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Abstract— A novel approach to quantify the uncertainty 
associated with any aircraft trajectory prediction based on the 
application of the Polynomial Chaos (PC) theory is presented. The 
proposed method relies on univariate polynomial descriptions of 
the uncertainty sources affecting the trajectory prediction process. 
Those descriptions are used to build the multivariate polynomial 
expansions that represent the variability of the aircraft state 
variables along the predicted trajectory. A case study compares 
the results obtained by a classical Monte Carlo approach with 
those generated by applying the so-called arbitrary Polynomial 
Chaos Expansions (aPCE). The results provided herein lead to 
conclude that this new methodology can be used to accurately 
quantify trajectory prediction uncertainty with a very low 
computational effort, enabling the capability of computing the 
uncertainty of the individual trajectories of a traffic sample of 
thousands flights within very short time intervals. 

Keywords— aircraft trajectory prediction; uncertainty 
quantification; polynomial chaos; generalized PCE; arbitrary PCE. 

I. INTRODUCTION (HEADING 1)
The concept of Air Traffic Management (ATM) gathers all 

activities related to provide the means and services to ensure safe 
and ordered air traffic operations [1]. The ATM capabilities 
include the Air Traffic Control (ATC) functionality which 
represents all functions aiming at maintaining the separation 
among aircraft, and among aircraft and ground obstacles, to 
avoid the risk of collisions at any time and circumstances. This 
safety objective must also enable an efficient air traffic flow 
while meeting as much as possible the user preferences. The Air 
Traffic Flow Management (ATFM) functionalities represent the 
processes and procedures required to regulate the flow of aircraft 
minimizing potential airspace congestions without jeopardizing 
safety. Aircraft trajectory prediction is the enabler that provides 
the core means to perform all ATM functionalities.  

A trajectory can be defined as the time evolution of the 
aircraft state, represented by the position of the aircraft’s center 
of mass with respect to a known system of reference (e.g., 
Geodetic Reference System [GRS]), and other relevant state 

variables such as airspeeds or aircraft mass. A trajectory 
prediction is considered as a forecast of the aircraft trajectory 
represented by a chronologically ordered sequence of aircraft 
states. To compute a prediction, it is required to define a 
mathematical model of the aircraft motion. In ATM, it is 
common to adopt the point-mass model approach, which 
reduces the problem to a 3 degrees-of-freedom (DOF) problem 
[2]. This model-based approach required from additional 
information to return a trajectory prediction: (a) weather 
information that includes wind forecast and atmosphere 
conditions (temperature and pressure); (b) aircraft performance 
data that provide information regarding the drag, thrust and fuel 
consumption for the considered aircraft at the specified flight 
conditions; and (c) aircraft intent information that represents the 
command and control inputs issued by the pilot or the Flight 
Management System (FMS) to steer the aircraft according to the 
filed Flight Plan (FP).   

The assumptions behind of such kind of model-based 
trajectory prediction approaches, and the stochastic nature of the 
phenomena involved in the prediction process, bring deviations 
between the actual and predicted trajectories. The formers, 
denoted as epistemic uncertainty [3], represent the imperfections 
or lack of knowledge regarding the considered aircraft motion 
model. The latters, denoted as variability uncertainty, represent 
the propagation of the inputs randomness into the outputs. Thus, 
although high fidelity models can be used constraining the 
epistemic uncertainty, the intrinsic stochastic behavior of the 
model inputs leads to unavoidable prediction uncertainties, 
represented by the time evolution of the aircraft state variable 
randomness.   

Nowadays, the ATM is shifting worldwide from the current 
surveillance-based airspace-driven paradigm to the new 
trajectory-based network-centric one [4][5][6], in which 
advanced Decision Support Tools (DST) will help humans along 
the Collaborative Decision Making (CDM) process. In this new 
environment, it is expected that advanced ATM applications will 
exploit trajectory prediction uncertainty to provide improved 
and more reliable indications that help to increase the capacity 
and efficiency of the system. 
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and innovation programme. 



This paper proposes an innovative mathematical method to 
quantify trajectory prediction uncertainty based on a 
multivariate polynomial description of prediction outputs that 
relies on univariate polynomial descriptions of the considered 
sources of uncertainty. This formulation will provide a formal 
representation of the prediction uncertainties that can be used 
afterwards by ATM automation tools.  

The remaining of this paper is organized as follows. Section 
II provides insights into the trajectory prediction process, 
introducing the concept of prediction accuracy and giving 
details about some techniques used in the literature to quantify 
prediction uncertainty. Section III exposes the mathematical 
formulation of the PC theory with special attention to the data 
driven process defined by the aPCE approach. Section IV 
describes the application of the PC theory to the problem of 
quantifying the aircraft trajectory prediction uncertainty. Section 
V proposes a case study to assess the suitability of the proposed 
methodology compared to a classical Monte Carlo approach. 
Finally, Section VI outlines the main remarks of this research 
and future steps. 

II. AIRCRAFT TRAJECTORY PREDICTION 

A. Introduction  
The cornerstone of all ATM functionalities is the capability 

of accurately predict aircraft trajectories so that DST can provide 
reliable indications about how to manage the traffic flow 
efficiently while preserving safety. This capability will become 
especially relevant in the future Trajectory Based Operations 
(TBO) environment, in which trajectory information will be 
shared among a variety of automation systems in a timely, 
robust, and reliable manner. 

