxyHt(y))‖ζ .
∑

ζ<m<γ

|t− s|(m−ζ)/s0‖Ht(x) − ΓtxyHt(y)‖m

.
∑

ζ<m<γ

|t− s|(m−ζ)/s0 |x− y|γ−m|t|η−γ0 . |t− s|δ̃/s0 |x− y|γ−δ̃−ζ |t|η−γ0 ,
(2.19)

for any δ̃ ≤ minm>ζ∈A(m − ζ), where we have used the assumption on the time

variables. Hence, for the second term in (2.18) we have

|〈Πsx(1− Σstx )(Ht(x) − ΓtxyHt(y)), ̺λx〉|

. |t− s|δ̃/s0 |t|η−γ0

∑

ζ<γ

λζ |x− y|γ−δ̃−ζ .

Since |x− y| ≥ λ and ζ ≥ α, the estimate (2.15) holds for this expression.

The third term in (2.18) we bound using the properties (2.4a) and (2.9) by

|〈Πsx(Hs(x) −ΣstxHt(x)), ̺λx〉| .
∑

ζ<γ

λζ‖Hs(x) − ΣstxHt(x)‖ζ

.
∑

ζ<γ

λζ |t− s|(γ−ζ)/s0 |t, s|η−γ0 .
(2.20)
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It follows from |x− y| ≥ λ, |x− y| > |t− s|1/s0 and ζ ≥ α, that the latter can be

estimated as in (2.15), when δ̃ ≤ min{γ − ζ : ζ ∈ A, ζ < γ}. The same bound

holds for the last term in (2.18), and this finishes the proof of (2.15).

In view of the bound (2.15) and [Hai14, Prop. 3.25], we conclude that

|〈RtHt −RsHs − ζstx , ̺
λ
x〉| . |t− s|δ̃/s0λγ−δ̃|s, t|η−γ0 , (2.21)

uniformly over s, t ∈ R and the other parameters as in (2.11). Thus, we can write

〈RtHt −RsHs, ̺
λ
x〉 = 〈RtHt −RsHs − ζstx , ̺

λ
x〉+ 〈ζstx , ̺

λ
x〉 ,

where the first term is bounded in (2.21). The second term we can write as

〈ζstx , ̺
λ
x〉 = 〈(Πtx −Πsx)Ht(x), ̺λx〉+ 〈Πsx(Ht(x) −ΣtsxHs(x)), ̺λx〉

+ 〈Πsx(Σ
ts
x − 1)Hs(x), ̺λx〉 ,

which can be bounded by |t − s|δ̃/s0λα−δ̃|s, t|η−γ0 , using (2.5), (2.20) and (2.4b).

Here, in order to estimate the last term, we act similarly to (2.19). Combining all

these bounds together, we conclude that

|〈RtHt −RsHs, ̺
λ
x〉| . |t− s|δ̃/s0λα−δ̃|s, t|η−γ0 , (2.22)

which finishes the proof of the claim.

The bound (2.13) can be shown in a similar way. More precisely, similarly to

(2.14) and using [Hai14, Eq. 3.4], we can show that

|〈RtHt − R̄tH̄t, ̺
λ
x〉| . λα|t|η−γ0 (‖Π‖γ;T |||H; H̄ |||γ,η;T + ‖Π− Π̄‖γ;T |||H̄|||γ,η;T ).

Denoting ζ̄stx
def
= Π̄txH̄t(x) − Π̄sxH̄s(x) and acting as above, we can prove an ana-

logue of (2.21):

|〈RtHt − R̄tH̄t −RsHs + R̄sH̄s − ζstx + ζ̄stx , ̺
λ
x〉|

. |t− s|δ̃/s0λγ−δ̃|s, t|η−γ0 (|||H; H̄|||γ,η;T + |||Z; Z̄|||δ,γ;T ) ,

with the values of δ̃ as before. Finally, similarly to (2.22) we get

|〈RtHt − R̄tH̄t −RsHs + R̄sH̄s, ̺
λ
x〉| . |t− s|δ̃/s0λα−δ̃|s, t|η−γ0

× (|||H; H̄ |||γ,η;T + |||Z; Z̄|||δ,γ;T ) ,

which finishes the proof.

Definition 2.12. We will call the map R, introduced in Theorem 2.11, the recon-

struction operator, and we will always postulate in what follows that Rt = 0, for

t ≤ 0.

Remark 2.13. One can see that the map R̃(t, ·)
def
= Rt(·) is the reconstruction

operator for the model (2.7) in the sense of [Hai14, Thm. 3.10].
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2.3 Convolutions with singular kernels

In the definition of a mild solution to a parabolic stochastic PDE, convolutions with

singular kernels are involved. In particular Schauder estimates plays a key role. To

describe this on the abstract level, we introduce the abstract integration map.

Definition 2.14. Given a regularity structure T = (T ,G), a linear map I : T → T
is said to be an abstract integration map of order β > 0 if it satisfies the following

properties:

• One has I : Tm → Tm+β , for every m ∈ A such that m+ β ∈ A.

• For every τ ∈ Tpoly, one has Iτ = 0, where Tpoly ⊂ T contains the polyno-

mial part of T and was introduced in Remark 2.2.

• One has IΓτ − ΓIτ ∈ Tpoly, for every τ ∈ T and Γ ∈ G.

Remark 2.15. The second and third properties are dictated by the special role

played by polynomials in the Taylor expansion. One can find a more detailed

motivation for this definition in [Hai14, Sec. 5]. In general, we also allow for the

situation where I has a domain which isn’t all of T .

Now, we will define the singular kernels, convolutions with which we are going

to describe.

Definition 2.16. A function K : Rd+1 \ {0} → R is regularising of order β > 0,

if there is a constant r > 0 such that we can decompose

K =
∑

n≥0

K (n) , (2.23)

in such a way that each term K (n) is supported in {z ∈ R
d+1 : ‖z‖s ≤ c2−n} for

some c > 0, satisfies

|DkK (n)(z)| . 2(|s|−β+|k|s)n , (2.24)

for every multiindex k with |k|s ≤ r, and annihilates every polynomial of scaled

degree r, i.e. for every k ∈ N
d+1 such that |k|s ≤ r it satisfies

∫

Rd+1

zkK (n)(z) dz = 0 . (2.25)

Now, we will describe the action of a model on the abstract integration map.

When it is convenient for us, we will write Kt(x) = K(z), for z = (t, x).

Definition 2.17. Let I be an abstract integration map of order β for a regularity

structure T = (T ,G), let Z = (Π,Γ,Σ) be a model and let K be regularising of

order β with r > −⌊minA⌋. We say that Z realises K for I , if for every α ∈ A
and every τ ∈ Tα one has the identity

Πtx (Iτ + Jt,xτ) (y) =

∫

R

〈ΠsxΣ
st
x τ,Kt−s(y − ·)〉 ds , (2.26)
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where the polynomial Jt,xτ is defined by

Jt,xτ
def
=

∑

|k|s<α+β

Xk

k!

∫

R

〈ΠsxΣ
st
x τ,D

kKt−s(x− ·)〉 ds , (2.27)

with k ∈ N
d+1 and the derivative Dk in time-space. Moreover, we require that

Γtxy(I + Jt,y) = (I + Jt,x)Γ
t
xy ,

Σstx (I + Jt,x) = (I + Js,x)Σ
st
x ,

(2.28)

for all s, t ∈ R and x, y ∈ R
d.

Remark 2.18. We define the integrals in (2.26) and (2.27) as sums of the same

integrals, but using the functions K (n) from the expansion (2.23). Since these

integrals coincide with those from [Hai14] for the model (2.7), it follows from

[Hai14, Lem. 5.19] that these sums converge absolutely, and hence the expressions

in (2.26) and (2.27) are well defined.

Remark 2.19. The identities (2.28) should be viewed as defining ΓtxyIτ and Σstx Iτ
in terms of Γtxyτ , Σstx τ , and (2.27).

With all these notations at hand we introduce the following operator acting on

modelled distribution H ∈ Dγ,η
T (Z) with γ + β > 0:

(KγH)t(x)
def
= IHt(x) + Jt,xHt(x) + (NγH)t(x) . (2.29)

Here, the last term is Tpoly-valued and is given by

(NγH)t(x)
def
=

∑

|k|s<γ+β

Xk

k!

∫

R

〈RsHs−ΠsxΣ
st
xHt(x),DkKt−s(x−·)〉 ds , (2.30)

where as before k ∈ N
d+1 and the derivative Dk is in time-space, see Defini-

tion 2.12 for consistency of notation.

Remark 2.20. It follows from Remark 2.13 and the proof of [Hai14, Thm. 5.12],

that the integral in (2.30) is well-defined, if we express it as a sum of the respective

integrals with the functions K (n) in place of K . (See also the definition of the

operator R+ in [Hai14, Sec. 7.1].)

The modelled distribution KγH represents the space-time convolution of H
with K , and the following result shows that this action “improves” regularity by β.

Theorem 2.21. Let T = (T ,G) be a regularity structure with the minimal homo-

geneity α, let I be an abstract integration map of an integer order β > 0, let K
be a singular function regularising by β, and let Z = (Π,Γ,Σ) be a model, which

realises K for I . Furthermore, let γ > 0, η < γ, η > −s0, γ < η+ s0, γ+β /∈ N,

α+ β > 0 and r > −⌊α⌋, r > γ + β in Definition 2.16.
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Then Kγ maps Dγ,η
T (Z) into Dγ̄,η̄

T (Z), where γ̄ = γ + β, η̄ = η ∧ α + β, and

for any H ∈ Dγ,η
T (Z) the following bound holds

|||KγH|||γ̄,η̄;T . |||H|||γ,η;T ‖Π‖γ;T ‖Σ‖γ;T (1 + ‖Γ‖γ̄;T + ‖Σ‖γ̄;T ) . (2.31)

Furthermore, for every t ∈ (0, T ], one has the identity

Rt(KγH)t(x) =

∫ t

0

〈RsHs,Kt−s(x− ·)〉 ds . (2.32)

Let Z̄ = (Π̄, Γ̄, Σ̄) be another model realising K for I , which satisfies the same

assumptions, and let K̄γ be defined by (2.29) for this model. Then one has

|||KγH; K̄γH̄|||γ̄,η̄;T . |||H; H̄ |||γ,η;T + |||Z; Z̄|||γ̄;T , (2.33)

for all H ∈ Dγ,η
T (Z) and H̄ ∈ Dγ,η

T (Z̄). Here, the proportionality constant de-

pends on |||H|||γ,η;T , |||H̄ |||γ,η;T and the norms on the models Z and Z̄ involved in

the estimate (2.31).

Proof. In view of Remarks 2.7 and 2.13, the required bounds on the components

of (KγH)t(x) and (KγH)t(x) − Σtsx (KγH)s(x), as well as on the components of

(KγH)t(y) − Γtyx(KγH)t(x) with non-integer homogeneities, can be obtained in

exactly the same way as in [Hai14, Prop. 6.16]. (See the definition of the operator

R
+ in [Hai14, Sec. 7.1].)

In order to get the required bounds on the elements of (KγH)t(x)−Γtxy(KγH)t(y)

with integer homogeneities, we need to modify the proof of [Hai14, Prop. 6.16].

The problem is that our definition of modelled distributions is slightly different

than the one in [Hai14, Def. 6.2] (see Remark 2.9). That’s why we have to con-

sider only two regimes, c2−n+1 ≤ |x − y| and c2−n+1 > |x − y|, in the proof of

[Hai14, Prop. 6.16], where c is from Definition 2.16. The only place in the proof,

which requires a special treatment, is the derivation of the estimate

∣

∣

∣

∫

R

〈RsHs −ΠsxHs(x),DkK (n)
t−s(x− ·)〉 ds

∣

∣

∣
. 2(|k|s−γ−β)n|t|η−γ0 ,

which in our case follows trivially from Theorem 2.11 and Definition 2.16. Here

is the place where we need γ − η < s0, in order to have an integrable singularity.

Here, we use the same argument as in the proof of [Hai14, Thm. 7.1] to make sure

that the time interval does not increase.

With respective modifications of the proof of [Hai14, Prop. 6.16] we can also

show that (2.32) and (2.33) hold.

3 Solutions to parabolic stochastic PDEs

We consider a general parabolic stochastic PDE of the form

∂tu = Au+ F (u, ξ) , u(0, ·) = u0(·) , (3.1)
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on R+ ×R
d, where u0 is the initial data, ξ is a rough noise, F is a function in u

and ξ, which depends in general on the space-time point z and which is affine in

ξ, and A is a differential operator such that ∂t − A has a Green’s function G, i.e.

G is the distributional solution of (∂t − A)G = δ0. Then we require the following

assumption to be satisfied.

Assumption 3.1. The operator A is given by Q(∇), for Q a homogeneous polyno-

mial on R
d of some even degree β > 0. Its Green’s function G : Rd+1 \ {0} 7→ R

is smooth, non-anticipative, i.e. Gt = 0 for t ≤ 0, and for λ > 0 satisfies the

scaling relation

λdGλβ t(λx) = Gt(x) .

Remark 3.2. One can find in [Hör55] precise conditions onQ such that G satisfies

Assumption 3.1.

In order to apply the abstract integration developed in the previous section,

we would like the localised singular part of G to have the properties from Defini-

tion 2.16. The following result, following from [Hai14, Lem. 7.7], shows that this

is indeed the case.

Lemma 3.3. Let us consider functions u supported in R+ × R
d and periodic in

the spatial variable with some fixed period. If Assumption 3.1 is satisfied with some

β > 0, then we can write G = K +R, in such a way that the identity

(G ⋆ u)(z) = (K ⋆ u)(z) + (R ⋆ u)(z) ,

holds for every such function u and every z ∈ (−∞, 1] × R
d, where ⋆ is the

space-time convolution. Furthermore, K has the properties from Definition 2.16

with the parameters β and some arbitrary (but fixed) value r, and the scaling s =
(β, 1, . . . , 1). The function R is smooth, non-anticipative and compactly supported.

In particular, it follows from Lemma 3.3 that for any γ > 0 and any periodic

ζt ∈ Cα(Rd), with t ∈ R, which is allowed to have an integrable singularity at

t = 0, we can define

(Rγζ)t (x)
def
=

∑

|k|s<γ

Xk

k!

∫

R

〈ζs,D
kRt−s(x− ·)〉 ds , (3.2)

where k ∈ N
d+1 and Dk is taken in time-space.

3.1 Regularity structures for locally subcritical stochastic PDEs

In this section we provide conditions on the equation (3.1), under which one can

build a regularity structure for it. More precisely, we consider the mild form of

equation (3.1):

u = G ⋆ F (u, ξ) + Su0 , (3.3)
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where ⋆ is the space-time convolution, S is the semigroup generated by A and G is

its fundamental solution. We will always assume that we are in a subcritical setting,

as defined in [Hai14, Sec. 8].

