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Abstract This paper deals with the accurate mod-

elling of unreinforced masonry (URM) behaviour us-

ing a 3D mesoscale description consisting of quadratic

solid elements for masonry units combined with zero-

thickness interface elements, the latter representing in

a unified way the mortar and brick-mortar interfaces.

A new constitutive model for the unified joint inter-

faces under cyclic loading is proposed. The model is

based upon the combination of plasticity and damage.

A multi-surface yield criterion in the stress domain gov-

erns the development of permanent plastic strains. Both

strength and stiffness degradation are captured through

the evolution of an anisotropic damage tensor, which is

coupled to the plastic work produced. The restitution

of normal stiffness in compression is taken into account

by employing two separate damage variables for tension

and compression in the normal direction. A simplified

plastic yield surface is considered and the coupling of

plasticity and damage is implemented in an efficient

step by step approach for increased robustness. The

computational cost of simulations performed using the

mesoscale masonry description is reduced by employ-

ing a partitioning framework for parallel computation,

which enables the application of the model at struc-

tural scale. Numerical results are compared against ex-

perimental data on realistic masonry components and

structures subjected to monotonic and cyclic loading to

show the ability of the proposed strategy to accurately
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capture the behaviour of URM under different types of

loading.
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1 Introduction

The behaviour of URM - as of any composite material -

is influenced by a large variety of parameters including

the characteristics of its constituents, the interaction

between them and their spatial arrangement - i.e. the

mesostructure. Each of these parameters has a distinct

effect on the macroscopic behaviour of the material,

rendering the prediction of its response a challenging

task.
Macroelements are often used to account for the

influence of URM components in heterogeneous struc-

tures - such as infill frames - or for the modelling of

bare URM systems [1, 2, 3]. This phenomenological ap-

proach, used for its practicality, is overly simplified to

provide insight into the various parameters that define

the response of masonry. Macroscale constitutive mod-

els [4, 5, 6] describe masonry as homogeneous material

on a structural scale and are often chosen due to their

relative simplicity. However, this approach requires a

cumbersome parameter identification process which is

not always possible, and it may lead to inaccurate fail-

ure mode predictions.

In recent years and as the available computational

resources increase, focus has been given to more re-

fined modelling approaches where each constituent of

the material - i.e. the brick/blocks, the mortar joints

and the block-mortar interface - is represented explic-

itly. In this case the identification of the model param-

eters relies on the identification of the basic material
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properties of each constituent; additionally the influ-

ence of the mesostructure is accounted for, resulting

in a more generic representation. Mesoscale masonry

models usually consist of continuum elements for the

blocks connected through zero-thickness cohesive inter-

faces which represent the mortar and the block-mortar

interface. In this case the constitutive model employed

for the description of fracture in the cohesive interfaces

largely determines the characteristics of the nonlinear

behaviour of the masonry component.

The first developments of cohesive interface models

were based on the pioneering work of Hillerborg [7] on

fracture mechanics. In order to simulate the strength

degradation and the frictional slip in cracked interfaces

of quasi-brittle materials under monotonic loading, mod-

els based on pure plasticity can be employed. Among

others, Carol et al. [8] implemented 2D formulations

purely based on softening plasticity, later extended to

a 3D framework [9]. Lourenco et al. [10] presented a

similar softening plasticity-based approach in 2D with

a multi-surface criterion suitable for masonry joints,

which includes a compressive cut-off surface. More re-

fined approaches for cohesive interfaces employed to in-

vestigate the monotonic response of masonry include

the work by Snozzi et al. [11] who proposed a traction-

separation constitutive law for mode I and mode II frac-

ture combined with a frictional contact/impact algo-

rithm ruling the behaviour after decohesion.

When modelling the cyclic behaviour of a frictional

interface, more factors have to be accounted for, such as

stiffness degradation, permanent strains and hysteresis.

Oliveira et al. [12] developed a cyclic 2D model purely

based on multi-surface plasticity. Aref et al. [13] imple-

mented a 3D softening plasticity formulation allowing

for stiffness degradation in the normal direction in a

simplified way, through one parameter. However, the

combination of plasticity and damage can offer a more

practical and flexible framework for the description of

cyclic cohesive interface behaviour.

Models based on micromechanical considerations of

damage mechanics [14, 15, 16], apply a decomposition

of stresses in two components referring to the damaged

and undamaged part of the interface. Inelastic strains

are associated with the former stress component to rep-

resent the crack opening and/or the slip in the damaged

part of the interface. In this framework, Sacco et al. [14]

compute the inelastic strains using Coulomb friction in

shear and unilateral contact in the normal direction,

while Ragueneau et at. [15] employ a plastic criterion

with kinematic hardening to reproduce hysteretic cy-

cles in tension and residual strains. Recently, the work

in [14] has been extended to micro-plane kinematics to

take into account asperities of the cracked interfaces

[17].

Plasticity and damage have also been combined with

a standard plastic decomposition of strains to an elastic

and an inelastic component. Gambarotta et al. [18] de-

veloped a 2D model where the evolution of the inelastic

strains is coupled to the evolution of a damage vari-

able. Despite the efficient representation of local cyclic

behaviour characteristics, excessive hysteretic dissipa-

tion is observed in the numerical-experimental compar-

isons on the response of walls subjected to shear forces

[18]. Grassl at al. [19] developed a 3D interface material

model for the cyclic behaviour of frictional interfaces in

the mesostructure of concrete. Using a standard plas-

tic formulation it introduces a damage variable to the

tangent stiffness decoupling the solution of the plastic

problem from the damage evolution.

In this work, a novel material model combining plas-

ticity and damage is proposed to represent the cyclic

behaviour of unified joints and cracking surfaces of ma-

sonry units in a 3D mesoscale masonry model. Due to

the generally large size of 3D mesoscale numerical mod-

els and the consequent spread of local effects especially

in the case of cyclic loading, one of the main concerns

is the development of a robust interface constitutive

model that requires a small number of iterations for

the local solution and achieves convergence for large

strain increments. The proposed model employs a sim-

plified multi-surface plasticity criterion for cohesive in-

terfaces based on experimental evidence on masonry

joints. The plastic problem involving only hardening

ensures a robust solution in the sense described above.

The effects of strength and stiffness degradation are in-

troduced through an anisotropic damage tensor which

develops as a function of the plastic work based on spe-

cific assumptions on the damage evolution in the joints.

An algorithmic decoupling of plasticity and damage, as

proposed in Grassl et al. [19], is employed. Therefore,

no further local iterations are required after the solu-

tion of the plastic problem. The model captures the

main characteristics of the cyclic behaviour of masonry

joints under cyclic loading in a simple but efficient way

and it can be used for the investigation of the behaviour

of relatively large masonry components or structural

systems.

