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Abstract 

A new wave of research recognizes a distinct subset of B regulatory cells 

(Breg) that maintain immune tolerance. Breg cells have been shown to exert 

immunoregulatory functions through the production of interleukin (IL)-10 and 

appear to play important roles in autoimmunity and in cancer. Despite the 

extensive body of evidence reinforcing the notion of B cells as potential 

regulatory cells, some controversy over the paucity of markers that can 

unequivocally identify Bregs still exists. To study the role of Breg in immune 

surveillance, I designed a comprehensive multi‐parameter panel of surface 

antibodies to define B-cell subsets in peripheral blood (PB) and cord blood 

(CB). The intracellular detection of IL-10 combined with flow cytometric 

phenotyping presented in my thesis demonstrate the presence of IL-10–

producing Bregs with Treg-independent immunosuppressive functions in both 

the IgM memory (CD19+IgM+CD27+) and transitional (CD19+CD24hiCD38hi) 

PB B-cell subsets in healthy donors. The regulatory function PB Bregs against 

CD4+T cells and CD56+NK cells required both cell-cell contact and IL-10 

production. Moreover, I demonstrate that Breg populations are expanded in 

the PB of AML patients and exert potent suppression of NK function mediated 

through 2B4-CD48 signaling. I further demonstrated the presence of IL-10-

producing B cells with Treg-independent immunosuppressive properties in CB 

with the ability to suppress allogeneic-CD4+T cells through IL-10, as well as 

cell-cell contact mediated mechanisms involving CTLA-4 and CD80/CD86. I 

found an early and robust recovery of IL-10+B cells post-CBT. High Breg 

frequencies in CB may attenuate T-cell responses and contribute to the lower 

rates of cGVHD.  

My findings have important clinical implications and suggest that Bregs may 

be exploited to treat immune-mediated diseases. Whereas, strategies to 

deplete Bregs for optimal anti-cancer immunotherapy may benefit antitumor 

activity in AML and other cancers, adoptive transfer of donor-derived Bregs 

post transplant may offer a potentially effective immunomodulatory therapy for 

the treatment of GVHD. 
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Chapter I. Introduction 

	  
I.1  Allogeneic Haematopoietic Stem cell Transplantation (AHSCT) 

Allogeneic haematopoietic stem cell transplantation (AHSCT) is considered 

an established curative option of effective adoptive cellular immunotherapy for 

the treatment of many haematological disorders (Barrett and Battiwala., 2010, 

Antin, 2002). In the ensuing years since the first successful allogeneic bone 

marrow transplantation in humans was performed (Gatti et al., 1968, Bach et 

al., 1968), an extensive body of evidence has highlighted AHSCT as an 

optional therapy for autoimmune conditions, metabolic disorders, severe 

immunodeficiencies and malignant and non-malignant diseases (Svenberg et 

al., 2009, Gyurkocza et al., 2011). AHSCT aims to improve heamatopoietic 

function through sustained engraftment, which is commonly monitored by 

chimerism, a valuable detection method for the most fatal causes of treatment 

failure in transplanted patients; GVHD outcome and graft failure or rejection 

(Svenberg et al., 2009). In contrast to autologous HSCT, allogeneic HSCT 

aims to implement induced tolerance through the transfer of a genetically 

different healthy immune complex (Svenberg et al., 2009). The increased use 

of modulated reduced-intensity conditioning (RIC) regimens to reduce acute 

toxicity and improve supportive care have widened the application of AHSCT 

to a broader spectrum of medical disorders and older patients who tend to 

have more aggressive disease (Barrett and Battiwala., 2010, Gyurkocza et al., 

2011). The benefits of AHSCT rely heavily on the immunological 

consequences of the graft versus tumor (GVT) effect or graft-versus-leukemia 

(GVL) effect and immunosuppressive features of the conditioning regimen on 

the recipient’s haematopoietic system (Pidala et al., 2011, Arnout et al., 
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2014). Current clinical strategies are exploiting T-lymphocyte-mediated GVT 

effects to improve the prospect of survival after AHSCT (Barrett and 

Battiwala., 2010). However, despite a reduction in non-relapse mortality rates 

following AHSCT witnessed in the last decade, acute and chronic graft-

versus-host disease (GVHD) and infections remain a major obstacle to 

success (Barrett and Battiwala., 2010, Pidala et al., 2011). These potentially 

fatal complications are a result of accompanying immunodeficiencies, 

toxicities of the preparative regimens and the organ damage induced by 

GVHD, leading to treatment-related mortality and morbidity associated with 

AHSCT (Barrett and Battiwala., 2010). Thus, the ultimate goal of AHSCT is to 

eradicate GVHD and augment GVL effect in transplant recipients. 

 
I.2  Cord Blood Transplantation  

Due to their less stringent requirement for human leukocyte antigen (HLA) 

matching, human cord blood (CB) is widely used as a source of hematopoietic 

stem cells (HSC) for many patients with haematological diseases who can be 

cured by AHSCT but lack a fully matched related or unrelated donor 

(Beaudette-Zlatanova et al., 2013, Komanduri et al., 2007, Stanevsky et al, 

2009). Approximately, 30% of patients who require an allograft through 

AHSCT will have an HLA-identical sibling donor, and despite over 20 million 

adult volunteers registered on the National Marrow Donor Program and 

affiliated registries, many in this group, especially patients of ethnic minorities, 

will lack a suitably matched unrelated donor (Barker et al., 2010, Ballen et al., 

2013). Hence, CBT has extended treatment options to patients that require 

AHSCT but are ineligible for this therapeutic approach.  
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In 1989, the first human related CBT was performed in France in a child with 

Fanconi Anemia (Gluckman et al., 1989). Almost 7 years later the first adult 

received an unrelated CBT (Laporte et al., 1996).  Since this pivotal approach, 

over 30,000 CBT have been performed in children and adults with subsequent 

international cord blood banks that have been founded with over 600,000 

units available for both related and unrelated CBT (Ballen et al., 2013). High 

rates of success have been reported with both related and unrelated CBT for 

several haematological diseases (malignant and non-malignant) in the 

pediatric setting as children require a lower cell dose than adults (Ballen et al., 

2013). Successively, with improved supportive care practices, use of double 

cord blood units with a greater focus on units with sufficient cell dose, use of 

non-myeloblative conditioning, clinical strategies aimed at augmenting 

engraftment and improved donor selection by HLA matching, CBT outcome in 

adults has progressed (Ballen et al., 2013, Komanduri et al., 2007).  Since 

cord blood has been reported to contain fewer nucleated cells/kg (by 1–2 

logs) than mobilized peripheral blood or bone marrow, most adult patients are 

given two mismatched cord blood units (matched at 4/6 HLA alleles), with the 

purpose of overcoming the limited cell dose recovered in a single cord blood 

unit, to overcome delayed engraftment (Barker and Wagner., 2003, 

Komanduri et al, 2007, Stanevsky et al., 2009, Newell et al., 2013). Further, 

the use of umbilical cord blood (UCB) in comparison to AHSCT results in a 

more rapid availability of grafts (cryopreserved CBU that have been banked), 

a broader and more extensive donor pool due to less stringent requirements 

for HLA-matching (especially for ethnic minorities) due to superior immune 

plasticity of CB grafts, low risk of infection via latent viral transmission and 
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lack of risk to donor (Ballen et al., 2013, Gluckman and Rocha, 2009). 

However, despite these advantages, studies have reported delayed 

haematopoietic immune reconstitution after CBT (Komanduri et al, 2007).   

Limited data exist on immune reconstitution in adult CBT recipients in the 

course of immune recovery during which infection is a leading cause of 

mortality (Komanduri et al., 2007). Previous evidence has reported delayed T 

cell recovery and prolonged T cell lymphopenia predominantly in adult CBT 

recipients and a compensatory expansion in B cells and natural killer (NK) 

cells (Klein et al., 2001, Komanduri et al., 2007, Beaudette-Zlatanova et al., 

2013). Additionally, late memory T cell skewing to the naïve compartment has 

been associated with thymopoietic failure in CBT patients (Komanduri et al., 

2007). Thus, development of clinical strategies to augment engraftment and 

the recovery of thymopoiesis may improve outcomes after CBT.   

Additionally, although an increased incidence of acute GVHD (aGVHD) after 

double-unit CBT (DUCBT) compared with single CBT has been described 

(Cutler et al., 2011, Ballen et al, 2007) a lower incidence and severity, of 

chronic extensive GVHD has been reported after CBT with compared with 

other stem cell sources, despite broader HLA disparity (Beaudette-Zlatanova 

et al., 2013, Komanduri et al., 2007, Stanevsky et al., 2009). Although the 

exact cause instrumental for this reduced alloreactivity is not well understood 

it has been associated with decreased numbers of the naive T cell repertoire 

in CBT recipients (Cohen and Madrigal., 1998, Komanduri et al., 2007). 

Notably, due to high numbers and exclusive properties of NK cells in cord 

blood graft the GVL effect has been described to be preserved after CBT 

(Dalle et al., 2005, Stanevsky et al., 2009). 
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Thus, a major goal in CBT would be the use of immune modulatory cells such 

as T regulatory cells and mesenchymal stromal cells in therapeutic 

approaches that have shown potential to control GVHD and preserve GVL 

effect by limiting donor T cells that possess the capacity to cause GVHD by 

reacting to alloantigens of the recipient (Tolar et al., 2009, Brunstein et al., 

2011, Parmar et al., 2014). Advances in immune suppressor cells offer high 

potential in safe and more efficacious treatment of hematological diseases 

treatable by CBT.  

 
 
I.3   Graft versus Host Disease (GVHD) 

I.3.1  The classification and manifestation of GVHD 

The limited understanding of GVHD hinders the clinical classification of the 

disease and hampers the development of therapeutic strategies to target 

GVHD (Pidala et al., 2011, Ferrara et al., 2009). 

The adoptive transfer of stem cells from the donor is governed by several 

factors that mediate donor selection including HLA-matching, ABO blood 

group, sex, age and CMV serostatus (Tay et al., 2012). Other factors such as 

killer immunoglobulin (KIR) immunogenetics and minor histocompatibility 

mismatch are being increasingly considered in donor selection and the 

outcome of AHSCT (Gratwohl, 2007, Dickinson and Charron, 2005). The 

success of stem cell transplantation is determined by engraftment and homing 

of donor stem cells to the bone marrow, combined with education of the donor 

immune cells to mediate tolerance (Blazer et al., 2012, Lynch et al., 2009). 

However, this effect can be counterbalanced by concurrent alloreactivity of 
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donor T lymphocytes against the host’s healthy tissues or organs (Blazer et 

al., 2012, Ferrara et al., 2009), giving rise to complications of GVHD.  

The development and severity of GVHD in transplant recipients is reliant on 

several factors including, age of recipient, heamatopoietic graft source, 

toxicity of the conditioning regimen and practices used for GVHD prophylaxis 

(Pidala et al., 2011). Traditionally, GVHD has been divided into 2 forms, acute 

and chronic, based on the time of its onset. Acute GVHD (aGVHD) has been 

described to occur within the first 100 days post transplant with strong 

inflammatory components, whereas chronic GVHD (cGVHD) occurs after the 

first 100 days post transplant and is associated with autoimmune and fibrotic 

mechanisms that are involved in its pathophysiology (Ferrara et al., 2009). 

However, discrepancies involved in an overlap syndrome of classification 

between the time of onset of acute and chronic GVHD have led to the 

National Institutes of Healthy consensus development project that has 

identified a classification criterion (Table I-1) for the diagnosis of GVHD 

(Filipovich et al., 2005, Shimabukuro-Vornhagen et al., 2009). The onset of 

aGVHD target regions including the liver (50% of recipients), skin (81% of 

recipients) and the gastrointestinal tract (54% of recipients) (Ferrara et al., 

2009). On the other hand, cGVHD targets specific organs including the skin, 

mouth, eyes, liver, genitalia and GI tract, which are commonly associated with 

autoimmune heamolysis and thrombocytopenia (Ferrara et al., 2009). In 

addition to risk of mortality, GVHD can further lead to organ dysfunction, 

impaired quality of life, augmented risk of infectious complications through 

prolonged periods of immunosuppressive therapy and intensified risk of 

mortality in the immunocompromised allogeneic recipient (Pidala et al., 2011, 
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Blazer et al., 2012). Despite, the harmful effects of GVHD in transplant 

recipients, beneficial effects of the alloimmune GVL effect have also been 

described. Previous studies have indicated that both GVL and GVHD can 

stem from alloimmune responses induced by discrepancies in minor 

histocompatibility antigens between HLA-matched AHSCT donors and 

recipients (Mutis et al., 2010). This implication was first deployed through DLI 

following AHSCT in the setting of relapsed leukaemia during the 1990’s (Kolb 

et al., 1995, Deol and Lum, 2010, Helg et al., 1998). Succeeding studies have 

thus demonstrated several leukaemia specific antigens considered to be 

targets for cytotoxic responses by T lymphocytes in GVL (Mutis and Goulmy, 

2002). 

 

Treatment   and prophylaxis of GVHD require the use of immunosuppressive 

agents such as corticosteroids, tacrolimus, mTOR inhibitors (rampamycin), 

calcineurin inhibitors and monoclonal antibodies targeting CD25 and TNFα, as 

a result of non-specificity (Blazer et al., 2012, Vogelsang, 2001, Abouelnasr et 

al., 2013, Rodriguez et al., 2007), all of which carry significant side-effects. 

Furthermore, studies using a number of targeted agents such as anti-CD20 

(Kim et al., 2010), bortezominb (Koreth et al., 2012) and cellular therapy 

approaches such as mesenchymal stem cells (MSC) are underway. However, 

as these strategies have not yet been approved by the FDA, the development 

of novel selective agents and immunosuppressive therapeutic strategies is 

required.  
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Table I-1: NIH consensus criteria for diagnosis of acute and chronic 
GVHD 
 

 
    Adopted from Filipovich et al., 2005 

 
 
 
 
I.3.2  The pathophysiology of GVHD 

Billingham described the triad of contributors to the development of GVHD: (i) 

the presence of functional immune cells in an allograft; (ii) disparity in the 

expression of tissue antigens between the recipient and donor; (iii) the 

incapability of the recipient to reject the donor cells (Billingham et al., 1966). 

Thus, immunocompromised transplant patients are at a high risk of 

developing GVHD.  

Alloreactive reactions between donor-derived CD4+ and CD8+ T lymphocytes 

have typically been considered to be the chief effector cells arbitrating GVHD 

pathogenesis (Shimabukuro-Vornhagen et al., 2009, Rezvani et al., 2006). 

Clinical practices exemplify this paradigm by use of allografts depleted of T 

cells and T cell directed immunosuppression for the treatment of GVHD, 

which in some cases has failed to achieve success (Khaled et al., 2009). Host 

cells can also contribute to the development and pathogenesis of GVHD by 

Category Time of 
symptoms after 
SCT or DLI (days) 

Presence 
of aGVHD 
features 

Presence of 
cGVHD 
features 

Acute GVHD    
Classic GVHD <100 Yes No 
Persistent, 
recurrent, late 
onset aGVHD 

>100 Yes No 

Chronic GVHD    
Classic cGVHD No time limit No Yes 
Overlap 
syndrome 

No time limit Yes Yes 
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production of pro-inflammatory cytokines such as TNF-α and IL-1 (Blazer et 

al., 2012, Ferrara et al., 2009). Consequently, upon activation in the host, 

donor T cells can also secrete IL-2 and IFN-γ and induce direct tissue 

damage within the host through cell-mediated cytotoxicity by cytotoxic T 

lymphocytes (Weber et al., 2014).  

Further, previous evidence has described an immunomodulatory role of IL-10 

in controlling alloreactive T cell activation in HSCT and attenuating GVHD 

(Weber et al., 2014, Rowe et al., 2006, Holler et al., 2000, Zeller et al., 1999). 

However, murine studies have found that IL-10 can either suppress (Zeller et 

al., 1999) or enhance (Blazar t al., 1995) GVHD depending on the cell  

releasing it (Moore et al., 1993). There is considerable evidence that IL-10-

producing donor T regulatory cells, bone marrow cells, dendritic cells and host 

B cells (Fillatreau et al., 2002, Lampropoulou et al., 2008, Rowe et al., 2006) 

are possible candidates for immune modulation that may aid to improve 

GVHD post transplantation. Although T cells have been known as the chief 

effector cells involved in GVHD, recent data have provided evidence for the 

suppressive role of B cells in the pathogenesis of GVHD (Shimabukuro‐

Vornhagen et al., 2009). However a more profound insight into their role is 

required to tailor strategies to suppress the development of GVHD and 

improve patient outcome following transplantation. 

