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Using biomass to provide energy services is a strategically important option for increasing the 

global uptake of renewable energy. Yet the practicalities of accelerating deployment are mired 

in controversy over the potential resource conflicts that might occur, in particular conflicts over 

land, water, and biodiversity conservation. This calls into question whether policies to promote 

bioenergy are justified. Here we examine the assumptions on which global bioenergy resource 

estimates are predicated. We find there is a disjunct between the evidence that global bioenergy 

studies can provide and policy makers’ desire for estimates that can straightforwardly guide 

policy targets. We highlight the need for bottom-up assessments informed by empirical studies, 

experimentation, and cross disciplinary learning in order to better inform the policy debate. 

1 Conflicting aspirations for bioenergy  

Using biomass to provide energy services is one of the most versatile options for increasing 

the global uptake of renewable energy and an important component in many climate change 

mitigation and energy supply scenarios1-4. The International Energy Agency (IEA), for 

example, estimates that biomass could contribute an additional 50EJ (~10%) to global primary 

energy supply by 2035, and states that “the potential supply could be an order of magnitude 

higher” 4. Governments of the world’s largest economies have also introduced policies to 

incentivise bioenergy deployment, motivated by concerns about energy security and climate 

change, and by the desire to stimulate rural development5,6. Yet the potential contribution from 

biomass to global energy supply is controversial. Sources of contention include concern about 

the inter-linkages between biomass, bioenergy and other systems. Most notably, land and 

resource conflicts are foreseen between bioenergy and food supply, water use, and biodiversity 

conservation. The fear is that the benefits offered by increased biomass use will be outweighed 

by the costs7-10. It is also argued that the wide range of estimates of biomass potential and the 

lack of standardised assessment methodologies confuses policy makers, impedes effective 

action and fosters uncertainty and ambivalence11. These broad points contribute to a general 

sense of unease about the future role of bioenergy, and whether it presents a genuine 

opportunity or is a utopian (or for some dystopian) vision that stands little chance of being 

realised.  

Here we analyse how scenarios for increasing bioenergy deployment are contingent on 

anticipated demand for food, energy, and environmental protection, and expectations of 

technological advances. We use a systematic review methodology12,13 to identify and analyse 

the most influential estimates of the global bioenergy potential that have been published over 

the last 20 years. The technical and sustainability assumptions that lie behind these estimates 

are exposed and their influence on calculations of potential described.  
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We find that the range of estimates is primarily driven by the choice of alternative assumptions 

and that estimates should be viewed as what if scenarios rather than forecasts or predictions. 

Larger estimates, however, invariably require more stretching assumptions.  

The most controversial and influential assumptions relate to the future role of energy crops. 

We examine these assumptions, focussing on yield predictions, water availability and 

sustainability assurance. We find that studies provide limited insight into the level of 

deployment that might be achievable in practice and this highlights the need for caution in 

using global estimates to justify political intervention.  

Finally, we highlight the need for better evidence including bottom-up assessments informed 

by empirical studies, experimentation, and learning-by-doing in order to better inform the 

policy debate. 

2. Estimating the global biomass resource 

The global availability of biomass and how it might be used to provide energy services cannot 

be measured directly, it can only be modelled. Models vary in complexity and sophistication, 

but all aim to integrate information from sources such as the Food and Agriculture 

Organisation’s (FAO) databases, field trials, satellite imaging data, and demand predictions for 

energy, food, timber and other land-based products, to elucidate bioenergy’s future role. The 

least complex approaches use simple rules and judgment to estimate the future share of land 

and residue streams available for bioenergy. The most complex use integrated assessment 

models which allow multiple variables and trade-offs to be analysed.  

Although models differ greatly in scope and sophistication, the future supply of biomass in all 

cases depends on the availability (and productivity) of land for energy crops and food, and the 

accessibility of residues and wastes from existing and anticipated economic activity. Land 

availability is strongly influenced by assumptions about the area that should be set aside for 

nature conservation, along with population and diet scenarios – a vegetarian diet, for instance, 

requires less land than one rich in meat and dairy. Land productivity is strongly influenced by 

technology scenarios. Particularly important is the potential to increase crop yields and close 

the gap between optimal yields and those achieved by farmers when faced with environmental 

constraints such as water and nutrient scarcity, soil degradation, and climate change14-16.  

Modelling results are most often discussed in terms of a hierarchy of potentials: theoretical > 

technical/geographic > economic > realistic/implementable. These terms are not always used 

consistently, and so results for different studies need to be normalised before they can be 

compared. Here we compare estimates on the basis of the gross energy content of the biomass 

(assuming a calorific value of 18GJ per oven dry tonne (odt)) and the major technical and 

environmental assumptions on which they are predicated.  

Our systematic review identified 90 studies. Of these 28 contained original analysis describing 

over 120 estimates for the future contribution from biomass to global energy supply1,14,16-41. 

The majority of these estimates are for 2050, reflecting the importance of this date in much of 
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the modelling and scenario analysis that has been done over the last 10 years. A detailed 

analysis of these studies provides the evidence base for this Review (see Supplementary Tables 

1-4).  