It was shown in [Hai14, Sec. 8.1] that it is possible to build a regularity structure

T = (T ,G) for a locally subcritical equation and to reformulate it as a fixed point

problem in an associated space of modelled distributions. We do not want to give a

precise description of this regularity structure, see for example [Hai14, Hai16] for

details in the case of Φ4
3. Let us just mention that we can recursively build two sets

of symbols, F and U . The set F contains Ξ, 1, Xi, as well as some of the symbols

that can be built recursively from these basic building blocks by the operations

τ 7→ I(τ ) , (τ, τ̄ ) 7→ τ τ̄ , (3.4)

subject to the equivalences τ τ̄ = τ̄ τ , 1τ = τ , and I(Xk) = 0. These symbols

are involved in the description of the right hand side of (3.1). The set U ⊂ F
on the other hand contains only those symbols which are used in the description

of the solution itself, which are either of the form Xk or of the form I(τ ) with

τ ∈ F . The model space T is then defined as span{τ ∈ F : |τ | ≤ r} for a

sufficiently large r > 0, the set of all (real) linear combinations of symbols in F of

homogeneity |τ | ≤ r, where τ 7→ |τ | is given by

|1| = 0 , |Xi| = si , |Ξ| = α, |I(τ )| = |τ |+β , |τ τ̄ | = |τ |+ |τ̄ | . (3.5)

In the situation of interest, namely the Φ4
3 model, one chooses β = 2 and α =

−5
2
− κ for some κ > 0 sufficiently small. Subcriticality then guarantees that T is

finite-dimensional. We will also write TU for the linear span of U in T .

One can also build a structure group G acting on T in such a way that the

operation I satisfies the assumptions of Definition 2.14 (corresponding to the con-

volution operation with the kernel K), and such that it acts on Tpoly by translations

as required.

Let now Z be a model realising K for I , we denote by R, Kγ̄ and Rγ the

reconstruction operator, and the corresponding operators (2.29) and (3.2). We also

use the notation P
def
= Kγ̄ + RγR for the operator representing convolution with

the heat kernel. With these notations at hand, it was shown in [Hai14] that one can

associate to (3.3) the fixed point problem in Dγ,η
T (Z) given by

U = PF (U ) + Su0 , (3.6)

for a suitable function (which we call again F ) which “represents” the nonlinearity

of the SPDE in the sense of [Hai14, Sec. 8] and which is such that IF (τ ) ∈ T for

every τ ∈ TU . In our running example, we would take

F (τ ) = −Q≤0(aτ + λτ3) + Ξ , (3.7)

where Q≤0 denotes the canonical projection onto T≤0 defined in Remark 2.31 and

1The reason for adding this projection is to guarantee that IF maps TU into T , since we truncated

T at homogeneity r. Note also that the presence of this projection does not affect the outcome of the

reconstruction operator when applied to F (U ).
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a and λ are the constants from (Φ4
3). The problem we encounter is that since we

impose that our models are functions of time, there exists no model for which

ΠtxΞ = ξ with ξ a typical realisation of space-time white noise. We would like to

replace (3.6) by an equivalent fixed point problem that circumvents this problem,

and this is the content of the next two subsections.

3.2 Truncation of regularity structures

In general, as just discussed, we cannot always define a suitable inhomogeneous

model for the regularity structure T = (T ,G), so we introduce the following

truncation procedure, which amounts to simply removing the problematic symbols.

Definition 3.4. Consider a set of generators Fgen ⊂ F such that Fpoly ⊂ Fgen

and such that T gen def
= span{τ ∈ Fgen : |τ | ≤ r} ⊂ T is closed under the action

of G. We then define the corresponding generating regularity structure T gen =
(T gen,G).

Moreover, we define F̂ as the subset of F generated by Fgen via the two oper-

ations (3.4), and we assume that Fgen was chosen in such a way that U ⊂ F̂ , with

U as in the previous section. Finally, we define the truncated regularity structure

T̂ = (T̂ ,G) with T̂
def
= span{τ ∈ F̂ : |τ | ≤ r} ⊂ T .

Remark 3.5. Note that T̂ is indeed a regularity structure since T̂ is automatically

closed under G. This can easily be verified by induction using the definition of G
given in [Hai14].

A set Fgen with these properties always exists, because one can take either

Fgen = F or Fgen = {Ξ} ∪ Fpoly. In both of these examples, one simply has

F̂ = F , but in the case of (Φ4
3), it turns out to be convenient to make a choice for

which this is not the case (see Section 7 below).

3.3 A general fixed point map

We now reformulate (3.1), with the operator A such that Assumption 3.1 is sat-

isfied, using the regularity structure from the previous section, and show that the

corresponding fixed point problem admits local solutions. For an initial condition

u0 in (3.1) with “sufficiently nice” behavior at infinity, we can define the function

Stu0 : Rd → R, which has a singularity at t = 0, where as before St is the semi-

group generated by A. In particular, we have a precise description of its singularity,

the proof of which is provided in [Hai14, Lem. 7.5]:

Lemma 3.6. For some η < 0, let u0 ∈ Cη(Rd) be periodic. Then, for every γ > 0
and every T > 0, the map (t, x) 7→ Stu0(x) can be lifted to Dγ,η

T via its Taylor

expansion. Furthermore, one has the bound

|||Su0|||γ,η;T . ‖u0‖Cη . (3.8)

Before reformulating (3.1), we make some assumptions on its nonlinear term

F . For a regularity structure T = (T ,G), let T̂ = (T̂ ,G) be as in Definition 3.4
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for a suitable set Fgen. In what follows, we consider models on T̂ and denote

by Dγ,η
T the respective spaces of modelled distributions. We also assume that we

are given a function F : TU → T as above (for example (3.7)), and we make the

following assumption on F .

For some fixed γ̄ > 0, η ∈ R we choose, for any model Z on T̂ , elements

F0(Z), I0(Z) ∈ Dγ̄,η
T (Z) such that, for every z, I0(z) ∈ T̂ , I0(z) − IF0(z) ∈ Tpoly

and such that, setting

F̂ (z, τ )
def
= F (z, τ ) − F0(z) , (3.9)

F̂ (z, ·) maps {I0(z) + τ : τ ∈ T̂ ∩ TU} into T̂ . Here we suppressed the argument

Z for conciseness by writing for example I0(z) instead of I0(Z)(z).

Remark 3.7. Since it is the same structure group G acting on both T and T̂ , the

condition F0 ∈ Dγ̄,η
T makes sense for a given model on T̂ , even though F0(z)

takes values in all of T rather than just T̂ .

Given such a choice of I0 and F0 and given H : Rd+1 → T̂ ∩ TU , we denote

by F̂ (H) the function

(F̂ (H))t(x)
def
= F̂ ((t, x),Ht(x)) . (3.10)

With this notation, we replace the problem (3.6) by the problem

U = PF̂ (U ) + Su0 + I0 . (3.11)

This shows that one should really think of I0 as being given by I0 = PF0 since,

at least formally, this would then turn (3.11) into (3.6). The advantage of (3.11) is

that it makes sense for any model on T̂ and does not require a model on all of T .

We then assume that F̂ , I0 and F0 satisfy the following conditions.

Assumption 3.8. In the above context, we assume that there exists γ ≥ γ̄ such that,

for every B > 0 there exists a constant C > 0 such that the bounds

|||F̂ (H); F̂ (H̄)|||γ̄,η̄;T ≤ C
(

|||H; H̄ |||γ,η;T + |||Z; Z̄|||γ;T
)

, (3.12)

|||I0(Z); I0(Z̄)|||γ̄,η̄;T ≤ C|||Z; Z̄|||γ;T , |||F0(Z);F0(Z̄)|||γ̄,η̄;T ≤ C|||Z; Z̄|||γ;T ,

hold for any two models Z , Z̄ with |||Z|||γ;T + |||Z̄|||γ;T ≤ B, and for H ∈ Dγ,η
T (Z),

H̄ ∈ Dγ,η
T (Z̄) such that |||H|||γ,η;T + |||H̄|||γ,η;T ≤ B.

Remark 3.9. The bounds in Assumption (3.8) can usually be easily checked for a

polynomial nonlinearity F in (3.3). See Lemma 7.1 below for a respective prove

in the case when F is give by (3.7).

The following theorem provides the existence and uniqueness results of a local

solution to this equation.
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Theorem 3.10. In the described context, let α
def
= min Â, and an abstract integra-

tion map I be of order β > −α. Furthermore, let the values γ ≥ γ̄ > 0 and

η, η̄ ∈ R from Assumption 3.8 satisfy η < η̄ ∧ α+ β, γ < γ̄ + β and η̄ > −β.

Then, for every model Z as above, and for every periodic u0 ∈ Cη(Rd), there

exists a time T⋆ ∈ (0,+∞] such that, for every T < T⋆ the equation (3.11) admits

a unique solution U ∈ Dγ,η
T (Z). Furthermore, if T⋆ <∞, then

lim
T→T⋆

‖RTST (u0, Z)T ‖Cη = ∞ ,

where ST : (u0, Z) 7→ U is the solution map. Finally, for every T < T⋆, the

solution map ST is jointly Lipschitz continuous in a neighbourhood around (u0, Z)

in the sense that, for any B > 0 there is C > 0 such that, if Ū = ST (ū0, Z̄) for

some initial data (ū0, Z̄), then one has the bound |||U ; Ū |||γ,η;T ≤ Cδ, provided

‖u0 − ū0‖Cη + |||Z; Z̄|||γ;T ≤ δ, for any δ ∈ (0, B].

Proof. See [Hai14, Thm. 7.8], combined with [Hai14, Prop. 7.11]. Note that since

we consider inhomogeneous models, we have no problems in evaluating RtUt.

Definition 3.11. In the setting of Theorem 3.10, let U be the unique solution to the

equation (3.11) on [0, T⋆). Then for t < T⋆ we define the solution to (3.1) by

ut(x)
def
= (RtUt)(x) . (3.13)

Remark 3.12. If the noise ξ in (3.1) is smooth, so that this equation can be solved

in the classical sense, one can see that the reconstruction operator satisfies

(RtUt)(x) = (ΠtxUt(x))(x) ,

and the solution (3.13) coincides with the classical solution.

4 Discrete models and modelled distributions

In order to be able to consider discretisations of the equations whose solutions were

provided in Section 3, we introduce the discrete counterparts of inhomogeneous

models and modelled distributions. In this section we use the following notation:

for N ∈ N, we denote by ε
def
= 2−N the mesh size of the grid Λdε

def
= (εZ)d, and we

fix some scaling s = (s0, 1, . . . , 1) of Rd+1 with an integer s0 > 0.

4.1 Definitions and the reconstruction theorem

Now we define discrete analogues of the objects from Sections 2.1 and 2.2.

Definition 4.1. Given a regularity structure T and ε > 0, a discrete model (Πε,Γε,Σε)
consists of the collections of maps

Πε,tx : T → R
Λd
ε , Γε,t : Λdε × Λdε → G , Σεx : R×R → G ,



22 DISCRETE MODELS AND MODELLED DISTRIBUTIONS

parametrised by t ∈ R and x ∈ Λdε , which have all the algebraic properties of

their continuous counterparts in Definition 2.4, with the spatial variables restricted

to the grid. Additionally, we require (Πε,tx τ)(x) = 0, for all τ ∈ Tl with l > 0, and

all x ∈ Λdε and t ∈ R.

We define the quantities ‖Πε‖(ε)
γ;T and ‖Γε‖(ε)

γ;T to be the smallest constants C

such that the bounds (2.4a) hold uniformly in x, y ∈ Λdε , t ∈ R, λ ∈ [ε, 1] and

with the discrete pairing (1.11) in place of the standard one. The quantity ‖Σε‖(ε)
γ;T

is defined as the smallest constant C such that the bounds

‖Σε,stx τ‖m ≤ C‖τ‖(|t− s|1/s0 ∨ ε)l−m , (4.1)

hold uniformly in x ∈ Λdε and the other parameters as in (2.4b).

We measure the time regularity of Πε as in (2.5), by substituting the continuous

objects by their discrete analogues, and by using |t−s|1/s0 ∨ε instead of |t−s|1/s0

on the right-hand side. All the other quantities ‖ · ‖(ε), ||| · |||(ε), etc. are defined by

analogy with Remark 2.5.

Remark 4.2. The fact that (Πε,tx τ)(x) = 0 if |τ | > 0 does not follow automatically

from the discrete analogue of (2.4a) since these are only assumed to hold for test

functions at scale λ ≥ ε. We use this property in the proof of (4.35).

Remark 4.3. The weakening of the continuity property of Σε,stx given by (4.1) will

be used in the analysis of the “discrete abstract integration” in Section 4.2. It allows

us to deal with the fact that the discrete heat kernel is discontinuous at t = 0, so

we simply use uniform bounds on very small time scales (see [HMW14, Lem. 6.7]

for a simple explanation in a related context).

For γ, η ∈ R and T > 0, for a discrete model Zε = (Πε,Γε,Σε) on a regularity

structure T = (T ,G), and for a function Hε : (0, T ] × Λdε → T<γ , we define

‖Hε‖(ε)
γ,η;T

def
= sup

t∈(0,T ]

sup
x∈Λd

ε

sup
l<γ

|t|(l−η)∨0
ε ‖Hε

t (x)‖l

+ sup
t∈(0,T ]

sup
x 6=y∈Λd

ε
|x−y|≤1

sup
l<γ

‖Hε
t (x) − Γε,txyHε

t (y)‖l

|t|η−γε |x− y|γ−l
,

(4.2)

where l ∈ A. Furthermore, we define the norm

|||Hε|||(ε)
γ,η;T

def
= ‖Hε‖(ε)

γ,η;T + sup
s 6=t∈(0,T ]

|t−s|≤|t,s|
s0
0

sup
x∈Λd

ε

sup
l<γ

‖Hε
t (x) − Σε,tsx Hε

s (x)‖l

|t, s|η−γε (|t− s|1/s0 ∨ ε)γ−l
,

(4.3)

where the quantities |t|ε and |t, s|ε are defined below (1.12). We will call such

functions Hε discrete modelled distributions.
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Remark 4.4. It is easy to see that the properties of multiplication of modeled dis-

tributions from [Hai14, Sec. 6.2] can be translated mutatis mutandis to the discrete

case.

In contrast to the continuous case, a reconstruction operator of discrete modeled

distributions can be defined in a simple way.

Definition 4.5. Given a discrete model Zε = (Πε,Γε,Σε) and a discrete modelled

distribution Hε we define the discrete reconstruction map Rε by Rε
t = 0 for t ≤ 0,

and

(Rε
tH

ε
t )(x)

def
= (Πε,tx H

ε
t (x))(x) , (t, x) ∈ (0, T ] × Λdε . (4.4)

Recalling the definition of the norms from (1.12), the following result is a dis-

crete analogue of Theorem 2.11.

Theorem 4.6. Let T be a regularity structure with α
def
= minA < 0 and Zε =

(Πε,Γε,Σε) be a discrete model. Then the bound

|〈Rε
tH

ε
t −Πε,tx H

ε
t (x), ̺λx〉ε| . λγ |t|η−γε ‖Hε‖(ε)

γ,η;T ‖Π
ε‖(ε)
γ;T ,

holds uniformly in ε (see Remark 4.7 below) for all discrete modelled distributions

Hε, all t ∈ (0, T ], x ∈ Λdε , ̺ ∈ Br0(Rd) with r > −⌊α⌋, all λ ∈ [ε, 1].

Let furthermore Z̄ε = (Π̄ε, Γ̄ε, Σ̄ε) be another model for T with the recon-

struction operator R̄ε
t , and let the maps Πε and Π̄ε have time regularities δ > 0.

Then, for any two discrete modelled distributions Hε and H̄ε, the maps t 7→ Rε
tH

ε
t

and t 7→ R̄ε
t H̄

ε
t satisfy

‖RεHε‖(ε)

Cδ̃,α
η−γ,T

. ‖Πε‖(ε)
δ,γ;T (1 + ‖Σε‖(ε)

γ;T )|||H
ε|||(ε)
γ,η;T , (4.5a)

‖RεHε − R̄εH̄ε‖(ε)

Cδ̃,α
η−γ,T

. |||Hε; H̄ε|||(ε)
γ,η;T + |||Zε; Z̄ε|||(ε)

δ,γ;T , (4.5b)

for any δ̃ as in Theorem 2.11. Here, the norms of Hε and H̄ε are defined via the

models Zε and Z̄ε respectively, and the proportionality constants depend on ε only

via |||Hε|||(ε)
γ,η;T , |||H̄ε|||(ε)

γ,η;T , |||Zε|||(ε)
δ,γ;T and |||Z̄ε|||(ε)

δ,γ;T .