Acute GVHD is thought to be predominantly driven by alloreactive donor T 

cells that mediate cytotoxicity against the host’s healthy tissue through 

secreted factors that perpetuate the process (Pidala et al, 2011). Profound 

genetic disparity between HLA antigens in the donor and host has been 

described as a major contributor to the severity of aGVHD (Pidala et al., 2011, 
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Goulmy et al., 1996). The resultant tissue damage from radiation, conditioning 

regimens or chemotherapy subsequently leads to the recruitment of other 

immune effector cells, pathogen associated molecular patterns and release of 

chemokines, which direct effector cells to migrate to target organ and amplify 

tissue injury as illustrated in figure I-1 (Ferrara et al., 2009). Activated donor 

and host antigen presenting cells (APCs) also orchestrate a strong 

proinflammatory cytokine response by enhancing alloantigen presentation to 

T cells (Blazer et al, 2012, Pidala et al., 2011). Ultimately, the increased 

recruitment of proinflammatory cytokines (e.g. IFNγ, TNF, IL-2), 

macrophages, NK cells and effector T cells cause increased tissue 

destruction and severe organ damage (e.g. skin, gut, lungs and liver), which is 

clinically recognized as aGVHD (Blazer et al., 2012). Previous evidence has 

shown that T cell depletion from the allograft has almost completely abrogated 

the development of GVHD (Ferrara et al., 2009). Hence, further studies have 

focused on inhibiting T cell function to develop prevention and therapeutic 

strategies for aGVHD.  However, if untreated, the severity of GVHD pathology 

could amplify. 

Chronic GVHD (cGVHD) is the leading cause of transplants related morbidity 

and mortality that transpires in 30-65% of AHSCT recipients and signifies 30-

50% of 5-year death rates resultant from opportunistic infections and immune 

dysregulation (Blazer et al., 2012). Clinical manifestations of cGVHD 

resemble features of autoimmune diseases such as scleroderma, cirrhosis 

and can lead to debilitating consequences such as blindness, lung disease 

and joint contractures (Ferrara et al., 2009). Whilst the pathophysiology of 

aGVHD is propagated through a cascade of inflammatory events, cGVHD is 
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dependent on the recruitment of polarised CD4+ T cells (Blazer et al. 2012). 

Resultant damage to the thymus epithelium caused by conditioning regimens, 

or possibly the prior manifestation of aGVHD consequently impairs negative 

selection of alloreactive CD4+ T cells initiating a cytokine response that 

propagates the release of pro-fibrotic cytokines such as IL-10, IL-2 and 

transforming growth factor β1 that augment the activation and proliferation of 

tissue fibroblasts as illustrated in figure I-2 (Blazer et al., 2012). Clinical 

studies have provided support for an inverse relationship of TGF- β signalling 

in CD4+ and CD8+ T cell and risk of cGVHD (McCormick et al., 1999, Pidala 

et al., 2011). Recent evidence has underscored the significance of regulatory 

dysfunction mainly attributing to T regulatory cells during cGVHD 

development (Rezvani et al., 2006). However, a new wave of research has 

postulated a role for B cells in the regulation of cGVHD. (Shimabukuro‐

Vornhagen et al., 2009, Sarantopoulos et al., 2015). The potential role B cells 

in cGVHD is supported by reports of successful treatment of GVHD following 

B cell depletion (Cutler et al., 2006, Cutler et al., 2013). However, further 

insights into the mechanistic role of B cells in the pathogenesis of this 

debilitating disease is required to harness the therapeutic benefits of targeting 

these cells in acute and chronic GVHD.  
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Figure I-1: The sequential series of inflammatory mechanisms simplifying 
distinct events that occur in the biology of aGVHD.  
Resultant underlying damage from the HCT conditioning regimen provokes the 
release of proinflammatory cytokines and chemokines, which augment expression of 
antigens on APCs and subsequently lead to increased recruitment, differentiation 
and migration of effector immune cells leading to further tissue destruction. Figure 
adopted from Blazer et al., 2012. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I-2: The sequential series of inflammatory mechanisms simplifying 
distinct events that occur in the biology of cGVHD.  
Resultant damage to the thymus caused by conditioning regimens or prior 
manifestation of aGVHD, leads to decreased negative selection of alloreactive CD4+ 
T cells, which become polarized and produce pro-fibrotic cytokines such as IL-2, IL-
10 and TGF-β1. Macrophages that produce TGFβ1 and platelet-derived growth 
factor (PDGF) are also activated. Together the release of these molecules 
propagates fibroblast activation and proliferation causing tissue fibrosis. Low 
numbers of T regulatory cells and B cell dysregulation through production of 
autoreactive antibodies suggested to be the result of high B-cell activating factor 
(BAFF) levels, all contribute to fibroproliferative changes and antibody deposition in 
the tissue leading to cGVHD. Figure adopted from Blazer et al., 2012. 
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I.3.3  The role of B cells in GVHD 

I.3.3.1  The role of B cells in human aGVHD 

Donor effector T cell mediated destruction of host tissues and organs remains 

a common contributor to acute GVHD pathology (Pidala et al., 2011). 

However, the exact role of B cells in this disease remains controversial. 

Evidence from previous studies has suggested that B cell depletion is 

associated with prevention of aGVHD and improved outcome after AHSCT 

(Shimoni et al., 2003, Ratanatharathorn et al., 2009). Previous murine studies 

have reported a lower incidence of aGVHD with B cell depletion (Schultz et 

al., 1995). In accord with murine data, clinical studies have also associated 

the effectiveness of rituximab administered shortly before or after 

transplantation or as part of conditioning regimens with low rates of GVHD 

(Shimoni et al., 2003, Ratanatharathorn et al., 2009, Christopeit et al., 2009). 

In humans, a higher content of B cell progenitors in the donor graft was shown 

to be associated with less aGVHD (Michonneau et al., 2009). Kamble et al 

also highlighted successful response in 3 patients with refractory aGVHD 

treated with rituximab (Kamble et al., 2006). However, other studies failed to 

show a lower incidence of GVHD in patients with lymphoma after AHSCT 

after administration of rituximab post transplantation (Glass et al., 2008). 

These results suggest that early B cell depletion may play a role in the 

prevention GVHD. Further, high numbers of activated donor B cells in 

apheresis products was reported to increase the risk of aGVHD (Lori et al., 

2008). In contrast, although recipient APCs are essential contributors to 

aGVHD pathology, Rowe et al (2006) demonstrated that recipient mice that 

were unable to produce IL-10+ B cells developed a greater severity of aGVHD 
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than wild-type mice. Further, the induction of IL-10 production by host B cells 

was found to attenuate experimental aGVHD. This study underlined a 

protective role for host B cells in GVHD. In agreement with these findings, 

Weber et al (2014) has also shown a regulatory function of IL-10 produced by 

host and donor B cells to suppress aGVHD after AHSCT. The results 

designate a unique regulatory function of B cells, which could be used to 

improve outcome after AHSCT. Overall, the role of B cells in aGVHD remains 

controversial, as they have been reported to induce both a protective and 

pathogenic consequence in aGVHD. Thus, an in-depth imperative 

understanding on B cells in aGVHD may aid the development of targeted 

therapies to exploit regulatory B cells to improve patient outcome. 

 
 
I.3.3.2 The role of B cells in human chronic GVHD (cGVHD) 

Classically, donor T cells have been considered as the chief effector cells 

contributing to the biology of GVHD however, accumulating evidence has 

clearly demonstrated the fundamental role of B cells in this disease (Kharfan-

Dabaja and Cutler., 2011, Shimabukuro-Vornhagen., 2009). Delayed B-cell 

reconstitution and aberrant B-cell homeostasis after AHSCT has indicated a 

potential role for B cells through the presence of alloantibodies and high levels 

of B-cell activating factor (BAFF) in cGVHD development (Sarantopoulos et 

al., 2015).  

B cells have generally been considered to positively regulate inflammation in 

cGVHD (Socie., 2011, Shimabukuro-Vornhagen., 2009) and B-cell depletion 

therapy with rituximab has been found to prevent steroid-refractory cGVHD in 

humans (Cutler et al., 2006, Cutler et al., 2013). Other studies have shown 
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the presence of B cells in an activated state in the cGVHD environment (Allen 

et al., 2012). Indeed, evidence of typically activated B cells by increased 

signaling networks through ERK and AKT pathways have been discovered in 

B cells isolated from patients with cGVHD (Allen et al., 2012). Furthermore, 

the presence of autoantibodies has been associated with the onset and 

severity of cGVHD, postulating a role for donor B cells in this disease 

(Patriarca et al., 2006, Kier et al., 1990, Svegliati et al., 2007). After AHSCT in 

humans with gender disparity, presence of alloantibodies to H‐Y minor 

histocompatibility antigens has correlated with cGVHD development (Miklos et 

al., 2005). Whether this phenomenon is a result of antigenic disparity causing 

tissue injury or merely a marker for the presence of B cells during recovery 

post‐transplant is not fully known (Svegliati et al., 2007). Moreover, high levels 

of autoantibodies found in mice with cGVHD and sclerodermatous skin 

damage has suggested that donor B cells amplify CD4+ T cell expansion and 

thus induce autoimmune manifestations in cGVHD (Zhang et al., 2006, Young 

et al., 2012). To date, at least 35 autoantibodies have been related with 

cGVHD (Kapur et al., 2008).  

In addition to these findings, Rozendaal et al described the presence of 

autoreactive autoantibodies, usually expressed by circulating class-switched 

IgG memory B cells, during cGVHD. The development of these antibodies, 

reactive to recipient cells, was suggested to be a product of hyperstimulated B 

cells induced by alloreactive CD4+ T cells (Rozendaal et al., 1990). The 

emergence of autoreactive antibodies in cGVHD patients suggests that a 

critical breakdown in B cell tolerance occurs during cGVHD development after 

AHSCT. In contrast, other studies have found no association between 
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autoantibodies and onset or severity of cGVHD (Martin et al., 1997, 

Rouquette-Gally et al., 1988, Chan et al., 1997). Indeed, no evidence of 

autoimmune pathology was detected in healthy mice that were injected 

autoantibodies from mice with GVHD, suggesting that such antibodies are not 

themselves pathogenic per se (Rolink et al., 1988). Hence, the direct 

involvement of B cells or autoantibodies in pathogenesis of cGVHD still 

remains elusive.  

 

Further, a dysregulated B cell homeostatic environment has also been 

associated with active cGVHD (Greinix et al., 2008). BAFF, also known as 

THANK, BlyS, TALL-1 and zTNF4, belongs to the TNF family and is a critical 

survival factor in B cell proliferation and differentiation during B cell 

development and is secreted by monocytes, some T cells and dendritic cells 

at increased levels in response to reduced B cell numbers (e.g. following B 

cell depletion therapy by rituximab) (Saito et al., 2008). Elevated BAFF/B cell 

ratios have related to the onset and severity of cGVHD compared to patients 

without cGVHD (Sarantopoulos et al., 2007., Allen et al., 2012., Jacobson et 

al.,2014). The results support the role of excess BAFF and altered B cell 

homeostasis in cGVHD. Murine models have demonstrated that B cell 

survival and differentiation is dependent on a balance of BAFF and BCR 

signalling during B cell development (Sasaki et al., 2004). Increased BCR 

responsiveness has been noted in cGVHD patients (Allen et al., 2014). Lesley 

et al indicated that autoreactive B cells were capable of evading negative 

selection in the lymphoid germinal center as a result of elevated BAFF levels 

leading to development of autoimmunity (Lesley et al., 2004). These results 
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suggest that minimal levels of BAFF prevent B-cell autoreactivity. In accord, 

increased counts of circulating pre-germinal center B cells and post-GC 

plasmablasts were also associated with high BAFF levels in cGVHD patients 

(Sarantopoulos et al., 2009).  

This dysregulation in B cell tolerance involving BAFF may play an important 

role in the pathogenesis of cGVHD and it has been suggested that BCR 

pathways are candidates for the development of targeted therapeutic 

strategies (Sarantopoulos et a., 2015). 

 

Moreover, in addition to these studies, altered frequencies of B cell 

compartments have also been implicated in cGVHD. Higher frequencies of 

CD25+ B cells in GCSF mobilized graft has been related with higher risk of 

cGVHD development post-transplant (Tavebi et al., 2001). Additionally, 

variable impact on the class‐switched and nonswitched CD27+ memory B 

cells has been observed. D’Orsogna et al reported a reduced population of 

IgM+ CD27+ memory B cells in patients with a history of cGVHD (D'Orsogna 

et al., 2009). Further, subsequent evidence has reported a reduced population 

of both class-switched and IgM+ memory B cells in patients with cGVHD 

when compared to their non-GVHD counterparts (Hilgendorf et al., 2012, 

Greinix et al., 2008). On the contrary, Sarantopoulos et al observed patients 

with cGVHD displayed delayed reconstitution of naive B cells despite elevated 

BAFF levels and a sustained population of CD27+ memory B cells 

(Sarantopoulos et al., 2009). Further, decreased transitional B cell population 

(Hilgendorf et al., 2012, Storek et al.,1993), reduced CD5+ B1 like cells 

(Moins-Terssercne et al., 2013) and an abnormally expanded CD21lo B-cell 
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population (Kuzmina et al., 2011) have also been described in cGVHD. This 

observation is in line with studies of autoimmune and immune conditions that 

have also described an expanded population of CD21- B cells, which 

suggests a role for CD21- B cells in cGVHD biology as an auto-allo-condition 

(Sarantopoulos and Ritz., 2015). Furthermore, relatively reduced numbers of 

immature B cell subsets described in cGVHD suggests that a disturbed B cell 

homeostasis is a key component of this disease (Sarantopoulos et al., 2009). 

Although accumulating studies have provided compelling evidence that B 

cells play a fundamental role in human cGVHD pathology, the mechanisms 

that initiate and maintain B cell promote and sustain B-cell participation have 

not been fully elucidated. 

 

Recent research has provided compelling evidence that B cells can suppress 

or amplify immune responses through cytokine production, designating 

discrete regulatory and effector B cell sub populations (Sanz et al., 2007). 

Rowe et al., highlighted the presence of IL-10 producing B cells, which could 

inhibit alloreactive T-cell expansion, and subsequent induction of GVHD 

(Rowe et al., 2006). IL-10 producing B regulatory cells have been associated 

with prolonged allograft survival suggesting a protective role for this 

population post-transplant (Lee et al., 2012). In accord with this evidence, 

elevated GC-derived CD24hiCD27+ plasmablast-like IL-10 producing B cells 

have been described in the regulation of human cGVHD (de Masson et al., 

2015). A recent study has highlighted the importance of adoptively transferred 

donor derived regulatory B cells in attenuating the augmented manifestations 

of murine sclerodermatous cGVHD (Huu et al., 2013). Moreover Khoder et al., 
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has recently described that IL-10 producing regulatory B cells are deficient in 

recipients of HLA-matched sibling or matched unrelated donor HSCT with 

cGVHD than healthy donors and patients without cGVHD (Khoder et al., 

2014). Collectively, these findings provide compelling evidence for a 

fundamental role of IL-10 producing B cells in the pathogenesis of cGVHD. 
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I.4.  B cell development 

B cell development progresses through several distinctive phases, which 

occur in the bone marrow and peripheral lymphoid tissues as depicted in 

figure I-3 (Cambier et al., 2007). Several micro-environmental constituents 

and cellular interfaces in the bone marrow niche direct the differentiation of 

irreversibly committed B cell precursors, which express PAX5 (Nagasawa et 

al., 2006). Following the rearrangement of the DH (diversity) and JH (junction) 

segments of the immunoglobulin (Ig) heavy chain gene, pro B cells 

(CD34+CD19+) undertake further rearrangement of the VH segment yielding a 

pre-B cell. Subsequently, upon coupling of the VDJ segments (also known as 

VDJ recombination), at a later phase of their differentiation, pre B-cells 

express pre B-cell receptor (pre-BCR), which is expressed within a cell and 

not on the surface (Cambier et al., 2007, Pieper et al., 2013). Pre-BCR 

signalling averts further recombination and propagates positive selection and 

proliferation of B cells (Pieper et al., 2013). Moreover, cells that fail to function 

undergo developmental arrest, apoptosis or receptor editing (Edry et al., 

2004). This stage of development is antigen independent and takes place in 

the bone marrow stromal environment (Maddalay et al., 2010). Hardy et al, 

highlighted that the sequential transition of B cells through different 

development stages is delineated by differential expression of surface 

markers (Hardy et al., 1991). Consequently, surface co-expression of IgM and 

IgD, namely the mature BCR which is capable of antigen binding is presented 

on pre-B cells as a result of preferential k light chain rearrangement during 

receptor editing (Marie-Cardline et al., 2008). The expression of BCR marks 

the first checkpoint in B-cell development (Cambier et al., 2007). Following 
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this stage, the vast majority of immature autoreactive B cells are removed 

from the B cell repertoire through negative selection to avoid any additional 

development of self-reactive B cells (Sims et al., 2005, Hartley et al., 1991, 

Duty et al., 2009). In this process, the immature B-cells that survive proceed 

to the peripheral blood as transitional B cells (Forster et al., 1990, Warderman 

et al., 2003). Depending on the strength of BCR signalling and antigen 

specificity, transitional ‘immature’ B cells populate niches and mature within 

the splenic microenvironment into follicular or marginal zone (MZ) B cells 

(Allman et al., 2008). Following an immune response, antigen-activated naïve 

B cells can obtain T-cell help to form germinal centers and undergo somatic 

hypermutation and isotype switching to produce memory B cells and plasma 

cells (antibody-secreting cells), forming the basis for adaptive humoral 

immunity (Carsetti et al., 2004). In contrast, MZ B cells produce T-cell 

independent-Ag responses and endure reduced levels of somatic 

hypermutation (Weill et al., 2009). 