Despite the fact that not all Trajectory Predictors (TP) are 
designed and implemented similarly and do not make use of the 
same data sources, for ATM interoperability purposes, the 
FAA/EUROCONTROL Action Plan 16 proposed a generic TP 
model , including a set of common architectural concepts upon 
which TBO capabilities could be developed [7]. The core of the 
models is the Trajectory Prediction Process (TPP), which 
encompasses the process of obtaining a computed trajectory 
(CT) by means of a set of methods and algorithms implemented 
by the Trajectory Computation Engine (TCE). The input to the 
TPP is the Flight Script (FS), which can be defined as a blueprint 
of the planned trajectory compliant with the applicable ATC 
restrictions and, as much as possible, with the user preferences. 
The TE requires information about weather and aircraft 
performance to properly instantiate the mathematical 
representation of the Aircraft Motion Model (AMM). 

B. Trajectory Prediction Accuracy  
Prediction accuracy can be defined as a measurement of the 

discrepancy between the actual and predicted aircraft states 
along the considered time interval. For a coherent accuracy 
assessment, it is required to define the data sampling at which 
the actual and predicted trajectories are to be compared, and the 
metrics to be applied to measure such accuracy [8]. The data 
sampling basically ensures that the variables to be compared 
represent the aircraft state at a given trajectory event (e.g., end 

of the climb phase at the Top of Climb [TOC]) or at any other 
specified instant.  It essentially represents the temporal accuracy 
and indicates the time difference between the predicted and 
actual instants at which the trajectory event is achieved (e.g., 
time at which the aircraft reached the TOC). The metrics to be 
applied represent spatial accuracy and capture the vertical and 
horizontal distances between the predicted and actual aircraft 
positions at a fix time. 

Typical metrics are the cross- and along-track deviations that 
can be measured with respect to the closest flight segment or a 
time-matched segment [9], or the estimated time of arrival 
(ETA) deviation at a given waypoint [10]. 

C. Quantification of Trajectory Prediction Uncertainty 
Trajectory prediction uncertainty can be described as the 

estimated amount, or percentage, by which a predicted trajectory 
may potentially differ from the actual trajectory. Dissimilar to 
trajectory accuracy, trajectory uncertainty cannot be obtained by 
comparing predictions with actual trajectories because it 
represents an a priori estimation of such probable deviations 
based on the knowledge and quantification of the sources of 
uncertainty impacting the prediction. The process of identifying, 
characterizing, quantifying, tracing and managing the 
uncertainty in simulated and real systems is known as 
Uncertainty Quantification (UQ). UQ deals with the assessment 
of system input/output response behavior (forward uncertainty 
propagation) and with the estimation of unknown system 
parameters (i.e., parameter calibration) by computing the bias 
correction comparing simulated outputs with real experiments 
(inverse uncertainty quantification). 

In trajectory prediction, the common approach is the forward 
uncertainty propagation, in which the effect of prediction inputs 
variability is assessed by computing a set of predictions and a 
series of statistics based on them. Covariance analyses provide 
the standard deviation of the distribution that characterizes the 
variation between the nominal and stochastic predictions as a 
function of the statistical properties of the inputs. The covariance 
of the parametric and time-varying disturbances, and the 
autocorrelation of time-varying ones, can be used to build the 
covariance matrix of any state variable throughout the trajectory 
prediction [11]. 

III. POLYNOMIAL CHAOS THEORY 

A. Introduction 
A Polynomial Chaos Expansion (PCE) is a mechanism to 

represent a stochastic random variable z by means of a basis of 
polynomials of another random variable  [12].   

~ f( ) (1) 

Equation (1) is read as “z is distributed as f( )”, meaning that 
the probabilistic distribution that represents the stochastic 
behavior of z is the same as that representing f( ). Given 
distributions for z and , there is no a unique function f that 
satisfies (1). Unlike, there is a variety of functions that could 
build the random variable z form the selected germ . 
Furthermore, additional representations are plausible using 
different germs rather than .  



PCE is an approach that expands function f in a polynomial 
series. The polynomial basis ( ) is a set of orthogonal 
polynomials with respect to the probability density (PDF) 
function ( ) of the germ ,  

 (2) 

where ij is the Kronecker delta. 

A very important feature of such polynomial basis is that all 
polynomials of order i 1 have zero mean due to their 
orthogonality with , and that the covariance between two 
polynomials of different order is zero (uncorrelated 
polynomials) because of ; i  j. Thus, it is possible 
to build an orthonormal basis of polynomials by assuming 

 i.  

Making use of the orthonormal basis of polynomials, the 
relationship stated in (1) can be formulated as follows: 

 (3) 

Polynomial Chaos (PC) theory based on Wiener-Askey 
theory of homogeneous chaos [13], defines the i-th mode as the 
combination of ai (mode strength) and  (mode function). 

Since there are many possible functions f that may satisfy 
(1), there a multiple PCEs for a given z using a determined germ 
 that will only differ in the mode strengths. 