Remark 4.7. In the statement of Theorem 4.6 and the following results we actually

consider a sequence of discrete models and modeled distributions parametrised by

ε = 2−N with N ∈ N. By “uniformity in ε” we then mean that the estimates hold

for all values of ε with a proportionality constant independent of ε.

Remark 4.8. To compare a discrete model Zε = (Πε,Γε,Σε) to a continuous

model Z = (Π,Γ,Σ), we can define

‖Π;Πε‖(ε)
δ,γ;T

def
= sup

ϕ,x,λ,l,τ
sup

t∈[−T,T ]

λ−l|〈Πtxτ, ϕ
λ
x〉 − 〈Πε,tx τ, ϕ

λ
x〉ε|

+ sup
ϕ,x,λ,l,τ

sup
s 6=t∈[−T,T ]

|t−s|≤1

λ−l+δ
|〈(Πtx −Πsx)τ, ϕ

λ
x〉 − 〈(Πε,tx −Πε,sx )τ, ϕλx〉ε|

(|t− s|1/s0 ∨ ε)δ
,
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where the supremum is taken over ϕ ∈ Br0, x ∈ Λdε , λ ∈ [ε, 1], l < γ and τ ∈ Tl
with ‖τ‖ = 1. In order to compare discrete and continuous modelled distributions,

we use the quantities as in (2.10), but with the respective modifications as in (4.3).

Then one can show similarly to (2.13) that for H ∈ Dγ,η
T (Z) and a discrete

modeled distribution Hε the maps t 7→ RtHt and t 7→ Rε
tH

ε
t satisfy the estimate

‖RH;RεHε‖(ε)

Cδ̃,α
η−γ,T

. |||H;Hε|||(ε)
γ,η;T + |||Z;Zε|||(ε)

δ,γ;T + εθ ,

for δ̃ > 0 and θ > 0 small enough. We will however not make use of this in the

present article.

In order to prove Theorem 4.6, we need to introduce a multiresolution analysis

and its discrete analogue.

4.1.1 Elements of multiresolution analysis

In this section we provide only the very basics of the multiresolution analysis,

which are used in the sequel. For a more detailed introduction and for the proofs

of the provided results we refer to [Dau92] and [Mey92].

One of the remarkable results of [Dau88] is that for every r > 0 there exists a

compactly supported function ϕ ∈ Cr(R) (called scaling function) such that

∫

R

ϕ(x) dx = 1 ,

∫

R

ϕ(x)ϕ(x + k) dx = δ0,k, k ∈ Z , (4.6)

where δ·,· is the Kronecker’s delta on Z. Furthermore, if for n ∈ N we define the

grid Λn
def
= {2−nk : k ∈ Z} and the family of functions

ϕnx(·)
def
= 2n/2ϕ(2n(· − x)) , x ∈ Λn , (4.7)

then there is a finite collection of vectors K ⊂ Λ1 and a collection of structure

constants {ak : k ∈ K} such that the refinement equation

ϕnx =
∑

k∈K

akϕ
n+1
x+2−nk

(4.8)

holds. Note that the multiplier in (4.7) preserves the L2-norm of the scaled func-

tions rather than their L1-norm. It follows immediately from (4.6) and (4.8) that

one has the identities

∑

k∈K

ak = 2d/2 ,
∑

k∈K

akak+m = δ0,m , m ∈ Z
d . (4.9)

For a fixed scaling function ϕ, we denote by Vn ⊂ L2(R) the subspace spanned

by {ϕnx : x ∈ Λn}. Then the relation (4.8) ensures the inclusion Vn ⊂ Vn+1 for

every n. It turns out that there is a compactly supported function ψ ∈ Cr(R) (called
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wavelet function) such that the space V ⊥
n , which is the orthogonal complement of

Vn in Vn+1, is given by

V ⊥
n = span{ψnx : x ∈ Λn} ,

where ψnx is as in (4.8). Moreover, there are constants {bk : k ∈ K}, such that the

wavelet equation holds:

ψnx =
∑

k∈K

bkϕ
n+1
x+2−nk

. (4.10)

One more useful property of the wavelet function is that it has vanishing moments,

in the sense that the identity
∫

R

ψ(x)xmdx = 0 (4.11)

holds for all m ∈ N such that m ≤ r.

There is a standard generalization of scaling and wavelet functions to R
d,

namely for n ≥ 0 and x = (x1, . . . , xd) ∈ Λdn we define

ϕnx(y)
def
= ϕnx1(y1) · · ·ϕnxd(yd) , y = (y1, . . . , yd) ∈ R

d .

For these scaling functions we also define Vn as the closed subspace in L2 spanned

by {ϕnx : x ∈ Λdn}. Then there is a finite set Ψ of functions on R
d such that the

space V ⊥
n

def
= Vn+1 \ Vn is a span of {ψnx : ψ ∈ Ψ, x ∈ Λdn}, where we define the

scaled function ψnx by

ψnx (y)
def
= 2nd/2ψ(2n(y1 − x1), . . . , 2n(yd − xd)) .

All the results mentioned above can be literally translated from R to R
d, but of

course with K ⊂ Λd1 and with different structure constants {ak : k ∈ K} and

{bk : k ∈ K}.

4.1.2 An analogue of the multiresolution analysis on the grid

In this section we will develop an analogue of the multiresolution analysis which

will be useful for working with functions defined on a dyadic grid. Our construc-

tion agrees with the standard discrete wavelets on gridpoints, but also extends off

the grid. To this end, we use the notation of Section 4.1.1. We recall furthermore

that we use ε = 2−N for a fixed N ∈ N.

Let us fix a scaling function ϕ ∈ Cr0(R), for some integer r > 0, as in Sec-

tion 4.1.1. For integers 0 ≤ n ≤ N we define the functions

ϕN,nx (·)
def
= 2Nd/2〈ϕN· , ϕ

n
x〉 , x ∈ Λdn . (4.12)

One has that ϕN,nx ∈ Cr(Rd), it is supported in a ball of radius O(2−n) centered at

x, it has the same scaling properties as ϕnx , and it satisfies

ϕN,Nx (y) = 2Nd/2δx,y , x, y ∈ ΛdN , (4.13)
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where δ·,· is the Kronecker’s delta on ΛdN . The last property follows from (4.6).

Furthermore, it follows from (4.8) that for n < N these functions satisfy the refine-

ment identity

ϕN,nx =
∑

k∈K

ak ϕ
N,n+1

x+2−nk
, (4.14)

with the same structure constants {ak : k ∈ K} as for the functions ϕnx . One more

consequence of (4.6) is

2−Nd
∑

y∈Λd
N

ϕN,nx (y) = 2−nd/2 ,

which obviously holds for n = N , and for n < N it can be proved by induction,

using (4.14) and (4.9).

The functions ϕN,nx inherit many of the crucial properties of the functions ϕnx ,

which allows us to use them in the multiresolution analysis. In particular, for n <
N and ψ ∈ Ψ (the set of wavelet functions, introduced in Section 4.1.1), we can

define the functions

ψN,nx (·)
def
= 2Nd/2〈ϕN· , ψ

n
x 〉 , x ∈ Λdn ,

whose properties are similar to those of ψnx . For example, ψN,nx ∈ Cr(R), and it

has the same scaling and support properties as ψnx . Furthermore, it follows from

(4.10) that for n < N the following identity holds

ψN,nx =
∑

k∈K

bkϕ
N,n+1

x+2−nk
, (4.15)

with the same constants {bk : k ∈ K}. It is easy to see that the functions just

introduced are not L2-orthogonal, but still, using (4.9), one can go by induction

from N to any n < N and prove the following result:

Proposition 4.9. In the context just described, for every integer n ∈ [0, N ), the set

{ϕN,nx : x ∈ Λn} ∪ {ψN,mx : m ∈ [n,N ), x ∈ Λm} ,

forms an orthonormal basis of ℓ2(Λε) equipped with the inner product 〈·, ·〉ε.

A generalisation of this discrete analogue of the wavelet analysis to higher

dimensions can be done by analogy with the continuous case in Section 4.1.1.

4.1.3 Proof of the discrete reconstruction theorem

With the help of the discrete analogue of the multiresolution analysis introduced in

the previous section we are ready to prove Theorem 4.6.
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Proof of Theorem 4.6. We take a compactly supported scaling function ϕ ∈ Cr(Rd)

of regularity r > −⌊α⌋, where α is as in the statement of the theorem, and build

the functions ϕN,nx as in (4.12). Furthermore, we define the discrete functions

ζε,tx
def
= Πε,tx Hε

t (x) and ζε,txy
def
= ζε,ty − ζε,tx . Then from Definition 4.1 we obtain

|〈ζε,txy , ϕ
N,n
y 〉ε| . ‖Πε‖(ε)

γ;T

∑

l∈[α,γ)∩A

2−nd/2−ln‖Hε
t (y) − Γε,tyxH

ε
t (x)‖l

. ‖Πε‖(ε)
γ;T ‖H

ε‖(ε)
γ,η;T |t|

η−γ
ε

∑

l∈[α,γ)∩A

2−nd/2−ln|y − x|γ−l

. ‖Πε‖(ε)
γ;T ‖H

ε‖(ε)
γ,η;T |t|

η−γ
ε 2−nd/2−αn|y − x|γ−α , (4.16)

which holds as soon as |x− y| ≥ 2−n. Moreover, we define

Rε,n
t Hε

t
def
=

∑

y∈Λd
n

〈ζε,ty , ϕN,ny 〉ε ϕ
N,n
y .

It follows from the property (4.13) that Rε
tH

ε
t = Rε,N

t Hε
t and Πε,tx Hε

t (x) =
Pε,N (ζε,tx ) (recall that ε = 2−N ), where the operator Pε,n is defined by

Pε,n(ζ)
def
=

∑

y∈Λd
n

〈ζ, ϕN,ny 〉ε ϕ
N,n
y .

This allows us to choose n0 ≥ 0 to be the smallest integer such that 2−n0 ≤ λ and

rewrite

Rε
tH

ε
t −Πε,tx H

ε
t (x) =

(

Rε,n0

t Hε
t − Pε,n0

(ζε,tx )
)

(4.17)

+

N−1
∑

n=n0

(

Rε,n+1
t Hε

t −Pε,n+1(ζε,tx ) −Rε,n
t Hε

t + Pε,n(ζε,tx )
)

.

The first term on the right hand side yields

〈Rε,n0

t Hε
t − Pε,n0

(ζε,tx ), ̺λx〉ε =
∑

y∈Λd
n0

〈ζε,txy , ϕ
N,n0

y 〉ε 〈ϕ
N,n0

y , ̺λx〉ε . (4.18)

Using (4.16) and the bound |〈ϕN,n0
y , ̺λx〉ε| . 2n0d/2, we obtain

|〈Rε,n0

t Hε
t − Pε,n0

(ζε,tx ), ̺λx〉ε| . ‖Πε‖(ε)
γ;T ‖H

ε‖(ε)
γ,η;T |t|

η−γ
ε 2−γn0 .

Here, we have also used |x− y| . 2−n0 in the sum in (4.18), and the fact that only

a finite number of points y ∈ Λdn0
contribute to this sum.

Now we will bound each term in the sum in (4.17). Using (4.14) and (4.15),

we can write

Rε,n+1
t Hε

t − Pε,n+1(ζε,tx ) −Rε,n
t Hε

t + Pε,n(ζε,tx ) = gεt,n + hεt,n ,
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where gεt,n is defined by

gεt,n =
∑

y∈Λd
n

∑

k∈K

ak〈ζ
ε,t
y,y+2−nk

, ϕN,n+1

y+2−nk
〉ε ϕ

N,n
y

and the constants {ak : k ∈ K} are from (4.14). For hεt,n we have the identity

hεt,n =
∑

y∈Λd
n+1

∑

k∈K

∑

ψ∈Ψ

bk〈ζ
ε,t
xy , ϕ

N,n+1
y 〉ε ψ

N,n
y−2−nk

.
(4.19)

Moreover, the following bounds, for n ∈ [n0, N ], follow from the properties of the

functions ϕnx and ψnx :

|〈ϕN,ny , ̺λx〉ε| . 2n0d/22−(n−n0)d/2 , |〈ψN,ny , ̺λx〉ε| . 2n0d/22−(n−n0)(r+d/2) .

Using them and (4.16), we obtain a bound on gεt,n:

|〈gεt,n, ̺
λ
x〉ε| .

∑

y∈Λd
n

∑

k∈K

|〈ζε,t
y,y+2−nk

, ϕN,n+1

y+2−nk
〉ε| |〈ϕ

N,n
y , ̺λx〉ε|

. ‖Πε‖(ε)
γ;T ‖H

ε‖(ε)
γ,η;T |t|

η−γ
ε 2−γn ,

where we have used |x − y| . 2−n in the sum. Summing these bounds over

n ∈ [n0, N ], we obtain a bound of the required order. Similarly, we obtain the

following bound on (4.19):

|〈hεt,n, ̺
λ
x〉ε| . ‖Πε‖(ε)

γ;T ‖H
ε‖(ε)
γ,η;T |t|

η−γ
ε 2−γn02−(n−n0)(r+α) ,

which gives the required bound after summing over n ∈ [n0, N ]. In this estimate

we have used the fact that |y − x| . 2−n0 in the sum in (4.19).

The bounds (4.5) can be shown similarly to (2.12) and (2.13).

4.2 Convolutions with discrete kernels

In this section we describe on the abstract level convolutions with discrete kernels.

We start with a definition of the kernels we will work with.

Definition 4.10. We say that a function Kε : R×Λdε → R is regularising of order

β > 0, if one can find functions K (ε,n) : Rd+1 → R and K̊ε : R× Λdε → R such

that

Kε =
N−1
∑

n=0

K (ε,n) + K̊ε def
= K̄ε + K̊ε , (4.20)

where the function K (ε,n) has the same support and bounds as the function K (n)

in Definition 2.16, for some c, r > 0, and furthermore, for k ∈ N
d+1 such that

|k|s ≤ r, it satisfies
∫

R×Λd
ε

zkK (ε,n)(z) dz = 0 . (4.21)
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The function K̊ε is supported in {z ∈ R × Λdε : ‖z‖s ≤ cε} and satisfies (4.21)

with k = 0 and

sup
z∈R×Λd

ε

|K̊ε(z)| ≤ Cε−|s|+β . (4.22)

Now, we will define how a discrete model acts on an abstract integration map.

Definition 4.11. Let I be an abstract integration map of order β as in Defini-

tion 2.14 for a regularity structure T = (T ,G), let Zε = (Πε,Γε,Σε) be a discrete

model, and let Kε be regularising of order β with r > −⌊minA⌋. Let furthermore

K̄ε and K̊ε be as in (4.20). We define J̄ ε on the grid in the same way as its contin-

uous analogue in (2.27), but using K̄ε instead of K and using the discrete objects

instead of their continuous counterparts. Moreover, we define

J̊ ε
t,xτ

def
= 1

∫

R

〈Πε,sx Σε,stx τ, K̊ε
t−s(x− ·)〉ε ds ,

and J ε
t,x

def
= J̄ ε

t,x+ J̊ ε
t,x. We say that Zε realises Kε for I if the identities (2.26) and

(2.28) hold for the corresponding discrete objects. As before, these two identities

should be thought of as providing the definitions of Γε,txyIτ and Σε,stx Iτ via Γε,txyτ
and Σε,stx τ .