The knowledge of B cell development is essential for better understanding 

and treatment of a number of non-malignant medical conditions.  
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I.5  B cell subsets 

Immature B cells migrate from the bone marrow and into transitional B cells; 

the early emigrants from the bone marrow defined by their short lives that 

must generate a functional BCR in order to overcome negative selection 

pressures (Hartley et al., 1991, Sims et al., 2005). Transitional B cells 

preserve the capacity to reconstitute the B cell pool following bone marrow 

transplantation (Marie-Cardine et al., 2008) and B cell depletion therapy 

(Anolik et al., 2007). Transitional B cells represent 2.2-7% of B cells in healthy 

adult peripheral blood and approximately 50% of B cells in cord blood and are 

commonly distinguished as CD19+ CD24high CD38high (Sims et al., 2005, 

Carsetti et al., 2004, Marie-Cardine et al., 2008).  Transitional B cells have 

been extensively studied in murine spleen based on the expression of heat 

stable (HAS, CD24) and IgM receptors, transitional B cell population could be 

distinguished from immature to mature splenic B cells (Loder et al., 1999). 

Additional phenotypic profiling has further subdivided transitional B cells into 

T1 (CD19+ CD21low, CD23low, CD24high, IgMhigh, IgDlow), T2 (CD19+CD21low, 

CD23high, CD24high, IgMhigh, IgDhigh) and a T3 subset (CD19+ CD21low, 

CD23high, CD24high, IgMlow IgDhigh) (Sims et al., 2005, Allman et al., 2001, 

Marie-Cardine et al., 2008). T1 cells are known to be susceptible to apoptosis 

whereas T2 subsets undergo proliferation and differentiation into follicular 

mature B cells upon BCR ligation mainly through the B-cell activation factor 

receptor (BAFF-R) pathway (Sims et al., 2005, Mackay et al., 2010, Marie-

Cardine et al., 2008). Furthermore, Allman et al identified the expression of 

CD93 (the B cell lineage precursor marker) in all 3 transitional subsets, which 

distinguishes their classification from MZ B cells and mature splenic follicular 
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B cells (Allman et al., 2001). Additionally, transitional B cell are CD27- and 

express decreasing levels of CD10 and IgM with increasing levels of CD21, 

CD23 and CD44 in accord with their maturation as their percentage 

progressively decreases (Palanichamy et al., 2009).  

In human peripheral blood, transitional B cell subsets phenotypically resemble 

murine T1 and T2 subsets (Sims et al., 2005). Additionally, ATP-binding 

cassette transporter (ABCB1) expression has previously been found to define 

T3 transitional B cell subset following rituximab therapy in adult peripheral 

blood (Palanichamy et al., 2009). Transitional B cells are present in the bone 

marrow, predominantly (T1), spleen (T2), and peripheral blood and cord blood 

mostly (T3) and in small numbers in lymph nodes (Carsetti et al., 2004, 

Palanichamy et al., 2009). They mature in the spleen to follicular naïve B cells 

or MZ B cells depending on the strength of BCR signaling (Carsetti et al., 

2004, Weill et al., 2009). However, weak BCR signalling and reduced antigen 

affinity direct the differentiation of T2 B cells to marginal zone B cells 

(CD27+IgM+IgD+), which mediate T-cell independent responses and 

differentiate into short-lived plasma cells (Allman and Pillai., 2008, Carsetti et 

al., 2004, Weil et al., 2009, Srivastava et al., 2005). Moreover, previous 

reports have proposed that transitional B cells could mature into IgM 

producing memory cells upon TLR-9 triggering in vitro (Capolunghi et al., 

2008). Hence, transitional B cells are often termed as developmental 

intermediates for maturing B cells. 

 

Human naïve B cells constitute approximately 40-70% of circulating B cells in 

both peripheral blood and cord blood and are often characterized as 
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CD19+CD27−IgMlowIgDhigh CD24intCD38int bearing a functional BCR (Carsetti 

et al., 2004,  Sims et al., 2005). Additionally, they fail to express CD21, CD10 

and CD5 (Carsetti et al., 2004, Palanichamy et al., 2009). Their functional 

maturity is reflected by acquisition of surface IgD expression, longer life-span 

and proliferation upon BCR engagement and signalling (Allman et al., 2001). 

Having successfully passed the elimination checkpoints, naive B cells 

circulate through peripheral blood and have high affinity to specific non-self 

antigens. Additionally, naïve B cells possess the ability to home to and survive 

in the follicular niches of secondary lymphoid tissues (Allman and Pillai, 

2008).  Any naïve B cells that fail to encounter an antigen exit the lymph 

nodes through the lymphatic vessels and die within a few days (Perez-Andres 

et al., 2010). However, a fraction of auto-reactive anergic naïve B cells 

expressing IgD are detected in the periphery (Duty et al., 2009). Activation of 

the follicular naïve B cells is T-cell dependent and requires BCR engagement 

and CD40 signaling (Allman and Pillai, 2008). Mature naïve B cells are able to 

participate in T-dependent immune responses by presenting processed 

peptides on MHC complexes on their surface, which is recognized by cognate 

CD4+ T cells (Perez-Andres, 2008). Accumulating evidence has further 

suggested that cytokine production by B cells (i.e. IL-10) can also modulate T-

dependent immune responses (Mauri and Bosma., 2012). Following 

activation, antigen specific B cells migrate to the germinal center and undergo 

numerous rounds of division, somatic hyper-mutation, class-switch 

recombination, and affinity selection (Palanichamy et al., 2009). Naïve B cells 

are distinguished from germinal center B cells by increased expression of 

CD44 and bcl2 and decreased expression of CD10, CD95, CD38 and HLA-



	   53	  

DR (Allen et al., 2007, Perez-Andres, 2010). Activating signals from the T cell 

propagate B cell activation resulting in proliferation, germinal center formation 

and eventual differentiation of naïve B cells into memory or antibody secreting 

plasma cells (Perez-Andres, 2008).  However, the factors governing the 

differentiation of activated naïve B cells into memory or plasma cells remain 

elusive (Good‐Jacobson and Shlomchik, 2010). 

 

Memory B cells form the basis for humoral adaptive immunity and are large 

antigen experienced cells, which persist in the absence of immunizing agents 

and possess increased responsiveness during a secondary response by 

secreting Ig upon stimulation (Weill et al., 2009, Good‐Jacobson and 

Shlomchik, 2010). Memory B cells constitute approximately 20-30% of B cells 

in peripheral blood and are almost absent in cord blood but gradually increase 

in proportion during the first year of life (Kruetzmann et al., 2003, Weller et al., 

2004). They are characterized by acquired somatic hypermutations in their 

rearranged Ig variable regions. Klein and Kuppers, classified memory B cells 

based on their CD27 surface expression, which is classed as a universal 

marker for memory B cells (Klein and Kuppers, 1998). Memory B cells are 

also noted to express CD24hi and CD38int, however the level of expression 

of these markers on the CD24/CD38 axis varies relative to the expression of 

CD27 (Sanz et al., 2008, Khoder et al., 2014). Interestingly, about a third of 

the circulating memory B cells with mutated BCRs are double negative CD27 

and IgD and account for 5% of total B cells in peripheral blood, which 

contradicts the classification of memory B cells on the basis of a single marker 

(CD27) as too simplistic (Sanz et al., 2008, Fecteau et al., 2006, Weill et al., 
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2009).  Additionally, this subgroup of B cells has a lower mutation rate than 

CD27+ memory B cells, which may be a result of incomplete germinal center 

reactions; however, the function and origin of this subgroup remains to be 

elucidated (Fecteau et al., 2006, Sanz et al., 2008).  

Furthermore, whilst the majority of naïve B cells recirculate between lymphoid 

tissues, memory B cells reside in areas of antigen drainage including the 

mucosal epithelium of the tonsils and the splenic marginal zone (Perez-

Andres., 2010). As naïve B cells differentiate into memory B cells, they attain 

a higher affinity to bind to antigens and exhibit an augmented in vitro 

response when exposed to different stimuli that mimic antigen-recognition (i.e. 

anti-BCR antibodies) or upon follicular T-helper cell interaction via CD40L 

(Perez-Andres., 2010). Upon such T-cell dependent activation that takes 

place in GCs within the spleen and lymph nodes, germinal center-derived 

memory B cells rapidly undergo further rounds of cell-cycle division and a 

proportion differentiates into antibody secreting cells (plasmablasts), which 

represent about 1–3% of all circulating healthy adult PB B-cells and are the 

main providers for Ig (Perez-Andres et al., 2008, Odendahl et al., 2005). Once 

generated, plasmablast cells migrate from secondary lymphoid tissue and 

mature within the bone marrow niche, which equips them with factors required 

for their survival and differentiation before entering the peripheral blood 

compartment (Odendahl et al., 2005, Perez-Andres., 2010). 

Peripheral blood CD27+ve memory B cells can be divided into two major 

groups, isotype switched (IgM-ve IgD-ve) and IgM memory (IgM+ve IgD+ve) 

(Perez-Andres., 2010). IgM only memory B cells have been suggested to be 

germinal center derived and the direct precursor of isotype switched cells 
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(Weill et al., 2009). Memory B cells that have undergone somatic hyper-

mutation are recognized as isotype switched memory B cells, which account 

for approximately 20% of all memory B cells in PB and are the final product of 

a successful T-cell dependent germinal center reaction (Good-Jacobson and 

Shlomchik., 2010, Klein et al., 1998). The mutations affecting components of 

class-switched B cells prevent the formation of plasma cells and memory B 

cells expressing IgA, IgG, and IgE (Perez-Andres et al., 2010).   

On the other hand, IgM memory B cells account for approximately 50% of 

memory B cells in PB (Perez-Andres et al., 2010). IgM memory B cells are 

large cells with abundant cytoplasm and have been known to express IgMhi, 

IgD+, CD1c+, CD21hi, CD5-, CD23- and CD27+ as well as chemokine 

receptors such as CXCR4, CXCR5 and CCR7 (Weller et al., 2004, Weill et al., 

2009, Tangye and Tarlinton, 2009). The high level of expression of CD21 on 

this subset is essential for the recognition of bacterial polysaccharides 

(Zandvoort et al., 2001). IgM memory B cells predominantly produce IgM and 

have a higher level of CD72 expression but lower CD80, CD86 and CD95 

expression than switched memory B cells (Shi et al., 2003). Further, in 

contrast to the pentamer structure of secreted IgM, membrane bound IgM 

(BCR receptor) on the surface of IgM memory B cells has a dimer or 

monomer configuration (Ehrenstein and Notley, 2010). IgM memory B cells 

develop in the MZ of the spleen with lower numbers of somatic mutations and 

have not undergone class switching and retain higher clonal diversity than 

switched memory B cells (Weller et al., 2004). Thus, the spleen and possibly 

other lymphoid organs have been recognized as a source for IgM memory B 

cell maintenance (Kruetzmann et al., 2003). Upon antigen activation, this pre-
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diversified subset of memory cells produce T cell independent IgM, IgG and 

IgA (Weill et al., 2009, Weller et al., 2004). IgM memory B cells are involved in 

providing rapid protection against bacterial infections such as Streptococcus 

pneumonia through their interaction with MZ macrophages (Kruetzmann et al., 

2003). Previous evidence has suggested that upon a primary response to 

bacterial antigens, IgM memory B cells are able to mature into CD20-IgM 

producing plasmablasts within 3 days that express high levels of CD38 and 

CD27 and higher rate of CD40 and BCR engagement (Shi et la,. 2003).  

Although previous studies have detected their presence in neonatal cord 

blood, bone marrow, lymph nodes and foetal liver at 14-16 weeks of 

gestation, others have found them completely absent in cord blood 

(Kruetzmann et al., 2003). However, previous studies have found that early 

post-rearrangement Ig diversification of IgM memory B cells through induction 

of somatic hyper-mutations may occur during foetal life (Scheeren et al., 

2008). In accord, evidence has highlighted that the maturation of cord blood-

derived transitional B cells into IgM memory B cells in vitro after CpG 

stimulation (Capolunghi et al., 2008). Thus the ontogeny of IgM memory B 

cells remain unclear; whether this subset is derived as a product of germinal 

center differentiation or as a derivative from precursor transitional B cells 

(Weller et al., 2005).  

Further, IgM memory B cells essentially serve as a bridge between innate and 

adaptive immunity and by virtue of their high avidity and poly-reactivity they 

are known to promote self-tolerance (Ehrenstein and Notley, 2010). It has 

been suggested that autoreactive MZ B cells or IgM B cells may be potential 
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regulators of immune function by secreting the immunomodulatory cytokine 

IL-10 (Zhou et al., 2011, Gray et al., 2007). 

 

Beyond the commonly recognized role of peripheral B cells in mediating 

humoral immune responses through antibody secretion and in antigen 

presentation, more recently they have been highlighted to secrete cytokines 

important in B cell homeostasis and pathogenesis of multiple diseases (Mauri 

and Bosma., 2012, Lund and Randall., 2010). Accumulating evidence has 

highlighted a potential role for some B cell populations with regulatory 

capacity in immune modulation. This revolutionary discovery has led to the 

subdivision of B cells into effector and regulatory subsets.  
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I.6  Regulatory B cells 

1.6.1 Origin of Regulatory B cells 

The hallmark of effective immune modulation in autoimmunity, infection, 

inflammation and during cancer immune surveillance is regulation by the 

release of anti-inflammatory mediators and cytokines, such as interleukin-10 

(IL-10), produced by regulatory immune cells (Rosser and Mauri., 2015). On 

one hand, B-cells arbitrate an effector immune response by producing pro-

inflammatory cytokines (i.e. IFN-γ and TNF-α), whereas on the other hand, B-

cells can contribute to the maintenance of immune tolerance through the 

expression of immune-regulatory cytokines (i.e. IL-10 and TGF-β) (Harris et 

al., 2000, Mauri and Bosma., 2012).  

The concept that suppressor B cells could orchestrate immune modulation 

was first proposed nearly 40 years ago, where unlike total splenocytes, B-cell 

depleted-splenocytes in guinea pigs were associated with an increase in the 

severity and duration of contact hypersensitivity suggesting that B-cells 

possessed the ability to inhibit T-cell activation (Katz et al., 1974, Neta and 

Salvin., 1974). In accord with these findings, B-cells were noted to suppress 

anti-tumor T-cell responses highlighting their role in modulating immune 

homeostasis (Gorczynski et al., 1974). These initial findings were later 

supported by a series of in vivo studies showing that adoptive transfer of 

activated splenic B-cells induced tolerance and differentiation of suppressor 

T-cells in recipient naïve mice (Shimamura et al., 1982, Shimamura et al., 

1984). Further, an enriched pool of splenic B-cells induced tolerance to MHC-

alloantigens in vivo, which are required for T-cell recognition and activation 

(Ryan et al., 1984). Moreover, antigen presentation by resting B-cells to 
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resting T-cells was similarly found to cause loss of T-cell function associated 

with induction of tolerance (Evans et al., 2000). Well-founded support for the 

tolerogenic role for B cells was further proposed by two independent studies 

indicating that B-cell deficient mice cultivate aggravated, chronic forms of 

colitis or autoimmune encephalitis, indicating that B cells possess regulatory 

properties (Mizoguchi et al., 1997 and Wolf et al., 1996). Although these 

seminal observations designated a role for suppressor B-cells in immune 

modulation and homeostatic balance, the term ‘regulatory B-cells’ (Breg) was 

first introduced by Mizoguchi and Bhan in 2002, nearly 30 years later after 

primary observations indicated their presence (Mizoguchi et al., 2002, 

Mizoguchi et al., 2006). Mizoguchi et al, described a gut-associated Il-10 

producing B-cell subset with upregulated CD1d expression that suppressed 

the progression of colitis-related intestinal inflammation by downregulating 

inflammatory cascades in a chronic inflammatory setting (Mizoguchi et al., 

2002). Shortly thereafter, the recovery in mice with experimental autoimmune 

encephalomyelitis was dependent on the presence of IL-10 producing splenic 

B cells (Fillatreau et al., 2002). Further support for Bregs comes from reports 

in transplant recipients that withdrawal of immunosuppressive drugs results in 

higher levels of B cell activation compared to patients who continued 

immunosuppressant therapy, suggesting a protective role for suppressor B-

cells in the transplant setting (Newell et al., 2010). Similar to T regulatory 

cells, the suppressive capacity of Bregs have been found to be mediated via 

the production of regulatory cytokines; namely, IL-10 and TGF-β and the 

expression of inhibitory molecules through cell-to-cell contact-dependent 

mechanisms that suppress pathogenic T cells (Lundy et al., 2009). 
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Furthermore, previous studies have indicated that Bregs exist as a 

heterogeneous population that can be derived from total B cells under 

appropriate stimulatory conditions (Gray and Gray., 2010). Despite the 

extensive body of evidence accumulating in the ensuing years since these 

studies were published, some controversy over the paucity of markers that 

can unequivocally identify Bregs, particularly in humans, still exists (Mauri and 

Bosma., 2012).  Hence, most current strategies to definitively identify Bregs in 

a reproducible manner rely on the detection of IL-10, which inhibits 

proinflammatory cytokine production and differentiation of effector T cells 

(Mauri and Bosma., 2012). However, it is questionable whether all 

mechanisms of suppression rely exclusively on the suppressive effect of IL-

10. Accumulating evidence has conclusively designated a pivotal role of 

Bregs that exert their suppressive functions though different mechanisms in 

divergent models of disease, including autoimmunity, infection, cancer and 

inflammation (DiLillo et al., 2010). Here, I review the recent advances made in 

our understanding of both the phenotypic and functional characterization of 

Breg cells in murine models and humans. 
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1.6.2  Characterization and Identification of Regulatory B cells 