In the following, a short description of the adopted

mesoscale model is provided and the partitioning frame-

work in which the mesoscale description is incorporated

is briefly outlined. Subsequently, the formulation of the

interface constitutive model is presented in detail in

two separate sections corresponding to the two phases

of the local solution: multi-surface plasticity and dam-

age. The equations related to the iterative solution algo-
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rithm are then provided and the robustness of the local

solution is investigated. A section of representative nu-

merical examples follows, showing the performance of

the mesoscale masonry model under a range of loading

scenarios and its potential for the simulation of URM

structural components and systems.

2 Partitioned mesoscale model for masonry

The mesoscale description adopted here was initially

proposed in [20] and is based on certain observations

on the type of damage that masonry sustains. Firstly,

the material nonlinearity and the potential cracking

paths of masonry are mostly concentrated in the mor-

tar joints. The thickness of these zones with respect

to the dimensions of the masonry component is ade-

quately small to be neglected. Furthermore, cracks can

traverse the blocks, usually at the level of the neigh-

bouring head joints, hence the approximate position of

the most probable cracking surface of blocks is known.

On the whole, the potential crack paths are practically

predefined and localised in very thin zones of the ma-

terial. Finally, bricks and blocks generally experience

small deformations compared to the strains developed

along the cracks.

Based on the above assumptions and to obtain a

realistic 3D masonry description, the blocks are discre-

tised with 20-noded quadratic solid elements which are

assumed elastic. In parallel, the mortar joints and the

brick failure surfaces - i.e. the potential crack paths -

are modelled by 16-noded zero-thickness cohesive in-

terface elements. This implies that the mortar and the

block-mortar interfaces are modelled in a unified way

by one joint interface element, as shown in Figure 1.

The dimensions of the solid elements representing ma-

sonry units are expanded to cover the area of the mortar

joints.

Since the material model employed for the solid ele-

ments is linear elastic, the 16-noded interface elements

are designed to account for material nonlinearity in the

mesoscale masonry model. The geometric nonlinearity

is treated with the use of Green strains for the solid

elements and a co-rotational approach for the interface

elements, in which the local reference system of the

zero-thickness interface moves together with the mid-

plane of the element [21, 22]. The nonlinear material

behaviour is presented in the following section. For de-

tails on the implementation of the interface elements

the reader is referred to [22].

The 3D mesoscale description enables a realistic rep-

resentation of any masonry bonding pattern - consider-

ing both the in-plane and the through-thickness geom-

etry - as well as non-planar masonry structures such

Fig. 1 Mesoscale modelling of brick masonry
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Fig. 2 Modelling with hierarchic partitioning

as arches and domes. The main shortcoming of this

modelling strategy is the increased computational cost,

which usually restricts the use of mesoscale models to

small-scale applications. As presented in previous work

[23], one strategy that can be used to tackle this lim-

itation and increase the applicability of the model is

the use of domain decomposition and parallel process-

ing. This approach is applied in the present work; the

mesoscale masonry models are divided in several parti-

tions which are analysed in parallel using different pro-

cessors. Dual super-elements - consisting of i) the nodes

on the partition boundaries [24] or ii) a set of master

nodes coupled to the latter [25] - are defined as parent

structures. The super-elements achieve a two-way com-

munication between the partitions through an interface

displacement frame method at the level of the parent

structure. They also allow the hierarchic partitioning

of the structure, as illustrated in Fig.2, which results in

further improvement of the performance.

3 Interface constitutive model

The constitutive model presented here defines the rela-

tion between the local stress and strain variables at each

Gauss point of the 16-noded interface element; these are

the interface tractions (stress measure) and the inter-

face relative displacements between initially coinciding

nodes (strain measure). The stress and strain measures
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consist of three components corresponding to the nor-

mal and the two tangential directions defined according

to the element local reference system on the interface

mid-plane (x,y,z) [22], shown in Fig. 3. They will be

denoted in the following by:

σ = 〈σn, τx, τy〉 (1)

ε = 〈εn, εx, εy〉 (2)

where n represents the direction normal to the inter-

face mid-plane (z in Fig. 3). The aim is to model all the

principal characteristics of the constitutive behaviour

of a mortar joint or a dry frictional interface - when

mortar is absent - with an efficient formulation that

ensures numerical robustness. The most important of

these characteristics are i) the softening behaviour in

tension and shear, ii) the stiffness degradation depend-

ing on the level of damage, iii) the recovery of normal

stiffness in compression and iv) the permanent (plas-

tic) strains at zero stresses when the interface is dam-

aged. Additionally, as the nonlinearity of the model is

concentrated in the interface elements, the effect of ma-

sonry crushing in compression is taken into account in a

phenomenological way, through negative normal plastic

strain in the interfaces of the crushed area.

The basis of the developed model is the coupling

of plasticity and damage. A combination of an applied

damage tensor and a standard decomposition of strains

in elastic and plastic components is used, which results

in the constitutive relation:

σ = (I −D)σ̃ = (I −D)K(ε− εp) (3)

where: σ̃ = 〈σ̃n, τ̃x, τ̃y〉T is the vector of the effective

stresses, I the identity matrix, D = diag{Dn, Ds, Ds}
the damage tensor, K = diag{Kn,Kt,Kt} the elastic

stiffness matrix, εp = 〈εpn, εpx, εpy〉 the plastic strain vec-

tor.
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Fig. 3 Interface element kinematics and strain measure

Following the typical notation in damage mechan-

ics, the stress measure σ of the interface element will

be referred to as “nominal stress”. The damage tensor

D defines the level of decohesion in each local direction

of the interface surface. D is anisotropic, containing

distinct variables for the normal and the tangential di-

rections which take values from 0 to 1. The effective

stress vector σ̃ corresponds to the physical stress de-

veloped in the undamaged part of the interface, while

the nominal stress σ is the physical stress.

The effective stresses σ̃ are used in the plastic prob-

lem and linked to the plastic deformations εp, as given

in Eq. 3. The evolution of σ̃ is elastic perfectly-plastic

or elasto-plastic with linear hardening. Consequently,

both the strength degradation - i.e. post-peak softening

- and the stiffness degradation of the nominal stresses

is produced through damage.

Initially, the plastic problem is solved and σ̃ is de-

fined. The plastic work corresponding to each fracture

mode is then calculated and used to define the evolution

of the damage variables. The damage is finally applied

to the effective stresses to obtain the nominal stresses,

following Eq. 3. By algorithmically decoupling the im-

plicit solution of the plastic problem and the damage

evolution following the idea presented in [19], increased

efficiency and robustness is achieved.