The exposed formulation is also valid for representing 
stochastic random variables in which  is a vector comprising N 
multiple germs { 1, 2, … , N}. In this case, the stochastic 
variable z will be represented by the following expansion: 

 (4) 

Where  is a tensor product of the univariate polynomial 
bases regarding each j. 

 (5) 

 (6) 

The multivariate index represents the combinatory of all 
possible products of  (polynomial of order k belonging to the 
polynomial basis of germ j), where p is the number of expansion 
terms, and depends on the number of germs N and the order of 
the expansion d (order at which the expansion is truncated) as 
follows: 

 (7) 

The index  is a p x N matrix that represents the 
corresponding expansion degree for germ j in expansion term i. 
For the sake of clarity, following Table I illustrates the matrix 

 for the case of N = 2, d = 2 and p = 6. 

The unknown coefficients ai (univariate) or bi (multivariate) 
of the PCE can be obtained by projecting each variable on the 
polynomial basis (Galerkin projection method [14]), or by 
estimating them form a limited number of simulations applying 
regression techniques (probabilistic collocation method [15]). 

TABLE I.  MATRIX OF INDEXES  

    =  

0 0 1 0  

0 1 2 1 

1 0 3 1 

1 1 4 2 

2 0 5 2 

0 2 6 2 

 

The statistical moments that characterize the behavior of the 
random variable z can be analytically obtained from the 
computed coefficients ai (univariate) and bi (multivariate) of the 
corresponding PCEs as shown in following Table II. 

TABLE II.  MEAN AND VARIANCE OF THE RANDOM VARIABLE Z 

 Univariate PCE Multivariate PCE 

Mean   

Variance   

B. Generalized PCE 
Originally, PC theory was applied only to Gaussian 

stochastic processes, although rapidly its applicability was 
extended to more generic stochastic problems. The generalized 
PC (gPC) approach [16] considers that both inputs and outputs 
can be represented by known random distributions. For those 
other non-normal distributions, basis of polynomials that allow 
the identification of the corresponding PCE have already been 
identified.  Table III shows the relationship between germs’ 
distributions and their associated orthogonal polynomials of the 
Askey scheme.  

This approach considers that the germs { 1, 2, … , N} are 
independent, identically distributed and can be represented by 
one of the distributions presented Table III. 

 
  



TABLE III.  GERMS’ DISTRIBUTIONS AND RELATED POLYNOMIAL BASIS 

Germ  Polynomial Basis 
Gaussian Hermite 
Gamma Laguerre 

Beta Jacobi 
Uniform Legendre 
Poisson Charlier 

Binomial Krawtchouk 
Negative binomial Meixner 
Hypergeometric Hahn 

C. Arbitrary PCE 
The gPC method requires the exact knowledge of the germs, 

which is not the case in most real systems. To manage 
incomplete or/and implicit distributions only defined by their 
statistical moments, the use of Gram-Schmidt orthogonalisation 
led to the definition of the arbitrary PC (aPC) method [17]. 

In aPC, the exact probability description of the germs is not 
strictly necessary. For a finite-order expansion, only a finite 
number of statistical moments is required. This method enables 
data-driven applications of the PC theory, in which data samples 
with limited size allow the inference of the polynomial 
description of the system outputs as a result of the impact of 
uncertain inputs described by arbitrary distributions (e.g., 
discrete, continuous, or discretized continuous). 

This approach requires from the construction of the 
polynomial basis representing the stochastic behavior of each 
germ i by means of the statistical moments calculated from 
data. To obtain such basis, orthogonality needs to be imposed. 
In addition, the coefficient of the term of highest order is set to 
1 for of all polynomials of the basis. Considering that, the 
expansion of the polynomial of order k belonging to the 
polynomial basis of germ i can be expressed as 

 (8) 

 = 1 (9) 

The zero-order polynomial can be immediately obtained: 

 (10)

The basis is successively constructed for all remaining 
polynomials of the i basis up to the selected order d by solving 
the following system of equations: 

 

 

 

 

(11) 

 

 

 = 1 

This system of equation can be rearranged if the first 
equation is introduced into the second, the first and the second 
into the third and so on. Considering the condition defined by 
(9), the system of equations turns into: 

 

 

 

 

 = 1 

(12) 

The m-th statistical moment of the germ i  can be defined as: 

 (13)

Thus, the system of equations posed in (12) turns into: 

 

 

 

 

 = 1 

(14) 

or alternatively written in a matrix form as: 

 (15) 

The coefficients  of each of the polynomials belonging 
to the basis of the germ i  can be computed if and only if all 
moments of the i distribution  up to order 2k-1 are finite. This 
ensures that the matrix in (15) is not singular and, therefore, the 
linear system is solvable. Hence, only the capability of 
computing the 2k-1 moments of the i distribution is required to 



apply aPC, avoiding the need of having an explicit description 
of the probability density function associated to the i 
distribution [18]. 