1.6.2.1    Identification and development of regulatory B cells (B10 cells 
in  mice 

	  
In recent years, a diverse population of regulatory B cell (Breg) subsets has 

been identified in murine models of collagen induced arthritis (CIA), 

experimental autoimmune encephalomyelitis (EAE) and inflammatory bowel 

disease (IBD) where adoptive transfer of Breg attenuated disease pathology 

(Yanaba et al., 2008, DiLillo et al., 2010, Mauri and Bosma., 2012). B10 cells 

were first highlighted in a contact hypersensitivity murine model in which 

CD19-/- mice exhibited augmented T-cell mediated inflammation whereas 

mice with hyperactive B cells overexpressing human CD19 transgene 

(hCD19Tg) presented substantially reduced inflammation regulated by an IL-

10 producing CD1dhiCD5+ B cell subset (Yanaba et al., 2008). This unique 

regulatory subset was absent in CD19 deficient mice but represented 1-2% of 

spleen B cells in wild-type mice, which expanded to approximately to 10% in 

hCD19Tg mice. CD19-/- mice presented increased levels of ear swelling 96h 

after immunization with oxazolone. The resulting inflammation normalized 

upon adoptive transfer of CD1dhiCD5+ B cells in CD19-/- mice and IL-10 

secretion was found to be a prerequisite for the suppressive capacity of this 

subset. Thus, the term B10 was introduced to represent this subset of potent 

regulatory B cells to functionally distinguish this defined B cell subset from 

other B cell types. Although this study provided evidence for BCR signaling in 

B10 cell induction, the data remains contradictory (Yanaba et al., 2009, Mauri 

and Bosma et al., 2012). Further, B cell activation in response to various 

stimuli including protein kinase C activator phorbol 12-myristate 13-acetate 

(PMA) and ionomycin allowing measurable levels of IL-10+B cells to be 
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detected by immunofluorescence staining has been reported (Yanaba et al., 

2009). Further, the addition of lipopolysaccharide (LPS) to these cultures was 

shown to augment the frequency of B10 cells and is commonly employed to 

identify IL-10+ murine B cells ex vivo. In addition, B cell activation with 

apoptotic cells or CpG (TLR ligand) has also been found to produce high 

levels of B10 cells suggesting that B10 cells are antigen-experienced cells 

(Yanaba et al., 2009, Gray et al., 2007). In accord with these findings, 

Fillatreau et al proposed that Bregs were recruited in close proximity to an 

antigen during inflammation in an antigen specific model and expanded in the 

lymph nodes via T-cell help (Fillatreau et al., 2002). In contrast, non-antigen 

specific models have shown that Bregs are induced through activated CD154-

expressing T-cell interaction regardless of antigen specificity and are 

abundant in the periphery (Wei et al., 2005). Additionally, Poe et al further 

noted that CD22-/- mice expressing CD40L presented increased numbers of 

CD1dhiCD5+ B and B10 cells (Poe et al., 2011). Further support for CD40 

engagement in inducing Breg function has been highlighted in models of CIA 

and EAE through IL-10 dependent mechanisms (Mizoguchi et al., 2006, Mauri 

et al., 2003). Furthermore, the role Toll-like receptors (TLR) in Breg function 

have also been suggested. Murine B cells lacking MyD88, TLR2, or TLR4 was 

associated with development of chronic EAE in mice (Lampropoulou et al., 

2008). Additional evidence has also shown an expanded pool of B10 cells 

following CD40 signaling in-vivo and an increase in IL-10+B cells after 

stimulation by agonistic-CD40 monoclonal antibody (Yanaba et al., 2009, Poe 

et al., 2011). The expanded B10 population has been termed B10 progenitor 

cells (B10pro) and CD40 signals have been proposed to mature B10 
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progenitor cells to B10 cells, whereas BCR cross-linking has been proposed 

to inhibit this progression (Yanaba et al., 2009). Thus, murine studies have 

demonstrated that Bregs are able to respond in both an antigen specific and 

polyclonal manner. 

The identification of B10pro cells following in vitro stimulation has suggested 

that selected B cells possess the capacity to produce IL-10 but require 

additional signals to actively secrete IL-10 (Nouel et al., 2014). Collective 

evidence has highlighted signals involved in B10 cell development (figure I-

4). B10pro cells are suggested to have already received appropriate BCR 

signals for molecular events required for IL-10 secretion but require additional 

signals such as CD40 stimulation, which induces IL-10 expression in B10pro 

cells and LPS stimulation with PMA and ionomycin, which acts as a potent 

stimulus to promote IL-10 secretion (Kalampokis et al., 2013, Candando et al., 

2014). Following IL-10 production, some B cells differentiate into memory B10 

cells or into plasma cells that are capable of secreting poly-, auto- or self-

reactive antibodies depending on their BCR specificity (Kalampokis et al., 

2013, Candando et al., 2014). Alternatively, following these events T-cell 

derived signaling is required for B10 cell expansion, active IL-10 secretion and 

immune regulation in vivo. Yoshizaki et al., supported this theory by showing 

that Bregs require cognate interactions with IL-21 producing T cells to exert 

IL-10 dependent suppressive function in autoimmunity (Yoshizaki et al., 

2012). IL-21R signaling with CD40 and MHC-II interactions was shown to 

augment Breg frequency and IL-10 secretion (Yoshizaki et al., 2012). Thus 

B10pro cells have been suggested to mature into B10 cells that require T-cell 

derived signals to secrete IL-10 and exert immuno suppression. These data 
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suggest that cellular cross-talk may play pivotal role in immune regulation 

than cytokine-dependent immune modulation. 

 
1.6.2.2   Immunophenotype of regulatory B cells identified in mouse 

models 
	  
Mouse B10 cells have been identified in the spleen, lymph nodes, peripheral 

blood (PB) and gut associated lymphoid tissues including peritoneal cavity 

and mesenteric lymph nodes (Mizoguchi et al., 2002, Yanaba et al., 2009). 

B10 cells described in the peritoneal cavity have been identified within the 

CD5+CD11b+ B1a B cell subset (38%), CD5− CD11b+ B1b (18%) subset and 

the CD5−CD11b− B2 (4%) subset (Candando et al., 2014). B10 cells within 

other mucosal tissues signify approximately 4% of lamina propia, 3% of 

Peyer's patch B cells and 1% of mesenteric lymph nodes (Candando et al., 

2014). Additionally, a small proportion of B10 cells have been identified in the 

lymph nodes and PB (Yanaba et al., 2009). Although a number of B10 surface 

markers have been identified in murine models (Table I-2), a lack of 

consensual phenotype to define the B10 subset limits the study of IL-10+B 

cells (Mauri and Bosma., 2012). Hence, most current strategies to definitively 

identify Bregs in a reproducible manner rely on the detection of IL-10.  

 

Matsushita and Tedder highlighted that only 1-3% of total B cells from 

wildtype C57BL/6 mice produce IL-10 upon stimulation with PMA and 

ionomycin (Matsushita and Tedder., 2011). Subsequently, the intracellular 

detection of IL-10 combined with flow cytometric phenotyping has highlighted 

that murine splenic IL-10+B cells were predominantly enriched in CD1dhiCD5+ 

B cell subset, where they represent 15-20% of the cells in C57BL/6 mice 
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(Kalampokis et al., 2013). Further, this unique subset shares phenotypic 

features with IL-10 producing CD1dhiCD23-IgMhiCD1dhi marginal zone (MZ) B 

cells, CD1dhiCD23+IgMhiCD1dhi T2-MZ precursor, and CD1dhiCD5+B-1a B 

cells, but does not exclusively belong to these B cell sub-populations (figure 

I-5) (Evans et al., 2007, Yanaba et al., 2008, Mizoguchi and Bhan., 2006, 

Matsushita et al., 2008). Contrastingly, Ding et al highlighted that although 

Tim-1 expressing IL-10+ B cells are also enriched in the CD1dhiCD5+ subset, 

Tim-1-IL-10+B cells are found within the non-CD1dhiCD5+ subset (Ding et al., 

2011). Further, IL-10 producing plasma cells (CD19+CD138+) and 

plasmablasts have also been reported (Shen et al., 2014, Matsumoto et al., 

2014). Similarly, Maseda et al highlighted that B10 cells expressing 

IgMhiCD1dhiCD5+CD19hiCD23lowCD38hiB220hi were capable of differentiating 

into IgM and IgG secreting CD138+ plasma cells (Maseda et al., 2012). 

Despite discrepancies found in characterization of B10 cell phenotype, the 

capacity of B cells to produce IL-10 remains the gold standard to identify pure 

B10-cell populations for study (Rosser and Mauri., 2015). Nonetheless, the 

best current strategy for isolating an enriched population of B10-cells for use 

in adoptive transfer experiments in murine models is the isolation of 

CD1dhiCD5+ B cells or other well-defined B cell subsets enriched for IL-10+B 

cells (Kalampokis et al., 2013). 
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Figure I-4: B10 cell development in vivo in mice and human 
BCR signalling following antigen encounter induces a small proportion of B cells to 
produce IL-10. In mice B10 cells mature from a progenitor population (B10pro). 
Following CD40 stimulation, B10pro cells become competent for IL-10 expression. 
The resulting CD1dhiCD5-IL-10 competent B10 cells are induced to produce IL-10 in 
response to LPS stimulation with PMA and ionomycin, which acts as a potent 
stimulus to promote IL-10 secretion. Following transient B-cell IL-10 production, a 
small proportion of B-cells differentiate into antibody secreting plasma cells or 
memory B10 cells. Development of human IL-10+B cells is thought to follow a similar 
pathway as observed in mice as both B10 and B10pro cells have been recognized in 
neonatal and adult blood. Whether human B10 cells differentiate into memory cells 
first or plasma cells remains unknown. Solid arrows depict known associations and 
dashed arrows represent contemplated links. Adopted from Kalampokis et al., 2013. 
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Figure I-5: Phenotypic markers for distinct Breg subsets in mice 
A summary of the phenotypic profiles of IL-10 producing B cells: B10 cells and T2-
MZP. The colour code illustrates shared and unshared markers by both subsets. 
Adopted from Mauri and Blair, 2010. 
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Table I-2: Regulatory B cell subsets identified in mice and human 
 

Br1, B regulatory 1; DC, dendritic cell; dLN, draining lymph node; IgG4, immunoglobulin G4; MHC, 
major histocompatibility complex; MZ, marginal zone; NK, natural killer; RA, rheumatoid arthritis; SLE, 
systemic lupus erythematosus; T2-MZP, transitional 2 marginal-zone precursor. Table adopted from 
Rosser and Mauri (2015) 

Breg Cell 
Type 

Mouse Human Key Features Reference 

B10 CD5+CD1dhi CD24hiCD27+ Found in mice spleen 
and human blood, 
produce IL-10, and 
suppress effector 
CD4+ T cells, 
monocytes, DCs 

Horikawa et 
al., 2013, 
Iwata et al., 
2011, 
Matsushita et 
al., 2010 and 
Yanaba et al., 
2008 

MZ CD19+CD21hiCD23- - Found in spleen, 
produce IL-10, 
induce Treg cells and 
suppress effector 
CD8+ and CD4+ T 
cells 

Bankoti et al., 
2012, Gray et 
al., 2007 and 
Miles et al., 
2012 

T2-MZP 
cells 

CD19+CD21hiCD23
hi 

CD24hi 

- Produce IL-10, found 
in spleen, induce 
Treg cells and 
suppress effector 
CD8+ and CD4+ T 
cells 

Blair et al., 
2009, Carter et 
al., 2011, 
Evans et al., 
2007 and 
Schioppa et 
al., 2011 

Plasma cells CD138+MHC-11lo 

B220+ 
- Produce IL-10 and 

IL-35, found in 
spleen suppress NK 
cells, neutrophils and 
effector CD4+ T cells  

Neves et al., 
2010 and 
Shen et al., 
2014 

Tim-1+ B 
cells 

Tim-1+CD19+ - Produce IL-10, found 
in mice spleen and 
suppress effector 
CD4+ T cells 

Ding et al., 
2011 and Xiao 
et al., 2012 

Plasmablast
s 

CD138+CD44hi CD19+CD24hiCD27i

nt 
Produce IL-10, found 
in dLNs (mice) and 
human blood and 
suppress DCs and 
effector CD4+ T cells 

Matsumoto et 
al., 2014 

Immature 
cells 

- CD19+CD24hiCD38
hi 

Produce IL-10, found 
in blood and at site of 
inflammation, induce 
Treg cells, suppress 
Th1 and Th17 cells, 
suppress virus 
specific CD8+ T cell 
responses, are 
defective in patients 
with SLE and RA  

Blair et al., 
2010, Das et 
al., 2012, 
Flores-Borja et 
al., 2013, 
Khoder et al., 
2014 

Memory B 
cells 

- CD19+CD27+IgM+ Produce IL-10 and 
found in Human 
blood 

Khoder et al., 
2014 

Br1 cells - CD19+CD25hiCD71
hi 

Found in blood and 
produce IL-10 and 
IgG4 

Van de Veen 
et al., 2013 



	   69	  

1.6.2.3    Identification of regulatory B cells in humans 

IL-10 producing B cells subsets with regulatory capacity have been recently 

identified in humans (Iwata et al., 2011). Low but detectable numbers of IL-

10+B cells have been found in human blood, tonsils, spleen and neonatal 

cord blood (Candando et al., 2014). The general scheme of human IL-10+B 

cell development appears to follow mouse B10pro cell maturation where their 

response to LPS and CpG stimulation and CD40 ligation induces the 

maturation of B10pro cells into B10 cells that are capable of expressing IL-10 

(Iwata et al., 2011). Some individuals have demonstrated increased IL-10+B 

cell frequencies in response to TLR4 (LPS) and TLR9 (CpG) stimulation, 

suggesting that in humans B10pro cells may respond preferentially to TLR 

stimuli (Candando et al., 2014). Additionally, other studies have observed that 

whereas CD40 signaling promotes B10pro cell maturation, BCR cross-linking 

inhibits this progress in human B cell cultures (Iwata et al., 2011, Duddy et al., 

2007). In contrast, others have reported that human B10pro development is 

most optimally induced by BCR and CpG stimulation and independent of 

CD40 signaling (Bouaziz et al., 2010).  

 
 
1.6.2.4    Immunophenotype of regulatory B cells identified in humans 

Over the last decade, accumulating evidence has defined a subset of IL-10+B 

cells in humans, which represents <1% of PB-derived B cells with varying 

phenotypes (Iwata et al., 2011, Blair et al., 2010). Previous evidence 

highlighted that IL-10+B cells are contained within CD27- naïve B cell 

compartment, while memory B cells were found to produce pro-inflammatory 

cytokines in response to different stimulus (Duddy et al., 2004, Correale et al., 
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2008). Consistent with these findings, Blair et al., elegantly described an 

enriched population of IL-10+B cells in the CD24hiCD38hi B cell subset, a 

phenotype that typically delineates human transitional B cells, which exerted 

IL-10 dependent suppressive function on CD25-CD4+ effector T cell cytokine 

production (Blair et al., 2010, Flores-Borja et al., 2013). Conversely, a subset 

of Breg, analogous to murine B10 cells, was found to be enriched within the 

CD24hiCD27+ B cell subset, of which 60% expressed CD38 (Iwata et al., 

2011). These CD24hiCD27+ B cells exerted suppressive function on CD14+ 

monocyte proliferation and cytokine production. Extensive phenotyping of IL-

10+B cells has also highlighted that they highly express CD48 (B-cell 

activation marker) and CD148 (marker for human memory B cells)(Iwata et 

al., 2011). Thus, the CD24hiCD148+ phenotype of IL-10+B cells may suggest 

that they are enriched in the memory B cell pool or share overlapping markers 

with memory B cells (Iwata et al., 2011, Candando et al., 2014). Further, 

Bouaziz et al, provided evidence of IL-10+B cells that fall within both the 

CD27+ and the CD27-CD38hi transitional compartment (Bouaziz et al., 2010). 

In accord with this finding, 60% of IL-10+B cells were found within the CD27- 

naïve population in relapsing remitting MS patients and within the CD27+ 

subset during relapse (Knippenberg et al., 2011). However, a recent report 

identified that human IgM+CD27+ memory B cells produced greater levels of 

IL-10 than CD27- naïve B cells (Miles et al., 2012). A recent report by Khoder 

et al supported previous studies and in addition showed that IL-10-secreting 

CD19+IgM+CD27+ memory B cells coexist with IL-10+CD24hiCD38hi 

transitional B cells in healthy human donors and significantly suppress the 

proliferation and cytokine production of autologous CD4+ T cells through both 
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IL-10-dependant and cell-to-cell contact mediated mechanisms (Khoder et al., 

2014). Other phenotypes for IL-10 producing CD19+ B cells have also been 

described. Matsumoto et al identified a subset of CD19+CD24hiCD27int IL-10+ 

plasmablast regulatory B cells (Matsumoto et al., 2014). Further, a recent 

study characterized IgG4 expressing human inducible IL-10-secreting B 

regulatory 1 (BR1) cells that had a high expression of surface CD71 and 

CD25 but low CD73 and potently suppressed antigen-specific CD4+ T cell 

proliferation, highlighting a role for Breg in allergen tolerance (van de Veen et 

al., 2013). Thus, although IL-10+B cells can be modestly enriched in selected 

B cell compartments, their ability to produce IL-10 remains the gold standard 

method to unequivocally define Bregs. 