3.1 Multi-surface plasticity

3.1.1 Yield surface
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Fig. 4 Multi-surface yield criterion of plastic problem

Based on experimental results [26], the strength of

masonry joints under shear can be represented by a

Coulomb criterion, defined by the cohesion c and the

friction angle φ. Thus surface F2 - depicted in Fig. 4 -

was chosen as the plastic yield surface corresponding to

mode II fracture:

F2(σ̃) =
√
τ̃2x + τ̃2y + σ̃n tanφ− c (4)

The conical surface F2 is capped by two planar sur-

faces F1 and F3. The tensile cap F1 approximates the
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yield surface for mode I fracture, while the compressive

cap F3 approximates the limit beyond which crushing

of masonry appears. Planar surfaces were chosen for

simplicity and robustness. They are described by the

equations:

F1(σ̃, q) = σ̃n − (ft + q) (5)

F3(σ̃) = −σ̃n + fc (6)

where ft is the tensile strength of the joint which can

be determined through direct tension experiments on

joints or through flexural experiments on masonry and

fc is the compressive strength of masonry, which can be

easily measured by direct compression experiments. q

is a linear hardening variable introduced to control the

plastic strains produced in the normal direction under

tension - as explained in Section 3.2.3 - and its initial

value is zero.

3.1.2 Evolution of yield surface

The evolution of the effective stresses σ̃ is elastic perfect-

ly-plastic, except for the case where the plastic surface

F1 is traversed. In this case the evolution of the hard-

ening variable q modifies the yield threshold, as de-

picted in Fig.4. At a first stage, only surface F1 evolves.

When the hardening variable q reaches the value qlim =
c

tanφ − ft, surface F1 reaches the edge of the cone F2

and reduces to a point. Further evolution of q modifies

surface F2 as shown in Fig.4. For q > qlim, F2 is given

by the equation:

F2(σ̃, q) =
√
τ̃2x + τ̃2y + σ̃n tanφ− c′ ≤ 0 (7)

where:

c′ = c+ (q − qlim)tanφ (8)

3.1.3 Plastic problem

The effective stress vector is given by the state equation:

σ̃ = K(ε− εp) (9)

Since the yield domain is defined by three surfaces, the

plastic strain is given by:

εp = εp,1 + εp,2 + εp,3 (10)

where εp,i, i = 1, 3, is the plastic strain produced through

the plastic evolution associated with yield surface Fi.

The second state equation provides the hardening

variable and is written as follows:

q = −Hκ (11)

where H is the linear hardening modulus which can be

calculated by model parameters, as described in Section

3.2.3.

The evolution of εp,1 and εp,3 is based on associ-

ated plasticity, thus the plastic potentials G1 and G3

coincide with the threshold surfaces F1 and F3 respec-

tively. On the contrary, non-associated plasticity is used

for the plastic strain εp,2, in order to control the level

of dilatancy of the element under shear loading. The

plastic potential G2 has the same form as F2 but a dif-

ferent friction angle tanφg, generally smaller or tending

to zero according to experimental evidence on the dila-

tancy of masonry joints under shear [26]:

G2(σ̃) =
√
τ̃2x + τ̃2y + σ̃n tanφg − c (12)

Consequently, using standard notation in computa-

tional plasticity [27], the flow rules of the plastic prob-

lem can be written as follows:

ε̇p,1 = λ̇1
∂F1

∂σ̃
, ε̇p,2 = λ̇2

∂G2

∂σ̃
, ε̇p,3 = λ̇3

∂F3

∂σ̃
(13)

κ̇ = λ̇1
∂F1

∂q
= −λ̇1 (14)

where ε̇p,i, i = 1, 3, is the plastic strain rate and λ̇i,

i = 1, 3, the rate of the plastic multiplier associated

with the yield function Fi.

The plastic work produced by the evolution of the

plastic strain εp,i (i = 1 : 3) through the corresponding

yield surface Fi, is defined as:

Wpl,i = σ̃ · εp,i (15)

A plastic work variable is associated with each one of

the three main deformation modes of the interface -

Wpl,1 for tension, Wpl,2 for shear and Wpl,3 for com-

pression.

3.2 Damage evolution

The damage of the interface is defined by three scalar

damage variables: Dnt for the normal direction in ten-

sion, Dnc for the normal direction in compression and

Ds for the two tangential directions. Those variables

compose the diagonal damage tensor D.

D =

Dn 0 0

0 Ds 0

0 0 Ds

 ,with Dn =

{
Dnt, if σ̃ ≥ 0

Dnc, if σ̃ < 0
(16)

The decomposition of the damage variable in the nor-

mal direction allows the recovering of the normal elastic

stiffness after the closure of the cracks - i.e. in compres-

sion - as shown in Fig.7. The damage tensor applied to
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the effective stresses provides the nominal stress vector

of the interface:

σ = (I−D)σ̃ (17)

3.2.1 Assumptions and evolution functions

The damage variables develop with the evolution of the

plastic work. Three separate material parameters Gf,i
(i = 1, 3) are introduced, each one corresponding to

the fracture energy of the respective fracture/crushing

mode associated with a specific yield function. The frac-

ture energy defines the point of complete damage in the

respective mode. In the proposed description, the evolu-

tion law of the components of D is based on the ratios:

ri =
Wpl,i

Gf,i
, i = 1, 3 (18)

with 0 ≤ ri ≤ 1.

Physically, the damage of the interface in the ten-

sile or shear mode influences the behaviour under both

tension and shear, but it has no significant influence on

the response under compression. On the contrary, the

behaviour in shear is influenced by the crushing in com-

pression. Based on the above assumptions, the damage

variable for the normal direction in tensionDnt depends

on the plastic work ratios r1 and r2. The damage vari-

able for the tangential directions depends on the plastic

work ratios of all fracture/crushing modes. Finally, the

variable for the normal direction in compression Dnc

only depends on the plastic work ratio r3.

The form of the evolution laws of the damage vari-

ables as functions of ri defines the shape of the soften-

ing branch of the σ − ε relation. It is noted that the

choice of the evolution law is free, thus any law could

be devised to refine the representation of the post-peak

behaviour. The laws chosen here are described in the

following three sections for each component of D. Two

types of functions are employed therein - a polynomial

and a sinusoidal evolution, plotted in Fig.5 and given

by the relations:

Fp(ri) = ri(2− ri)

Fsin(ri) =
1

2
[sin(πri −

π

2
) + 1]

(19)

The second order polynomial Fp(ri) is used in the evo-

lution laws of Dnt and Ds, as it effectively reproduces

the abrupt drop in strength after the crack opening in

tension and shear [26, 28, 29]. Conversely, the post-

peak behaviour of masonry under compression is char-

acterised by a gradually increasing softening [30], which

is better approximated by the sinusoidal evolution Fsin(ri).