The most important potential sources of biomass are energy crops (22-1272EJ), agricultural 

residues (10-66EJ), forestry residues (3-35EJ), wastes (12-120EJ), and forestry (60-230EJ), 

summarised in Figure 1. Not all studies include all these categories in their analysis. In 

particular, biomass extraction from forests is not considered by many authors because of 

concern about the potential impacts on biodiversity and carbon stocks. By way of comparison, 

the total human appropriation of net terrestrial primary production (including the entirety of 

global agriculture and commercial forestry) is around 320EJ, of which 220EJ is consumed and 

100EJ discarded as residues or otherwise destroyed during harvest42. This is considerably less 

than current global primary energy supply (~550EJ). 

Figure 1. The range of estimates for the potential contribution of energy crops, wastes 

and forest biomass to future energy supply. Estimates include unconstrained values. Surplus 

agricultural land includes good quality land released from food production because yield growth exceeds demand 

(also called abandoned land in some studies). Rest land includes: savannah, extensive grassland, and shrubland. 

Degraded land may also be defined as low productivity or marginal land. Land categories cannot be considered 

fully mutually exclusive. Waste includes dung, municipal and industrial waste. Forestry describes harvest of a 

fraction of the global annual forest growth increment. Forestry is a highly aggregate category defined by the FAO 

as areas spanning more than 0.5ha with trees higher than 5m. Some studies make further distinctions between 

primary forests and plantations. 
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3. Critical assumptions 

Biomass potential estimates can be broadly divided into those that test the boundaries of what 

might be physically possible, and those that explore the boundaries of what might be socially 

acceptable or environmentally responsible. Through a detailed examination of each estimate 

we have identified the key assumptions that determine why bioenergy resource modellers reach 

such dramatically different conclusions. We describe the most important combinations of 

assumptions below, and they are summarised in Figure 2. 

Estimates up to ~100EJ (around 1/5th of current global primary energy supply) assume that 

there is limited land available for energy crops. This assumption is driven by scenarios in which 

there is a high demand for food, limited productivity gains in food production, and limited 

expansion of land under agriculture. Diets are assumed to evolve along the existing trend for 

increasing meat consumption. The contribution from energy crops (8-71EJ, ~140-400Mha) 

predominantly comes from agricultural land identified as abandoned, degraded or deforested, 

and from limited expansion of energy crops onto pasture. The contribution from wastes and 

residues is considered in only a few studies, but where included the net contribution is in the 

range 17-30EJ. Most studies in this range exclude biomass extraction from non-commercial 

forestry. 

Estimates falling within the range 100-300EJ (roughly half current global primary energy 

supply at the top end), all assume that increasing food crop yields keep pace with population 

growth and the trend for increased meat consumption. Limited good quality agricultural land 

is made available for energy crop production, but these studies identify areas of natural 

grassland, marginal, degraded and deforested land ranging from twice to ten times the size of 

France (100-500Mha) yielding 10-20odt.ha-1. In scenarios where demand for food and 

materials is high, achieving biomass potentials in this range implies a decrease in the global 

forested area (up to 25%), or replacing mature forest with young more rapidly growing forest. 

The majority of estimates in this range also rely on a larger contribution from residues and 

wastes (60-120EJ). This is partly achieved by including a greater number of waste and residue 

categories in the analysis, and partly by adopting more ambitious assumptions on 

recoverability. 

Estimates in excess of 300EJ and up to 600EJ (600EJ is slightly more than current global 

primary energy supply) are all predicated on the assumption that increases in food-crop yields 

could significantly outpace demand for food, with the result that an area of high yielding 

agricultural land the size of China (>1000Mha) could be made available for energy crops. In 

addition, these estimates assume that an area of grassland and marginal land larger than India 

(>500Mha) could be converted to energy crops. The area of land allocated to energy crops 

could thus occupy over 10% of the world’s land mass, equivalent to the existing global area 

used to grow arable crops. For most of the estimates in this range a high meat diet could only 

be accommodated with extensive deforestation. It is also implicit that most animal production 

would have to be landless to achieve the level of agricultural intensification and residue 

recovery required.  
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Estimates in excess of 600EJ are extreme. The primary purpose of scenarios in this range is to 

provide a theoretical maximum upper bound and to illustrate the sensitivity of the models to 

key variables such as population, diet, and technological change.  Estimates in this range are 

not intended to represent socially acceptable or environmentally responsible scenarios and 

none of the studies analysed here suggests that they are plausible.  

Figure 2. Pre-requisites for increasing levels of biomass production 

 

The amount (and productivity) of land allocated to energy crops is one of the most important 

factors affecting bioenergy potential estimates. Figure 3 illustrates the striking differences 

between estimates for area and yield. Broadly speaking, the data points describing yields less 

than 5odt.ha-1 assume production on marginal and degraded land, whereas those describing 

yields in excess of 15odt.ha-1 assume both good quality land and technological advances to 

overcome biophysical constraints43. Those data points describing land areas in excess of 

1000Mha assume that food crop yield growth will outpace demand leading to spare land for 

energy crops. Comparing the area of energy crops envisaged with the current global arable area 

(1500Mha) and pasture area (3500Mha) indicates the dramatic scale of the transition needed if 

energy crops were to make a major contribution to primary energy supply. 