 
1.6.2.5    IL-10 independent mechanisms of regulatory B cell 

suppression 
 
In addition to IL-10 production, Breg have been reported to exert immune-

suppression through other mechanisms including the release of 

immunomodulatory cytokines such as transforming growth factor β (TGF-β) 

and IL-35 (Rosser and Mauri., 2014).  LPS activated B cells have been shown 

to induce both apoptosis of CD4+ T cells and anergy in CD8+ effector cells 

(Tian et al., 2001, Parekh et al., 2003). Additionally, the recent identification of 

IL-35 producing Breg in negative regulation of immunity demonstrated 

increased protection against experimental autoimmune encephalitis but 

markedly improved resistance to Salmonella-induced sepsis in murine models 

as lack of IL-35+ B cell expression augmented Th1 cell responses and the 

number of splenic macrophages (Shen et al., 2014). Further evidence has 

also supported the regulatory function of IL-35+Breg, in which the adoptive 
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transfer of IL-35 producing B cells inhibited experimental uveitis in mice 

(Wang et al., 2014). In addition to cytokine production, granzyme production 

by B cells has been found to initiate apoptosis of infected cells following the 

cleavage of caspases (Trapani and Sutton., 2003). The expression of Fas 

ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 

has further identified in a distinct subset of suppressive B cells designated 

‘killer B cells’ (Lundy, 2009). Further, expression of programed death ligand 

(PD-L) 1 and 2 has also been reported to participate in B cell immune-

suppression (Lundy, 2009). Hence in addition to soluble factors, direct cell-to-

cell contact may play a vital role in B cell mediated immune-suppression. 

 
1.6.3  Regulatory B cells in immune regulation 

Bregs have been reported to modulate immune responses through diverse 

mechanisms that target different immune cell types (figure I-6), including 

dendritic cells and Th1 and Th2 cells (Matsushita et al., 2010, Tian et al., 

2001). Previous studies have highlighted the ability of Bregs to suppress T 

cell proliferation and production of IL-17 and IFN-γ by Th17 and Th1 cells, 

respectively (Carter et al., 2012). Consistent with these findings, Yang et al 

further demonstrated a role for Bregs in T-cell plasticity by observing that IL-

10+B cells suppressed Th17 differentiation through attenuating levels of 

pStat3 in an IL-10-dependent fashion (Yang et al., 2012). Additionally, IL-

10+Bregs have been shown to suppress CD4+ T cell proliferation and pro-

inflammatory cytokine production through IL-10 (Khoder et al., 2014, Blair et 

al., 2010) and induce CD4+T cell death by expression of FasL (Tian et al., 

2001). Further, adoptive transfer of GIFT-15 induced Breg has been observed 

to suppress CD4+IFN-γ production and symptoms of EAE (Rafei et al., 2009). 
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Hence, the dynamic and diverse interaction between Breg-CD4+T cells plays 

a pivotal role in immune regulation. 

Moreover, studies have demonstrated that Bregs can not only suppress Th1-

mediated immune responses but also generate conventional Treg cells and 

IL-10 producing T cells from effector T cells through the production of IL-10 

(Carter et al., 2012, Flores-Borja et al., 2013). CD4+ Tregs sustain 

immunological self-tolerance and homeostasis and within the human CD4+ 

Treg compartment exist distinct subsets (Abbas et al., 2013). Firstly, naturally 

occurring FOXP3+ Treg cells that either originate from the thymus or 

peripheral sites (referred to as thymus- or peripherally- derived Tregs) can 

further be divided into three subpopulations by the expression of FOXP3, 

CD45RA and CD25 (Miyara et al., 2014). Additionally, functional activated 

human FOXP3+ Treg cells express a unique pattern of cell surface markers 

(high expression of CD25 and low or negative expression of CD127) that can 

facilitate their isolation (Miaya et al., 2014, Ohkura et al., 2013). Secondly, 

induced FOXP3+ Treg populations are generated in vivo or in vitro through 

the use of TGF- β (Abbas et al. 2013, Ohkura et al., 2013). Although the 

transcription factor FOXP3 plays a pivotal role in Treg function it is not 

sufficient for conferring and maintaining Treg function and phenotype (Ohkura 

et al., 2013). Hence, a third subset of Tregs are described as CD4−Foxp3− 

Treg cells that mediate their suppressive functions primarily through IL-10 and 

TGF- β (Ohkura et al., 2013).  

Carter et al indicated that IL-10-producing B cells partake in a longer period of 

contact with CD4+CD25- T cells than IL-10-deficient B cells, which allows IL-

10+B cells to convert effector T cells into Il-10 producing suppressive T cells 
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(Carter et al., 2011). Further, Carter et al highlighted that lack of Bregs 

coincided with a decrease of peripheral Foxp3+ Treg (Carter et al., 2011). In 

accord with these findings, CD40-stimulated murine B cells were also found to 

generate IL-10+Treg cells from effector T cells (Blair et al., 2009). 

Subsequently, Ray et al reported that the adoptive transfer of wild-type B cells 

restored both the recovery of EAE and Treg numbers in mice (Ray et al., 

2012). Bregs have also been observed to suppress immune responses by 

CD8+T cells (Bankoti et al.,2012). Human transitional B cells have been 

implicated in suppressing HBV-specific CD8+ T cell responses in an IL-10 

dependent fashion (Das et al., 2012). Additionally, IL-10 producing MZ-B cells 

have also been shown to suppress CD8+ T cell responses (Bankoti et al., 

2012). Further to these observations, the effect of Bregs to exert immune-

modulation by cellular interactions has also been noted. Breg can also induce 

dendritic cells to produce IL-4 and downregulate IL-12, thereby affecting 

theTh1/Th2 balance (Moulin et al., 2000). Moreover, induction of IL-10+B cells 

via CD40L interaction on tumor cells can suppress IFN-γ production by NK 

cells (Inoue et al., 2006). Furthermore, CD1d-expressing MZ B cells, which 

share phenotypic characteristics with IL-10+B cells has been observed to 

modulate peripheral tolerance by inducing IL-10 producing T cells in the 

presence of DCs (Sonoda et al., 2002). Moreover, this process is mediated 

through glycolipid presentation via CD1d, which are recognized by NKT cells 

and CD1d−/−mice lacking NKT cells have demonstrated aggravated EAE 

(Croxford et al., 2006). The role of CD1d in Breg-NKT interaction was further 

highlighted in a study where human transitional B cells were shown to activate 

and expand the iNKT pool and thereby indirectly exert their regulatory function 
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in healthy individuals but not in SLE patients as they have defects in CD1d 

(Bosma et al., 2012). Overall, Bregs have been reported to exert their 

regulatory function during immune responses by both direct and indirect 

mechanisms.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I-6: Mechanisms for human Breg-mediated immune-suppression 
The proposed mechanisms by which Breg cells may modulate immune responses 
through IL-10, IL-35 and TGF-β including: suppression of Th1 and Th17 
differentiation and effector cytokine production, suppression of TNFα production by 
monocytes and IL-12-producing dendritic cells, inducing differentiation of Tr1 cells 
and Foxp3+T cells, maintenance of iNKT cells through CD1d expression and 
suppression of cytotoxic CD8+T cells. Adopted from Rosser and Mauri, 2015. 
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1.6.4  Human Regulatory B cells in disease 

IL-10 producing Bregs have been identified in humans as critical regulators of 

immune tolerance in disease pathology such as autoimmunity, tolerance, 

infection and cancer. 

 
1.6.4.1    Regulatory B cells in Autoimmunity 

Extensive studies in mice have highlighted the crucial role of Breg in 

immunosuppression of autoimmune diseases, however the role of human 

Bregs in autoimmunity remains understudied. Blair et al, described a subset of 

IL-10+CD19+CD24hiCD38hi  human transitional B cells that were functionally 

impaired in SLE patients and lacked suppressive capacity associated with 

defective IL-10 production in response to CD40 ligation when compared to 

their healthy counterparts, suggesting that altered Breg function may impact 

the maintenance of immune tolerance in SLE and other autoimmune diseases 

(Blair et al., 2010). Incidentally, following rituximab treatment, SLE patients 

had an increased ratio of CD19+CD24hiCD38hi B cells to memory B cells 

suggesting a role for B-cell depletion in generating tolerogenic B cells 

(Palanichamy et al., 2009, Anolik et al., 2007).  

Moreover, a subset of human B10 cells (CD24hiCD27+) identified by Tedder et 

al that can suppress TNFα production by monocytes was found to be 

expanded in autoimmune disorders such as SLE, RA, autoimmune skin 

disease and MS, supporting their role as a biomarker for autoimmune disease 

activity (Iwata et al., 2011). Subsequently reduced frequency of immature B 

cells has been associated with exacerbation of disease in RA as immature B 

cells re-locate to the inflamed joint (Flores-Borja et al., 2013). Further 

immature B cells isolated from RA patients lack suppressive capacity on Th17 
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differentiation and are unable to generate FOXP3+ T cells from naïve T cells 

when compared to their healthy counterparts suggesting that mechanisms 

other than IL-10 production may be involved in Breg-mediated suppression 

(Flores-Borja et al., 2013). 

The role of B cells as both initiators and contributors to autoimmune pathology 

has been further reported by recent advances in B-cell depletion strategy 

used to treat patients with autoimmune disease (Yanaba et al., 2008). B-cell 

depletion therapy using rituximab in RA patients was found to considerably 

attenuate ongoing joint inflammation; however, recrudescence of disease 

activity was found to be associated with B-cell recovery (Edwards et al., 2004, 

Leandro et al., 2006). Additionally, B-cell depletion in MS patients 

demonstrated beneficial effects after the onset of disease and ameliorated 

disease progression (Hauser et al., 2008). The beneficial effect of rituximab is 

further supported by clinical reports that correlated B-cell depletion with 

improvements in clinical manifestations of SLE (Looney et al., 2004). These 

reports suggest the appreciable role of rituximab as a powerful tool for 

researchers to study Breg function in the treatment of human autoimmune 

disease.  Contrastingly, B-cell depletion has been shown to augment Th1-

mediated immunity and thereby exacerbate ulcerative colitis and trigger 

psoriasis, further supporting a role for Bregs in controlling Th1 responses in 

vivo (Goetz et al., 2007, Dass et al., 2007). Taken together, the role of B cells 

as negative regulators of effector immune responses further supports their  

role in the pathogenesis of autoimmune diseases.   
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1.6.4.2    Regulatory B cells in Cancer 

 
A new wave of research provides evidence that Bregs may play a role in 

cancer progression. DiLillo et al (2013) highlighted an expanded pool of IL-10 

competent CD5+ CD20int B cells in patients with chronic lymphocytic leukemia 

(CLL) that expressed high levels of IL-10 production following activation with 

LPS when compared to healthy controls (DiLillo et al., 2013). Further, high 

plasma levels of IL-10 have been reported in CLL, suggesting that IL-10 

competent CLL cells may regulate immunosuppression and thereby attenuate 

patient responses to immunotherapies including rituximab. In accord with this 

finding, Horikawa et al observed that although B-cell depletion therapy was 

effective in treating non-Hodgkin lymphomas and CLL, some patients present 

resistance to this therapy or eventually relapse as a result of IL-10+ B cells 

that inhibit lymphoma depletion (Horikawa et al., 2011). Hence, IL-10+B cells 

may inhibit the efficacy of therapy in patients with malignant lymphoma, and B 

cell depletion may prevent cancer progression and metastasis. In addition, an 

increased frequency of circulating B cells was identified in human 

hepatocellular carcinoma (HCC) patients with advanced tumor staging (Lin et 

al., 2010). More recently, Shao et al further highlighted that a significantly 

higher percentage of circulating Bregs in HCC patients correlated with 

advanced tumor staging, tumor multiplicity and venous infiltration (Shao et al., 

2014). Bregs promoted HCC growth and invasiveness by directly interacting 

with liver cancer cells through the CD40/CD154 signaling pathway (Shao et 

al., 2014).  

Collectively, the studies highlight that Bregs may sustain malignant expansion 

and support cancer progression in humans.  
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1.6.4.3    Regulatory B cells in Infection 

 
Growing evidence has associated increased frequencies of PB-derived 

immature B cells with immune responses in infectious diseases such as HIV 

and hepatitis B (Malaspina et al., 2006, Das et al., 2012). Human transitional 

B cells have been implicated in suppressing HBV-specific CD8+ T cell 

responses in an IL-10 dependent fashion (Das et al., 2012). Further, in a 

study investigating immune regulation in multiple sclerosis patients, parasitic 

infection has been shown to induce functionally suppressive Bregs that 

attenuate proliferation and IFNγ production by myelin-specific T cells 

(Correale et al., 2008). Additionally, an increased CD1dhi IL-10 producing B 

cell pool was observed in Gabonese children infected with Schistosoma 

haematobium. After treatment children had fewer CD1dhi B cells that 

correlated with reduced inflammation (van der Vlugt et al., 2012).  

Collectively, recent evidence of B regulatory cells in infection indicates a 

potential role for Bregs as potential therapeutic target for infectious diseases 

in humans however, the mechanistics of Breg suppression is not yet fully 

understood.  

 
1.6.4.4    Regulatory B cells in Transplant Tolerance  

 
Accumulating studies support a role for Bregs as crucial mediators of immune 

tolerance in allograft recipients (Pallier et al., 2010, Newell et al., 2010, Silva 

et al., 2012). In one study, an expanded pool of transitional/naïve B cells 

which shared phenotypic similarities with previously identified Bregs was 

found in graft-tolerant renal transplant recipients that were off 

immunosuppressants (Newell et al., 2010 and Sagoo et al., 2010). In addition, 
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increased frequency and absolute counts of peripheral B cell that were 

phenotypically reminiscent of murine B10 cells were reported in a study by 

Pallier et al. These elevated B cells were enriched within the transitional B cell 

compartment and were suggested to contribute to the maintenance of long-

term graft function (Pallier et al., 2010).  

 

1.6.4.5    Regulatory B cells in Pregnancy and Allergy 

Interestingly, during pregnancy, another state of tolerance to alloantigen, IL-

10 producing CD19+CD24hiCD27+ Bregs were reported to increase with 

pregnancy onset (Rolle et al., 2013). These IL-10 producing CD19+B cells 

suppressed effector cytokine production by CD4+T cells, suggesting a novel 

role for Bregs in suppression of maternal T cells and acquisition of tolerance 

during pregnancy (Rolle et al., 2013). Further, a population of IL-10+Bregs 

producing IgG4 isolated from Bee Keepers that are known to exhibit long-term 

tolerance to bee venom allergens were shown to suppress antigen-specific 

CD4+T cells proliferation. These Bregs were induced in allergic patients 

following specific immunotherapy and demonstrated that induction of long-

term tolerance to allergic antigens ay be partially dependent on B suppressor 

cells (van de Veen et al., 2013). The regulatory capacity of B cells to maintain 

tolerance could therefore be exploited for therapeutic purposes by triggering 

expansion of the Breg population in vivo. 
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Aims and Hypothesis 

In recent years, a distinct newly described subpopulation of IL-10 producing 

human B regulatory cells, that have been shown to exert significant 

immunoregulatory functions, has been the focus of intense immunological 

research. However, seemingly conflicting data exist as to the phenotypic and 

functional characteristics of these immunomodulatory B cells. Further, little is 

known about these B cell subsets in cord blood. There is therefore, a 

compelling need to characterize human B cell subsets more comprehensively 

to better understand their immune modulatory function, which may in turn aid 

the development of therapeutics to treat immune-mediated diseases. 

 

I hypothesize that an imbalance of effector and regulatory subsets may lead 

to loss of tolerance and induction of allo-reactivity in GVHD. Further, I propose 

that regulatory B cells play a crucial role in modulating the function of immune 

effector cells and the induction of GVHD.  

The results of these laboratory findings will aid our understanding of their role 

in allogeneic HCT and possible application for the prevention and treatment of 

GVHD and a host of other immune-mediated diseases.   

 
The specific aims of this thesis are: 

1. To perform a comprehensive characterization of IL-10 producing 

regulatory B cells in peripheral blood and cord blood  

2. To define the mechanisms of B-cell mediated suppression, specifically 

whether suppression is dependent on IL-10 or requires cell-to-cell 

interaction. 
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3. To study the interaction of Bregs with T cell subsets as well as other 

cells of the immune system (NK cells) that might unravel additional 

undiscovered functions of the nature of B cells in cord blood grafts. 

4. To study the kinetics of Bregs reconstitution post-cord blood transplant 

and their impact on the risk of graft-versus-host disease (GVHD). 
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Chapter II.  Materials and Methods 

	  
II.1 Patients and Healthy Controls 

All samples were collected after written informed consent according to local 

policy guidelines at the MD Anderson Cancer Centre, and in accord with the 

Declaration of Helsinki. The study was approved by the institutional review 

board (IRB). Peripheral blood (PB) samples were collected from 13 

consecutive AML patients [median age was 68 years (range 20–80 years)] at 

presentation. Patient samples were also studied in parallel with PB samples 

from healthy controls (6 female and 8 male, n=14) aged 24-50 years. All 

samples underwent Ficoll density separation (Lymphoprep), freezing and 

storage in liquid nitrogen, and were then used for the isolation of B regulatory 

(Breg) and natural killer (NK) cells. Cord blood transplant recipient samples 

were collected from 16 patients [median age was 42 years (range 21–64 

years)] before and after CBT between 2007 and 2011 and at intervals of 90 

days for up to 1 year post CBT and at 2 years. cGVHD status was classified 

according to the National Institutes of Health (NIH) criteria at the time the 

sample was collected and the modified Seattle criteria for limited versus 

extensive disease. 