3.2.2 Damage variable in tension

Let dt be a measure of the damage evolution when the

normal effective stress is elastic-perfectly plastic - i.e

when H=0. Then:

dt = Fp(r1) + atFp(r2)[1− Fp(r1)] (20)

where the coefficient at (0 ≤ at ≤ 1) controls the in-

fluence of Mode II (shear) plastic work in the tensile

damage. The evolution law in Eq.20 for pure tension

results in the softening branch in the nominal stresses

presented in Fig.6. The nominal stress evolution in ten-

sion has to be independent from the hardening variable,

the unique purpose of which is to control the level of

plastic strains. Therefore, the following criterion must

be satisfied:

σ(H=0)
n = σ(H>0)

n ⇒
(1− dt)σ̃ppn = (1−Dnt)(σ̃

pp
n + q) (21)

In Eq. 21, σ̃ppn is the elastic perfectly-plastic normal

effective stress and Dnt is the damage variable that has

to be applied to the hardening effective stress in order

to obtain the same nominal stress. By manipulation of

Eq. 21, the relation providing the damage variable in

tension as a function of the hardening variable q can be

obtained:

Dnt =
Fp(r1)ft + q

ft + q
+ atFp(r2)[1− Fp(r1)ft + q

ft + q
] (22)

In case of no hardening (q = 0), Eq.22 reduces to Eq.21.

3.2.3 Control of permanent strains and stiffness

degradation in the normal direction

As mentioned before, the hardening variable associated

with the plastic surface F1 is introduced to control the

level of normal plastic strain in tension. This is deemed

necessary since the normal component of the strain εn
represents crack opening and the cracks in the mortar

joints close upon load inversion. The permanent normal
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Fig. 5 Functions used in damage evolution laws



A 3D Mesoscale Damage-Plasticity Approach for Masonry Structures under Cyclic Loading 7

0 2 4 6 8 10

Normal strain [ 10
-3

]

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

l 
s
tr

e
s
s
 [
σ

n
/ 

f t
]

Effective stress H=0

Nominal stress H=0

Effective stress H>0 ( =0.6)

Nominal stress H>0

HK

H+K

H=0

Dntσn

dtσn

εp(H=0) εp(H>0)n n

Fig. 6 Control of stiffness degradation in the normal direc-
tion through hardening

strain after the closure of the cracks might vary depend-

ing on the materials and the thickness of the joint; usu-

ally in quasi-brittle materials the residual normal strain

is small compared to the maximum crack opening at-

tained in the cycle [29]. Additionally, since the model

assumes elastic unloading, the level of permanent nor-

mal strains at the point of crack closure determines the

level of normal stiffness degradation of the damaged

interface.

As shown in Fig.6, the value of the hardening mod-

ulus H regulates the amount of normal plastic strain εpn
produced at a given level of crack opening; as the value

of the hardening modulus increases the level of normal

plastic strain produced at a given εn decreases. In the

proposed model, material parameter µ is introduced to

control the value of H and hence the level of permanent

strains upon unloading.

Let εf be the normal strain at which full damage in

mode I is attained under pure tension, when Dnt = 1.

Let εp,fn be the plastic strain when unloading from that

point, as depicted in Fig.7. Parameter µ is defined as

the ratio:

µ =
εp,fn
εf

(23)

This ratio is chosen as a material parameter as it is

assumed that it can be approximately estimated by ex-

perimental cyclic curves in tension. Since εp,fn is the

permanent strain upon elastic unloading of the effec-

tive stresses, it is given by:

εp,fn = εf −
Kn

σ̃n
⇒ εp,fn = εf −

Kn

ft +Hεp,fn
(24)

leading to:

H =
Knεf (1− µ)− ft

εfµ
(25)
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The fully damaged state in pure tension correspond-

ing to crack opening equal to εf is the point where the

plastic work of mode I becomes equal to the respective

fracture energy Wpl,1 = Gf,1. Thus, εf can be expressed

as a function of the material parameter Gf,1:

Gf,1 =

∫ εf

ft/Kn

σndεn ⇒ εf =
3Gf,1
ft

+
ft
Kn

(26)

Consequently, the hardening modulus can be calcu-

lated by the following equation as a function of other

model parameters:

H =
Kn

(1 +
f2
t

3KnGf1
)µ
− 1 (27)

3.2.4 Damage variable in compression

The evolution law of the damage variable Dnc, which

refers to the normal direction in compression, is written

as follows:

Dnc =
fc − fc,r

fc
Fsin(r3) (28)

where fc,r is the residual compressive stress when the

damage associated with the crushing mode develops

fully. Figure 8 presents an example of the cyclic be-

haviour in the normal direction in which both damage

in tension and compression develop. A small value is

given to the compressive strength fc, for plotting pur-

poses. The value of the remaining relevant parameters

are: Kn = 200MPa, µ = 0.1, Gf,1 = 0.02N/mm,

Gf,3 = 0.5N/mm.

The compressive strain of the joints results in pene-

tration between block elements. In the mesoscale model

the blocks are enlarged to cover the volume of the joints.

Therefore, the inter-penetration between masonry blocks
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Fig. 8 Cyclic behaviour in the normal direction

is allowed up to the value of the joint thickness. When

this value is exceeded, a contact constraint is activated,

adding to the normal stiffness of the interface a value

equal to the block elastic modulus. The contact con-

straint - when necessary - is enforced through a penalty

parameter at Gauss point level after the convergence of

the constitutive model; the consistent stiffness matrix

and the internal force vector are updated correspond-

ingly.

3.2.5 Damage variable in tangential direction

Let ds be a measure of the evolution of damage in the

tangential direction at zero normal stress. Then:

ds = as
Fp(r1)c+ qs

c+ qs
[1− Fp(r2)− Fp(r3)+

Fp(r2)Fp(r3)] + Fp(r2)(1− Fp(r3)) + Fp(r3) (29)

where the coefficient as (0 ≤ as ≤ 1) controls the in-

fluence of mode I plastic work in the tangential dam-

age and qs describes the hardening in the shear yield

threshold when q > qlim:

qs =

{
0 , if q ≤ qlim

(q − qlim)tanφ , if q > qlim
(30)

In an interface completely damaged in the tangen-

tial direction, Coulomb friction with zero cohesion is ac-

tivated. This residual yield surface corresponds to Flim
in Fig. 9, which is described by the equation:

Flim =
√
τ̃2x + τ̃2y + σ̃n tanφr (31)

The angle φr represents the residual friction angle of

the damaged joint which is usually considered equal to

the initial friction angle φ. However, it can assume a

lower value if deemed appropriate, for example in the

case of dry joints [28].

In order to obtain the residual frictional behaviour

described above, the damage variable Ds in the com-

pressive region is defined as a function of the normal

stress σn < 0, so that the resulting nominal stresses lay

on Flim, as shown in Fig.9. Therefore the value of Ds

is given by:

Ds =

 ds , if σn ≥ 0

ds(c+ |σn|(tanφ− tanφr))

c+ |σn| tanφ
, if σn < 0

(32)

The resulting shear behaviour for different levels of

compressive strength is presented in Fig. 10.

Fig.11 shows an example of local cyclic behaviour in

shear under compressive stress σn = −2c, where c is the

cohesion. The fracture energy for mode II employed is

Gf,2 = 0.2N/mm. It is noted that the damage in shear

produces only a limited amount of stiffness degradation,

which agrees with experimental data on cyclic shear

behaviour of masonry joints, according to which the

stiffness degradation is not a prevailing factor in shear

and is limited to a low level [26, 28].