IV. TRAJECTORY PREDICTION UQ USING PCE 

A. Kinematic Aircraft Motion Model 
The problem of predicting an aircraft trajectory requires the 

formal definition of an AMM. Assuming a point-mass model, 
the mathematical representation of the AMM, formed by the 
navigation, forces, kinematics and mass equations, can be 
expressed using the space-state formulation as: 

= f( ,u,E, ,t) (16) 

Where X is the state vector composed by the true airspeed 
(vTAS), aerodynamic yaw angle ( TAS), aerodynamic path angle 
( TAS), aircraft mass (m), longitude ( ), latitude ( ) and geodetic 
altitude (h); u is the control vector formed by the throttle 
coefficient ( T), the aerodynamic bank angle ( TAS) and the lift 
(L); E is the environmental model vector including the local 
temperature ( ) and pressure ( ) ratios, gravity model (g) and 
wind components (w);  is the configuration vector defined by 
the landing gear ( LG), high lift devices ( HL) and speed breaks 
( SB) settings; t is the time; and is the derivative of X respect 
to the time t. Given the initial conditions, the control parameters 
u, the environmental model E and the configuration parameters 

, it is possible to integrate the AMM to obtain a trajectory X. 

The inverse formulation of this problem leads to a 
constrained mechanical model. This approach transforms the 
Ordinary Differential Equations (ODE) system stated in (16) 
into a Differential Algebraic Equations (DAE) system by the 
definitions of three motion constraints (gi).  

gi( ,u,E, ,t) = 0  
i={1,2,3} 

(17) 

The motion constraints are the generalization of any possible 
mathematical input that the AMM could accept. However, not 
all possible sets of three motion constraints determine a well-
posed system of equations. The Aircraft Intent Description 
Language (AIDL) [19] establishes the rules that ensures the 
formulation of a solvable system with a unique solution. In 
addition, the AIDL requires the definition of three configuration 
constraints that determine the aerodynamic configuration of the 
aircraft at each flight condition (i.e., the position of the landing 
gear, high lift devices and speed breaks). 

The set of constraints that enable the computation of a 
trajectory prediction formally describe the Aircraft Intent (AI) 
instance associated to such trajectory. Whereas, the AI is defined 
as an unambiguous description of how the aircraft will be guided 
during the time interval for which a predicted trajectory is 
computed, defining a unique trajectory.  

A complete trajectory can thus be described by a 
chronologically ordered sequence of Operations (OP) that 
represent the AI segments between two consecutive triggers 
(i.e., trajectory events). Each OP represents a solvable DAE 
system, while the complete trajectory can be formulated as a 

sequential succession of OPs (i.e., DAE systems). The process 
of solving such a sequence of DAE systems is known as 
Sequential DAEs Resolution (SDR) [20]. 

B. Sources of prediction uncertainty 
According to the mathematical formation of the AMM 

exposed in (16), the following architecture depicted in Fig. 1 
shows the different datasets required to compute a predicted 
trajectory. 

The TCE implements the algorithms required to integrate the 
AMM, while the AI sets the motion and configuration 
constraints required to properly pose a solvable DAE system. 
The Initial Conditions (IC) are the values of the aircraft state 
variables at the first instant of the trajectory from which the 
prediction will be computed. The Trajectory Prediction 
Infrastructure (TCI) also includes an aircraft performance model 
(APM) and an Earth and weather model (EWM). The former 
provides information about the drag, thrust and fuel 
consumption of the selected aircraft, while the latter describes 
the Earth surface, gravity, atmosphere conditions and wind field. 

 

 

Fig. 1. Trajectory Prediction Infrastructure.  

The main advantage of using the proposed approach is the 
capability to decouple the sources of uncertainty, enabling 
separate and uncorrelated analyses of their individual 
influences. According to this formulation, the uncertainty 
sources affecting the process of predicting an aircraft trajectory 
can be classified as: 

• IC uncertainties, which consider the deviations between 
the actual and assumed initial values of the aircraft state 
variables. 

• AMM uncertainties, which represent the differences 
between the real aircraft behavior and the mathematical 
system of equations that models it. 

• APM uncertainties, which collect all inaccuracies of the 
models used to represent the actual aircraft 
performance. 

• EWM uncertainties, which include the errors introduced 
by the considered earth model with respect to the actual 
Earth surface and gravity, and also, the intrinsic 
stochasticity associated to any weather forecast. 

• AI uncertainties, which identify the variations on how 
the aircraft is finally operated compared to the original 
plan. The AI can be described by a chronologically 
ordered sequence of operations. Each operation 
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represents a set of command and control actions that 
determine a unique aircraft behavior during a certain 
time interval defined between to trajectory events (e.g., 
between a transition altitude and the cruise altitude). 
Differences between planned and executed Operations 
and/or between planned and actual executions intervals 
shape the AI uncertainties. These uncertainties also 
account for differences between the pilot/FMS 
behavioral models used for trajectory prediction and the 
actual guidance strategy applied by that pilot/FMS. 

Table IV explicitly summarizes all possible sources of 
uncertainty.  