Most studies do not identify specific energy crop species and assume that the best adapted crop 

for each area and land type will be used. There is concern, however, that in studies where yield 

estimates derived from case-studies, sample plots and vegetation models are extrapolated to 
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large areas of the planet’s surface the resulting average yields may be unrealistically high43,44. 

Evidence that global net primary production (NPP) has been essentially unchanged over the 

last 30 years despite substantial investment in agriculture also suggests that technological 

advances may have limited impact on land productivity at a global scale43,45,46.  

Figure 3. The range of land area and yield estimates included in global energy crop 

scenarios 

  

4. Cereal yields 

All biomass potential studies assume that food demand will be met. How much land is needed 

is strongly influenced by yield projections for cereal crops. Cereals are of primary importance 

because about two thirds of all the energy in human diets is provided by just three crops: wheat, 

rice and maize47 (~10% of the global land area). The main source of yield projections used in 

biomass studies to date is the FAO, and in particular two reports (published in 2003 and updated 

in 2006) that describe yield growth for the major cereal crops increasing more or less linearly 

at 0.9%pa to 2050 (0.9-1.4%pa between 1999-2030; 0.5-0.7%pa between 2030-50; cf. 1.6%pa 

for the period 1967-99). There is concern, however, that these projections may be over 

optimistic and give the impression that there is greater scope for productivity increases than is 

actually the case. The authors of ref.(21) identify that biologists tend to be among the most 

sceptical.  
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The FAO’s analysis was undertaken before the 2007/8 commodity price spikes and one of the 

background assumptions in the 2003 report was that oil would cost less than 30 US dollars a 

barrel and decrease to 21 US dollars a barrel by 2015. In this scenario the cost of energy 

provides no constraint on agricultural production. Post 2007/8, concern about rapidly rising 

prices rekindled interest in food security and spawned a series of influential reviews examining 

whether increasing food yields could meet the demands of a growing population48-54. The FAO 

also updated their analysis concluding that cereal yield increases of 0.9%pa to 2050 remains 

possible, but only if sufficient investment is forthcoming55. The broad consensus of these 

reports was that it is likely to be technically possible to produce sufficient food to feed the 2050 

global population, but there will be no room for complacency – particularly if the 

environmental impacts of global agriculture are also to be mitigated.  

Yet these reports also highlight the inherent difficulties in undertaking a discussion about the 

world’s capacity to produce sufficient food in abstract and aggregate terms. Digging beneath 

the surface of the analysis reveals that many of the underpinning assumptions are uncertain, in 

some cases contested, contingent on favourable investment scenarios and low energy prices, or 

subject to large regional variations. Rates of technological innovation and improvement are 

particularly problematic to anticipate as small changes make a big difference when 

compounded over multiple years in highly aggregate models. Focusing solely on the scope to 

increase food production also ignores issues such as post-harvest losses, food wastage, and 

inequities in distribution56. There are nevertheless some broad insights that might reasonably 

influence our interpretation of the bioenergy literature. Firstly, the green revolution led to food 

production outpacing demand but at a major cost to the environment, and with greatly increased 

energy, water and nutrient inputs 57. Secondly, there is scope to increase yields and close the 

gap between what farmers currently get and what they might get with optimum agronomy, but 

many of the easy gains have already been achieved. The practicality of closing yield gaps is 

also hotly contested, varies dramatically by region, and depends as much on political and 

institutional factors as it does on fundamental agronomy and the availability of nutrient and 

water inputs. Thirdly, agricultural intensification is considered likely and necessary, but far 

from being a panacea it could further jeopardise the long term sustainability of food production 

unless combined with measures to conserve and maintain soil fertility. 

A critical assumption embodied in many bioenergy models is that as agricultural yields 

increase, crop and pasture land will be spared from production and can be made available to 

grow energy crops. The reasoning is that as yields increase, prices drop and the agricultural 

area will decline. This causal chain assumes that demand for the products does not change and 

so the drop in price is sufficient to motivate land abandonment. If demand is elastic, however, 

prices may not change significantly. In this case the farmer has no incentive to abandon land, 

but may, conversely, be incentivised to increase the area they cultivate as this will directly lead 

to an increase in income58. Empirical studies undertaken at local and regional levels provide 

evidence of both land consuming and land sparing effects from intensification, but a lack of 

robust data on abandoned land, as well as the confounding effects of global trade and political 

intervention makes examining global level effect difficult59,60. Looking at changes in the global 
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cultivated arable areas between 1970 and 2005, intensification only appears to be correlated 

with declines in cultivated areas between 1980-85 in the aftermath of a sustained decline in 

agricultural commodity prices and a steep rise in yields58. Moreover, explicit political 

intervention appears to have been an essential driver for cropland abandonment. There is some 

evidence that developing countries that increased staple crop yields most rapidly in the period 

1979-99 had a slower deforestation rate than might otherwise have been the case59, but the 

overall conclusion is that the link between crop intensification and land sparing is weak and 

uncertain. It follows that bioenergy estimates which are contingent on land sparing – i.e. those 

estimates in excess of ~300EJ – must be considered at least as uncertain, if not more so.  