3.3 Solution procedure and consistent stiffness

Depending on the surfaces activated at each step, the

solution of the multi-surface plasticity problem can be

divided in five cases: either one single surface is ac-

tivated (α = 1, 2, 3) or two intersecting ones (α =

[1, 2], [2, 3]). In each case the system of equations that

has to be solved for step κ can be written in residual

form as follows:
Rσ̃,κ = σ̃κ − σ̃κ−1 −K(dεκ − dλa,κ ∂Ga

∂σ̃

∣∣
κ
) = 0

Rq,κ = qκ − qκ−1 −Hdλ1,κ = 0

RFa,κ = Fa(σ̃κ, qκ) = 0

(33)

where the indice a implies repetition for all the active

surfaces.

σ

τ 2+τy
2

F3

F1

Flim

F2

τ1
res

σn,1

=1

=0 fs,1

fs,2

(τ2   =0)
res

σn,2
Ds=1

Ds=0
e ective

stress

nominal 

stress

tanφ

tanφr

Fig. 9 Shear stress residual based on Coulomb friction
(fs=yield tangential stress, τres=residual tangential stress for
different levels of compression)
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Fig. 11 Cyclic behaviour under shear

When only one planar surface - F1 or F3 - is acti-

vated the system is linear and is readily solved without

an iterative procedure. When the system (33) is non-

linear, it is solved with a full Newton-Raphson scheme.

Since the second equation in (33) is always readily solved,

qκ = qκ−1 +Hdλ1,κ is replaced in the remaining equa-

tions and the system is linearised:

R(i)
κ = R(i−1)

κ + J (i−1)
κ

[
δσ̃Tκ δdλa,κ

](i),T
= 0

⇒
[
δσ̃Tκ δdλa,κ

](i),T
= −[J (i−1)

κ ]−1R(i−1)
κ (34)

where Rκ = [RT
σ̃,κ RT

Fa,κ
]T and the Jacobian matrix

J
(i)
κ is written:

J (i)
κ =

 ∂Rσ̃,κ

∂σ̃κ

∂Rσ̃,κ

∂dλa,κ

∂RFa,κ
∂σ̃κ

∂RFa,κ
∂dλa,κ


∣∣∣∣∣∣∣
(i)

(35)

The unknowns are updated at each step of the iter-

ative procedure of the Newton-Raphson scheme:[
σ̃κ
dλa,κ

](i)
=

[
σ̃κ
dλa,κ

](i−1)
+

[
δσ̃κ
δdλa,κ

](i)
(36)

until the normalisation of the residual [δσ̃Tκ δdλa,κ](i)

becomes smaller to the chosen tolerance.

After the plastic problem has been solved, the plas-

tic work of each fracture mode and the ratio with re-

spect to the corresponding fracture energy are calcu-

lated by Eq.15 and 18 respectively. Subsequently, the

damage variables can be evaluated, as described in Sec-

tions 3.2.2, 3.2.4, 3.2.5, providing the damage tensorD.

The consistent stiffness at the end of a converged

step κ is given by the following expression:

Kc =
∂σ

∂ε

∣∣∣∣
κ

= (I −Dκ)
∂σ̃

∂ε

∣∣∣∣
κ

− ∂D

∂ε

∣∣∣∣
κ

σ̃κ (37)

The partial derivative of the effective stresses with re-

spect to the strain measure can be calculated through

the Jacobian of the plastic problem:

Kc =
∂σ̃

∂ε

∣∣∣∣
κ

= J−1n ·Ke (38)

where Ke =
[
KT 0[3×(s−3)]

]T
and s is the size of Jκ.

The calculation of the variation of the damage ten-

sor with respect to the strain measure involves separate

chain derivations for each component of the tensor, fol-

lowing the pattern below:

∂D

∂ε

∣∣∣∣
κ

=
∂D

∂Wpl,a

(
∂Wpl,a

∂σ̃

∂σ̃

∂ε
+
∂Wpl,a

∂εp,i
∂εp,i

∂ε

)∣∣∣∣
κ

(39)

where the indices a and i imply summation of the prod-

ucts over the active set of the respective variables.

3.4 Robustness of local solution

The simplicity of the yield criterion and the absence

of softening are two choices made to increase the ro-

bustness of the local solution. The result is investigated

in simple tests applying specific strain increments at

Gauss point level and examining the convergence and

number of iterations required for the local solution. The

input strain increments are chosen to give rise to trial

stress vectors that have a specific direction in the σn, τ

surface, as depicted in Fig.12(a). A range of angles θ

from 0◦ to 90◦ have been tested. For each angle, the

first increment produces a trial stress that reached to

the edge of the yield domain. Subsequently, the incre-

ment is multiplied by 10 until the multiplier reaches the

value N = 106. The tolerance used in this test is 10−8.
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Fig. 12 (a) Trial stress vectors for robustness test; (b) Con-
verged effective and nominal stresses

Table 1 Convergence of solution algorithm at the Gauss
point level

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

N = 100 0 0 0 0 0 0 0
N = 101 1 1 2 2 2 2 2
N = 102 1 2 2 2 2 2 2
N = 103 1 2 2 2 2 2 2
N = 104 1 2 2 2 2 2 2
N = 105 1 2 2 2 2 2 2
N = 106 1 2 2 2 2 2 2

The test results regarding the number of iterations

required for the solution of the local problem are re-

ported in Table 1. It is observed that convergence is

achieved in all cases. When the planar surface F1 is ac-

tivated alone - for example in the loading series with

θ = 0◦ - the system is linear and is readily solved

without an iterative procedure. In this case the solu-

tion is obtained invariably, regardless of the strain in-

crement. Furthermore, in the cases where a Newton-

Raphson procedure is required (activation of F2 alone

or F1 and F2 together), the system can be solved in 2

iterations for multipliers up to N = 106, which already

corresponds to unusually large strain increments. It is

thus concluded that for the scope of the model the ro-

bustness and efficiency are satisfactory. Fig.12(b) shows

the converged stress states of the test series, in terms

of effective stresses and nominal stresses.

4 Numerical examples

The proposed mesoscale modelling approach has been

implemented in ADAPTIC [31], a general finite element

code for nonlinear analysis of structures. In this section,

this approach is used in simulations of URM structural

elements and systems. Numerical results are compared

against experimental data found in the literature to

investigate the accuracy of the mesoscale description

in respresenting the physical response of URM compo-

nents subjected to different static and dynamic loading

conditions.