TABLE IV.  IDENTIFICATION OF SOURCES OF UNCERTAINTY  

Uncertainty Source 
[Classification] 

Description 

Flight Technical [AI] Errors produced by the onboard 
command and control system 

Initial conditions [IC] Initial values of the aircraft state 
variables 

Aircraft Motion Modelling   

 Modelling intrinsic 
[AMM] 

Errors introduced by the 
assumptions considered in the 
formulation of the AMM 

 Solvability [AMM] 
Definition of the constraints 
selected for obtaining solvable 
DAE systems  

Aircraft Performance Modelling 
[APM]  

Differences between actual and 
modelled aircraft performance 

Earth model   

 Earth surface model  
[EWM] 

Differences between actual and 
modelled Earth surface 

 Gravitational model  
[EWM] 

Differences between actual and 
modelled gravitational force 

Weather Forecast   

 Atmosphere model [EWM] Differences between actual and 
forecasted atmosphere conditions 

  Altitude description 
[AI] 

Influence of the atmosphere 
conditions on the definition of the 
pressure altitude 

  Airspeed description 
[AI] 

Influence of the atmosphere 
conditions on the definition of the 
airspeed 

 Wind model uncertainties 
[EWM] 

Differences between actual and 
forecasted wind field 

Aircraft Intent Description   

 Continuity conditions [AI] 
Description of the initial aircraft 
state at any of the consecutive AI 
operations in the sequence 

 Instruction effect [AI] 

Mathematical definition of the 
applicable constraints at each 
individual AI operation, which lead 
to solvable DAE systems 

 Trigger [AI] 

Difference between the actual and 
modelled trigger that defines the 
end of an AI operation and the 
beginning of the next one in the 
sequence 

 

For the remaining of this paper the following sources will 
not be modelled and, thus, will be discarded for the research 
presented hereafter: 

• Flight Technical Uncertainties. These are discrepancies 
with respect to the predicted trajectory due to errors in 
the flight control system, i.e., they represent the lack of 
adherence to the aircraft track. It can be assumed that 
the long-term effect on a predicted trajectory is 
negligible compared with the influence of other sources 
of uncertainties. If this effect becomes noticeable, then 
the aircraft is not being operated according to its 
nominal capabilities and, therefore, the assumptions 
considered in the definition of the AMM are not valid, 
leading to predictions incoherent with the actual aircraft 
capabilities. 

• Earth surface model. Regardless if the Earth surface is 
modelled with simpler (e.g., flat or round), or more 
sophisticated (e.g., ellipsoidal WGS84) models, the 
deviations with the actual Earth surface does not show 
a stochastic behavior and, thus, its influence on 
prediction uncertainty can be discarded. 

• Gravitational model. Common gravitational models 
used by most TPs provide enough accuracy so that the 
error introduced is smaller in comparison with those 
produced by other models. In addition, its nature is non-
stochastic as in the case of the Earth surface model. 
Hence, this bias introduced in the prediction process can 
be not considered. 

The proposed uncertainty analysis relies on the existence of 
a valid AI instance representing the intended trajectory (there is 
a univocal relationship between an AI instance and a predicted 
trajectory). The process of generating the AI instance itself is 
affected by other different sources of uncertainty (e.g., user 
preferences) rather than those shown in Table IV. It has been 
assumed that the identified uncertainty sources affecting the AI 
capture such AI generation uncertainty. 

C. UQ based on a Non-intrusive PC approach 
Once the trajectory prediction model under study is 

determined, and the sources of uncertainty are identified, it is 
possible to assess how uncertainty propagates into the outputs 
by applying the PC theory. 

The process aims at obtaining the mode strengths bi of the 
multivariate expansions that represent the prediction outcomes.  
There are basically two approaches [21] that can be followed: 

• Intrusive approach, which proposes to substitute the 
inputs to the model by the related univariate PCE, and 
solve the system of equations to obtain the multivariate 
PCE representing the outputs. Galerkin projection takes 
advantage of the orthogonality of the polynomial basis 

to define a system of equations that returns bi. The 
main drawbacks of this solution are: (a) an explicit 
mathematical representation of the model is a must; (b) 
the system of equations to be solved is of higher 
complexity than the original one; (c) a modification of 
the original solver is required to obtain the solution; (d) 



it is usually tailored to a specific model and its 
implementation cannot be extended to other models; 
and (e) if additional germs are to be considered, a 
reformulation of the system of equations is required. 

• Non-intrusive approach, which treats the model as a 
black-box. Inputs are sampled to obtain the set of 
corresponding outputs from which the mode strengths 
bi can be obtained by regression methods. Main 
advantages of this solution are: (a) an explicit 
representation of the model is not a must; (b) mode 
strengths are easily obtained; (c) any modification of the 
multivariate PCE can be straightforward assessed; (d) it 
does not imply any modification of the original 
definition of the model specification; and (e) it can be 
applicable to different models by just computing the 
corresponding outputs of the selected sampling of 
inputs. 

Based on the drawbacks of the intrusive approaches and the 
advantages of non-intrusive ones, the research presented in this 
paper follows the so-called non-intrusive Probabilistic 
Collocation Method (PCM) [22]. The PCM establishes at which 
collocation points {( 1,1 ,…, N,1), …, ( 1,q ,…, N,q)} the model 
needs to be evaluated to obtain the intentioned set of outputs that 
enable the computation of the mode strengths of the PCE. The 
collocation points related to the germ i are obtained as the roots 
of the polynomial  of next higher order than the order 
of the polynomial at which the PCE is to be truncated. In 
the case of multivariate problems with N independent variables, 
the number of collocation points reaches up to q = (d+1)N 
corresponding to the N combinations of the (d+1) roots of the 
univariate polynomial expansions.  