For a discrete modelled distribution Hε, we define N̄ ε
γH

ε as in (2.30), but using

the discrete objects instead of the continuous ones, and using the kernel K̄ε instead

of K . Furthermore, we define the term containing K̊ε by

(N̊ ε
γH

ε)t(x)
def
= 1

∫

R

〈Rε
sH

ε
s −Πε,sx Σε,stx Hε

t (x), K̊ε
t−s(x− ·)〉ε ds , (4.23)

and we set N ε
γH

ε def
= N̄ ε

γH
ε + N̊ ε

γH
ε. Finally, we define the discrete analogue of

(2.29) by

(Kε
γH

ε)t(x)
def
= IHε

t (x) + J ε
t,xH

ε
t (x) + (N ε

γH
ε)t(x) . (4.24)

Our definition is consistent thanks to the following two lemmas.

Lemma 4.12. In the setting of Definition 4.11, let minA + β > 0. Then all the

algebraic relations of Definition 4.1 hold for the symbol Iτ . Moreover, for δ > 0
sufficiently small and for any l ∈ A and τ ∈ Tl such that l + β /∈ N and ‖τ‖ = 1,

one has the bounds

|〈Πε,tx Iτ, ϕλx〉ε| . λl+β‖Πε‖(ε)
l;T ‖Σ

ε‖(ε)
l;T (1 + ‖Γε‖(ε)

l;T ) , (4.25)

|〈(Πε,tx −Πε,sx )Iτ, ϕλx〉ε|

(|t− s|1/s0 ∨ ε)δ
. λl+β−δ‖Πε‖(ε)

δ,l;T‖Σ
ε‖(ε)
l;T (1 + ‖Γε‖(ε)

l;T ) , (4.26)

uniformly over ε (see Remark 4.7), x ∈ Λdε , s, t ∈ [−T, T ], λ ∈ [ε, 1] and ϕ ∈
Br0(Rd).
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Proof. The algebraic properties of the models for the symbol Iτ follow easily

from Definition 4.11. In order to prove (4.25), we will consider the terms in (2.26)

containing K̊ε separately from the others. To this end, we define

(Π̊ε,tx Iτ)(y)
def
=

∫

R

〈Πε,sx Σε,stx τ, K̊ε
t−s(y − ·) − K̊ε

t−s(x− ·)〉ε ds , (4.27)

(Π̄ε,tx Iτ)(y)
def
= (Πε,tx − Π̊ε,tx )(Iτ)(y) .

Furthermore, for x, y ∈ Λdε we use the assumption 00
def
= 1 and set

T lxyK
(ε,n)
t (·)

def
= K (ε,n)

t (y − ·) −
∑

|k|s<l+β

(0, y − x)k

k!
DkK (ε,n)

t (x− ·) .

Using Definitions 4.1 and 4.10 and acting as in the proof of [Hai14, Lem. 5.19],

we can obtain the following analogues of the bounds [Hai14, Eq. 5.33]:

|〈Πε,rx Σε,rtx τ, T lxyK
(ε,n)
t−r 〉ε| .

∑

ζ>0

|y − x|l+β+ζ2(s0+ζ)n
1|t−r|.2−s0n ,

∣

∣

∣

∫

Λd
ε

〈Πε,rx Σε,rtx τ, T lxyK
(ε,n)
t−r 〉ε ϕ

λ
x(y) dy

∣

∣

∣
.

∑

ζ>0

λl+β−ζ2(s0−ζ)n
1|t−r|.2−s0n ,

(4.28)

for ε ≤ |y−x| ≤ 1, λ ∈ [ε, 1], with ζ taking a finite number of values and with the

proportionality constants as in (4.25). Integrating these bounds in the time variable

r and using the first bound in (4.28) in the case |y − x| ≤ 2−n and the second

bound in the case 2−n ≤ λ, we obtain the required estimate on 〈Π̄ε,tx Iτ, ϕλx〉ε.
In order to bound (Π̄ε,tx − Π̄ε,sx )Iτ , we consider two cases |t− s| ≥ 2−s0n and

|t − s| < 2−s0n. In the first case we estimate Π̄ε,tx Iτ and Π̄ε,sx Iτ separately using

(4.28), and obtain the required bound, if δ > 0 is sufficiently small. In the case

|t− s| < 2−s0n we write

〈Πε,rx Σε,rtx τ, T lxyK
(ε,n)
t−r 〉ε − 〈Πε,rx Σε,rsx τ, T lxyK

(ε,n)
s−r 〉ε

= 〈Πε,rx Σε,rsx (Σε,stx − 1)τ, T lxyK
(ε,n)
t−r 〉ε + 〈Πε,rx Σε,rsx τ, T lxy(K

(ε,n)
t−r −K (ε,n)

s−r )〉ε ,

and estimate each of these terms similarly to (4.28), which gives the required bound

for sufficiently small δ > 0.

It is only left to prove the required bounds for Π̊ε,tx (Iτ). It follows immediately

from Definition 4.1 that |(Πε,tx a)(x)| . ‖a‖εζ , for a ∈ Tζ . Hence, using the

properties (2.2) and (2.3) we obtain

∫

R

|〈Πε,sx Σε,stx τ, K̊ε
t−s(y − ·)〉ε| ds =

∫

R

|〈Πε,sy Σε,sty Γε,tyxτ, K̊
ε
t−s(y − ·)〉ε| ds

.
∑

ζ≤l

εζ+β|y − x|l−ζ , (4.29)
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where ζ ∈ A. Similarly, the second term in (4.27) is bounded by εl+β , implying

that if λ ≥ ε and minA+ β > 0, then one has

|〈Π̊ε,tx Iτ, ϕλx〉ε| .
∑

ζ≤l

εζ+βλl−ζ . λl+β , (4.30)

which finishes the proof of (4.25). In order to complete the proof of (4.26), we use

(4.29) and brutally bound

|〈(Π̊ε,tx − Π̊ε,sx )Iτ, ϕλx〉ε| ≤ |〈Π̊ε,tx Iτ, ϕλx〉ε|+ |〈Π̊ε,sx Iτ, ϕλx〉ε|

.
∑

ζ≤l

εζ+β|y − x|l−ζ . (|t− s|1/s0 ∨ ε)δ̃
∑

ζ≤l

εζ+β−δ̃|y − x|l−ζ ,

from which we obtain the required bound in the same way as before, as soon as

δ ∈ (0,minA+ β).

The following lemma provides a relation between J ε and the operators Γε, Σε.

Lemma 4.13. In the setting of Lemma 4.12, the operators

J ε,t
xy

def
= J ε

t,xΓ
ε,t
xy − Γε,txyJ

ε
t,y , J ε,st

x
def
= J ε

s,xΣ
ε,st
x − Σε,stx J ε

t,x , (4.31)

with s, t ∈ R and x, y ∈ Λdε , satisfy the following bounds:

|(J ε,t
xy τ)k| . ‖Πε‖(ε)

l;T ‖Σ
ε‖(ε)
l;T (1 + ‖Γε‖(ε)

l;T )|x− y|l+β−|k|s ,

|(J ε,st
x τ)k| . ‖Πε‖(ε)

l;T ‖Σ
ε‖(ε)
l;T (1 + ‖Γε‖(ε)

l;T )(|t− s|1/s0 ∨ ε)l+β−|k|s , (4.32)

uniformly in ε (see Remark 4.7), for τ as in Lemma 4.12, for any k ∈ N
d+1 such

that |k|s < l+β, and for (·)k being the multiplier ofXk. In particular, the required

bounds on ΓεIτ and ΣεIτ from Definition 4.1 hold.

Proof. The bounds on the parts of J ε,t
xy τ and J ε,st

x τ not containing K̊ε can be ob-

tained as in [Hai14, Lem. 5.21], where the bound on the right-hand side of (4.32)

comes from the fact that the scaling of the kernels K (ε,n) in (4.20) does not go be-

low ε. The contributions to (4.31) from the kernel K̊ε come via the terms J̊ ε
t,xΓ

ε,t
xy ,

J̊ ε
t,y, J̊ ε

s,xΣ
ε,st
x and J̊ ε

t,x. We can bound all of them separately, similarly to (4.29),

and use |x− y| ≥ ε and |t− s|1/s0 ∨ ε ≥ ε to estimate the powers of ε. Since all

of these powers are positive by assumption, this yields the required bounds.

Now, we will prove the bound on ΓεIτ required by Definition 4.1. For m < l
such that m /∈ N, (2.28) yields

‖Γε,txyIτ‖m = ‖I(Γε,txyτ)‖m ≤ ‖Γε,txyτ‖m−β . |y − x|l+β−m ,

where we have used the properties of I . Similarly, we can bound ‖Σε,stx Iτ‖m.

Furthermore, since the map I does not produce elements of integer homogeneity,

we have for m ∈ N,

‖Γε,txyIτ‖m = ‖J ε,t
xy ‖m . |y − x|l+β−m ,

where the last bound we have proved above. In the same way we can obtain the

required bound on ‖Σε,stx Iτ‖m.
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Remark 4.14. If (Πε,Γε,Σε) is a discrete model on T gen, which is introduced in

Definition 3.4, then there is a canonical way to extend it to a discrete model on

T̂ . Since the symbols from F̂ are “generated” by Fgen, we only have to define the

actions of Πε, Γε and Σε on the symbols τ τ̄ and Iτ ∈ F̂ \ Fgen with τ, τ̄ ∈ F̂ , so

that the extension of the model to T̂ will follow by induction. For the product τ τ̄ ,

we set

(Πε,tx τ τ̄)(y) = (Πε,tx τ)(y) (Πε,tx τ̄)(y) , (4.33a)

Σε,stx τ τ̄ = (Σε,stx τ) (Σε,stx τ̄) , Γε,txyτ τ̄ = (Γε,txyτ) (Γ
ε,t
xy τ̄) . (4.33b)

For the symbol Iτ we define the actions of the maps (Πε,Γε,Σε) by the identities

(2.26) and (2.28). However, even if the family of models satisfy analytic bounds

uniformly in ε on T gen, this is not necessarily true for its extension to T̂ .

The structure of the canonical extension of a discrete model will be important

for us. That is why we make the following definition.

Definition 4.15. We call a discrete model Zε = (Πε,Γε,Σε) defined on T̂ admis-

sible, if it satisfies the identities (4.33b) and furthermore realises Kε for I .

Remark 4.16. If M ∈ R is a renormalisation map as mentioned in Section 3.1,

such thatM T̂ ⊂ T̂ , where T̂ is introduced in Definition 3.4, and ifZε = (Πε,Γε,Σε)
is an admissible model, then we can define a renormalised discrete model Ẑε as in

[Hai14, Sec. 8.3], which is also admissible.

The following result is a discrete analogue of Theorem 2.21.

Theorem 4.17. For a regularity structure T = (T ,G) with the minimal homo-

geneity α, let β, γ, η, γ̄, η̄ and r be as in Theorem 2.21 and let Zε = (Πε,Γε,Σε)
be a discrete model which realises Kε for I . Then for any discrete modelled distri-

bution Hε the following bound holds

|||Kε
γH

ε|||(ε)
γ̄,η̄;T . |||Hε|||(ε)

γ,η;T ‖Π
ε‖(ε)
γ;T ‖Σ

ε‖(ε)
γ;T (1 + ‖Γε‖(ε)

γ̄;T + ‖Σε‖(ε)
γ̄;T ) , (4.34)

and one has the identity

Rε
t(K

ε
γH

ε)t(x) =

∫ t

0

〈Rε
sH

ε
s ,K

ε
t−s(x− ·)〉ε ds . (4.35)

Moreover, if Z̄ε = (Π̄ε, Γ̄ε, Σ̄ε) is another discrete model realising Kε for I ,

and if K̄ε
γ is defined as in (4.24) for this model, then one has the bound

|||Kε
γH

ε; K̄ε
γH̄

ε|||(ε)
γ̄,η̄;T . |||Hε; H̄ε|||(ε)

γ,η;T + |||Zε; Z̄ε|||(ε)
γ̄;T , (4.36)

for all discrete modelled distributions Hε and H̄ε, where the norms on Hε and H̄ε

are defined via the models Zε and Z̄ε respectively, and the proportionality constant

depends on ε only via the same norms of the discrete objects as in (2.33).



ANALYSIS OF DISCRETE STOCHASTIC PDES 33

Proof. The proof of the bound (4.34) for the components of Kε
γH

ε not containing

K̊ε is almost identical to that of (2.31), and we only need to bound the terms J̊ εHε

and N̊ ε
γH

ε. The estimates on J̊ εHε were obtained in the proof of Lemma 4.13.

To bound N̊ ε
γH

ε, for x, y ∈ Λdε , we write

(Rε
sH

ε
s −Πε,sx Σε,stx Hε

t (x))(y) = Πε,sy (Hε
s (y) − Γε,syxH

ε
s (x))(y)

+Πε,sy Γε,syx (H
ε
s (x) − Σε,stx Hε

t (x))(y) ,

where we made use of Definitions 4.5 and 4.1. Estimating this expression similarly

to (4.29), but using (4.3) this time, we obtain

‖(N̊ ε
γH

ε)t(x)‖0 . |t|η−γε εγ+β . |t|η+βε , (4.37)

where we have used γ + β > 0.

Furthermore, the operator Γε,tyx leaves 1 invariant, and we have

Γε,tyx(N̊
ε
γH

ε)t(x) = (N̊ ε
γH

ε)t(x) .

Thus, estimating (N̊ ε
γH

ε)t(y) and (N̊ ε
γH

ε)t(x) separately by the intermediate bound

in (4.37) and using |x − y| ≥ ε, yields the required bound. In the same way we

obtain the required estimate on Σε,stx (N̊ ε
γH

ε)t(x) − (N̊ ε
γH

ε)s(x).

The bound (4.36) can be show similarly to (2.33), using the above approach. In

order to show that the identity (4.35) holds, we notice that

(Kε
γH

ε)t(x) ∈ Tpoly + T≥α+β ,

where Tpoly contains only the abstract polynomials and α + β > 0 by assumption.

It hence follows from Definitions 4.1 and 4.5 that

Rε
t (K

ε
γH

ε)t(x) = 〈1, (Kε
γH

ε)t(x)〉 ,

which is equal to the right-hand side of (4.35).

5 Analysis of discrete stochastic PDEs

We consider the following spatial discretisation of equation (3.1) on R+ × Λdε:

∂tu
ε = Aεuε + F ε(uε, ξε) , uε(0, ·) = uε0(·) , (5.1)

where uε0 ∈ R
Λd
ε , ξε is a spatial discretisation of ξ, F ε is a discrete approximation

of F , and Aε : ℓ∞(Λdε) → ℓ∞(Λdε) is a bounded linear operator satisfying the

following assumption.

Assumption 5.1. There exists an operator A given by a Fourier multiplier a :
R
d → R satisfying Assumption 3.1 with an even integer parameter β > 0 and a

measure µ on Z
d with finite support such that

(Aεϕ)(x) = ε−β
∫

Rd

ϕ(x− εy)µ(dy) , x ∈ Λdε , (5.2)
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for every ϕ ∈ C(Rd), and such that the identity

∫

Rd

P (x− y)µ(dy) = (AP )(x) , x ∈ R
d , (5.3)

holds for every polynomial P on R
d with degP ≤ β. Furthermore, the Fourier

transform of µ only vanishes on Z
d.