Table 2 Wall panels loaded in-plane: material parameters for
mortar joints

Kn Kt ft c
[N/mm3] [N/mm3] [N/mm2] [N/mm2]

48.0 21.0 0.04 0.23

tanφ tanφg fc µ
[N/mm2]

0.58 0.00 6.2 0.1

Gf,1 Gf,2 Gf,3

[N/mm] [N/mm] [N/mm]

0.05 0.10 1.00

In all the following simulations the meshes created

consist of the minimum number of solid elements that

can achieve a full mesoscale representation of the ma-

sonry bonding pattern. Therefore, one solid element per

brick depth and height is always used. On the contrary,

the number of solid elements per brick length varies:

four solid elements per brick length are used to model

English bond (Sections 4.1 and 4.4), while two solid

elements per brick length are used to model running

bond (Sections 4.2 and 4.3). The integration in the elas-

tic solid elements is performed using 3x3x3 integration

points. For the cohesive interface elements 7x7 Gauss

points are used for the integration. The larger number

of integration points is necessary to represent poten-

tial partial decohesion of a masonry joint. Finally, it is

noted that in all the following simulations full coupling

of the damage in the normal direction in tension Dnt

and the damage in the tangential direction Ds is as-

sumed. This is achieved by defining parameters at and

as in Eq.(19) and (28) equal to 1.

4.1 Wall panels under in-plane shear

Firstly, the in-plane cyclic response of the mesoscale

model under shear loading is studied though the simu-

lation of experiments performed at the Joint Research

Centre of the European community in Ispra, Italy [32].

Two wall panels with different aspect ratios (height/width)

have been tested to examine the variation in the failure

modes and the behaviour characteristics - such as the

dissipation and the ultimate load capacity.

The dimensions of the walls are 1000×1350mm2 and

1000× 2000mm2, resulting in aspect ratios of 1.35 and

2.00 respectively. The walls were built with brick-block

units of 250 × 120 × 55mm3 arranged in a two-wythe

thick English bond pattern. The thickness of the joints

is 10mm. The bottom of the walls is connected to a fixed

surface through a bed joint. Uniform compressive pres-
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in the interfaces

-15 -10 -5 0 5 10 15

Horizontal displacement (mm)

-100

-75

-50

-25

0

25

50

75

100

H
o

ri
z
o

n
ta

l 
fo

rc
e

 (
k
N

)

Experimental

Numerical cyclic

Numerical monotonic

Ds

Fig. 14 Tall wall under in-plane cyclic loading: experimental-numerical comparison, deformed shape and damage developed
in the interfaces

sure of 0.6MPa is applied to each wall through a steel

beam on the top. The beam is supported so as to re-

main horizontal throughout the experiment, providing

a slab support. Horizontal in-plane displacement cycles

of increasing magnitude are imposed to the beam.

The boundary and loading conditions were modelled

in detail, as described above. The mesh developed for

the mesoscale representation of the short wall consists

of 368 solid elements and 742 interface elements, while

the mesh of the tall wall consists of 528 solid elements

and 1072 interface elements.

The material parameters of the mesoscale model

were chosen based on the experimental results reported

in [33], which refer to the same materials used in the

construction of the shear walls. The material param-

eters used in the mesoscale model are summarised in

Tables 2 and 3.

The experiments revealed distinct cracking patterns

for the two walls [32], which are reproduced by the nu-

merical tests. The main failure mode for the short wall

is characterised by shear diagonal cracking spreading

Table 3 Wall panels loaded in-plane: material parameters for
brick elements and density of masonry

Eb[N/mm
2] Poisson’s ratio Density[Kg/m3]

3000 0.15 1900

along the height of the panel. Additionally, horizontal

cracks and crushing zones appear at the corners. This

failure mode is clearly observed in the monotonic anal-

ysis, as shown in Fig. 13. The same damage pattern is

approximately mirrored on both sides when the wall is

subjected to cyclic loading. In the case of the tall wall,

the failure mode is in-plane flexure, with cracks appear-

ing in bed joints close to the corners mainly at the top

and bottom, as shown in Fig.14 for the monotonic load-

ing. The cyclic response of the tall wall is typical of an

in-plane rocking behaviour, which produces a symmet-

rical cracking pattern at the corners of the wall.

Regarding the force-displacement diagrams presented

in Figs 13 and 14, the load at the onset of damage
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and the peak load are reproduced with accuracy in

both cases. The softening envelope of the short wall

is reproduced very accurately in the negative quad-

rant and reasonably well in the positive quadrant. Fur-

thermore, progressively increasing stiffness degradation

is observed at structural level for the short wall. The

amount of degradation is less than that obtained ex-

perimentally in the first displacement cycles, but the

difference is significantly reduced as the damage pro-

gresses. Regarding the tall wall, the hardening enve-

lope of the cyclic response is accurately captured and

the stiffness degradation and residual displacements are

predicted to a satisfactory extent. The numerical anal-

ysis results in S-shaped cycles with low dissipation that

characterise the behaviour in the first rounds of the ex-

perimental test. However, the higher dissipation of the

larger displacement cycles that is observed in the exper-

imental curves is not reproduced. This could be partly

due to the assumption of elastic unloading-reloading in

the proposed constitutive model, which is a simplifica-

tion of the real unloading-reloading path that might in-

volve a certain level of hysteresis. Additionally, it can be

partially explained by the ”perfect” symmetrical rock-

ing behaviour produced in the numerical simulations,

which cannot appear in an experimental test with a real

brick wall, where various effects - such as non-uniform

properties of the joints and lack of perfect symmetry -

might arise.

4.2 Out-of-plane bending and rocking of wall panels

The out-of-plane flexure and rocking behaviour of sin-

gle URM wall panels is studied here, based on the sim-

ulations of experiments performed by Griffith et al.

[34, 35], where simply supported walls with and without

pre-compression - representing load bearing and non-

load bearing type - were tested under static monotonic

loading and dynamic excitations in the out-of-plane di-

rection.

The wall specimens of 110mm thickness have a height

of 1500mm and width of 950mm, with brick units of di-

mensions 230×110×76mm3. The resulting slenderness

ratio (height/ thickness) is 13.6. The mesh generated

for the simulation of the wall consists of 144 solid ele-

ments and 270 interface elements. The material proper-

ties provided in [35] are limited and refer to masonry as

a homogeneous material at macroscopic level. The ten-

sile strength of the mortar joints ft, which is the key pa-

rameter for the out-of-plane resistance of the walls, has

been calculated by the macroscopic flexural strength of

masonry fmt provided in [35] through the simple re-

lation ft = 1
3fmt, following the suggestion of Milani

[36]. The remaining parameters of the mesoscale model

Table 4 Wall panels out-of-plane: material parameters of
mortar joints (new=undamaged joints, dmg=damaged joints)

Kn Kt ft tanφ

[N/mm3] [N/mm3] [N/mm2]

new 250.0 105.0 0.163 0.24
dmg 10.0 5.0 0.01 0.01

tanφg c fc µ
[N/mm2] [N/mm2]

new 0.00 0.75 13.4 0.1
dmg 0.00 0.75 13.4 0.1

Gf,1 Gf,2 Gf,3

[N/mm] [N/mm] [N/mm]

new 0.05 0.10 1.00
dmg 0.01 0.01 1.00

Table 5 Wall panels out-of-plane: material parameters of
brick elements and density of masonry

Eb[N/mm
2] Poisson’s ratio Density[Kg/m3]

9400 0.15 1900

that are not provided in [35, 34] were derived based

on typical values of constituents’ properties in newly

constructed masonry.