Evaluating the model at those computed collocation points, 
the following system of linear equations returns the mode 
strengths by applying regression techniques (e.g., least square 
fitting). 

 

 

 
(18) 

The number of mode strengths to be computed is p as defined 
by (7). Thus, q can be reduced up to p collocation points. Any 
subset of p elements selected from the set of q leads to the 
definition of a solvable linear system of equations. However, 
different subsets will return different estimates of the mode 
strengths bi. This can be overcome by selecting the p from the 
most probable areas of the probability distributions that describe 
the germs { 1, …, N}.  

The following section exemplifies how this methodology 
can be applied to a trajectory prediction problem through a case 
study. 

V. CASE STUDY 

A. Description of trajectory prediction inputs 
1) Aircraft performance model. The selected aircraft type 

will be a Boeing 737-800 equipped with CFM56-7B26/27 
engines developed by CFMI, joint-owned company of Safran 
Aircraft Engines and GE Aviation. The B738W26 dataset 
included in the release 4.1 of BADA (Base of Aircraft Data) 
[23] provides the required performance models for this aircraft 
type. 

2) Weather model. The selected day of operation is 2016 
February 14.  Weather forecasts for such date downloaded from 
the National Oceanic and Atmospheric Administration 
(NOAA) website will be used as a representation of the weather 
conditions affecting the trajectory. 
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Fig. 2. AI instance & Trajectory Description  

3) Aircraft Intent description. Assuming that the trajectory 
to be predicted will be flown in clean configuration, it is only 
required to specify the motion constraints (i.e., the AIDL 
instructions along the lateral [horizontal plane] and the two 
longitudinal threads [vertical plane]). The lateral path is 
described by a geodesic between waypoints A and B that will 
be followed for 250km, a circular arc of radius (R = 10 km) 
around B up to capturing a bearing c of -4º respect to the 
magnetic North, and finally a geodesic defined by the end point 
of the circular arc and the waypoint C. The vertical profile is 
described by an initial climb at maximum climb (MCMB) 
engine rating and constant CAS0 up to the transition altitude at 
which the Mach cruise speed (Mc = 0.7) is reached. From this 
point the climb is performed at constant Mach speed until 
reaching the Top of Climb (TOC) at flight level FL350. This 
condition defines the beginning of the cruise phase, which is 
executed at a constant Mach number and FL. This phase ends 
at the Top of Descent (TOD), defined by a point 340km away 
from the beginning of the trajectory. Following the TOD, the 



aircraft initiates the descending phase at a constant Mach speed 
and low idle (LIDL) engine regime up to the transition altitude 
at which the descent is performed at constant CAS (CASd = 
260kn). The trajectory ends once the aircraft reaches 10,000ft 
of pressure altitude. Fig. 2 only shows the three motion profiles 
required to describe the considered trajectory out of the six 
required as by the AIDL grammar rules. The three remaining 
configuration profiles will not vary due to the trajectory will be 
predicted at clean configuration (i.e., landing gear and flaps 
retracted and no activation of speed breaks at any time). The 
depicted triggers define events on the trajectory (e.g., TOC @ 
FL360) that determine the sequence of OPs (i.e., DAE system 
as exposed above) representing the trajectory.   

4) Initial conditions. Considering the selected aircraft type 
and the AI description, the initial conditions that describe the 
first aircraft state, from which the trajectory is to be predicted, 
are included in following Table V. 

TABLE V.  INITIAL CONDITIONS 

t0 0 0 m0 CAS0 Hp0 

5:20 
GMT 9º N 58º E 70 ton 245 kt 3,000 ft 

 

B. Uncertainty sources characterization.  
The characterization of potential sources of uncertainty is 

itself quite complex. This process can provide more realistic 
representations by exploiting recorded flight data or surveillance 
data. However, since the focus of this research is on the 
mathematical formulation of the trajectory prediction UQ 
problem, the probabilistic density functions (PDFs) proposed 
hereafter have been considered as sufficiently representative of 
the inputs variability, although, they are not built upon real data. 

From all possible sources of uncertainty listed in Table IV, the 
following parameters have been selected, meaning that all 
remaining ones are not considered as contributors to the 
prediction uncertainty: 

• Initial conditions: initial time (t0) and initial aircraft 
mass (m0) 

• AI Description: cruise Mach speed (Mc), cruise Flight 
Level (FLc), capturing heading ( c), TOD location 
(FD2) and descending CAS (CASd). 

• Weather: forecast uncertainty parameter (Fup). In 
addition to the numerical weather predictions, NOAA 
includes, as a product, the associated standard 
deviations of the atmospheric variables at each grid 
point. They are computed by intentionally perturbing 
the initial atmosphere state and the mathematical 
models to assess the impact of stochastic effects on the 
forecast. Considering that initially all possible weather 
forecasts are a priori equi-probable, the variability of the 
atmospheric conditions can be represented by uniform 
distributions. Normalizing all distributions to a uniform 
distribution in the interval [-1,1], it is possible to model 

the weather uncertainty by a unique parameter Fup 
defined within such interval. 

• APM: independent coefficient of the drag polar model 
(d0) and independent coefficient of the non-idle fuel 
consumption model (f0i) as defined by the BADA 4.1 
specification. 