Example 5.2. A common example of the operator A is the Laplacian ∆, with its

nearest neighbor discrete approximation ∆ε, defined by (5.2) with the measure µ
given by

µ(ϕ) =
∑

x∈Zd:‖x‖=1

(ϕ(x) − ϕ(0)) , (5.4)

for every ϕ ∈ ℓ∞(Zd), and where ‖x‖ is the Euclidean norm. In this case, the

Fourier multiplier of ∆ is a(ζ) = −4π2‖ζ‖2 and

(Fµ)(ζ) = −4
d

∑

i=1

sin2(πζi) , ζ ∈ R
d .

where F is the Fourier transform. One can see that Assumption 5.1 is satisfied

with β = 2.

The following section is devoted to the analysis of discrete operators.

5.1 Analysis of discrete operators

We assume that the operator Aε : ℓ∞(Λdε) → ℓ∞(Λdε) satisfies Assumption 5.1 and

we define the Green’s function of ∂t −Aε by

Gεt (x)
def
= ε−d1t≥0(e

tAε
δ0,·)(x) , (t, x) ∈ R× Λdε , (5.5)

where δ·,· is the Kronecker’s delta.

In order to build an extension of Gε off the grid, we first choose a function

ϕ ∈ S(Rd) whose values coincide with δ0,· on Z
d, and such that (Fϕ)(ζ) = 0 for

|ζ|∞ ≥ 3/4, say, where F is the Fourier transform. To build such a function, write

ϕ̃ ∈ C∞(Rd) for the Dirichlet kernel ϕ̃(x) =
∏d
i=1

sin(πxi)
πxi

, whose values coincide

with δ0,x for x ∈ Z
d, and whose Fourier transform is supported in {ζ : |ζ|∞ ≤ 1

2
}.

Choosing any function ψ ∈ C∞(Rd) supported in the ball of radius 1/4 around the

origin and integrating to 1, it then suffices to set Fϕ = (F ϕ̃) ∗ ψ.

Furthermore, we define the bounded operator Ãε : Cb(R
d) → Cb(R

d) by the

right-hand side of (5.2), where Cb(R
d) is the space of bounded continuous func-

tions on R
d equipped with the supremum norm. Then, denoting as usual by ϕε the

rescaled version of ϕ, we have for Gε the representation

Gεt (x) = 1t≥0(e
tÃε
ϕε)(x) , (t, x) ∈ R× Λdε . (5.6)
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By setting x ∈ R
d in (5.6), we obtain an extension of Gε to R

d+1, which we again

denote by Gε.

Unfortunately, the function Gεt (x) is discontinuous at t = 0, and our next aim

is to modify it in such a way that it becomes differentiable at least for sufficiently

large values of |x|. Since Ãε generates a strongly continuous semigroup, for every

m ∈ N we have the uniform limit

lim
t↓0

∂mt G
ε
t = (Ãε)mϕε . (5.7)

This gives us the terms which we have to subtract from Gε to make it continuously

differentiable at t = 0. For this, we take a function ̺ : R → R such that ̺(t) = 1
for t ∈ [0, 1

2
], ̺(t) = 0 for t ∈ (−∞, 0) ∪ [1,+∞), and ̺(t) is smooth on t > 0.

Then, for r > 0, we define

T ε,r(t, x)
def
= ̺(t/εβ)

∑

m≤r/β

tm

m!
(Ãε)mϕε(x) , (t, x) ∈ R

d+1 . (5.8)

The role of the function ̺ is to have T ε,r compactly supported in t. Then we have

the following result.

Lemma 5.3. In the described context, let Assumption 5.1 be satisfied. Then for

every fixed value r > 0 there exists a constant c > 0 such that the bound

|Dk(Gε − T ε,r)(z)| ≤ C‖z‖
−d−|k|s
s , (5.9)

holds uniformly over z ∈ R
d+1 with ‖z‖s ≥ cε, for all k ∈ N

d+1 with |k|s ≤ r, for

Dk begin a space-time derivative and for the space-time scaling s = (β, 1, . . . , 1).

Moreover, for |t|ε
def
= |t|1/β ∨ ε, the function Ḡεt (x)

def
= |t|dεG

ε
t (|t|εx) is Schwartz

in x, i.e. for every m ∈ N and k̄ ∈ N
d there is a constant C̄ such that the bound

|Dk̄
xḠ

ε
t (x)| ≤ C̄(1 + |x|)−m , (5.10)

holds uniformly over (t, x) ∈ R
d+1.

Proof. The function Gε − T ε,r is of class Crs on R
d+1. Indeed, spatial regular-

ity follows immediately from the regularity of ϕ and commutation of Ãε with the

differential operator. Continuous differentiability at t = 0 follows from (5.7). Fur-

thermore, since Gε vanishes on t ≤ 0, we only need to consider t > 0.

Next, we notice that the bound (5.9) follows from (5.10). Let r̂ > 0 be such

that the measure µ in Assumption 5.1 is supported in the ball of radius r̂. Then, for

k = (k0, k̄) ∈ N
d+1 with k0 ∈ N and |k|s ≤ r we use (5.6) and the identities (5.3),

combined with the Taylor’s formula, to get

|DkGεt (x)| = |(Ãε)k0Dk̄
xG

ε
t (x)| . sup

y:|y−x|≤k0r̂ε
sup

l:|l|=βk0

|Dk̄+l
y Gεt (y)| , (5.11)
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where y ∈ R
d, l ∈ N

d. For ‖t, x‖s ≥ cε, in the case |t|1/β ≥ |x|, we bound the

right-hand side of (5.11) using (5.10) with m = 0, what gives an estimate of order

|t|−(d+|k|s)/β . In the case |t|1/β < |x|, we use (5.10) with m = d + |k|s, and we

get a bound of order |x|−d−|k|s , if we take c ≥ 2rr̂/β. Furthermore, the required

bound on T ε,r follows easily from the properties of the functions ϕ and ̺. Hence,

we only need to prove the bound (5.10).

Denoting by F the Fourier transform, we get from (5.6) and Assumption 5.1:

(F Ḡεt )(ζ) = (Fϕ)(ε|t|−1
ε ζ) et|t|

−1
ε a(ζ)f (ε|t|−1

ε ζ) , (5.12)

where we have used the scaling property λβa(ζ) = a(λζ), and where f
def
= (Fµ)/a.

We start with considering the case t ≥ εβ . It follows from the last part of

Assumption 5.1 that there exists c̄ > 0 such that f (ζ) ≥ c̄ for |ζ|∞ ≤ 3/4. Since

ε|t|−1
ε ≤ 1, we conclude that

|Dk̄
ζ e
a(ζ)f (ε|t|−1

ε ζ)| . |ζ|β|k̄|ea(ζ)c̄ . (1 + |ζ|)−m ,

for |ζ|∞ < 3/(4ε|t|−1
ε ), for every m ≥ 0 and for a proportionality constant depen-

dent on m and k̄. Here, we have used a(ζ) < 0 and polynomial growth of |a(ζ)|.
Since (Fϕ)(ε|t|−1

ε ζ) vanishes for |ζ|∞ ≥ 3/(4ε|t|−1
ε ), we conclude that

|Dk̄
ζ (F Ḡεt )(ζ)| . (1 + |ζ|)−m ,

uniformly in t and ε (provided that t ≥ εβ), and for every m ∈ N and k̄ ∈ N
d.

In the case t < εβ , we can bound the exponent in (5.12) by 1, and the polyno-

mial decay comes from the factor (Fϕ)(ζ), because ϕ ∈ S(Rd). Since the Fourier

transform is continuous on Schwartz space, this implies that Ḡεt is a Schwartz func-

tion, with bounds uniform in ε and t, which is exactly the claim.

The following result is an analogue of Lemma 3.3 for Gε.

Lemma 5.4. Let Assumption 5.1 be satisfied. Then, the function Gε defined in (5.6)

can be written as Gε = Kε +Rε in such a way that the identity

(Gε ⋆ε u)(z) = (Kε ⋆ε u)(z) + (Rε ⋆ε u)(z) , (5.13)

holds for all z ∈ (−∞, 1] × Λdε and all functions u on R+ × Λdε , periodic in the

spatial variable with some fixed period. Furthermore, Kε is regularising of order

β in the sense of Definition 4.10, for arbitrary (but fixed) r and with the scaling

s = (β, 1, . . . , 1). The function Rε is compactly supported, non-anticipative and

the norm ‖Rε‖Cr is bounded uniformly in ε.

Proof. Let M : Rd+1 → R+ be a smooth norm for the scaling s (see for example

[Hai14, Rem. 2.13]). Furthermore, let ¯̺ : R+ → [0, 1] be a smooth “cutoff

function” such that ¯̺(s) = 0 if s /∈ [1/2, 2], and such that
∑

n∈Z ¯̺(2ns) = 1 for
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all s > 0 (see the construction of the partition of unity in [BCD11]). For integers

n ∈ [0, N ) we set the functions

¯̺n(z)
def
= ¯̺(2nM (z)) , ¯̺<0

def
=

∑

n<0

¯̺n , ¯̺≥N
def
=

∑

n≥N

¯̺n ,

as well as

K̄ (ε,n)(z) = ¯̺n(z)(Gε − T ε,r)(z) , R̄ε(z) = ¯̺<0(z)(Gε − T ε,r)(z) ,

K̃ε(z) = ¯̺≥N (z)(Gε − T ε,r)(z) + T ε,r(z) . (5.14)

Then it follows immediately from the properties of ¯̺ that

Gε =

N−1
∑

n=0

K̄ (ε,n) + K̃ε + R̄ε .

Since ¯̺<0 is supported away from the origin, we use (5.9) and Assumption 5.1 to

conclude that ‖R̄ε‖Cr is bounded uniformly in ε. (Actually, its value and deriva-

tives even decay faster than any power.)

Furthermore, the function K̄ (ε,n) is supported in the ball of radius c2−n, for c
as in Lemma 5.3, provided that the norm M was chosen such that M (z) ≥ 2c‖z‖s.
By the same reason, the first term in (5.14) is supported in the ball of radius cε.
Moreover, the support property of the measure µ and the properties of the functions

̺ and ϕε in (5.8) yield that the restriction of T ε,r to the grid Λdε in space is supported

in the ball of radius cε, as soon as c ≥ 2rr̂/β, where r̂ is the support radius of the

measure µ from Assumption 5.1.

As a consequence of (5.2), (5.6) and (5.8), we get for 0 ≤ n < N the exact

scaling properties

K̄ (ε,n)(z) = 2ndK̄ (ε2n,0)(2snz) , K̃ε(z) = ε−dK̃1(ε−snz) ,

and (2.24) and (4.22) follow immediately from (5.9) and (5.8).

It remains to modify these functions in such a way that they “kill” polynomials

in the sense of (4.21). To this end, we take a smooth function P (N ) on R
d+1,

whose support coincides with the support of K̃ε, which satisfies |P (N )(z)| . ε−d,

for every z ∈ R
d+1, and such that one has

∫

R×Λd
ε

(K̃ε − P (N ))(z) dz = 0 . (5.15)

Then we define K̊ε to be the restriction of K̃ε − P (N ) to the grid Λdε in space.

Clearly, the function K̊ε has the same scaling and support properties as K̃ε, and it

follows from (5.15) that it satisfies (4.21) with k = 0.

Moreover, we can recursively build a sequence of smooth functions P (n), for

integers n ∈ [0, N ), such that P (n) in supported in the ball of radius c2−n, the
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function P (n) satisfies the bounds in (2.24), and for every k ∈ N
d+1 with |k|s ≤ r

one has
∫

R×Λd
ε

zk
(

K̄ (ε,n) − P (n) + P (n+1)
)

(z) dz = 0 . (5.16)

Then, for such values of n, we define

K (ε,n) = K̄ (ε,n) − P (n) + P (n+1) , Rε
def
= R̄ε + P (0) .

It follows from the properties of the functions P (n) that K (ε,n) has all the required

properties. The function Rε also has the required properties, and the decomposi-

tions (4.20) and (5.13) hold by construction. Finally, using (5.10), we can make

the function Rε compactly supported in the same way as in [Hai14, Lem. 7.7].

Remark 5.5. One can see from the proof of Lemma 5.4 that the function K̊ε is

(r/s0)-times continuously differentiable in the time variable for t 6= 0 and has a

discontinuity at t = 0.

By analogy with (3.2), we use the function Rε from Lemma 5.4 to define for

periodic ζt ∈ R
Λd
ε , t ∈ R, the abstract polynomial

(Rεγζ)t(x)
def
=

∑

|k|s<γ

Xk

k!

∫

R

〈ζs,D
kRεt−s(x− ·)〉ε ds , (5.17)

where as before k ∈ N
d+1 and the mixed derivative Dk is in space-time.

5.2 Properties of the discrete equations

In this section we show that a discrete analogue of Theorem 3.10 holds for the

solution map of the equation (5.1) with an operator Aε satisfying Assumption 5.1.

Similarly to [Hai14, Lem. 7.5], but using the properties of Gε proved in the

previous section, we can show that for every periodic uε0 ∈ R
Λd
ε , we have a discrete

analogue of Lemma 3.6 for the map (t, x) 7→ Sεt u
ε
0(x), where Sε is the semigroup

generated by Aε.
For the regularity structure T from Section 3.1, we take a truncated regularity

structure T̂ = (T̂ ,G) and make the following assumption on the nonlinearity F ε.

Assumption 5.6. For some 0 < γ̄ ≤ γ, η ∈ R, every ε > 0 and every discrete

model Zε on T̂ , there exist discrete modeled distributions F ε0 (Zε) and Iε0(Zε),
with exactly the same properties as of F0 and I0 in Assumption 3.8 on the grid.

Furthermore, we define F̂ ε as in (3.9), but via F ε and F ε0 , and we define F̂ ε(H)

forH : R+×Λdε → T<γ as in (3.10). Finally, we assume that the discrete analogue

of the Lipschitz condition (3.12) holds for F̂ ε, with the constant C independent of

ε.

Similarly to (3.11), but using the discrete operators (4.4), (5.17) and (4.24), we

reformulate the equation (5.1) as

U ε = PεF̂ ε(U ε) + Sεuε0 + Iε0 , (5.18)

where Pε def
= Kε

γ̄ +RεγR
ε and U ε is a discrete modeled distribution.
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Remark 5.7. If Zε is a canonical discrete model, then it follows from (4.35),

(5.17), (4.4), Definition 4.1 and Assumption 5.6 that

uεt (x) = (Rε
tU

ε
t )(x) , (t, x) ∈ R+ × Λdε . (5.19)

is a solution of the equation (5.1).

The following result can be proven in the same way as Theorem 3.10.

Theorem 5.8. Let Zε be a sequence of models and let uε0 be a sequence of periodic

functions on Λdε . Let furthermore the assumptions of Theorem 3.10 and Assump-

tion 5.6 be satisfied. Then there exists T⋆ ∈ (0,+∞] such that for every T < T⋆
the sequence of solution maps SεT : (uε0, Z

ε) 7→ U ε of the equation (5.18) is jointly

Lipschitz continuous (uniformly in ε!) in the sense of Theorem 3.10, but for the

discrete objects.

Remark 5.9. Since we require uniformity in ε in Theorem 5.8, the solution of

equation (5.18) is considered only up to some time point T⋆.

6 Inhomogeneous Gaussian models

In this section we analyse discrete and continuous models which are built from

Gaussian noises. In the discrete case, we will work as usual on the grid Λdε , with

ε = 2−N and N ∈ N, and with the time-space scaling s = (s0, 1, . . . , 1).