This discussion suggests that where bioenergy models are predicated on aggregate productivity 

projections for food crops they must be interpreted with great caution. Bioenergy models can 

identify the most important relationships, for example the relationship between increasing meat 

consumption and demand for land, but the outputs are essentially “what if” scenarios that 

possess no predictive capability and only hint at the level of effort that would be required to 

implement them. This is a striking contrast to the IEA’s ebullience for 2035 and beyond. 

5 Water scarcity  

Globally, agriculture accounts for ~70% of all fresh water use, and scarcity is a growing 

concern61. The vast majority of this water is consumed during crop cultivation: either 

evaporated from the soil or transpired from plant leaves61,62. Yield and water transpiration are 

closely correlated and maximum crop growth only takes place when water availability is not 

restricted63. Crop growth models are able to predict water restricted yields for both food and 

energy crops, but competing demands on water supplies are not considered in depth in global 

bioenergy studies. A small number of irrigated energy crop scenarios have been developed for 

illustrative purposes, but the authors of these scenarios consider them unlikely to be 

sustainable38,19. The vast majority of studies assume that energy crop production will be rain-

fed. This assumption does not resolve the problem, however, as the concomitant intensification 

implicit for conventional agriculture also implies increased irrigation and water use3.  

Extending food and energy crop production onto marginal lands will require effort to increase 

water use efficiency (WUE) – the ratio of dry aboveground biomass to the amount of water 

evaporated and transpired. A variety of management options exist, for example, planting and 

harvesting operations can be timed to extend canopy closure and maintain ground cover in 

regions where soil evaporation is high64. Integrating perennial and annual crop production may 

also help increase productive crop transpiration and can improve water infiltration into the soil. 

Crop choice can also play a role, for instance the tropical (C4) grasses – maize, miscanthus, 

sugar cane – use less water than temperate (C3) crops such as wheat65. The potential for 

breeding individual crops to increase WUE, however, is less certain. Considering  wheat as an 

example, other than changes in the harvest index there is limited evidence that WUE has 

improved as yields have increased64. Increasing drought tolerance by for instance reducing 

transpiration from leaves – would also restrict the level of carbon dioxide in the leaf and reduce 

the rate of photosynthesis.  



 

9 
†Centre for Energy Policy & Technology, Imperial College London, 14 Princes Gardens London,  14 

Princes Gardens, South Kensington, London, SW7 1NA 

 

Water availability remains a critical area for further research. There is a need for empirical 

evidence to support geo-hydrological models along with improved analysis at a regional level 

to better understand the constraints and opportunities3,62. Integrating food and energy crops is 

an option that might reduce water use in some locations66, but the efficacy of these approaches 

needs to be proven, and, as with many other aspects of biomass production, effective 

management will be essential. 

6 Sustainability assurance 

Investment and effective governance are prerequisite to sustainable energy crop production. 

This, in turn requires a minimum level of regulatory competence and either a defined legal 

framework against which adherence can be monitored and enforced38 or the widespread 

adoption of voluntary codes of practice that are demonstrably effective. 

Investment will not occur unless energy crop production is economically viable. Studies 

exploring this aspect of production at a global scale extrapolate limited country specific data 

to  obtain approximate global supply curves but the results are intrinsically hypothetical20,26. 

The main insight these studies provide is that the economics of biomass production will be 

highly sensitive to yield and land quality, giving biomass developers a strong incentive to 

identify productive, low cost land. This introduces a very possible scenario, where the option 

that stimulates greatest uptake of bioenergy, is not the same solution that gives best 

environmental protection globally or locally33.  

Land acquisition for bioenergy projects also has the potential to be highly contentious.  Land 

availability estimates are underpinned by remote sensing approaches that are not able to 

identify who owns an area of land or who might be using it. Property rights can be highly 

complex and there may be major social risks in undertaking large scale projects19,67. The time 

taken to arrange access to land on an equitable basis may also be the rate limiting step for 

expanding energy crop production. The issue of land access and ownership is particularly acute 

when it comes to the potential use of marginal and degraded land. Grazing lands which are 

productive during the rainy season but look barren during the dry season are often classified as 

degraded67. These areas are often used extensively by the rural poor and may not be privately 

owned38. From an agronomy perspective, the growing conditions also tend to be difficult with 

low yields and high production costs68,69.  

The extent to which energy crops can deliver sustainable biomass on a global scale remains 

poorly understood. In the short term the best indication might come from an appraisal of past 

attempts to initiate large scale changes in global agriculture. Attempts to close yield gaps, 

implement sustainable agriculture, limit deforestation, stimulate rural development, and 

implement environmental stewardship might all reasonably be examined, as might the growing 

effort to implement biomass sustainability standards and certification in existing supply chains. 

In the longer term there is a need to monitor attempts to stimulate biomass supply, gather 

empirical evidence about what works, and demonstrate best practice.  

5. Learning by doing 
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Moving to a future where biomass supplies a significant proportion of global energy demand 

would require large scale and systemic change. Global biomass potential studies provide a lens 

through which such system level changes can be examined. They are important because they 

define the context in which governments and international organisations debate the future role 

of bioenergy and decide policies designed to increase deployment. 