Tests have been performed to both uncracked and

cracked wall specimens, the latter having sustained dam-

age in previous rounds of the experimental testing. For

the analyses of the cracked walls, the bed joints at the

bottom and at mid-height of the wall have been consid-

ered severely damaged, by applying different material

parameters to the corresponding interface elements. A

summary of all the material parameters employed in

the mesoscale model is provided in Tables 4 and 5.

The walls are supported in the direction of the load-

ing at the level of the bottom bed joint. The non-load

bearing wall has a similar simple support at the top.

In the load bearing walls, a stiff beam is placed in uni-

lateral contact with the top of the wall to transfer the

vertical loads and provide a slab support. The com-

pressive load is applied through springs. As a result,

the level of the load increases as the wall deforms [34].

This condition was modelled by adding spring elements

in the vertical direction on top of the slab.

Initially, the static pushover tests were modelled

by imposing displacements at the mid-height of the

wall to obtain the complete pre- and post-peak force-

displacement curve. The pushover envelopes correspond-

ing to the different boundary conditions and material

characteristics are accurately reproduced by the meso-

scale model, as shown in Fig.15. Both the peak lat-

eral loads i.e. ultimate strength and the corresponding

displacements are predicted in detail. Thus the model
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Fig. 15 Walls in out-of plane flexure: experimental numerical comparison of pushover curves
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gives a complete picture of the flexure response over-

coming the limitations of the classical simplified theo-

ries of linear elastic and rigid body analysis, which are

highlighted in [34].

Subsequently, the shaking table tests with real earth-

quake excitations were simulated. The top and bottom

of the walls were subjected simultaneously to the same

out-of-plane accelerations, which correspond to Ground

Motion Records (GMR) of two earthquakes - the 1940

El Centro and the 1994 Pacoima Dam earthquake -

multiplied by factors from 0.50 to 1.00. As reported

in [34], the displacement records produced in the shak-
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Fig. 17 Rocking out-of-plane: Pacoima Dam 80% excitation
(top) and El Centro 50% excitation (bottom)

ing table during the experiments are relatively close to

the displacement GMR of the earthquakes but do not

coincide. Those tests were performed to cracked spec-
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imens, therefore the corresponding material properties

reported in Tables 4 and 5 have been employed. In the

dynamic analyses, damping is produced through the ex-

plicit modelling of the nonlinear material behaviour of

the joints.

In [35] experimental results are provided in terms of

the Peak Wall Displacement (PWD) of two specimens

(12 and 13) for each GMR at different levels of exci-

tation. The PWD corresponds to the out-of-plane drift

at the mid-height of the wall. Additionally, response

curves are selectively provided for some of the cases.

Fig.16 presents a comparison of the PWD obtained

experimentally and numerically for each excitation. Re-

garding the Pacoima Dam record, the numerical predic-

tions compare well to the experimental observations for

every level of excitation and present a clear trend of in-

creasing PWD as the level of excitation increases. The

Pacoima Dam record at 100% has produced collapse of

the wall both in the numerical and the experimental

tests. Regarding the El Centro record, the experimen-

tal response of the two specimens at 50% excitation has

a large scatter and the numerical result is close to the

low response. For accelerations corresponding to 66%

of El Centro or higher the wall collapses both in the

experimental tests and the numerical simulations.

Fig.17 demonstrates the response curves of the mod-

elled wall under two different excitations: 80% Pacoima

Dam and 50% El Centro. The former is compared with

the experimental curve given in [34]. For the latter the

experimental curve is not available. In each graph the

displacement GMR obtained by the numerical analy-

sis is also plotted. A close match is observed between

the experimental and numerical results for the 80% Pa-

coima Dam motion. The small-scale differences could

be related to the discrepancy between the real Ground

Motion Record and the motion produced by the shak-

ing table. Despite the potential discrepancy, the peak

ground acceleration and displacement of the numerical

simulation are consistent to the respective values re-

ported in the experiments, which results in the close

agreement of the PWD values.

In conclusion, the model can reproduce the dynamic

out-of-plane rocking of single wall panels which is based

on the opening and closing of the bottom and middle

bed joints. Furthermore, a reliable prediction of the out-

of-plane drift demand - which defines the capacity of the

walls in real earthquake scenarios as suggested in [34] -

can be obtained.

4.3 Two-way bending

In real URM structures the boundary conditions of a

masonry panel loaded out-of-plane are often more com-
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Fig. 18 Two-way bending: geometry and boundary condi-
tions of structure (dimensions in mm)

plicated than those considered in the example above.

Commonly, the sides of a wall panel are connected with

lateral URM walls through interlocking of the bonding

pattern. This arrangement leads to a two-way bending

configuration, which has been experimentally tested by

Griffith et al. [37]. A numerical simulation has been

performed in order to examine the potential of the pre-

sented modelling approach for the simulation of larger

structural elements, with boundary conditions and in-

teractions that are difficult to take into account with

more simplified models.

The specimen 2 in [37] consists of a main wall of

4000 × 2500mm2 without openings and 480mm long

return walls on both sides, as shown in Fig.18. The

mesh employed in this numerical example consists of

1189 solid elements and 2407 interface elements and is

divided in 24 partitions. They are built with clay brick

units of 230× 110× 76mm3 arranged in running bond.

The material properties are similar to the ones in the

previous section Table 4-new except for the elastic

stiffness parameters of the mortar joints. In order to

obtain the elastic modulus of masonry reported in [37],

the elastic stiffness values given in Table 6 have been

used.

Table 6 Two-way bending URM: material parameters of
mortar joints

Kn[N/mm3] Kt[N/mm3]

80.00 36.00

In the static round of testing, modelled here, uni-

form pressure is applied at the external face of the main

wall (positive direction in Fig. 18), until the ultimate

load is exceeded. An unloading phase follows until zero

pressure level.

The main wall is simply supported along the top

and the bottom edge in the direction of the loading.

Additionally, restraints are imposed along the vertical

edges of the return walls. The choice of the boundary

conditions of the return walls has proven to be crucial
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Fig. 19 Two-way bending: study of effect of return walls’
boundary conditions in the response

for an accurate representation of the actual behaviour

of the structure. The exact interpretation in the numer-

ical model of the conditions imposed by the experimen-

tal setting described in [37] is not straightforward. For

this, a series of different boundary conditions were con-

sidered, beginning with the limit cases of fully fixed and

simply supported vertical edges. The difference in the

load capacity obtained by the limit cases is close to 60%

of the experimental value, while the cracking patterns

of the return walls and the main wall differ significantly.