To exemplify the proposed UQ process, Table VI shows the 
three PDF types used to characterize the variability of the selected 
sources. Uniform distributions are used to characterize sources 
whose values are equi-probable within a range. Triangular 
distributions are used to represent also a variability within an 
interval, although unlike uniform distributions, in this case the 
mode (most likely value) is known. Finally, Gaussian 
distributions are used for those parameters assumed as normally 
distributed.   

TABLE VI.  PROBABILITY DISTRIBUTION THAT CHARACTERIZE THE 
UNCERTAINTY SOURCES 

Source of Uncertainty Probability Density 
Function 

t0 [sec]  a 

m0 [ton] b 

Mc [-]  

FLc [FL]  

c [deg]  

d2 [km]  

CASd [kn]  

Fup [-]  

d0·105 [-] c 

f0i [-]  
a. ( , ) - Gaussian distribution of mean  and standard deviation  

b. (a,b) - Uniform distribution between a and b 
c. (a,b) – Triangular distribution between a and b with mode a 

C. Monte Carlo benchmark 
Monte Carlo processes are a broad class of uncertainty 

propagation algorithms that rely on repeated random samplings to 
obtain numerical results. They are very easy to implement, 
although they are highly computationally demanding and time 
consuming. The accuracy of these methods respect to the actual 
system response improves with the inverse of the square root of 
the number of runs n (1/ ). Hence, to reduce the error between 
the simulated and actual system outcomes by a half, it is required 
to increase the number of runs by four. The Stochastic Trajectory 
Predictor (S-TP) [24] proposed by Navarro and Valls is an 
example of this type of approach. 

However, this approach is very useful to obtain an UQ 
benchmark to compare the outputs from the PC approach with. 
The computed mean values and associated standard deviations at 
the end of each AI operation are included in Table VII for the 
following list of state variables: elapsed time (t), flown distance 
(FD), aircraft mass (m), pressure altitude (Hp), ground speed 



(Vg), calibrated airspeed (CAS) and Mach Number (M). They 
have been obtained from a 3,000-run Monte Carlo simulation. 

TABLE VII.  MONTE CARLO BENCHMARK 

OP# 
t 

[sec] 

FD 

[km] 

m 

[ton] 

Hp 

[FL] 

Vg 

[kn] 

CAS 

[kn] 

M 

[-] 

1 
 665 110 68.87 328 383 245 0.695 
 27 5.4 0.84 6.0 5.7 0.0 9e-3 

2 
 739 124 68.79 350 384 233 0.695 
 25 5.0 0.84 4.8 5.5 4.0 9e-3 

3 
 1,379 250 68.42 350 383 233 0.695 
 15 0.0 0.84 4.8 5.5 4.0 9e-3 

4 
 1,555 285 68.31 350 413 233 0.695 
 17 0.1 0.84 4.8 5.5 4.0 9e-3 

5 
 1,819 340 68.16 350 408 233 0.695 
 30 5.0 0.84 4.8 5.4 4.0 9e-3 

6 
 2,024 383 68.14 301 408 260 0.695 
 58 9.4 0.84 8.2 5.8 3.0 9e-3 

7 
 3,273 598 67.93 100 283 260 0.470 
 38 7.1 0.84 0.0 4.2 3.0 5e-3 

 

D. aPC approach: numerical results 
The aPCE method, as exposed in Section III-B, only requires 

the computation of the statistical moments up to order 2k -1 
(being k the order of the polynomial expansion) of the PDFs 
shown in Table VI representing each individual source of 
uncertainty. 

According to (7), the number of mode strengths (p) will 
depend on the selected order of the PCE (d) and the number of 
uncertainty sources i (i.e., germs). In the proposed case study, 
the number of considered inputs N is 11, while d needs to be 
selected.  

To assess the accuracy of the proposed methodology with 
respect to the benchmark, polynomial expansions of order k = 
{1, 2, 3} have been evaluated. 

The relative RMS errors (i.e., difference between Monte 
Carlo and aPCE results referred to the Monte Carlo outputs) 
have been calculated defined by (19) for three selected 
expansion orders, where  represents the mean and standard 
deviation of the studied state variables at the 7 OPs that identify 
the AI segments between two consecutive trajectory events. 

 
(19) 

Following Table VIII show the numerical results for the 
three expansions under consideration. 

 

 

 

TABLE VIII.  RELATIVE RMS ERRORS 

 
tRMSE 

[%] 

FDRMSE 

[%] 

mRMSE 

[%] 

HpRMSE 

[%] 

VgRMSE 

[%] 

CASRMSE 

[%] 

MRMSE 

[%] 

aPCE-1 (k = 1) 
 5e-2 6e-2 6e-3 4e-3 5.6e-2 1.3e-2 1.3e-3 

 2.7 2.8 0.13 0.18 1.2 1.8 3.9e-2 

aPCE-2 ( k = 2) 
 7e-2 7e-2 7e-3 2.2e-3 3e-3 3.2e-3 1.3e-3 

 2.0 1.83 0.10 0.22 0.68 1.7 3.9e-2 

aPCE-3 (k = 3) 
 9e-2 9e-2 1.8e-2 2.2e-3 4.5e-3 3.2e-3 1.3e-3 
 2.0 1.57 7.4e-2 0.23 0.56 1.7 3.9e-2 
 

E. Discussion 
From the analysis of the relative RMS errors shown in 

previous Table VIII, it can be deducted that the mean values of 
the considered state variables computed using aPCE at the end 
of the aircraft intent operations matches perfectly those obtained 
from the Monte Carlo simulation. There are no meaningful 
differences between the 3 selected expansions, which return 
deviation lower than 0.1%. To illustrate how accurately the 
expansions of different orders match the Monte Carlos outputs, 
the following Table IX shows the mean values of the considered 
state variables at the end of the trajectory prediction. 