We assume that we are given a probability space (Ω,F ,P), together with a

white noise ξ over the Hilbert spaceH
def
= L2(D) (see [Nua06]), whereD

def
= R×T

d

and T
def
= R/Z is the unit circle. In the sequel, we will always identify ξ with its

periodic extension to R
d+1.

In order to build a spatial discretisation of ξ, we take a compactly supported

function ̺ : Rd → R, such that for every y ∈ Z
d one has

∫

Rd

̺(x)̺(x− y) dx = δ0,y ,

where δ·,· is the Kronecker’s function. Then, for x ∈ Λdε , we define the scaled

function ̺εx(y)
def
= ε−d̺((y − x)/ε) and

ξε(t, x)
def
= ξ(t, ̺εx) , (t, x) ∈ R× Λdε . (6.1)

One can see that ξε is a white noise on the Hilbert space Hε
def
= L2(R) ⊗ ℓ2(Td

ε),

where Tε
def
= (εZ)/Z and ℓ2(Td

ε) is equipped with the inner product 〈·, ·〉ε.
In the setting of Section 3.2, we assume that Zε = (Πε,Γε,Σε) is a dis-

crete model on T̂ such that, for each τ ∈ F̂ and each test function ϕ, the maps

〈Πε,tx τ, ϕ〉ε, Γ
ε,t
xyτ and Σε,stx τ belong to the inhomogeneous Wiener chaos of order

|||τ ||| (the number of occurrences of Ξ in τ ) with respect to ξε. Moreover, we assume

that the distributions of the functions (t, x) 7→ 〈Πε,tx τ, ϕx〉ε, (t, x) 7→ Γε,tx,x+h1τ and
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(t, x) 7→ Σε,t,t+h2x τ are stationary, for all h1 ∈ Λdε and h2 ∈ R. In what follows,

we will call the discrete models with these properties stationary Gaussian discrete

models.

The following result provides a criterion for such a model to be bounded uni-

formly in ε. In its statement we use the following set:

F̂− def
=

(

{τ ∈ F̂ : |τ | < 0} ∪ Fgen
)

\ Fpoly . (6.2)

Theorem 6.1. In the described context, let T̂ = (T̂ ,G) be a truncated regularity

structure and let Zε = (Πε,Γε,Σε) be an admissible stationary Gaussian discrete

model on it. Let furthermore the bounds

E

[

‖Γε‖(ε)
γ;T

]p
. 1 , E

[

‖Σε‖(ε)
γ;T

]p
. 1 . (6.3)

hold uniformly in ε (see Remark 4.7) on the respective generating regularity struc-

ture T gen = (T gen,G), for every p ≥ 1, for every γ > 0 and for some T ≥ c,
where c > 0 is from Definition 4.10 and where the proportionality constants can

depend on p. Let finally Πε be such that for some δ > 0 and for each τ ∈ F̂− the

bounds

E

[

|〈Πε,tx τ, ϕ
λ
x〉ε|

2
]

. λ2|τ |+κ ,

E

[

|〈(Πε,tx −Πε,sx )τ, ϕλx〉ε|
2
]

. λ2(|τ |−δ)+κ|t− s|2δ/s0 ,
(6.4)

hold uniformly in ε, all λ ∈ [ε, 1], all x ∈ Λdε , all s 6= t ∈ [−T, T ] and all

ϕ ∈ Br0(Rd) with r > −⌊min Â⌋. Then, for every γ > 0, p ≥ 1 and δ̄ ∈ [0, δ),
one has the following bound on T̂ uniformly in ε:

E

[

|||Zε|||(ε)

δ̄,γ;T

]p
. 1 . (6.5)

Finally, let Z̄ε = (Π̄ε, Γ̄ε, Σ̄ε) be another admissible stationary Gaussian dis-

crete model on T̂ , such that for some θ > 0 and some ε̄ > 0 the maps Γε − Γ̄ε,
Σε − Σ̄ε and Πε − Π̄ε satisfy the bounds (6.3) and (6.4) respectively with propor-

tionality constants of order ε̄2θ . Then, for every γ > 0, p ≥ 1 and δ̄ ∈ [0, δ), the

models Zε and Z̄ε satisfy on T̂ the bound

E

[

|||Zε; Z̄ε|||(ε)

δ̄,γ;T

]p
. ε̄θp , (6.6)

uniformly in ε ∈ (0, 1].

Proof. Since by assumption 〈Πε,tx τ, ϕ〉ε belongs to a fixed inhomogeneous Wiener

chaos, the equivalence of moments [Nel73] and the bounds (6.4) yield the respec-

tive bounds on the p-th moments, for any p ≥ 1. In particular, the Kolmogorov
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continuity criterion implies that for such p the bounds

E

[

sup
t∈[−T,T ]

|〈Πε,tx τ, ϕ
λ
x〉ε|

]p

. λp|τ |+κ̄ ,

E

[

sup
s 6=t∈[−T,T ]

|〈(Πε,tx −Πε,sx )τ, ϕλx〉ε|

|t− s|δ̄/s0

]p

. λp(|τ |−δ)+κ̄ ,

(6.7)

hold uniformly over x, ϕ and λ as in (6.4) and for some κ̄ > 0 depending on p. Go-

ing now by induction from the elements of T gen to the elements of T̂ , using Lem-

mas 4.12 and 4.13 and the discrete multiresolution analysis defined in Section 4.1.2,

we can obtain (6.5) in the same way as in the proof of [Hai14, Thm. 10.7]. The

bound (6.6) can be proved similarly.

The conditions (6.4) can be checked quite easily if the maps Πετ have cer-

tain Wiener chaos expansions. More precisely, we assume that there exist kernels

W (ε;k)τ such that (W (ε;k)τ)(z) ∈ H⊗k
ε , for z ∈ R× Λdε , and

〈Πε,t0 τ, ϕ〉ε =
∑

k≤|||τ |||

Iεk

(

∫

Λd
ε

ϕ(y) (W (ε;k)τ)(t, y) dy
)

, (6.8)

where Iεk is the k-th order Wiener integral with respect to ξε and the space Hε is

introduced above. Then we define the function

(K(ε;k)τ)(z1, z2)
def
= 〈(W (ε;k)τ)(z1), (W (ε;k)τ)(z2)〉H⊗k

ε
, (6.9)

for z1 6= z2 ∈ R × Λdε , assuming that the expression on the right-hand side is

well-defined.

In the same way, we assume that the maps Π̄ετ are given by (6.8) via the

respective kernels W̄ (ε;k)τ . Moreover, we define the functions δK(ε;k)τ as in (6.9),

but via the kernels W̄ (ε;k)τ − W (ε;k)τ , and we assume that the functions K(ε;k)τ
and δK(ε;k)τ depend on the time variables t1 and t2 only via t1 − t2, i.e.

(K(ε;k)τ)t1−t2(x1, x2)
def
= (K(ε;k)τ)(z1, z2) , (6.10)

where zi = (ti, xi), and similarly for δK(ε;k)τ .

The following result shows that the bounds (6.4) follow from corresponding

bounds on these functions.

Proposition 6.2. In the described context, we assume that for some τ ∈ F̂− there

are values α > |τ | ∨ (−d/2) and δ ∈ (0, α + d/2) such that the bounds

|(K(ε;k)τ)0(x1, x2)| .
∑

ζ≥0

(‖0, x1‖s,ε + ‖0, x2‖s,ε)
ζ‖0, x1 − x2‖

2α−ζ
s,ε ,

|δ0,t(K(ε;k)τ)(x1, x2)|

|t|2δ/s0
.

∑

ζ≥0

(‖t, x1‖s,ε + ‖t, x2‖s,ε)
ζ‖0, x1 − x2‖

2α−2δ−ζ
s,ε ,

(6.11)
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hold uniformly in ε for t ∈ R, x1, x2 ∈ Λdε and k ≤ |||τ |||, where the operator δ0,t

is defined in (1.8), where ‖z‖s,ε
def
= ‖z‖s ∨ ε, and where the sums run over finitely

many values of ζ ∈ [0, 2α − 2δ + d). Then the bounds (6.4) hold for τ with a

sufficiently small value of κ > 0.

Let furthermore (6.11) hold for the function δK(ε;k)τ with the proportionality

constant of order ε̄2θ , for some θ > 0. Then the required bounds on (Πε− Π̄ε)τ in

Theorem 6.1 hold.

Proof. We note that due to our assumptions on stationarity of the models, it is suffi-

cient to check the conditions (6.4) only for 〈Πε,t0 τ, ϕ
λ
0 〉ε and 〈(Πε,t0 −Πε,00 )τ, ϕλ0 〉ε,

and respectively for the map Π̄ε.
We start with the proof of the first statement of this proposition. We denote by

Π(ε,k),t
0 τ the component of Πε,t0 τ belonging to the k-th homogeneous Wiener chaos.

Furthermore, we will use the following property of the Wiener integral [Nua06]:

E[Iεk(f )2] ≤ ‖f‖H⊗k
ε

, f ∈ H⊗k
ε . (6.12)

Thus, from this property, (6.10) and the first bound in (6.11), we get

E|〈Π(ε,k),t
0 τ , ϕλ0 〉ε|

2 .

∫

Λd
ε

∫

Λd
ε

|ϕλ0 (x1)| |ϕλ0 (x2)| |(K(ε,k)τ)0(x1, x2)| dx1dx2

. λ−2d
∑

ζ≥0

∫

|x1|≤λ
|x2|≤λ

(‖0, x1‖s,ε + ‖0, x2‖s,ε)
ζ‖0, x1 − x2‖

2α−ζ
s,ε dx1dx2

. λ−2d
∑

ζ≥0

λd+ζ
∫

|x|≤2λ
‖0, x‖2α−ζs,ε dx . λ2α , (6.13)

for λ ≥ ε. Here, to have the proportionality constant independent of ε, we need

2α − ζ > −d. Combining the bounds (6.13) for each k with stationarity of Πετ ,

we obtain the first estimate in (6.4), with a sufficiently small κ > 0.

Now, we will investigate the time regularity of the map Πε. For |t| ≥ λs0 we

can use (6.13) and brutally bound

E|〈δ0,tΠ(ε,k)
0 τ, ϕλ0 〉ε|

2 . E|〈Π(ε,k),t
0 τ, ϕλ0 〉ε|

2 +E|〈Π(ε,k),0
0 τ, ϕλ0 〉ε|

2

. λ2α . |t|2δ/s0λ2α−2δ , (6.14)

for any δ ≥ 0, which is the required estimate. In the case |t| < λs0 , the bound

(6.12) and second bound in (6.11) yield

E|〈δ0,tΠ(ε,k)
0 τ, ϕλ0 〉ε|

2 .

∫

Λd
ε

∫

Λd
ε

|ϕλ0 (x1)| |ϕλ0 (x2)| |δ0,t(K(ε,k)τ)(x1, x2)| dx1dx2

+

∫

Λd
ε

∫

Λd
ε

|ϕλ0 (x1)| |ϕλ0 (x2)| |δ−t,0(K(ε,k)τ)(x1, x2)| dx1dx2

. |t|2δ/s0λ−2d
∑

ζ≥0

∫

|x1|≤λ
|x2|≤λ

(‖t, x1‖s,ε + ‖t, x2‖s,ε)
ζ‖0, x1 − x2‖

2α−2δ−ζ
s,ε dx1dx2
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. |t|2δ/s0λ2α−2δ , (6.15)

where the integral is bounded as before for 2α − 2δ − ζ > −d. Combining the

bounds (6.14) and (6.15) for each value of k with stationarity of Πετ , we obtain

the second estimate in (6.4). The required bounds on (Πε − Π̄ε)τ can be proved in

a similar way.

Remark 6.3. Assume that we are given an admissible continuous model Z =
(Π,Γ,Σ) on T̂ such that the map Π is given on F̂− by the expansions (6.8) in

which we replace all the discrete objects by their continuous counterparts. Then

one can prove in the same way analogues to Theorem 6.1 and Proposition 6.2 in

the continuous case, i.e. when we use ε = 0 and use continuous objects in place of

the discrete ones.

6.1 Continuous inhomogeneous models

In this section we will show how in some cases we can build a continuous inhomo-

geneous model from an admissible model in the sense of [Hai14, Def. 8.29].

For a white noise ξ on a Hilbert space H as in the beginning of the previous

section, we assume that we are given an admissible model Z̃ = (Π̃, Γ̃) in the sense

of [Hai14, Def. 8.29] on the truncated regularity structure T̂ such that for every

τ ∈ F̂ , every test function ϕ on R
d+1 and every pair of points z, z̄ ∈ R

d+1,

the maps 〈Π̃zτ, ϕ〉 and Γ̃zz̄τ belong to the inhomogeneous Wiener chaos of order

|||τ ||| (the quantity |||τ ||| is defined in the beginning of Section 6) with respect to

ξ. Furthermore, we assume that for every τ ∈ F̂ there exist kernels W (k)τ such

that for every test function ϕ on R
d+1 one has

∫

Rd+1 ϕ(z)(W (k)τ)(z) dz ∈ H⊗k,

postulating that the integral is well-defined, and Π̃zτ can be written as

〈Π̃zτ, ϕz〉 =
∑

k≤|||τ |||

Ik

(

S⊗k
z

∫

Rd+1

ϕ(z̄) (W (k)τ)(z̄) dz̄
)

, (6.16)

where Ik is the k-th Wiener integral with respect to ξ, ϕz is the recentered version

of ϕ and {Sz}z∈Rd+1 is the group of translations acting on H . Using the scalar

product in H⊗k rather than in H⊗k
ε and points from R

d+1, we assume that the

respective modification of the right-hand side of (6.9) is well defined and we intro-

duce for these kernels the functions K(k)τ . In addition, we assume that they satisfy

the continuous analogue of (6.10) and the first bound in (6.11) (when ε = 0). Then

for every τ ∈ F̂ we can define a distribution Πtxτ ∈ S ′(Rd) by

〈Πtxτ, ϕx〉 =
∑

k≤|||τ |||

Ik

(

S⊗k
(t,x)

∫

Rd

ϕ(y) (W (k)τ)(t, y) dy
)

, (6.17)

where ϕ is a test function on R
d. In fact, the expression on the right-hand side of

(6.17) is well-defined, because one can show in exactly the same way as in (6.13)

that for every test function ϕ on R
d one has

∣

∣

∣

∫

Rd

∫

Rd

ϕλ0 (x1)ϕλ0 (x2) (K(k)τ)0(x1, x2) dx1dx2

∣

∣

∣
. λ2α .
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Finally, defining the maps Γ and Σ by

Γtxy = Γ̃(t,x),(t,y) , Σstx = Γ̃(s,x),(t,x) , (6.18)

one can see that (Π,Γ,Σ) is an admissible inhomogeneous model on T̂ .

7 Convergence of the discrete dynamical Φ4
3 model

In this section we use the theory developed above to prove convergence of the

solutions of (Φ4
3,ε), where ∆ε is the nearest-neighbour approximation of ∆ and the

discrete noise ξε is defined in (1.4) via a space-time white noise ξ.

Example 5.2 yields that Assumption 5.1 is satisfied, and moreover ξε is a

discrete noise as in (6.1). The time-space scaling for the equation (Φ4
3) is s =

(2, 1, 1, 1) and the kernels K and Kε are defined in Lemma 5.4 with the parame-

ters β = 2 and r > 2, for the operators ∆ and ∆ε respectively.