The sensitivity of the model demonstrates the advan-

tage of detailed modelling of masonry in studying all

the characteristics of the structural behaviour and the

parameters that affect it. Eventually, it was concluded

that the real support is between the limit cases; the

boundary conditions approaching closer to the real re-

sponse - as shown in Fig.19 - is the restraints y+ry+rz

at the nodes of the lateral edge of the return walls.

Fig. 20 shows that the global behaviour of the struc-

ture obtained numerically with the chosen boundary

conditions compares well to the experimental results.

The small difference in the initial stiffness probably in-

dicates a discrepancy in the material parameters used

in the numerical model and the real values. This is

expected since few material parameters, mostly refer-

ring to masonry in the macroscale, are reported in [37].

The ultimate load capacity of the wall is captured accu-

rately, within 10% difference to the one obtained exper-

imentally. Additionally, the unloading path indicates an

accurate representation of the re-closure of cracks upon

unloading. Furthermore, the cracking pattern of the nu-

merical model shown in Fig. 21 compares well with the

cracks developed in the wall during the experiment, in-

dicating that the same failure mode is produced.
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Fig. 20 Two-way bending: experimental-numerical compari-
son of static series response

4.4 Perforated wall under cyclic loading in-plane

The final example considered herein, aims to show the

potential of the partitioned mesoscale model for the

simulation of larger scale structures. For this, part of

the experimental tests carried out at the University of

Pavia on a real scale masonry building [38] are mod-

elled.

The building has a rectangular plan and is two-

storey high. The floors consist of a set of parallel steel

joists along the small dimension of the building, which

form a very flexible diaphragm. The two longitudinal

faces - Wall B and Wall D - include openings. Wall D

is not connected to the adjacent lateral walls, hence

their influence on the in-plane response of Wall D can

be considered minimal. Total dead weight of 248.4KN

and 236.8KN was added to the first and second floor re-

spectively, creating a pre-compression of 0.4− 0.5MPa

to the bed joints of the longitudinal walls at ground

level. The structure was then subjected to displacement

control cyclic loading, with equal horizontal forces ap-

plied at each floor level - uniform distribution - in the

direction in-plane of Walls B and D, as shown in Fig.

22.

Wall D has been modelled individually, since the

influence of the remaining parts of the structure can be

neglected. The wall is built in two-wythe thick English

bond pattern. The materials are similar to those used

in the construction of the two walls in Section 4.1, as

the experiments belong to the same larger project. The

parameters used in the numerical model are given in

Tables 2 and 3.

The mesoscale model of the perforated Wall D is

partitioned hierarchically, as shown in Fig.22. Mixed-

dimensional coupling was used [25], which drastically
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Fig. 21 Two-way bending: damage developed in the interfaces and deformed shape at maximum mid-wall displacement
compared to experimental cracking pattern [37]

Table 7 Perforated wall: size of partitioned model

dofs

nb model nodes: 154920 464760

nb PB nodes: 1115 6690

total 156035 471450

reduces the number of nodes on the partition bound-

ary, further accelerating the analysis. The size of the

entire model in terms of number of nodes and degrees

of freedom (dofs) is reported in Table 7. Quasi-static

displacement-control analysis has been performed, firstly

under monotonic loading and subsequently under cyclic

loading based on selected peaks of the experimental dis-

placement history.

Fig. 22 Perforated wall: plan of building, hierarchic parti-
tioning of Wall D and applied loads (P.B=Partition Bound-
ary)
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Fig. 23 Perforated wall: experimental-numerical comparison

Fig. 23 presents the comparison of the experimental

and numerical results. With the analysis under mono-

tonic loading the pushover curve of the structure is ob-

tained up to the maximum displacement attained dur-

ing the experiments. It is noted that both increased

robustness and reduction of computational time were

achieved with the use of the constitutive model pro-

posed herein, with respect to previous attempts [22].

The pushover curve provides a prediction of the load

capacity of the structure within 10% accuracy and a

reliable prediction of the residual strength.

Regarding the analysis under cyclic loading which

was allowed to run up for a reasonable duration of

time - two cycles of approximately 5mm and 10mm
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Fig. 24 Perforated wall: deformed shape at the end of the
cyclic analysis

Ds

Fig. 25 Perforated wall: damage developed in the interface
elements at the end of the cyclic analysis

were completed and are presented in Fig. 23. Strength

degradation that agrees with the experimental curve,

especially at the reloading stage of the second cycle, is

observed. Furthermore, when cyclic loading is applied,

the displacement drift corresponding to the maximum

strength of the wall agrees with the experimental value

( 10mm). The stiffness degradation upon load rever-

sal predicted in the numerical curve is lower than that

of the experimental curve. This discrepancy is probably

linked to the reduced number of cycles performed in the

numerical simulation, due to the increased computa-

tional time required for the analysis. The time required

for further cycles with the computational resources cur-

rently available is prohibitive, which highlights a prac-

tical limit for the proposed approach with respect to

the size of the model using current computational re-

sources.

Finally, Fig. 24 and 25 depict respectively the crack-

ing pattern and the damage developed in the interfaces

at the end of the cyclic analysis. Both results reveal

that the predicted damage of the structure is located

at the same regions as in the experimental observations

reported in [38].

5 Conclusion

A new constitutive model for the behaviour of cohe-

sive interfaces in mesoscale representation of masonry

is proposed. The mesoscale approach consists of elastic

solid elements for the masonry blocks and nonlinear co-

hesive interface elements representing the mortar joints

and the potential failure surfaces of the bricks. The pro-

posed constitutive model provides an accurate descrip-

tion of the key defining characteristics of the physical

behaviour of the interfaces in a simple and robust way.

The use of a hierarchic partitioning framework has in-

creased the efficiency of the strategy and reduced the

computational cost.

Experimental-numerical comparisons have demon-

strated the potential of this approach for the simula-

tion of URM structures under quasi-static and dynamic

loading conditions. Discrepancies observed between the

real response and the numerical prediction can be at-

tributed to the uncertainty in the identification of cer-

tain material parameters and to the simplifications in

the yield surface, the damage evolution and the loading-

unloading path. Those characteristics can be further in-

vestigated as the conceptual simplicity of the approach

allows localised enhancements without compromising

numerical robustness.

Notably, it has been shown that relatively large scale

components can be analysed in a 3D framework with

reliable results, which opens numerous possibilities in

the advanced study of masonry structures. The exis-

tence of an upper limit on the size of the model that

can be analysed currently with the mesoscale model has

been shown in Section 4.4; in this scale, conclusions can

be drawn for the structure under monotonic load, but

only a limited number of load reversals can be consid-

ered. For such cases, alternative methods can be ex-

plored for increased efficiency, such as the modelling of

a small assembly of bricks with one solid element with

homogenised characteristics.

In conclusion, the proposed strategy can be a use-

ful tool for the investigation of the behaviour of URM

structures under cyclic loading.
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