 
II.2 Sample processing 

II.2.1 Isolation of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) were isolated by use of density 

gradient separation technique (Lymphoprep). In summary, EDTA anti-

coagulated whole blood was diluted 1:1 with RPMI 1640 media (GIBCO / 

Invitrogen) and 30 ml of the diluted blood was gently layered into 50 ml falcon 
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tubes containing 15 ml of Lymphoprep (Axis Shield). The tubes were 

centrifuged at 1800 rpm for 30 min and the interface layer containing 

mononuclear cells was collected. Collected PBMCs were washed with RPMI 

twice for 10 minutes at 1400 rpm. Cells were then re-suspended in RPMI 

containing 10% foetal calf serum (FCS) and counted using Trypan Blue for 

cell viability assessment. 

 
II.2.2 Isolation of cord blood mononuclear cells 

Cord blood units were kindly donated by the cord blood bank at MD Anderson 

Cancer Center, Houston, Texas, USA under an IRB-approved protocol. Cord 

blood mononuclear cells (CBMCs) were by use of density gradient separation 

technique (Lymphoprep). In summary, EDTA anti-coagulated whole blood 

was diluted 1:1 with RPMI 1640 media (GIBCO / Invitrogen) and 30ml of the 

diluted blood was gently layered into 50ml falcon tubes containing 15ml of 

Lymphoprep (Axis Shield). The tubes were centrifuged at 2000 rpm for 20 min 

and the interface layer containing mononuclear cells was collected. Collected 

PBMCs were washed with PBS for 10 minutes at 1400rpm. Cells were then 

re-suspended in RPMI containing 10% foetal calf serum (FCS) and counted 

using Trypan Blue for cell viability assessment. 

 

II.2.3 Cell freezing 

PBMC were suspended in freezing media on ice (RPMI 1640 media 

supplemented with 20% FCS) and 20% dimethyl sulfoxide (DMSO) (Sigma‐

Aldrich) and gently aliquoted into 1.5ml cryovials for storage in ‐80° C (max 1 

week) before being cryopreserved in liquid nitrogen at a density of 5 x 106/ml 

cells. 
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II.2.4 Cell thawing 

PBMCS stored in cryovials were transferred from liquid nitrogen on dry ice for 

thawing protocol. Cryovials were thawed at 37 ºC in the water bath and 

immediately transferred into falcon tubes containing 10 ml thawing media 

(RPMI supplemented with 20% FCS and 50,000 units of DNase). PBMC were 

centrifuged at 1100 rpm for 10 min, and washed again in RPMI. Pelleted cells 

were resuspended in media for cell count and viability assessment (PBMC 

viability >76% after thawing). 

 

II.3 Cell lines 

II.3.1 L cells and control cells 

Frozen aliquots of CD154 (CD40L)-transfected fibroblasts (L cells) and 

CD154-negative control cells were stored in the -81° C freezer and thawed as 

per the protocol described in II‐2.4. L cells were grown in complete media 

(CM) (complete RPMI 1640, supplemented with 5 µM HEPES, 12.5 µg/ml 

Gentamicin and 10% FCS). Once confluent in the T25 vented culture flasks, 

adherent L cells were incubated for 4 min at 37°C with 5 ml of 0.05% Trypsin-

EDTA (GIBCO/ Invitrogen) after removing the culture media. Following gentle 

tapping of the flask, once the L cells were detached, an equal volume of CM 

was added and cells were centrifuged at 1200rpm for 10 min. To determine 

the expression of CD40L on transfected L cells, cells were stained with 

CD154-PE mAb and analyzed periodically by Fluorescence‐activated cell 

sorting (FACS) analysis figure (II‐1), to ensure that the CD40L expression 

was not affected by frequent passaging. L cells were sent to microbiology lab 

for testing of mycoplasma contamination every 6 months. After cells were 

trypsinized, the viability of L cells and expression of CD154 was assessed to 
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exclude any impact of trypsin. Following the wash, cells were frozen as 

described in II‐2.3 and stored at – 81 ° C. 

 

II.3.2 K562 cell line 

Frozen aliquots of K562 tumour target cell line were stored in the -80° C 

freezer and thawed as required following the protocol outlined in II‐2.4. K562 

cells were grown in CM. Once confluent in the T25 vented culture flasks, non-

adherent K562 cells were washed by centrifugation at 1200rpm for 10 

minutes. After washing, the viability of K562 cells was assessed and cells 

were frozen as outlined in section II‐2.3 and stored at – 80 ° C and then 

transferred to liquid nitrogen. 

 

 

 

 

 

 

 

Figure II-1: CD154 (CD40L) expressing transfected L cells and their controls 

A. Staining of CD154-control cells (white) and the isotype (tinted grey) and B. 
CD154+ L cells (white) with isotype control (tinted grey) 
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II.4 Cell selection 

II.4.1  B cell selection 

Following the manufacturer’s protocol, untouched B cells were selected from 

either fresh or frozen PBMC using the human B cell isolation kit II (Miltenyi 

Biotec Ltd). In summary, PBMC were washed using MACS Buffer (MACS 

BSA and autoMACSTM rinsing solution from Miltenyi Biotec Ltd). Upon 

determining the cell number, 107 cells were re‐suspended in 40 µl of MACS 

buffer and 10 µl of Biotin‐antibody cocktail against CD2, CD235a, CD36, 

CD16, CD43, and CD14 and incubated at 4°C for 10 minutes; 30µl/107 of 

MACS buffer and 20 µl/107 of anti‐Biotin micro‐beads were then added to the 

cells and further incubated for 15 minutes at 4°C. After incubation, cells were 

washed with MACS buffer and re-suspended in 500 µl of MACS buffer. The 

cells were applied to primed LD MACS columns (Miltenyi Biotec Ltd) followed 

by 3 washes of the column. The pass-through containing purified population 

of negatively isolated B cells was collected and centrifuged at 1200 rpm for 10 

minutes. Cells were re‐suspended in CM at the required cell concentration 

and stained with anti‐CD19 PE (BD PharmingenTM Cat# 555413) to confirm 

B cell purity, which was consistently between 95.5%‐99%, figure (II‐2) 

 

 

 

 

 

 

 

 
Figure II-2: B cell selection purity check 
Purity of selected CD19+ B cells from a healthy donor stained with CD19 PE 

Comp-‐PE-‐A::CD19	  
	  

Comp-‐PE-‐A::CD19	  
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II.4.2  T cell selection 

II.4.2.1  Total CD4+ T cell selection 

Untouched CD4+ T cells were negatively isolated from fresh PBMC using 

human CD4 T cell isolation kit II (Miltenyi Biotec Ltd), following the 

manufacturer’s protocol. Briefly, isolated PBMC were washed using MACS 

Buffer. Upon determining the cell number, the cell pellet was resuspended in 

40µl per 107cells of MACS buffer. Subsequently, 10 µl per107 cells of Biotin‐

antibody cocktail against CD8, CD19, CD16, CD14, CD123, CD56, CD36, 

TCR γ/δ, and CD235a was added to the cells and incubated for 5 minutes at 

4°C. Following incubation, 30 µl of MACS buffer and 20 µl of anti‐Biotin micro‐

beads per 107 cells were added to the tube and incubated for a further 10 

minutes at 4°C. The cell suspension was then applied onto the primed LD 

MACS columns and an additional 3 ml of MACS buffer was used to wash the 

columns 3 times. The pass-through containing a population of enriched CD4+ 

T cells was collected and centrifuged at 1400 rpm for 10 minutes. Cells were 

re‐suspended in RPMI/10%FCS  at the required cell concentration and 

stained with anti‐CD4 APC (BD Cat# 340443) to assess the purity of selected 

CD4+ T cells. Purity was consistently between 92%‐98%; figure (II‐3). 

 
 
 
 
 
 
 
 
 
 
 
Figure II-3: T cell selection purity check 
Purity of healthy donor derived selected CD4+ T cells was determined by staining 
with CD4 APC 
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II.4.2.2  CD4+CD127loCD25- Treg magnetic selection/ “Treg 
depletion” 

	  
	  
CD4+CD127loCD25‐ cells were selected by a two step labelling procedure for 

the isolation of Treg cells from fresh PBMC using CD4+CD25+CD127dim/‐ 

regulatory T cell isolation kit II human (Miltenyi Biotec Ltd), as per the 

manufacturer’s protocol. In summary, PBMC cell number was determined and 

cells were washed using MACS Buffer. The cell pellet was resuspended in 

40µl/107 cells of MACS buffer and 10 µl/107 cells of Biotin‐antibody cocktail 

was added to magnetically remove CD4- and CD127 hi cells. Cells were 

incubated for 7 minutes at 4°C, after which 30 µl of MACS buffer and 20 µl of 

anti‐Biotin micro‐beads per 107 cells was added to the cells and further 

incubated for 10 minutes at 4°C. Cells were washed and resuspended in 500 

µl of MACS buffer and applied to LD MACS columns. Columns were washed 

three times with 3 ml of MACS buffer and the flow‐through containing a 

population of enriched CD4+ T cells was collected and centrifuged at 1200 

rpm for 10 minutes. The cell pellet was re‐suspended in 90 µl of MACS buffer 

followed by 20 µl of CD25 MicroBeads per 107 cells and incubated for 15 min 

on ice for the second step of the labeling procedure. Cells were passed 

through an MS MACS magnetic column and the pass-through containing 

untouched CD4+ cells depleted of Treg cells (CD4+CD127loCD25hi) were 

collected. 1ml of MACS buffer was added to the column and labeled Treg 

cells were eluted by firmly pushing the plunger into the column. Cell number 

and viability were determined and cells were plated as required. Cells were 

stained with anti‐CD25, anti‐CD4 and anti‐CD127 to confirm the purity of the 
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isolated subsets, which was consistently found to be between 88.6‐97%; 

figure (II‐4). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II-4: Treg cell selection purity check 
 
A. Purity of healthy donor derived selected Treg cells was determined through 
staining with CD4 PerCP, CD127 PE and CD25 APC  B. Phenotype of flow through 
(enriched CD4+ T cells depleted of Treg) shows CD4 purity of 94.8% and lower 
CD127 expression (CD127loCD4+) (grey) compared to total CD4+ T cells (white) 
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II.4.3 NK cell selection 

Isolation of untouched NK cells from fresh or frozen PBMCs was performed 

using the human NK cell Isolation kit according to the manufacturers’ protocol. 

In summary, PBMC were washed using MAC buffer and the cell number was 

determined. Cells (107) were suspended in 40 µl MACS buffer; 10 µl per107 

cells of biotin‐antibody cocktail against antigens not expressed by NK cells 

was added to the cells for 5 minutes at 4°C. Following incubation, 30 µl of 

MACS buffer and 20 µl of anti‐Biotin micro‐beads per 107 cells was then 

added and incubated for a further 10 minutes at 4°C. Cells were washed and 

the cell volume was adjusted to 500 µl and applied onto the primed LD MACS 

columns. An additional 3 ml of MACS buffer was used to wash the columns a 

total of three times. The flow-through containing an enriched population of 

unlabeled NK cells was collected and centrifuged at 1400 rpm for 10 minutes. 

Cells were re‐suspended in CM to achieve the required cell concentration. 

Post-selection purity was confirmed using anti‐CD56 Bv605 (BD Biosciences) 

and CD3 APC-Cy7 mAbs (Biolegend). Purity was consistently between 92%‐

98%; figure (II‐5). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure II-5: NK cell selection purity check 
Purity of healthy donor-derived selected CD56+ NK cells was determined by staining 
with CD56 Bv605. 
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II.5 Cell sorting for B cell subsets 

 
II.5.1 Cell sorting for peripheral blood-derived B cell subsets 

B cell sorting was performed at the FACS core facility, Department of stem 

Cell Transplantation and Cellular therapy, MD Anderson Cancer Centre using 

BD FACS Aria IIIu instrument. In summary, 20 x107 freshly isolated PBMC 

were stained with 8 µL of anti‐CD24-FITC (BD Biosciences), 10 µL of anti‐

CD19-APC (BD Biosciences), 7 µL of anti-CD38-Pe-cy7 (eBiosciences) and 7 

µL of anti‐IgM-PerCP cy5.5  (BD Biosciences) for 20 min. Positive controls 

stained for each parameter were included in each experiment in addition to 

unstained (negative) control. To prevent aggregates from clogging the 70 µm 

nozzle, all samples were filtered prior to sorting. A total of 107 cells/ml of PBS 

was used to achieve a sorting efficiency of > 80%. The gating strategy 

performed for B cell subset sorting is illustrated in figure (II‐6). Sort-purified 

CD19+ B cell populations including CD19+CD24hiCD38hiIgMhi transitional 

(mean purity 92.1%), CD19+IgM+CD24hiCD38–/lo IgM memory (mean purity 

93.6%), CD19+CD24intCD38intIgM+ naïve (mean purity 91.4%) and CD19+IgM-

CD24hiCD38–/lo switched memory (mean purity 92.5%) B-cell subsets were 

collected in purity sorter mode; figure (II-7). At the end of each sort, purity 

checks were undertaken to ensure high purity populations >90%. 
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Figure II-‐6: Gating strategy of PB B cell sorting  
Multi-parametric flow cytometric gating strategy for B cell subset sorting on BD FACS 
ARIA IIIu. Following lymphocyte gate and cell doublet discrimination, CD19+ B cells 
are then sort-purified based on CD24 and CD38 expression into 3 subsets, namely 
memory, transitional and naïve. Memory B cells are further divided into switched 
memory and IgM memory B cells based on IgM expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II-‐7: Purity checks of PB B cell sorting 
FACS plots illustrating the high purity of sorted B cell subsets are shown within the CD19+ 
gate including CD19+CD24hiCD38hiIgMhi transitional (mean purity 92.1%), 
CD19+IgM+CD24hiCD38–/lo IgM memory (mean purity 93.6%), CD19+CD24intCD38intIgM+ 
naïve (mean purity 91.4%) and CD19+IgM-CD24hiCD38–/lo switched memory (mean purity 
92.5%) B-cells (n=48) 
 



	   94	  

II.5.2 Cell sorting for cord blood derived B cell subsets 

Cord blood-derived B cell subsets were sort-purified on FACSAria IIIu 

instrument (Becton Dickinson) at the FACS core facility, Department of stem 

Cell Transplantation and Cellular therapy, MD Anderson Cancer Centre.  

Following staining with CD19 APC, CD24 FITC (all from Becton Dickinson, 

USA) and CD38 Pecy7 (eBiosciences, San Diego, USA). 

Briefly, freshly prepared 10 x107 PBMC were stained with 8 µL of FITC-

labelled anti‐CD24 (BD Biosciences), 10 µL of  anti‐CD19-APC (BD 

Biosciences) and 7 µL of anti-CD38-Pe-cy7 (eBiosciences) for 30 min. 

Positive controls for each individual parameter were included in addition to 

unstained (negative) control.  

To prevent aggregates from clogging the 70 µm nozzle, all samples were 

filtered prior to sorting. A concentration of 107 cells/ml of PBS was determined 

to achieve a sorting efficiency of > 80%. The gating strategy performed for CB 

B cell subset sorting is illustrated in figure (II‐8).  