Yet biomass potential studies provide limited insight into the level of deployment that might 

be achievable in practice. Rather, they describe scenarios in which biomass makes an 

increasing contribution to primary energy supply while attempting to minimise the negative 

impacts by imposing environmental constraints on deployment. They are systematically 

optimistic in the sense that they try to describe sustainable paths as opposed to unsustainable 

ones. What they are not are forecasts extrapolated from empirical observations or any practical 

experience of trying to achieve large scale transitions in crop production, or residue use at a 

global scale. This is not always apparent from the way in which modelling results are 

interpreted and described.  

One of the criticisms levied at biomass potential assessments has been the lack of standardised 

and consistent methodologies. Our analysis suggests the range of estimates is driven more by 

the choice of alternative assumptions than methodological differences. One area where 

harmonisation would be valuable, however, is the use of descriptive terms that are precise but 

not value laden. Terms such as abandoned land and surplus forestry are prone to 

misinterpretation and should be avoided. 

Energy crops are the most important component in the majority of global biomass assessments. 

Some of the trade-offs that would be required to make space for these crops go against existing 

global trends: for instance, the trend for increasing meat consumption as incomes rise. Others, 

like the public acceptability of land-use change, are controversial. Many more, for example the 

implications of large scale energy crop production on water availability and the consequential 

impacts on food supply, remain poorly understood. The implication for policymakers is that 

decisions about how to pursue bioenergy must be made in the face of inherent uncertainty. 

Yet many of the important open questions will only be resolved as incremental attempts are 

made to initiate energy crop production and increase the role of biomass in global energy 

supply. Focussing on near term opportunities could help identify the merits and pitfalls of 

expanding biomass deployment and lead to an improved understanding of the level of effort 

involved in going to higher levels of biomass use. Such a bottom-up approach could also better 

inform the policy debate.  

The opportunity to experiment and to gather empirical evidence should also not be overlooked. 

Provided that soils are not degraded or biodiversity destroyed, many investments in bioenergy 

are ultimately reversible. As the first few exajoules of energy crops are deployed, the claimed 

benefits of integrated food and biomass production could be evaluated at scale, as could the 

feasibility and sustainability benefits of extending energy crop production onto marginal, 

degraded and deforested land. Given that effective governance is considered a pre-requisite for 
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sustainable implementation, there is also an opportunity to monitor the efficacy of regulatory 

approaches such as biomass sustainability certification and use this real world experience to 

inform projections of what might be possible in the future. Bioenergy is likely to remain 

controversial, but focussing on practical next steps could lay the foundations of a sustainable 

bioenergy sector, however large it proves to be in the future.  

Supplementary Information: is available in the online version of the paper. 
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Table S1: Global biomass potential estimates, <100EJ 

(Reference) 

Lead author-

year 

Total 

Potential  

Energy crops Residues  Forestry Population 

  

 

AR FR W   

EJ Mha EJ / 

[odt.ha-1.yr-1] 

EJ EJ EJ EJ billion 

(22) 

Field-08 

27 386 

 

27 

[3.5] 

  ns 

 

 2000-30 scenario. Existing abandoned cropland only. Spatially explicit methodology. 

(34) 

Sims-06 

22-34 141 

 

22-34 

[4-12] 

   

 2000-30 scenario. Total is summation of a rule based  inventory. 

(18) 

Bauen-04 

60 283 

 

42.5 

[~8] 

---------------17.5-----------  ns 

 2000-30 scenario. Total is summation of a rule based  inventory  

(31) 

Moreira-06 

164 143 

 

164 

[~60] 

  ns 

 2000-30 scenario. Sugar cane in tropics – very high yields anticipated (~double world average) 

due to technology driven yield increases. 

(28) 

Hoogwijk-03 

(scenario-1)   

33 430 8 

[1] 

32      60      16 

Net 25EJ when demand 

for biomaterials excluded 

Exc. 8.7 – 11.3 

 2050 scenario. Optimistic recovery of residues. Energy crops on degraded land only. 

‘Moderate’ or ‘Affluent’ Diet. Low external input agriculture. ‘Safety factor of  two’ on land 

available for food. 

(21) 

Erb-09 

58/91 >200/ 

>300a 

28 / 63 30 / 28   Exc. 9.16 

 

(scenario-1) 2050 scenario: ‘Western diet’ (high calorie, meat and animal products) / ‘Current trend diet’ 

(moderate increase in calories and meat). Cropland expansion into grazing land:19% / 9%  . 

Yield assumes 100% of above ground NPP. Intensive livestock production. Rapid yield 

increases in line with FAO 2003. 

(21) 

Erb-09 

(scenario-2) 

105/128 >300a 77 / 100 28  / 28   Exc. 9.16 

2050 scenario. Cropland expansion into grazing land: 19% / 9% . Low meat (humane livestock) 

/ very low meat diet (organic livestock). Yield assumes 100% of above ground NPP harvested. 

Reduction in sugar, meat and fat consumption by 30% in wealthy countries.  Moderate yield 

increases (<FAO 2003)  

(14) 

Thrän-10 

16  16    Exc. 8.3Bn 

(scenario-1) 2050 ‘sustainable land use’ scenario. No conversion of forests or grassland to cropland. 3 – 8% 

pa conversion of fallow land. 75% of fallow land (formerly arable) used to produce hay, SRC, 

and silage in 2050. No constraint on diets. Constant food crop yield improvement at 1.46%pa 

(14) 

Thrän-10 

39  39    Exc. 8.3Bn 

(scenario-2) 2050 ‘environment and health  scenario’. No conversion of forests or grassland to cropland. 3-

8% pa conversion of fallow land. 75% of fallow land (formerly arable) used to produce hay, 

SRC, and silage in 2050. 30% reduction in food consumption in US, Canada, EU and Australia 
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by 2050 (convergence to WHO target) Doubling of organic production every 10 years. 