The regularity structure T = (T ,G) for the equation (Φ4
3), introduced in Sec-

tion 3.1, has the model space T = span{F}, where

F = {1,Ξ,Ψ,Ψ2,Ψ3,Ψ2Xi,I(Ψ3)Ψ,I(Ψ3)Ψ2,I(Ψ2)Ψ2,I(Ψ2),

I(Ψ)Ψ,I(Ψ)Ψ2,Xi, . . .} ,
(7.1)

Ψ
def
= I(Ξ), |Ξ| = α ∈ ( − 18

7
,−5

2
) and the index i corresponds to any of the three

spatial dimensions, see [Hai14, Sec. 9.2] for a complete description of the model

space T . The homogeneities A of the symbols in F are defined recursively by the

rules (3.5). The bound α > −18
7

is required, in order for the collection of symbols

of negative degree generated by the procedure of [Hai14, Sec. 8] not to depend on

α.

A two-parameter renormalisation subgroup R
0 ⊂ R for this problem consists

of the linear maps M on T defined in [Hai14, Equ. 9.3].

In the proof of Theorem 1.1 in Section 7.3 we will make use of the Gaussian

models on T built in [Hai14, Thm. 10.22]. As one can see from Remark 6.3 and

the continuous versions of the bounds (6.11), one can expect a concrete realisation

of an abstract symbol τ to be a function in time if |τ | > −3
2
. In our case, the

symbols Ξ and Ψ3 don’t satisfy this condition, having homogeneities α < −5
2

and 3(α + 2) < −3
2

respectively. This was exactly the reason for introducing a

truncated regularity structure in Section 3.2, which primarily means that we can

remove these problematic symbols from T . More precisely, we introduce a new

symbol Ψ̄
def
= I(Ψ3) and the set

Fgen def
= {Ψ, Ψ̄} ∪ Fpoly .

Furthermore, we remove Ξ and Ψ3 from F in (7.1) and replace all the occurrences

of I(Ψ3) by Ψ̄, which gives

F̂ = {1,Ψ,Ψ2,Ψ2Xi,ΨΨ̄,Ψ2Ψ̄,I(Ψ2)Ψ2,I(Ψ2),I(Ψ)Ψ,I(Ψ)Ψ2,Xi, . . .} .
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Then the model spaces of the regularity structures T gen and T̂ from Definition 3.4

are the linear spans of Fgen and F̂ respectively, and the set F̂− from (6.2) is given

in this case by

F̂− = {Ψ, Ψ̄, Ψ2, Ψ2Xi, ΨΨ̄, I(Ψ2)Ψ2, Ψ2Ψ̄} . (7.2)

In the following lemma we show that the nonlinearities in (Φ4
3) and (Φ4

3,ε) sat-

isfy the required assumptions, provided that the appearance of the renormalisation

constant is being dealt with at the level of the corresponding models.

Lemma 7.1. Let α̂
def
= min Â and let a and λ be as in (Φ4

3). Then, for any γ > |2α̂|
and any η ≤ α̂, the maps

F (τ ) = F ε(τ ) = −Q≤0(aτ + λτ3) + Ξ (7.3)

satisfy Assumptions 3.8 and 5.6 with

F0 = F ε0 = Ξ− λΨ3 , I0 = Iε0 = Ψ− λΨ̄ ,

and γ̄ = γ + 2α̂, η̄ = 3η.

Proof. The space TU ⊂ T̂ introduced in Section 3.1 is spanned by polynomials

and elements of the form I(τ ). Thus, the fact that the function F̂ defined in (3.9)

maps {I0+τ : τ ∈ T̂ ∩TU} into T̂ is obvious. The bounds (3.12) in the continuous

and discrete cases can be proved in exactly the same way as in [Hai14, Prop. 6.12],

using Remarks 2.10 and 4.4 respectively.

Our following aim is to define a discrete model Zε = (Πε,Γε,Σε) on T gen,

and to extend it in the canonical way to T̂ as in Remark 4.14. To this end, we

postulate, for s, t ∈ R and x, y ∈ Λ3
ε ,

(Πε,tx Ψ)(y) = (Kε ⋆ε ξ
ε)(t, y) , Γε,txyΨ = Ψ , Σε,stx Ψ = Ψ . (7.4)

Furthermore, we denote the function ψ̄ε(t, x)
def
= (Kε ⋆ε (Π

ε,t
x Ψ)3)(t, x) and set

(Πε,tx Ψ̄)(y) = ψ̄ε(t, y) − ψ̄ε(t, x) , Γε,txyΨ̄ = Ψ̄−
(

ψ̄ε(t, y) − ψ̄ε(t, x)
)

1 ,

Σε,stx Ψ̄ = Ψ̄−
(

ψ̄ε(t, x) − ψ̄ε(s, x)
)

1 . (7.5)

Postulating the actions of these maps on the abstract polynomials in the standard

way, we canonically extend Zε to the whole T̂ .

Furthermore, we define the renormalisation constants2

C (ε)
1

def
=

∫

R×Λ3
ε

(Kε(z))2 dz , C (ε)
2

def
= 2

∫

R×Λ3
ε

(Kε ⋆ε K
ε)(z)2Kε(z) dz , (7.6)

2One can show that C
(ε)
1 ∼ ε

−1 and C
(ε)
2 ∼ log ε.
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and use them to define the renormalisation mapM ε as in [Hai14, Sec. 9.2]. Finally,

we define the renormalised model Ẑε for Zε and M ε as in Remark 4.16. Using the

model Ẑε in (5.19) we obtain a solution to the discretised Φ4
3 equation (Φ4

3,ε) with

C (ε) def
= 3λC (ε)

1 − 9λ2C (ε)
2 ,

where λ is the coupling constant from (Φ4
3). Before giving a proof of Theorem 1.1

we provide some technical results.

7.1 Discrete functions with prescribed singularities

It follows from Proposition 6.2 that the “strength” of singularity of a kernel de-

termines the regularity of the respective distribution. In this section we provide

some properties of singular discrete functions. As usual we fix a scaling s =
(s0, 1, . . . , 1) of Rd+1 with s0 ≥ 1.

For a function Kε defined on R × Λdε and supported in a ball centered at the

origin, we denote by Di,ε the finite difference derivative, i.e.

Di,εK
ε(t, x)

def
= ε−1 (Kε(t, x+ εei) −Kε(t, x)) ,

where {ei}i=1...d is the canonical basis of R
d, and for k = (k0, k1, . . . , kd) ∈

N
d+1 we define Dk

ε
def
= Dk0

t D
k1
1,ε . . . D

kd
d,ε. We allow the function Kε to be non-

differentiable in time only on the set P0
def
= {(0, x) : x ∈ Λdε}. Furthermore, we

define for ζ ∈ R and m ≥ 0 the quantity

⌊⌉Kε⌊⌉(ε)
ζ;m

def
= max

|k|s≤m
sup
z /∈P0

|Dk
εK

ε(z)|

‖z‖
(ζ−|k|s)∧0
s,ε

, (7.7)

where z ∈ R× Λdε , k ∈ N
d+1 and ‖z‖s,ε

def
= ‖z‖s ∨ ε.

By analogy with Remark 4.7, we always consider a sequence of functions

parametrised by ε = 2−N with N ∈ N, and we assume the bounds to hold for

all ε with proportionality constants independent of ε. Thus, if ⌊⌉Kε⌊⌉(ε)
ζ;m < ∞,

then we will say that Kε is of order ζ .

Remark 7.2. We stress the fact that by our assumptions the functions Kε are de-

fined also at the origin. In particular, Kε can have a discontinuity at t = 0 and its

time derivative behaves in the worst case as the Dirac delta function at the origin.

The following result provides bounds on products and discrete convolutions ⋆ε.

Lemma 7.3. Let functions Kε
1 and Kε

2 be of orders ζ1 and ζ2 respectively. Then

we have the following results:

• If ζ1, ζ2 ≤ 0, then Kε
1K

ε
2 is of order ζ1 + ζ2 and for every m ≥ 0 one has

⌊⌉Kε
1K

ε
2⌊⌉

(ε)
ζ1+ζ2;m

. ⌊⌉Kε
1⌊⌉

(ε)
ζ1;m

⌊⌉Kε
2⌊⌉

(ε)
ζ2;m

. (7.8)

Moreover, if both Kε
1 and Kε

2 are continuous in the time variable on whole

R, then Kε
1K

ε
2 is continuous as well.
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• If ζ1 ∧ ζ2 > −|s| and ζ̄
def
= ζ1 + ζ2 + |s| /∈ N, then Kε

1 ⋆ε K
ε
2 is continuous

in the time variable and one has the bound

⌊⌉Kε
1 ⋆ε K

ε
2⌊⌉

(ε)

ζ̄;m
. ⌊⌉Kε

1⌊⌉
(ε)
ζ1;m

⌊⌉Kε
2⌊⌉

(ε)
ζ2;m

. (7.9)

In all these estimates the proportionality constants depend only on the support of

the functions Kε
i and are independent of ε.

Proof of Lemma 7.3. The bound (7.8) follows from the Leibniz rule for the discrete

derivative:

Dk
ε (K

ε
1K

ε
2)(z) =

∑

l≤k

(

k

l

)

Dl
εK

ε
1(z)Dk−l

ε Kε
2(z + (0, εl)) , (7.10)

where k, l ∈ N
d, as well as from the standard Leibniz rule in the time variable.

The bound (7.9) can be proved similarly to [Hai14, Lem. 10.14], but using the

Leibniz rule (7.10), summation by parts for the discrete derivative and the fact that

the products

(x)k,ε
def
=

d
∏

i=1

∏

0≤j<ki

(xi − εj)

with k ∈ N
d play the role of polynomials for the discrete derivative.

When bounding the time derivative of Kε
1 ⋆εK

ε
2 , we convolve in the worst case

a function which behaves as Dirac’s delta at the origin with another one which has

a jump there (see Remark 7.2). This operation gives us a function whose derivative

can have a jump at the origin, but is not Dirac’s delta. This fact explains why

Kε
1 ⋆ε K

ε
2 is continuous in time.

The following lemma, whose proof is almost identical to that of [Hai14, Lem. 10.18],

provides a bound on an increment of a singular function.

Lemma 7.4. Let a function Kε be of order ζ ≤ 0. Then for every κ ∈ [0, 1], t ∈ R

and x1, x2 ∈ Λdε one has

|Kε(t, x1) −Kε(t, x2)| . |x1 − x2|
κ
(

‖t, x1‖
ζ−κ
s,ε + ‖t, x2‖

ζ−κ
s,ε

)

⌊⌉Kε⌊⌉(ε)
ζ;1 .

For a discrete singular function Kε, we define the function RεK
ε by

(RεK
ε) (ϕ)

def
=

∫

R×Λd
ε

Kε(z) (ϕ(z) − ϕ(0)) dz , (7.11)

for every compactly supported test function ϕ on R
d+1. The following result can

be proved similarly to [Hai14, Lem. 10.16] and using the statements from the proof

of Lemma 7.3.
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Lemma 7.5. Let functions Kε
1 and Kε

2 be of orders ζ1 and ζ2 respectively with

ζ1 ∈ (−|s| − 1,−|s|] and ζ2 ∈ (−2|s| − ζ1, 0]. Then the function (RεK
ε
1) ⋆ε K

ε
2

is continuous in time of order ζ̄
def
= ζ1 + ζ2 + |s| and, for any m ≥ 0, one has

⌊⌉(RεK
ε
1) ⋆ε K

ε
2⌊⌉

(ε)

ζ̄;m
. ⌊⌉Kε

1⌊⌉
(ε)
ζ1;m

⌊⌉Kε
2⌊⌉

(ε)
ζ2;m+s0

.

The following result shows how certain convolutions change singular functions.

Its proof is similar to [Hai14, Lem. 10.17].

Lemma 7.6. Let for some ε̄ ∈ [ε, 1] the function ψε̄,ε : R × Λdε → R be smooth

in the time variable, supported in the ball B(0, Rε̄) ⊂ R
d+1 for some R ≥ 1, and

satisfies
∫

R×Λd
ε

ψε̄,ε(z) dz = 1 , |Dk
εψ

ε̄,ε(z)| . ε̄−|s|−|k|s , (7.12)

for all z ∈ R×Λdε and k ∈ N
d+1, where the proportionality constant in the bound

can depend on k. If Kε is of order ζ ∈ (−|s|, 0), then for all κ ∈ (0, 1] one has

⌊⌉Kε −Kε ⋆ε ψ
ε̄,ε⌊⌉(ε)

ζ−κ;m . ε̄κ⌊⌉Kε⌊⌉(ε)
ζ;m+s0

.

7.2 Convergence of lattice approximations of the Φ4
3 measure

In this section we provide some properties of the lattice approximations µε of the

Φ4
3 measure, defined in (1.1), which will be used in the proof of Corollary 1.3. We

start with tightness and moment estimates.

Proposition 7.7. If a > 0 and the coupling constant λ in (1.2) is small enough,

then for every α < −1
2

the sequence µε is tight in Cα as ε → 0 with uniformly

bounded moments of all orders.

Proof. The estimate [BFS83, Eq. 8.2] implies that the 2n-th moment of µε is

bounded by the second moment (up to a multiplier depending on n). Moreover,

it follows from [BFS83, Thm. 6.1] that for any test function ϕ ∈ C∞
0 (R3) one has

∫

Φε(ϕ)2µε(dΦ
ε) =

∫

Φε(ϕ)2µ̂ε(dΦ
ε) +O(λ2‖ϕ‖2L2) ,

where µ̂ε is the Gaussian measure given by (1.1) and (1.2) with λ = C (ε) = 0.

Since the covariance of µ̂ε is the kernel of (a − ∆ε)−1 where ∆ε is the nearest-

neighbour approximation of the Laplacian ∆ (see [BFS83, Eq. 3.2]), one has the

bound
∫

Φε(ϕν )2µ̂ε(dΦ
ε) . ν−1−κ ,

for any κ > 0 and any scaling parameter ν ∈ [ε, 1]. This yields the respective

bounds on the moments of µε from which the claim follows.

The following result shows that the measures µε in fact converge as ε→ 0.

Proposition 7.8. The measures µε on Cα converge to the Φ4
3 measure (1.3).

Proof. By Proposition 7.7, we can choose a subsequence of µε weakly converging

to a limit µ. Combining this with [Par77, Thm 2.1] (see also [Par75]) shows that µ
coincides with the Φ4

3 measure (1.3) constructed in [Fel74].
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7.3 Proof of the convergence result

Using the results from the previous section, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. In order to prove the claim, we proceed as in [Par77] and

introduce intermediate equations driven by a smooth noise. Precisely, we take a

function ψ : R4 → R which is smooth, compactly supported and integrates to 1,

and for some ε̄ ∈ [ε, 1] we define ψε̄(t, x)
def
= ε̄−|s|ψ(ε̄−2t, ε̄−1x) and the mollified

noise ξε̄,0
def
= ξ ⋆ ψε̄. Then we denote by Φε̄,0 the global solution of

∂tΦ
ε̄,0 = ∆Φε̄,0 + (C (ε̄,0) − a)Φε̄,0 − λ(Φε̄,0)3 + ξε̄,0 , Φε̄,0(0, ·) = Φ0(·) ,

whereC (ε̄,0) = 3λC (ε̄,0)
1 −9λ2C (ε̄,0)

2 , andC (ε̄,0)
1 andC (ε̄,0)

2 are as in [Hai14, Thm. 10.22

and Eq. 9.21].