Two distinct sort-purified CD19+ B cell populations, namely 

CD19+CD38hiCD24hi transitional B cells (a population that includes immature 

B cells) and CD19+CD38intCD24int naïve B cells (primarily mature B cells) 

were obtained in purity sorter mode; figure (II-9). At the end of each sort, 

purity checks were undertaken to ensure high purity populations >90%. 
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Figure II-‐8: Gating strategy of CB B cell sorting  
Multi-parametric flow cytometric gating strategy for sorting B cell subsets on BD FACS 
ARIA IIIu. Following lymphocyte gate and cell doublet discrimination, CD19+ B cells are 
then sort purified based on CD24 and CD38 expression into 2 subsets, CD19+CD38hiCD24hi 
transitional B cells and CD19+CD38intCD24int naïve B cells 
 
 
 
 
 

Figure II-‐9: Purity checks of PB B cell sorting 
FACS plots illustrating the high purity of sorted B cell subsets are shown within the CD19+ 
gate, namely CD19+CD38hiCD24hi transitional B cells (mean purity 90.8%) and 
CD19+CD38intCD24int naïve B cells (mean purity 91.9%) (n=30) 
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II.6 Phenotypic and functional characterization of peripheral B 
cells using flow cytometry 

 
 
II.6.1 B cell Phenotyping using an extended panel of surface antibodies 

A laser-based, biophysical technology of flow cytometry enables simultaneous 

multiparametric analysis of particular cell populations of interest based on 

their properties through biomarkers with use of specific fluorochromes and 

different gating strategies. Fluorochromes are selected based on intended cell 

markers, commercially available options and instrument configuration. For B 

cell phenotyping, an antibody panel of 9-fluorochrome markers (as defined in 

Table II-1) was customized to determine the following B cell subsets: 

 

Transitional B cells: CD19+, CD24hi, CD27‐, CD38hi, CD10+, CD21‐/lo,   
IgMhi and IgD+ 
 
Naïve B cells: CD10‐, CD19+, CD21+, CD24‐/lo, CD27‐, CD38+, IgM‐ and  
IgD+ 
 
Pre Germinal Centre: CD10+, CD19+, CD21hi, CD24‐, CD27+, CD38hi, IgM+  
and IgD+ 
 
Memory B cells; isotype switched: CD10‐, CD19+, CD21+, CD24‐/lo, CD27+,  
CD38+/‐, IgM- and IgD- 
 
IgM memory or marginal zone B cells (MZB cell): CD10‐, CD19+, CD21+/hi,  
CD24‐/lo, CD27+ CD38 lo/‐, IgM+/lo and IgD+/lo 
 
Tissue like memory cell, exhausted B cells: CD10‐, CD19+, CD21‐, CD24‐,  
CD27‐, CD38 ‐, IgM‐ and IgD- 

 

Plasmablasts: CD10‐, CD 21‐, CD24 –, CD 38hi, CD27+/hi IgM‐ and IgD- 
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Table II-1: Antibodies used for characterizing B cell subsets 
 

 
 
 
II.6.2 Cell staining and FACS acquisition 

Briefly, 1x106 cells derived from fresh or thawed PBMC were stained with 1 µl 

of cell viability marker (invitrogenTM LIVE/DEAD Fixable Aqua Dead cell stain 

Kit) for 30 minutes at room temperature in the dark. Following incubation, cells 

were washed and incubated with an antibody cocktail for various cell markers 

(Table II‐1) at titrated concentrations in x1 PBS for a further 30 min. Stained 

cells were washed with 2 ml of PBS and acquired on LSR Fortessa (BD 

Biosciences) at MD Anderson. The instrument was standardized by running 

Cytometer Settings & Tracking (CST) beads (Becton Dickinson) at designated 

PMT voltages daily to reduce variation between experiments or samples. 

Compensation controls (single stained controls) for each fluorochrome were 

made using pre mixed negative and positive antibody capture beads (BDTM 

Comp Beads), which were stained singly with each antibody. The 

Antibody	   Volume	  µl	   Manufacturer	   Description	   Clone	  

CD19	  APC	  H7	  	   4	   BD	  PharmingenTM	   B	  cell	  lineage	  differentiation	  
marker	  

SJ25C1	  
	  

CD38	  	  	  PE	  Cy7	  	   3	   eBioscience	   Surface	  antibody	  involved	  in	  
calcium	  signalling	  

HIT2	  
	  

CD24	  FITC	  	   4	   BD	  PharmingenTM	   B	  cell	  maturation	   HB5	  
	  

CD21	  APC	  	   4	   eBioscience	   complement	  receptor	  2	  	   HB5	  
	  

CD27	  PE	  	   4	   BD	  PharmingenTM	   Tumor	  necrosis	  factor	  receptor	  
	  

M-‐T271	  

IgD	  v450	   4	   BD	  PharmingenTM	   Surface	  antibody	   IA6-‐2	  
	  

IgM	  PerCP	  cy5.5	  	   3	   BD	  PharmingenTM	   Surface	  antibody	   G20-‐127	  
	  

CD10	  Qdot®	  
605	  	  

1	   InvitrogenTM	   membrane	  metallo-‐endopeptidase	   MEM-‐78	  

Aqua	  florescent	  
reactive	  dye	  	  

1	   InvitrogenTM	   Live/Dead	  marker-‐	  binds	  to	  
intracellular	  amines	  of	  dead	  cells	  
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compensation controls were recorded at 5000 events per tube individually to 

ensure that each fluorochrome marker was the brightest in its channel. 

FACSDiva software was used to compute the automated compensation 

matrix of the controls. PMT voltages were also adjusted using unstained cells 

in order to exclude auto-fluorescence and control the background intensity i.e. 

by restraining the negative population below log 102. Manual compensation 

was used occasionally when the software did not allow optimal adjustment of 

the spectral overlap between the different fluorochromes. Acquired data was 

analysed using FlowJo (v.7.6.5) software (Tree Star). 

 
 
II.6.3  B cell activation 

Total CD19+ B cells selected from either fresh or frozen PBMC were plated at 

a concentration of 2x105 cells/well in a total volume of 200 µl of CM in flat-96‐

well plates (nunc). B cells were stimulated for 24, 48 and 72 hours with either 

CpG OND200‐ 5G (InvivoGen, USA) at a dose of 0.2 µg/ml in a humidified 

incubator at 37 °C with 5% CO2, or L cells  that were irradiated (60 Gy), 

rested for a minimum of 1 hour and plated with CD19+ selected B cells at a 

ratio of 1:10 (L cell to B cells), or with 0.6 µg/ml of F (ab’) 2 Goat anti Human 

IgG+ IgM (H+L) (Jackson ImmunoResearch Laboratories, USA). At the end of 

culture, the plates were centrifuged at 1800rpm for 5 minutes and 150 µl of 

the supernatant was collected from each well for ELISA analysis. Cells were 

collected for detection of IL-10-producing B cells by intracellular staining and 

flow cytometric analysis.  
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II.6.4  Quantitative ELISA for IL-10 

Detection of IL-10 by ELISA was performed using OptEIA ELISA kits (BD 

PharmingenTM, San Diego, CA), following the manufacturers’ protocol. Briefly, 

following washing and blocking of the ELISA plate with 50 µl of ELISA diluent, 

100 µl of sample collected from each culture condition was plated and 

incubated for 2 h at room temperature. Supernatants collected from un-

stimulated B cells, CD154 positive fibroblasts and their CD154 negative 

control cells cultured alone were also used as controls to validate detection of 

IL-10 from CD19+ B cells. After 5 washings, 100 µl of detection antibodies 

were incubated with the samples for 1 h. Following a further 7 washings, 100 

µl of the provided tetramethylbenzidine (TMB) was added to each well to 

develop colour for 30 minutes in the dark. 50 µl of stop solution was added to 

each well and the absorbance was read within 30 minutes at 450nm using 

microplate reader Gen5 2.0 data analysis software (BioTek). The linear 

ranges of detection were obtained using the dilution series of standard 

cytokine (1.95pg/ml – 500pg/ml) provided and were determined accordingly 

(figure II-10)  

Un‐stimulated selected B cells (mean purity 92%± 3.75) from 4 healthy donors 

produced either no detectable cytokine or only small amounts of IL-10 (mean 

18±7.5 pg/ml, n=4). Of note, irradiated CD154 expressing fibroblasts (L cells) 

and their control counterpart also produced negligible amounts of IL-10 (mean 

6.5± 2.4 and 21± 1.2 pg/ml respectively, n=3). Purified B cells stimulated with 

L cells at a ratio of 1:10 produced higher levels of IL-10 than B cells 

stimulated with BCR crosslinking or CpG in a time dependent manner.  
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  Figure II-10: Example of a standard linear curve analysis for IL-10  

         detection 
        using microplate reader Gen5 2.0 data analysis software    
          (BioTek) 

 

II.6.5  Intracellular cytokine assay for detection of IL-10+ B cells 

Based on the ELISA experiments and a previously optimized protocol from 

our laboratory (Khoder et al Blood 2014), I used L cells for stimulation to 

optimise IL-10 intracellular cytokine (IC) staining of both selected and gated 

CD19+ B cells derived from fresh or frozen PBMC.  In order to determine the 

optimal time point at which maximal IL-10 production could be achieved 

without major activation-induced alterations of B cell phenotype, I performed 

kinetics of CD19+ IL-10 production using IC assay in which CD19+ selected B 

cells or total PBMC were cultured with irradiated L cells at a ratio of (1:10) for 

12, 18, 24, 48 and 72 hrs. PMA (50ng/ml), ionomycin (250 ng/ml) and 

brefeldin A (5 µg/ml) were added for the last six hours of the incubation. After 

incubation, cells were harvested and washed in staining buffer (1x PBS, 2% 

heat‐inactivated FCS, 0.1% Sodium Azide) and incubated for 25 min in the 

dark at room temperature with a cocktail of CD19-PE, CD24 FITC, IgM PerCP 

Cy5.5, CD27 PE, all from BD Pharmingen and CD38 PE cy7 (eBiosciences). 

R²	  =	  0.98886	  
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Cells were then washed again and fixed/permeabilized for 45 min at 4°C with 

foxp3/transcription factor intracellular staining kit (eBioscience). Cells were 

then further incubated with 0.5 µl of either APC-conjugated IL-10 or IgG2aК 

isotype antibodies for 30 min at 4°C. As negative controls I used both the 

manufacturer’s recommended isotype control, (IgG2aκ) (to control for non-

specific binding effects of antibody and the fluorescence resulting from non-

specific intracellular protein interactions), fluorescence minus one control (to 

control for autofluorescence) and unstimulated control incubated with BFA 

alone (unstimulated, BFA) and appropriately stimulated B cells without the 

addition of BFA (stimulated, no BFA).  

Optimized volume of IL-10 monoclonal antibody was determined by MFI and 

maximal percentage of positively-stained cells with minimum background 

(negative control) experiments performed by previous member of the 

laboratory in dose titration experiments. Cells were washed 3 times with perm‐

wash and re‐suspended in staining buffer prior to acquisition using BD 

LSRFortessa (Becton Dickinson). Data analysis was performed using FlowJo® 

software; figure (II‐11). Stimulating gated or selected CD19+ B cells with L 

cells for 15h appeared to be optimal for sufficient numbers of IL-10 producing 

B cells to be recorded without significant changes in the overall B cell 

phenotype. I used combinations of 4-colour surface antibody panels, to 

determine the phenotype of IL-10+ B cells since combining these markers in 

one extended panel to confirm this phenotype with IC staining was 

unsuccessful due to the poor separation of IL-10- and IL-10+ populations 

(data not shown). 
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Figure II-11: Intracellular staining of IL-10 production by CD19+ B cells 
A representative FACS plot depicting IL-10 production through intracellular staining 
when PBMC from a healthy control were stimulated with L cells for 48 hours (A). 
CD19+IL-10+ cells B IgG2ak isotype control (B) and fluorescence minus one control 
for IL-10 (C). 
 
 
 
II.7       Phenotypic and functional characterization of cord blood 

derived B cells  
 

II.7.1 Phenotypic characterization of cord blood derived B cells 

A panel of 9 antibodies (as defined in Table II-1) was customized to 

determine the cord blood B cell subsets. Briefly, 1x106 fresh or thawed 

CBMNC were stained with 1µl of the viability marker (invitrogenTM LIVE/DEAD 

Fixable Aqua Dead cell stain Kit) for 30 minutes at room temperature in the 

dark. Cells were then washed and incubated with the cocktail of mAb for 

various cell markers (Table II‐1) at the titrated concentrations in x1 PBS for a 

further 30 min. Following incubation, stained cells were washed once more 

and then acquired on LSR Fortessa (BD Biosciences) at MD Anderson 

Cancer Centre.  
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II.7.2  Cord Blood B cell activation 

Total CD19+ B cells or sort-purified B cell subsets selected from either fresh 

or frozen CBMNC were plated at a concentration of 2x105 cells/well in a total 

volume of 200µl of CM in flat-96‐well plates (nunc). To determine the optimal 

condition for CB B cell activation, B cells were stimulated for various time 

points: 24, 48 and 72 hours with either CpG OND200‐ 5G (InvivoGen, USA) at 

a dose of 0.2, 0.6 or 0.8 µg/ml in a humidified incubator at 37 °C with 5% 

CO2; or L cells that were irradiated (60 Gy), rested for a minimum of 1 hour 

and plated with CD19+ selected B cells at a ratio of 1:10 and 1:5 (L cell to B 

cells); or with 0.1, 0.6 or 1 µg/ml of F (ab’) 2 goat anti Human IgG+ IgM (H+L) 

(Jackson ImmunoResearch Laboratories, USA). At the end of culture, the 

plates were centrifuged at 1800 rpm for 5 minutes and 150µl of the 

supernatant was collected from each well for ELISA analysis. 

 
II.7.3  Detection of IL-10+ B cells through ELISA 

Detection of IL-10 by ELISA was performed using OptEIA ELISA kits (BD 

PharningenTM, San Diego, CA), following the manufacturers’ protocol. Briefly, 

following washing and blocking of the ELISA plate with 50 µl of ELISA diluent, 

100 µl of sample collected for each condition was plated and incubated for 2h 

at room temperature. Supernatants collected from un-stimulated B cells, 

CD154 positive fibroblasts and their CD154 negative control cells cultured 

alone were also used as controls to validate detection of IL-10 from CD19+ B 

cells. After 5 washings, 100 µl of detection antibodies were incubated with the 

samples for 1h. Following a further 7 washings, 100 µl of the provided 

tetramethylbenzidine (TMB) was added to each well to develop colour for 30 

minutes in the dark. 50 µl of stop solution was added to each well and the 
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absorbance was read within 30 minutes at 450nm using microplate reader 

Gen5 2.0 data analysis software (BioTek). The linear ranges and sensitivities 

were obtained using the standard cytokine and test sample dilutions provided 

and were determined accordingly (figure II-10).  

Unstimulated selected B cells (mean purity 97%) from 4 healthy donors 

produced either no detectable cytokine or only small amounts of IL-10 (mean 

1.2, n=6). Of note, irradiated CD154-expressing fibroblasts (L cells) also 

produced negligible amounts of IL-10 (mean 5.0± 3.5, n=6). Selected B cells 

stimulated with a combination of L cells at a ratio of 1:10, BCR crosslinking at 

1µg/ml and 0.6µg/ml of CpG produced higher levels of IL-10 than B cells 

activated with these conditions alone in a time dependent manner.  

 
II.8 In vitro suppression Assay of CD4+ T cells 

II.8.1 Proliferation Suppression 

To determine the suppressive ability of CB or PB derived sort-purified B cell 

subsets on proliferating CD4+ T cells, B cells were co‐cultured with CFSE+ 

CD4+ T cells in vitro. Total CD4+ T cells were magnetically isolated as 

described in section II.4.2.1, and labeled with 2 µL per ml of prepared sample 

of aliquoted CFSE (65‐0850; eBioscience, USA) from a stock solution 

(500µg/ml; stored at ‐20oC in DMSO) to achieve a final concentration of 2 µM 

CFSE. Cells were mixed well by vortexing and incubated for 8-10 minutes in 

the dark at room temperature after which 3 volumes of neat FCS was added 

to the cells for a further 5 minutes to stop CFE labeling. CFSE+CD4+ T cells 

were then plated into a flat bottom 96-well tissue culture plate at a 

concentration of 1x 105 per well in 100µl of CM with sort purified B cell 

subsets at a ratio of 1:1 to achieve a cell count of 2x105 per well.  
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Dynabeads® human T‐ activator CD3/CD28 (InvitroGen, Oslo, Norway) were 

added to each well for T cell activation at a concentration of 1 cell: 1 bead 

ratio (2µl/8x105) cells following the manufacturer protocol and incubated for 

96h at 37ºC with 5% CO2. CFSE+CD4+ T cells were also cultured alone with 

CD3/CD28 coated beads (positive proliferation control) and without 

stimulation (negative control) for each experiment. Additionally, selected Treg 

cells were co‐cultured with autologous CD4 T cells as quality control of 

suppression. Following 96 hours of culture, supernatants from each well was 

collected for analysis of secreted cytokine by ELISA (II.8.3) and cells were 

harvested and stained with APC anti‐CD4 APC and anti‐CD19 PE (both from 

BD Biosciences) for 25 min prior to acquisition on LSRFortessa. The 

percentage of dividing cells and proliferation index (to control for asymmetrical 

rate of cell distribution) were calculated using FlowJo’s, proliferation tool; 

figure (II‐12). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II-12: Gating strategy for CD4+ T cell proliferation.  
A. anti CD3/CD28 activated CD4+ T cells are gated on CFSE+CD4+ T cells. A representative 
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dot plot and histogram analysis of proliferating T cells (purple) gated on negative control 
(grey) illustrates the cell division with serial dilution of CFSE B. Generation of the proliferation 
index (1.78) through FlowJo 
 
 
 
II.8.2 Suppression of cytokine production through flow cytometry 

To assess the suppressive ability of CB or PB-derived sorted B cell subsets 

on CD4+ T cell cytokine production, magnetically-selected CD4+ T cells were  

co-cultured with B cell subsets at a B cell‐to‐effector T cell ratio of 1:1 into a 

96‐well flat‐bottom tissue culture plate. Although in healthy PB the B to T cell 

ratio is approximately 1:4, the relevance of testing 1:1, 5:1 and 10:1 B cell to 

effector T cell ratio not only provides a model to understand Breg function but 

also contributes to gaining a better understanding of an altered ratio of 

regulatory-to-effector cells in diseases with expanded B cell frequencies or in 

transplant recipients in the context of immune reconstitution (associated with 

early B ell recovery and T cell lymphopenia) and cGVHD. Dynabeads® 

human T‐ activator CD3/CD28 (InvitroGen, Oslo, Norway) were added to each 

well for T cell activation at a concentration 1 bead: 1 cell (2µl/8x105 cells) 

following the manufacturer’s protocol. Stimulated CD4+ T cells were also 

cultured alone (positive control) and un-stimulated T cells (negative control) 

for each experiment. The plate was incubated for 48 hours in the presence of 

5% CO2 at 37ºC. During the last 5 hours of incubation, 10µg/ml of Brefeldin‐A 

(BFA) 

(Sigma 5mg/ml DMSO cat# B‐7651) was added. After 48 hours of culture, 

cells were harvested from each well and transferred into FACS tubes and 

washed with PBS. Cells were then stained with CD19 PE, CD4 PerCP (both 

from BD Biosciences) for 25 minutes and fixed and permeabilized using the 

eBioscience FoxP3 Staining Buffer Set (cat.72‐5776) and eBioscience 
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Permeabilization Buffer (1x) (cat. 00‐8333) for 45 minutes. Cells were washed 

again and stained with intracellular antibodies, IFNγ FITC and TNFα APC for 

30 minutes, after which cells were washed once more and acquired on BD 

LSRFortessa and analyzed using FlowJo. 