Declining yield improvement rate from 1.46% pa in 2010 to 1.02%pa in 2050. 

(14) 

Thrän-10 

(scenario-3) 

96  96    Inc. 8.3 

2050 ‘business as usual’ scenario. Expansion onto ‘grazing’ and ‘deforested’ land. 

Deforestation  (0.24%pa) and grassland conversion (0.1%pa) permitted.  No constraint on diet. 

Constant food crop yield improvement rate: 1.46% pa. No organic production. 

(38) 

WGBU-09 

(scenario-1) 

 

34/61 

 

240 

 

34/61 

[7.5(rain fed) / 

10.8 (10% 

irrigated)] 

   0 ns 

 2050 scenario. ‘high farmland’ / ‘high nature conserving’ scenarios. Competition for water not 

considered for irrigated scenario.  Needs 125% of current farmland in 2050 

(38) 

WGBU-09 

(scenario-2) 

 

42/71 380 

 

42/71 

[9.2(rain fed) 

/12.6(10% 

irrigated)] 

   0 ns 

 2050 scenario. ‘high farmland’ / ‘low nature conserving’ scenarios. Competition for water not 

considered for irrigated scenario. Needs 125% of current farmland in 2050 

Abbreviations – EC: energy crops; AR: Agricultural residues; FR forestry residues; F: forestry; W: wastes; SRC: 

short rotation coppice; ns: not specified; Inc.: included; Exc.: excluded 

Descriptions – adjectives used to describe scenarios and land classifications (e.g. ‘abandoned land’, ‘rest land’, etc.) 

are those reported in each individual study and may not be directly comparable between studies by different authors.  

a Indicative only as for this study yield varies with location – estimated here assuming an average yield of 10odt.ha-

1.yr-1  

 

Table S2: Global biomass potential estimates, 100-300EJ 

(Reference) 

Lead 

author-year 

Total 

Potential 

Energy crops Residues (EJ) Forestry Population 

  AR FR W   

EJ Mha EJ 

[odt.ha-1.yr-1] 

EJ EJ EJ EJ billion 

(19) 

Beringer-11 

 

126-216 

/  152-

274 

142-454 26-116 / 52-174 

[~10-14 / 18-21] 

-------------100------------ Up to 

135Mha 

deforest

ation 

ns 

 2050, rain fed / 10% irrigated scenario. 70% increase in food production will be required. Either 

limited expansion in area for food (120Mha) OR food crop yield increases have to be stabilized 

at ~ 1.2% per year. No existing pasture or cropland conversion to energy crops. High level of 

environmental protection, but expansion onto natural grasslands and forestry permitted. 

(24) 

Haberl-10 

 

160-270 ns 44-133 
 

49 19-35 50  ns 

2050 scenario. Analysis of residues relies on extensive extrapolation. 

(30) 

Johansson-93 

 

205 429 128 

[10] 

25 3 39 10 ns 

2050 scenario. Rule based approach.. focuses on ‘degraded land’ in developing countries and 

‘excess agricultural land’ in developed countries 

(33) 

Rokityanskiy

-06 

 

 

175-230 500-610   175-230 

Models  

above 

ground 

NPP  

Follows 

IPCC SRES 

A1 

2100 scenario. Model constrained to allow ‘adequate area for food production’, but assumptions 

not explicit. Area is net avoided deforestation and afforestation under exponentially increasing 

carbon price scenarios – 70% of which is located in Africa and South America. Yields assumes 
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above ground NPP: average ~20odt.ha-1. Relationship between avoided deforestation and energy 

production not explicit. 

(39) 

Yamomoto-

01 

 

182/136 ~396/~79 b 110/22 

[15] 

----------72/114---------- 25% 

decrease 

in 

mature 

forest 

area a 

9.6 / 11 

 

 2050/2100 scenarios. Food crop yield increases defined for each  region: yield in 2100 ranges 

between 1x and 3x yields in 1990. Developing country GDP converges to developed region 

GDP. Demand for food rises faster than crop yield improvements, therefore bioenergy potential 

decreases between 2050 and 2100 

(40) 

Yamomoto-

99 

 

 

 

426 ~540 149 

[15] 

-------------277----------- 80% 

decrease 

in 

mature 

forest 

area a 

10bn in 2050 

rising to 

11.6bn in 

2100 

 2100 scenario. Food crop yields increase 1.77x yields in 1990 in developed world and  2.49x 

yields in 1990 in developing world by  2100.  Assumes no constraints on residue recoverability 

(41) 

Yamomoto-

00 

 

221-310 ~219-540 61-150 

[15] 

-----------160-186-------- No 

change 

10bn in 2050 

rising to 

11.6bn in 

2100 

 2100 scenario. Food crop yields increase 1.77x yields in 1990 in developed world and  2.49x 

yields in 1990 in developing world by  2100.  Assumes no constraints on residue recoverability 

Abbreviations – EC: energy crops; AR: Agricultural residues; FR forestry residues; F: forestry; W: wastes; SRC: 

short rotation coppice;  ns: not specified; Inc.: included; Exc.: excluded 

Descriptions – adjectives used to describe scenarios and land classifications (e.g. ‘abandoned land’, ‘rest land’, etc.) 

are those reported in each individual study and may not be directly comparable between studies by different authors. 

a Total forest area does not decrease, but mature forest is used to supply round-wood and replaced with growing 

forest. 

b It is assumed that up to 619Mha of land for arable and / or energy crops can be obtained from converting fallow, 

degraded and semi-desert land. The figures shown here are calculated from the energy and yield figures provided 

in the paper.  