TABLE IX.  COMPARISON OF MEAN VALUES AT TRAJECTORY END 

 
t 

[sec] 

FD 

[km] 

m 

[ton] 

Hp 

[FL] 

Vg 

[kn] 

CAS 

[kn] 

M 

[-] 

MC 3,273 597.7 67.93 100 282.8 259.9 0.470 
aPCE-1 3,271 597.5 67.94 100 282.7 259.9 0.470 
aPCE-2 3,270 597 67.90 100 282.9 259.9 0.470 
aPCE-3 3,278 598.5 67.90 100 282.8 259.9 0.470 
 

The standard deviations computed from the aPCE, which 
can be considered as a measurement of the prediction 
uncertainty, show also a very high accuracy for all the 
expansions (lower than 3%). Next Table X includes the values 
of the computed standard deviations at the end of the trajectory 
prediction for the studied state variables. 

TABLE X.  COMPARISON OF STANDARD DEVIATIONS AT TRAJECTORY 
END 

 
t 

[sec] 

FD 

[km] 

m 

[ton] 

Hp 

[FL] 

Vg 

[kn] 

CAS 

[kn] 

M 

[-] 

MC 37.8 7.1 0.839 0 4.16 3.04 5e-3 
aPCE-1 38.7 7.14 0.841 0 4.19 3.04 5e-3

aPCE-2 39.3 7.32 0.837 0 4.11 3.04 5e-3

aPCE-3 39.5 7.2 0.855 0 4.12 3.04 5e-3

 

In addition to the accuracy of the expansions, the main 
advantage of the aPCE approach is the low computational 



requirements in terms of number of trajectory predictions (ntp) 
and execution interval (ei) compared to traditional Monte Carlo 
simulations. Following Table IX compares the number of Monte 
Carlo predictions and the associated computational effort with 
those values obtained from the selected polynomial chaos 
expansions. 

TABLE XI.  COMPARISON OF COMPUTATIONAL REQUIREMENTS 

 MC aPCE-1 aPCE-2 aPCE-3 

ntp 3,000 11 66 286 
ei [sec] 399 1.8 8.5 42.4 
 

The efficiency of the proposed aPCE approach grows as the 
order of the expansions decreases. However, regardless the 
selected order, the benefits and time savings with respect to the 
Monte Carlo simulations are obvious in all cases. 

According the exposed results, it can be concluded that the 
aPCE approach provides very accurate quantification of 
trajectory prediction uncertainties (represented by the mean and 
the standard deviation) for any of the aircraft state variables 
along the whole trajectory. In this particular use case, the best 
alternative would be to choose expansions of order 1 due to its 
high accuracy and very low computational requirements. 
However, this could be different depending on the number of 
sources of uncertainty and the probabilistic density functions 
that characterize them [25].  

Based on the definition of the proposed case study, the 
theoretical representation of inputs uncertainty and the accuracy 
results provided in Table VIII, it can be concluded that PC 
expansions of order 1 return extremely accurate representations 
of the prediction uncertainty with very low computational 
requirements. 

VI. REMARKS AND FUTURE STEPS 
The research presented herein proposes a novel approach to 

quantify the uncertainty associated to any aircraft trajectory 
prediction. This approach is based on the application of the PC 
theory to the trajectory prediction process. Once the sources of 
uncertainty are identified and characterized, it is possible to 
represent their stochasticity by means of orthonormal univariate 
polynomial expansions. From them, the proposed approach 
derives the multivariate expansions that represent the 
uncertainty of the aircraft state variables along the prediction.  

The numerical results suggest that it is possible to obtain 
very accurate representations of the prediction uncertainty with 
expansion of low order with significant computational savings 
compared to a 3,000-run Monte Carlo simulation (up to 200 
times faster in the case of using expansions of order 1). This 
method provides high accuracy computing both the mean and 
standard deviations of all aircraft state variables throughout a 
complete trajectory. 

The potential benefits that can be obtained from the 
application of an aPCE-based uncertainty quantification are 
manifold: 

• This solution can potentially be applied to any trajectory 
predictor without modifying its native implementation. 

• It is a fast and computationally efficient procedure, 
especially when compared with classical approaches 
like Monte Carlo. It can be considered as a pseudo-real 
time process taking into account typical look-ahead of 
the DST that rely on trajectory predictions.  

• It is a data-driven process, that is, analytical 
representations of the probability distributions 
characterizing the sources of uncertainty are not 
required. 

• It provides analytical descriptions of prediction 
uncertainties built upon polynomial expansions that can 
be easily processed by computer-based CDM processes.  

Next stages of this research will aim at exploiting actual 
flight data or surveillance data to characterize more realistically 
the sources of uncertainty.  
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