Let Z̃ ε̄,0 and Z̃ be the models on T built in [Hai14, Thm. 10.22] via the noises

ξε̄,0 and ξ respectively. We will be interested only in their restrictions to the trun-

cated regularity structure T̂ . It follows from the proof of the latter theorem that we

are exactly in the setting of Section 6.1, and we can define respective inhomoge-

neous models Ẑ ε̄,0 and Ẑ on T̂ as in (6.17) and (6.18). Furthermore, Remark 6.3

and the bounds obtained in the proof of [Hai14, Thm. 10.22] on the elements in the

expansions (6.17) of the models yield the following bounds:

E

[

|||Ẑ|||δ,γ;T
]p

. 1 , E

[

|||Ẑ ε̄,0; Ẑ|||δ,γ;T
]p

. ε̄θp , (7.13)

uniformly in ε̄ ∈ (0, 1], for any T > 0, p ≥ 1 and for sufficiently small values of

δ > 0 and θ > 0. Using Theorem 3.10 and Lemma 7.1, we define the solution Φ to

the equation (Φ4
3) as in Definition 3.11 by solving the respective abstract equation

(3.11) with the nonlinearity F from (7.3) and the inhomogeneous model Ẑ.

In order to discretise the noise ξε̄,0, we define the function

ψε̄,ε(t, x)
def
= ε−d

∫

Rd

ψε̄(t, y)1|y−x|≤ε/2 dy , (t, x) ∈ R× Λdε ,

and the discrete noise ξε̄,ε
def
= ψε̄,ε ⋆ε ξ

ε, where ξε is given in (1.4). We take the

function ψε̄,ε in this form, because it satisfies the first identity in (7.12), which in

general is not true for ψε̄. We define the discrete model Z ε̄,ε by substituting each

occurrence of ξε, C (ε)
1 and C (ε)

2 in the definition of Zε by ξε̄,ε, C (ε̄,ε)
1 and C (ε̄,ε)

2 re-

spectively, where C (ε̄,ε)
1 is defined as in (7.6), but via the kernel K ε̄,ε def

= Kε ⋆ε ψ
ε̄,ε,

and C (ε̄,ε)
2 is defined by replacing Kε ⋆ε K

ε by K ε̄,ε ⋆ε K
ε̄,ε in the second expres-

sion in (7.6). Furthermore, using ⌊⌉Kε⌊⌉(ε)
−3;r ≤ C , which follows from Lemma 5.4

and Remark 5.5, and proceeding exactly as in the proof of [Hai14, Thm. 10.22], but

exploiting Proposition 6.2 and the results from Section 7.1 instead of their contin-

uous counterparts, we obtain the bounds (6.3) for each τ ∈ Fgen \ Fpoly, and (6.4)

for each τ ∈ F̂−, uniformly in ε ≤ ε̄ and for δ > 0 small enough. We also obtain

the respective bounds on the differences Z ε̄,ε − Zε, with the proportionality con-

stants of orders ε̄2θ with θ > 0 sufficiently small. For this, we can use Lemma 7.6,
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because ψε̄,ε satisfies the required conditions, which follows from the properties of

ψ. Thus, Theorem 6.1 yields

E

[

|||Zε|||(ε)
δ,γ;T

]p
. 1 , E

[

|||Z ε̄,ε;Zε|||(ε)
δ,γ;T

]p
. ε̄θp , (7.14)

uniformly in ε ≤ ε̄, for any T > 0 and p ≥ 1. We denote by Φε̄,ε the solu-

tion of (Φ4
3,ε), driven by the noise ξε̄,ε, with the renormalisation constant C (ε̄,ε) def

=

3λC (ε̄,ε)
1 − 9λ2C (ε̄,ε)

2 .

For every K > 0 we define the following stopping time:

τK
def
= inf{T > 0 : ‖Φ‖

Cδ,α
η̄,T

≥ K} ,

where the values of δ, α and η̄ are as in the statement of the theorem. Then we

have the limit in probability limK→∞ τK = T⋆, where T⋆ is the random lifetime of

Φ. Our aim is now to prove that

lim
K→∞

lim
ε→0

P

[

‖Φ;Φε‖(ε)

Cδ,α
η̄,τK

≥ c
]

= 0 , (7.15)

for every constant c > 0. Then the claim (1.6) will follow after choosing Tε as a

suitable diagonal sequence.

In order to have a priori bounds on the processes and models introduced above,

we define for every K > 0 the following stopping times:

σεK
def
= inf{T > 0 : ‖Φ‖

Cδ,α
η̄,T

≥ K or |||Ẑ|||δ,γ;T ≥ K , or |||Ẑε|||(ε)
δ,γ;T ≥ K} ,

σε̄,ε
def
= inf{T > 0 : ‖Φ− Φε̄,0‖

Cδ,α
η̄,T

≥ 1 or ‖Φε − Φε̄,ε‖(ε)

Cδ,α
η̄,T

≥ 1 ,

or ‖Φε̄,0; Φε̄,ε‖(ε)

Cδ,α
η̄,T

≥ 1 , or |||Ẑ; Ẑ ε̄,0|||δ,γ;T ≥ 1 , or |||Ẑε; Ẑ ε̄,ε|||(ε)
δ,γ;T ≥ 1} ,

as well as ̺ε̄,εK
def
= σεK ∧ σε̄,ε. Then, choosing two constants K̄ > K and using the

latter stopping time and the triangle inequality, we get the following bound:

P

[

‖Φ;Φε‖(ε)

Cδ,α
η̄,τK

≥ c
]

≤ P

[

‖Φ− Φε̄,0‖
Cδ,α

η̄,̺
ε̄,ε
K̄

≥ c
]

+P

[

‖Φε̄,0; Φε̄,ε‖(ε)

Cδ,α

η̄,̺
ε̄,ε
K̄

≥ c
]

+P

[

‖Φε̄,ε − Φε‖(ε)

Cδ,α

η̄,̺
ε̄,ε
K̄

≥ c
]

+P[̺ε̄,ε
K̄
< σεK̄ ] +P[σεK̄ < τK ] . (7.16)

We will show that if we take the limits ε, ε̄ → 0 and K, K̄ → ∞, then all the terms

on the right-hand side of (7.16) vanish and we obtain the claim (7.15).

It follows from the definition of ̺ε̄,ε
K̄

that |||Ẑ |||δ,γ;̺ε̄,ε
K̄

and |||Ẑ ε̄,0|||δ,γ;̺ε̄,ε
K̄

are

bounded by constants proportional to K̄. Hence, Theorems 5.8 and 4.6, and the

bounds (7.13) yield

lim
ε̄→0

P

[

‖Φ− Φε̄,0‖
Cδ,α

η̄,̺
ε̄,ε
K̄

≥ c
]

= 0 ,
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uniformly in ε. Similarly, we can use Theorems 5.8 and 4.6, and the bounds on the

discrete models (7.14) to obtain the uniform in ε convergence

lim
ε̄→0

P

[

‖Φε − Φε̄,ε‖(ε)

Cδ,α

η̄,̺
ε̄,ε
K̄

≥ c
]

= 0 .

Now, we turn to the second term in (7.16). It follows from our definitions that

we have ξε̄,ε = ̺ε̄,ε ⋆ ξ, where

̺ε̄,ε(t, x)
def
= ε−d

∫

Λd
ε

ψε̄,ε(t, y)1|y−x|≤ε/2 dy .

Moreover, for z = (t, x) ∈ R× Λdε one has the identity

(ψε̄ − ̺ε̄,ε)(z) = ε−2d

∫

Λd
ε

∫

Rd

(

ψε̄(t, x) − ψε̄(t, u)
)

1|u−y|≤ε/21|y−x|≤ε/2du dy,

from which we immediately obtain the bound

sup
z∈R×Λd

ε

|Dk
t (ψ

ε̄ − ̺ε̄,ε)(z)| . εε̄−|s|−ks0−1 ,

for every k ∈ N. Hence, using the a priori bounds on the solutions, which follow

from the definition of ̺ε̄,ε
K̄

, we can use the standard result from numerical analysis

of PDEs (see e.g. [Lui11, Ch. 6]) that the second term in (7.16) vanishes as ε→ 0,

as soon as ε̄ is fixed.

The limit limε̄→0 limε→0P[̺ε̄,ε
K̄

< σε
K̄
] = 0 follows immediately from the

definition of the involved stopping times, the bounds (7.13) and (7.14), and the

convergences we have just proved. Finally, it follows from (7.13) that

lim
K̄→∞

P[σεK̄ < τK ] = 0 ,

for a fixed K and uniformly in ε, which finishes the proof.

Proof of Corollary 1.3. Let ξ be space-time white noise on some probability space

(Ω,F ,P), and let its discretisation ξε be given by (1.4). Let furthermore Φε0 be a

random variable on the same probability space which is independent of ξ and such

that the solution to (Φ4
3,ε) with the nearest neighbours approximate Laplacian ∆ε

and driven by ξε is stationary. We denote by µε its stationary distribution (1.1),

which we view as a measure on Cα with α as in (1.6), by extending it in a piece-

wise constant fashion. It then follows from Proposition 7.7 that if we view Φε0
as an element of Cα by piecewise constant extension, we can and will assume by

Skorokhod’s representation theorem that Φε0 converges almost surely as ε → 0 to

a limit Φ0 ∈ Cα. In order to use Skorokhod’s representation theorem [Kal02], the

underlying spaces have to be separable which isn’t the case for Cα, but this is ir-

relevant since our random variables belong almost surely to the closure of smooth

functions under the seminorm (1.7) which is separable.
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Before we proceed, we introduce the space C̄
def
= C0,α

η̄ ([0, 1],T3) ∪ {∞} (the

latter Hölder space is a subspace of C0,α
η̄ ([0, 1],R3) defined below (1.9), containing

the spatially periodic distributions), for α and η̄ as in (1.6), and equipped with the

metric such that

d(ζ,∞)
def
= d(∞, ζ)

def
= (1 + ‖ζ‖C0,α

η̄,1
)−1 , ζ 6= ∞ ,

d(ζ1, ζ2)
def
= min{‖ζ1 − ζ2‖C0,α

η̄,1
, d(ζ1,∞) + d(ζ2,∞)} , ζi 6= ∞ .

Denote now by Φε the solution to (Φ4
3,ε) with initial condition Φε0 and by Φ the

solution to (Φ4
3) with initial condition Φ0. We can view these as C̄-valued random

variables by postulating that Φ = ∞ if its lifetime is smaller than 1. (The lifetime

of Φε is always infinite for fixed ε.)
Since the assumptions of Theorem 1.1 are fulfilled, the convergence (1.6) holds

and, since solutions blow up at time T⋆, this implies that d(Φε,Φ) → 0 in probabil-

ity, as ε → 0. (The required continuity in time obviously holds for every Φε and

Φ.) In order to conclude, it remains to show that P(Φ = ∞) = 0. In particular,

since the only point of discontinuity of the evaluation maps Φ 7→ Φ(t, ·) on C̄ is

∞, this would then immediately show not only that solutions Φ live up to time 1
(and therefore any time) almost surely, but also that µ is invariant for Φ. To show

that Φ 6= ∞ a.s., it suffices to prove that there is no atom of the measure µ at the

point ∞. Precisely, our aim is to show that for every ε̄ > 0 there exists a constant

Cε̄ > 0 such that

P

(

‖Φε‖C0,α
η̄,1

≥ Cε̄

)

≤ ε̄ . (7.17)

We fix ε̄ > 0 in what follows and work with a generic constant Cε̄ > 0, whose

value will be chosen later. For integers K ≥ 2 and i ∈ {0, . . . ,K − 2}, we denote

QεK,i
def
= ‖Φε‖

C0,α
η̄,[i/K,(i+2)/K]

,

where the norm ‖ · ‖C0,α
η̄,[T1,T2]

is defined as below (1.9), but on the time interval

[T1, T2] and with a blow-up at T1. Splitting the time interval (0, 1] in (1.9) into

subintervals of length 1/K , and deriving estimates on each subinterval, one gets

‖Φε‖C0,α
η̄,1

≤ QεK,0 +

K−1
∑

i=1

(i+ 1)−η̄/2QεK,i−1 ≤ C̃K−η̄/2
K−2
∑

i=0

QεK,i ,

if η̄ ≤ 0, and for some C̃ independent of K and ε. Since, by stationarity, the

random variables QεK,i all have the same law, it follows that

P

(

‖Φε‖C0,α
η̄,1

≥ Cε̄

)

≤ P

(

C̃K−η̄/2
K−2
∑

i=0

QεK,i ≥ Cε̄

)

≤ KP

(

‖Φε‖
C0,α
η̄,2/K

≥ C̃−1K η̄/2Cε̄

)

, (7.18)
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To make the notation concise, we write C̃K,ε̄
def
= C̃−1K η̄/2Cε̄. Furthermore, in or-

der to have a uniform bound on the initial data and the model, we use the following

estimate

P

(

‖Φε‖C0,α
η̄,2/K

≥ C̃K,ε̄

)

≤ P

(

‖Φε‖C0,α
η̄,2/K

≥ C̃K,ε̄

∣

∣

∣
‖Φε0‖Cη ≤ L, |||Zε|||(ε)

γ;1 ≤ L
)

+P

(

‖Φε0‖Cη > L
)

+P

(

|||Zε|||(ε)
γ;1 > L

)

, (7.19)

valid for every L, where η and γ > 0 are as in the proof of Theorem 1.1.

Recalling that [BFS83, Sec. 8] yields uniform bounds on all moments of µε,
and using the first bound in (7.14), Markov’s inequality implies that

P

(

‖Φε0‖Cη > L
)

≤ B1L
−q , P

(

|||Zε|||(ε)
γ;1 > L

)

≤ B2L
−q , (7.20)

for any q ≥ 1, and for constant B1 and B2 independent of ε and L.

Turning to the first term in (7.19), it follows from the fixed point argument in

the proof of Theorem 5.8 and the bound (4.5a), that there exists p̃ ≥ 1 such that

one has the bound

‖Φε‖C0,α
η̄,2/K

≤ B3L
3 ,

with B3 being independent of ε and L, as soon as ‖Φε0‖Cη ≤ L, |||Zε|||(ε)
γ;1 ≤ L,

K ≥ Lp̃ and L ≥ 2. In particular, the first term vanishes if we can ensure that

C̃K,ε̄ ≥ B3L
3 . (7.21)

Choosing first L large enough so that the contribution of the two terms in (7.20)

is smaller than ε̄/2, then K large enough so that K ≥ Lp̃, and finally Cε̄ large

enough so that (7.21) holds, the claim follows.

Let Ẑ be the model from the proof of Theorem 1.1 and let

S̄t : C̄
η × M → C̄η

be the map S̄t = RtSt from Theorem 3.10 yielding the maximal solution up to time

t, i.e. Φt = S̄t(Φ0, Ẑ), with the conventions that S̄t(∞, Ẑ) = ∞ and S̄t(Φ0, Ẑ) =
∞ if the maximal existence time T⋆ is less than t. Here, M denotes the space of

all admissible models as in Section 6.1. It follows from (2.32), the locality of the

reconstruction map and the locality of the construction of the model that S̄t(Φ0, Ẑ)

depends on the underlying white noise only on the time interval [0, t]. Moreover,

as a consequence of [Hai14, Prop. 7.11], one has

S̄s+t(Φ0, Ẑ) = S̄t(S̄s(Φ0, Ẑ), Ẑs) ,

where Ẑs is the natural time shift by s of the model Ẑ . Since the underlying noise is

white in time, we conclude that the process Φ is Markov. The fact that the measure

µ is reversible for Φ follows immediately from the fact that µε is reversible for the

discretised process Φε.
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