 

Table S3: Global biomass potential estimates, 300-600EJ 

(Reference) 

Lead 

author-year 

Total 

Potential 

Energy crops Residues (EJ) Forestry 

 

Population 

  AR FR W   

EJ Mha EJ 

[odt.ha-1.yr-1] 

EJ EJ EJ EJ billion 

(23) 

Fischer-01 

370-450 1970 140/220 

[~3.8-4.8] 

20  120 90-110 >10 

 

 2050 scenario. 180Mha additional arable area from forests and grasslands. 1.1%pa yield increase 

in food crop yields and 1%pa yield increase in energy crop yields. All global forest is managed 

for energy purposes where accessible (3870Mha; ~0.8-0.25%pa yield increase). 60-75% of 

global grassland area including pasture is dedicated to energy crops. Source of yield increases 

unclear as production is assumed to be rainfed. 

(16) 

Lysen-08 

290-530 >1000 

abandoned 

agricultural 

>1000 

120 abandoned 

agricultural 

 

70 degraded 

-----------40/100--------- 60/100 9.4 
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degraded 

land 

 

 

140 

technological 

learning 

 2050 scenario. ‘Moderate’ GDP growth at 2%pa. Diet not specified. Crop yields increase at 

1.4%pa c . Large scale conversion of land. Rapid increases in food and energy crop yields. 

Similar approach to Hoogwijk05. 

(27) 

Hookwijk-05 

(scenario-1)   

311/395 600/1200 

abandoned 

agricultural 

 

 

 

 

 

 

 

~1150 

rest land 

129/243 

[~11 b] 

abandoned 

agricultural 

 

9/4 

[<3b] 

low productivity 

land 

 

173/148 [~8 b] 

rest land 

 Large 

scale 

deforest

ation 

11.3/15.1bn 

 

 IPCC SRES A2-2050 /A2-2100 scenarios. High meat consumption. Food crop yields increase up 

to 78% of optimal productivity for each land type  by 2050 (increasing to 86% of optimal 

productivity by2100).  Energy crop yields improve at 1.2%pa,  up to max1.1x 1995 optimal 

productivity for each land type. Large scale deforestation to keep pace with food demand 

(~700Mha deforestation). 

(27) 

Hookwijk-05 

(scenario-2)   

322/485 ~1100/2000 

abandoned 

agricultural 

 

 

 

 

 

 

 230 

rest land a 

279/448  

[~13 b] 

abandoned 

agricultural 

 

8/5 [<3 b] 

low productivity 

land 

 

35/32  rest land 

[~8] 

 0 9.4/10.4 

 

 IPCC B2-2050 /B2-2100 scenarios. Food crop yields increase up to 78% of optimal productivity 

for each land type by 2050 (increasing to 89% of optimal productivity by2100). Low meat 

consumption, low biomass supply. Energy crop yields improve 1.2%pa, up to max1.1x 1995 

optimal productivity for each land type. 

(27) 

Hookwijk-05 

(scenario-3)   

699 ~1300 

abandoned 

agricultural 

 

 

230 

rest land a 

656 

[~13 b] 

abandoned 

agricultural 

 

39 

[~8 b] 

rest land 

 0 8.7 in 2050 

decreasing to 

7.1 in 2100. 

 

 

 IPCC SRES B1-2050 scenario. Low meat diet. Food crop yields increase up to 82% of optimal 

productivity for each land type  by 2050 (89% by2100). High technology, high fertiliser use.  

Implicit requirement for increased irrigation to deliver increase in food yields. High food trade 

levels. 1.6%pa yield improvement in energy crops up to max 1.3x 1995 optimal productivity. 

~10% of ‘rest land’ used for energy crops. 

(20) 

de Vries-07 

 

 

401-575 

/ 160-

184 / 

353-509 

/ 282-

372 

1930/1160 / 

1960 / 1540 

401-575 

/ 160-184 

/ 353-509 

/ 282-372 

 0 Same as 

Hoogwijk05 

(IPCC SRES) 
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 IPCC SRES A1/ A2 / B1 / B2 2050 scenarios. Yield improvements up to 1.3-1.5 x optimal yield 

in 2000. Use of ‘rest land’ limited to ~20% in all scenarios. 

 

(36) 

WEA-00 

276-446 1280 276-446 

[8-5-15] 

  ns 

 Simple inventory estimate. Includes traditional biomass 

(37) 

Wolf-03 

(scenario-1)   

360 5000 360 

[4] 

 Inc. ~9 

 2050 scenario. Vegetarian diet and ‘ best achievable  food crops yields’ with low external inputs  

(fertilizer) OR Affluent diet and best achievable  food crops yields with high external inputs.   

Low energy crop yield scenarios results in to large scale deforestation as agriculture is extended 

onto forest areas and grassland 

(37) 

Wolf-03 e 

(scenario-2)   

295/162 2250 295/162 

[7.3 / 4] 

 Exc. ~9 

 

 2050 scenario with high/low  inputs to energy crop production. Affluent diet. Best achievable 

food crop yields with high external inputs.  

Abbreviations – EC: energy crops; AR: Agricultural residues; FR forestry residues; F: forestry; W: wastes; SRC: 

short rotation coppice;  ns: not specified; Inc.: included; Exc.: excluded 

Descriptions – adjectives used to describe scenarios and land classifications (e.g. ‘abandoned land’, ‘rest land’, etc.) 

are those reported in each individual study and may not be directly comparable between studies by different authors. 
a Rest land includes: savannah, extensive grassland, and shrubland. The proportion of this area used for energy 

crops is not entirely clear, but appears to be 1150Mha (50% of total area) in the A1 scenario and 230Mha (10% of 

total area) in the B1  
b Yields are calculated in the IMAGE model according to land class and area, the figure shown here is the global 

average 
c This figure is not stated explicitly in the paper but is the global average figure from the quoted reference: 

(Bruinsma2002) 
d As primary energy 
e Strictly speaking these data points fits within the 100-300EJ band, but the assumptions – particularly that food 

crop yield increases release agricultural land for energy crops means that it has more in common with the estimates 

in the 300-600EJ band. 

 

 

Table S4: Global biomass potential estimates, >600EJ 

Reference 

Lead 

author-year 

Total 

Potential 

Energy crops Residues (EJ) Forestry Population 

  AR FR W   

EJ Mha EJ 

[odt.ha-1.yr-1] 

EJ EJ EJ EJ billion 

(28) 

Hookwijk-03 

(scenario-2)   

1130 2600 

agricultural 

land 

 

580 

degraded 

land 

988 [20] 

agricultural land 

 

 

110[10] 

degraded land 

10 10 12 0 8.7 

 

 2050 scenario. ‘High External Input’ farming.  Moderate meat diet. Best technical production 

means with only limit being water availability. Safety factor of two on the land required for food. 

Comparatively high yield assumptions for energy crops. Assumes very high food  crop yields – 

double world average 

(37) 

Wolf-03 

648 5000 

 

648 

[7.3] 

   Inc. 7.7 
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(scenario-3)   

 2050 scenario. High input system using all available resources, technologies and management. 

Largely vegetarian diet requiring ~30% of land required for affluent diet. Safety factor of two on 

the land required for food. Moderate energy crop yield but still requiring fertilisation. Large scale 

deforestation as agriculture is extended onto forest areas and grassland.  

(35) 

Smeets-07 

1548 3700 

surplus 

pasture 

 

284 

wood 

plantation 

1272 [18] 

surplus pasture 

66 

net 

8 22 180 net 8.8 

 

 

 2050 scenario. Estimate exceeds current terrestrial, above-ground NPP. No safety margin on land 

use for food.  Very high intensity farming with ‘landless’ (industrialised) animal production. 

High feed conversion yield from vegetation to animal mass. All available food crop production 

technology and irrigation included where possible. Crop yields increased 4.6x by 2050. Food 

consumption per capita is 1.2x 1998 value. Assumes total  global annual forest growth increment 

is harvested where accessible. Study illustrates a hypothetical scenario where all model 

parameters are set at the maximum conceivable level. 
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 IPCC A1-2050 /A1-2100 scenarios. Food crop yields increase up to 82% of optimal productivity 

for each land type by 2050 (increasing to 89% of optimal productivity by2100).  High meat diet. 

Implicit requirement for high technology and  high fertiliser use. Energy crop yields improve 

1.6%pa up to maximum 1.5x 1995 level (i.e. yield gap closes plus technical advances). Massive 

land use change: ~50% of “rest land” used for energy crops. Study illustrates sensitivity of results 

to compounding yield projections for long periods. 
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 IPCC B1-2100 scenario. Food crop yields increase up to 82% of optimal productivity for each 

land type by 2050 (89% by2100).  Implicit requirement for high technology and  high fertiliser 

use. Low meat diet. Energy crop yields improve 1.6%pa up to maximum 1.3x 1995 level. ~10% 

of  ‘restland’ used for energy crops. 

Abbreviations – EC: energy crops; AR: Agricultural residues; FR forestry residues; F: forestry; W: wastes; SRC: 

short rotation coppice;  ns: not specified; Inc.: included; Exc.: excluded 

Descriptions – adjectives used to describe scenarios and land classifications (e.g. ‘abandoned land’, ‘rest land’, etc.) 

are those reported in each individual study and may not be directly comparable between studies by different authors. 

a Rest land includes: savannah, extensive grassland, and shrubland. The proportion of this area used for energy 

crops is not entirely clear, but appears to be 1150Mha (50% of total area) in the A1 scenario and 230Mha (10% of 

total area) in the B1 scenario.  
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