 

II.8.3 Detection of cytokine through IL-2, IFN-γ, TNF-α TGF-β and 
CD40L ELISA 

	  
Detection of secreted cytokines by ELISA was performed using ELISA kits 

obtained from R&D Systems for IFN-γ (cat# DIF50), TNF-α (cat# DTA00C), 

IL-2 (cat# D2050), TGF-β (cat# DB100B) and CD40L (cat# DCDL40) with 

aliquots taken from B cells/T cell co-cultures, following the manufacturers’ 

protocol. Briefly, following adding of 100µl of assay diluent to each well, 100µl 

of samples or a dilution series of standard controls for appropriate cytokines 

were added to the appropriate wells and incubated at RT for 2 hours. The 

appropriate calibrator diluent served as the zero standard (0 pg/ml). Each well 

was then aspirated and washed a total of three times with wash buffer before 

addition of 200µl of conjugate to each well. The plate was sealed and 

incubated at RT for a further 2 hours. Following incubation, the wells were 

aspirated and washed again a total of three times and substrate solution was 

added to each well. The plate was further incubated at RT for 30 minutes -1 

hour in the dark. 50 µl of stop solution was added to each well and the plate 

was read at 450 nm within 30 minutes. A standard curve was created by 

drawing a best-fit curve through the points plotted for the mean absorbance 

for each standard (y-axis) against the concentration (x-axis) using microplate 

reader Gen5 2.0 data analysis software (BioTek).  
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II.8.4 Luminex ProcartaPlex assay to measure T cell cytokine 
production following coculture with B cells  

 
Detection of secreted cytokines by CD4+T cells in B cell/T cell co-cultures 

was assayed by ProCartaplex Human Th1/Th2/Th9/Th17/Th22/Treg Cytokine 

Panel (18 plex) assay (eBiosciences), as per the manufacturer’s protocol. 

Briefly, antibody coated capture beads were prepared and added to each well 

for 2 min and then washed by 1X wash buffer. 25 µl of sample or standard 

controls were then added to the corresponding wells in duplicates and 50 µl of 

cell culture medium was added to the blank wells. The plate was then sealed 

and protected from light and incubated at RT for 2 hours on a plate shaker at 

500 rpm. The wells were then washed again a total of 7 times and detection 

antibody was added to each well and incubated for 30 min. After a series of 7 

washes, streptavidin phycoerythrin was also added to each well and 

incubated for a further 30 min after which wells were washed again and 

prepared for analysis on a luminex instrument by adding 120µl of reading 

buffer into each well. 

  
II.8.5 Blocking experiments 

Sort-purified B cells subsets and CFSE-stained CD4+ T cells were cocultured 

in 96-flat bottomed plates at a 1:1 ratio and were stimulated with anti-CD3/anti 

CD23 Dynabeads in the presence or absence of 5 µg/ml of anti-IL-10 (JEs#-

9D7), anti–IL-10 receptor (3F9), anti-CD80 (10 mg/ml), anti-CD86 (10 mg/ml) 

(IT2.2), 10µg/ml anti-CTLA-4 (BNI3.1, Pharmingen) or anti–TGF-β (2 mg/ml) 

(TB21) for 96 hours. After co-culture, cells were harvested and stained with 

CD4 APC and CD19-PE (both from BD Biosciences) and washed with 2ml of 
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PBS before acquisition on the BD LSRFortessa. Gating on proliferating 

CD4+CFSE+ T cells assessed the impact of blocking cytokines. 

For analysis of cytokine secretion, supernatants collected from cell cultures of 

sort purified B cells cultured with CD3/CD28-activated CD4+ T cells either 

directly or in separate transwell chambers after 96 hours was assayed by 

ELISA (R&D Systems) as described in II.8.3 or luminex ProCartaplex 

(eBiosciences) according to the manufacturer’s instructions (II.8.4). 

 

II.8.6 Transwell assays 

A transwell system (Millicell, 1.0µm; Millipore) was used to block direct cell-to-

cell contact between sort-purified B cell subsets (transitional, IgM memory, 

naïve and switched memory B cells) and selected CFSE+CD4+ T cells 

stimulated with anti-CD3/CD28 Dynabeads (Life Technologies).  1x 105/100µl 

CFSE+CD4+ T cells were either directly cultured with sorted B cell subsets at 

a ratio of 1:1 or placed in transwell chambers in the same well. After 96 hrs, 

cultured cells were harvested and analyzed for proliferating CFSE+CD4+ T 

cells. Supernatants from each well were also harvested for analysis of 

cytokine secretion by ELISA (R&D Systems) as described in II.8.3 or luminex 

ProCartaplex (eBiosciences) according to the manufacturer’s instructions 

(II.8.4). 

 
II.9 In vitro suppression Assay of CD56+CD3- NK cells 

II.9.1   Proliferation suppression 

NK cells were negatively bead-selected (Miltenyi Biotech) as described in 

II.4.3 and labelled with 5-carboxyfluorescein-diacetate-succinimidyl ester 

(CFSE) (eBioscience) as described previously (II.8.1). Briefly, labelled NK 
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cells were plated into 96-well flat-bottom tissue culture plates in Serum-free 

Stem Cell Growth Medium (SCGM) [CellGro® / CellGenix™] supplemented 

with 5% glutamine, 5 µM HEPES (both from GIBCO/ Invitrogen), and 10% 

FCS (Biosera) in the presence of 500 IU/ml of rhIL-2 (Proleukin, Chiron, CA, 

USA) for 8 days at 37°C in a 5% CO2 humid atmosphere. Sort-purified B cell 

subsets (transitional, IgM memory, switched memory and naïve B cells) were 

then added to NK cells at a 1:1 ratio. CFSE-stained NK cells cultured alone 

with no stimulation (negative control) or with rhIL-2 (positive control) were 

included in each experiment. Magnetically selected Tregs (II.4.2.2) were co-

cultured with autologous NK cells as a suppression control. The culture 

medium was replenished with fresh medium containing IL-2 every 2-3 days 

throughout the culture period. After the culture period, cells were stained with 

CD56 BV605, CD19 PE and PI (all from BD Biosciences) for 20 min and 

acquired on a BD LSRFortessa instrument (figure II-13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II-13: A representative dot plot and histogram analysis of proliferating 
NK cells  
Proliferating NK cells (purple) gated on negative control (grey) illustrates the cell 
division with serial dilution of CFSE 
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II.9.2   Suppression of cytokine production in NK cells by Bregs 

For studies of NK cell suppression by Bregs, magnetically selected NK cells 

were cultured in Serum-free Stem Cell Growth Medium (SCGM) [CellGro® / 

CellGenix™] supplemented with 5% glutamine, 5 µM HEPES (both from 

GIBCO/ Invitrogen), and 10% FCS (Biosera) in 96-well flat-bottomed plates 

(Nunc) at 100,000/100µl in the presence of 5ng/ml of recombinant human IL-

15 obtained from R&D Systems. NK cells were co-cultured either alone 

(positive control) or with autologous sort-purified B cell subsets at a 1:1 ratio 

for 48hrs at 37 °C. During the last 5 hours of incubation, K562 cell line target 

cells were added to the culture at an optimized E:T ratio of 10:1 together with 

CD107a PE-CF594 (BD Biosciences), monensin (BD GolgiStopTM) and BFA 

(Brefeldin A, Sigma). NK cells were incubated without targets as the negative 

control and stimulated with PMA (50 ng/mL) and ionomycin (2 mg/mL, Sigma 

Aldrich) as positive control. Furthermore, magnetically purified PB Treg cells 

isolated by negative selection (Miltenyi Biotec) were co-cultured with 

autologous NK cells as a suppression control.   

Cells were collected, washed and surface stained with surface antibodies 

(table II-2) for 30 minutes at RT in the dark. Cells were then washed and 

fixed/permeabilized (BD Biosciences) and stained with intracellular antibodies 

IFN-γ v450 and TNF-α Alexafl700 (both from BDBiosciences). Cells were 

analyzed on a BD LSRFortessa flow cytometer equipped with FACS DIVA™ 

software. Secretion of TNF-a, IFN-y, IL-10, TGF-B (all from R&DSystems), 

granzyme B (eBiosciences) and perforin (MABTECH) was assessed in the 

supernatant collected after 48hours of B cell and NK co-culture by ELISA 

assays as per the manufacturers protocol (II.8.3). 
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II.9.3 Phenotypic characterization of inhibitory and activating 
markers on NK cells 

 
The effect of B cell and NK cell co-culture on inhibitory and activating marker 

expressed on NK cells was assessed by using 10-colour multiparameter flow 

cytometry. Magnetically-selected NK cells were cocultured alone or with sort 

purified B cell subsets (transitional, IgM memory, switched memory and naïve 

B cells) at a 1:1 ratio at total concentration of 2x105 cells/200µl in SCGM for 

48 hours as described in II.9.2. Cells were then collected and washed with 

PBS and stained for surface expression of CD56 BV605, CD3 APC cy7, 

CD16 BV650, NGD2D PE, NTB-A PE, NKp30 Biotin in conjugation with 

Qdot800 Streptavidin (Invitrogen), DNAM-1 FITC (all Biolegend), NKp44 

PerCP eflour710, NKp46-BV711 (eBioscience), NKG2A PEcy7, ILT2 PE (all 

Beckman Coulter), Pan KIR FITC (R&D Systems), Siglec-7 Pacific blue 

(Miltenyi Biotec) and 2B4 APC (Becton Dickenson) as shown in Table II.2, for 

30 minutes in the dark at RT. Cells were washed and acquired on a BD LSR 

Fortessa flow cytometer equipped with FACS DIVA™ software and all data 

were analyzed using FlowJo software (Tree Star, San Carlos, CA, USA). Data 

are expressed as mean values of mean fluorescence intensity 

(MFI) ± standard error of mean (SEM).	  	  
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Table II-2: Antibodies used for characterizing NK cells 

	  

	  

	  

	  

	  

Antibody Volume 

(µl) 
Manufacturer Description Clone 

CD56 BV605 3 Biolegend Surface antibody HCD56 

CD3 APC cy7 4 Biolegend T cell co-receptor HIT3a 

CD16 BV650 3 Biolegend Activates NK cells 3G8 

NKG2D PE 4 Biolegend Activating receptor 1D11 

NTB-A PE 4 Biolegend Co-receptor in NK 

Activation 

NT-7 

NKp30 Biotin 3 Biolegend Natural cytotoxicity 
triggering receptor 3 

P30-15 

DNAM-1 FITC 4 Biolegend Mediates cell adhesion 10E5 

NKp44 PerCP 
eflur710 
 

4 eBioscience Natural cytotoxicity 
triggering receptor 2 

44.189 

NKp46 BV711 3 BD Biosciences Natural cytotoxicity 
triggering receptor 1 

9E2 

NKG2A PE cy7 3 Beckman 

Coulter 

Transmembrane protein Z199 

ILT-PE 4 Beckman 

Coulter 

involved in inhibition of NK 
and T cell cytokine 
production 

HP-F1 

Pan KIR FITC 3 R&D systems Inhibitory receptor 180704 

Siglec-7 Pacific 
Blue 
 

4 Miltenyi Biotec Inhibits NK activation REA214 

2B4 APC 

CD107a PE 
CF594 

4 

2 

BD Biosciinces 

BD Biosciences 

Modulates NK cell activity 

Marker of degranulation 

2-69 

H4A3 
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II.9.4 Suppression of NK cell mediated antibody dependent cell-
mediated cytotoxicity (ADCC) 

 
In brief, magnetically-selected NK cells were cocultured with sort-purified B 

cell subsets at a ratio of 1:1 at a concentration of 2x105cells/200µl in SCGM in 

a 96-well flat-bottomed plate at 37C°. 96-well non-tissue culture plates were 

coated with 10 µg/ml of purified CD16 mAb (clone 3G8, BD Pharmingen) and 

incubated overnight at 4C°. The plate was then washed with 300µl of PBS per 

well a total of 3 times. During the last 5 hours of incubation, 1x105 negatively 

selected NK cells were plated in the presence of CD107a, BFA and monensin 

either alone (positive control) as described in II.9.2 or with pre cultured NK 

and sort-purified B cell subsets, for 5 hours at 37C°. NK cells cultured without 

CD16 mAb were included in each experiment as a negative control. Cells 

were collected, washed and surface stained with CD3 APC cy7, CD56 BV605, 

fixed/permeabilized (BD Biosciences) and stained with IFN-γ v450 and TNF-α 

Alexafl700 (BDBiosciences) antibodies as described in II.9.2. 

 

II.9.5   Blocking experiments 

Purified B and NK cells were co-cultured and stimulated with K562 target cells 

as described in section II.9.2, in the presence or absence of 5 µg/ml of anti-IL-

10 (JES#-9D7), anti–IL-10 receptor (3F9) (both from BD Pharmingen), anti-

CD48 (5 µg/ml) (clone TU145 BD Biosciences), anti-2B4 (5 µg/ml) (clone 

C1.7 Beckman coulter, Fullerton, CA, USA), or anti–TGF-β (20 mg/ml) (clone 

TB21 Abcam). For analysis of cytokine secretion, sort-purified B cells were 

cultured with K562-activated CD56+CD3- NK cells either directly or in separate 

transwell chambers for 48hrs as per the NK cytotoxicity assay described 

previously in II.9.2. Supernatants from cell cultures were collected after 48hrs, 
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and cytokine secretion was assayed by TNF-α and IFN-γ ELISA (R&D 

Systems) as per the manufacturer’s instructions (II.8.3). For analysis of NK 

proliferation, sort-purifed B cells were cultured with CFSE+CD56+CD3- NK 

cells either directly or in separate transwell chambers (cultured with or without 

blocking mAbs) for 8 days, as described for the NK proliferation assay in II.9.1 

Cells were collected and stained for CFSE+CD56+CD3- NK population. 

 
 
II.9.6   Transwell assay 

Magnetically selected NK cells (1x 105) were either directly co-cultured with 

sort-purified B cell subsets at a ratio of 1:1 or placed in transwell chambers 

(Millicell, 1.0 µm; Millipore) for 48 hours at 37°C. K562 target cells were added 

to NK cells for the last 5 hours of culture with CD107a, BFA and monensin for 

cytotoxicity assays (II.9.2). After 48 hours, cultured cells were harvested to 

measure NK cell cytotoxicity or proliferation and analyzed by flow cytometry. 

 
II.10  Intracellular signalling 

II.10.1  Phosflow analysis of JAK/STAT pathway in B cells 

Sort-Purified B cell subsets were rested for 48 hours in medium alone 

(negative control) or with either L cells (1:10), magnetically selected NK cells 

at a 1:1 ratio or CD4+ T cells at a ratio of 1:1. Previous studies from our lab 

have shown that CD3/CD28 activated T cells are capable of inducing B cells 

to produce IL-10 via upregulation of CD154. After 48 hours of incubation, cells 

were surface stained with CD19 APC for 30 min in the dark at room 

temperature. Stained cells were washed with PBS and stimulated by 

incubation with 10 µg/ml of F(ab’) 2 goat anti-human IgG+ IgM (H+L) (Jackson 

ImmunoResearch Laboratories) for 1 min at 37C°. 50 mM of hydrogen 
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peroxide solution (Sigma Aldrich) was added to positive control cells for 15 

min at 37C°. Cells were then fixed for 10 min in the dark using the PerFix Kit 

for Phosflow assays (Beckman Coulter). After two washings, 1mL of X1 perm 

solution was added for 5 minutes at 37C°. Cells were washed twice and re-

suspended in staining buffer (Beckman Coulter) for intracellular staining. 

Phosphorylated Stat3-PE (pSTAT3-PE) mAb Phosflow antibody (BD 

Biosciences) was used to stain the cells for 30 minutes in the dark at room 

temperature. Cells were then washed once more using staining buffer prior to 

acquisition, and gated on CD19+pSTAT3+ cells using both unstimulated B 

cells (negative control) and FMO (fluorescence minus one) control for 

pSTAT3 PE figure (II-13).  

 

 
 
 
 
 
 
 
 
 

 
 
 
 
Figure II-14: Activated B cells upregulate JAK/STAT3 pathway.  
A. A representative gating strategy-illustrating cells first gated on lymphocyte 
population and then sort purified CD19+ B cells. B. CD19+ B cell subsets were 
cultured with NK cells (1:1 ratio) for 48 hours and stimulated with 10µg/ml anti-BCR 
for 1 minute. CD19+STAT3+ cells (blue) were determined by PE FMO as indicated 
(shaded grey) and unstimulated B cells (orange). 
 

A	  

B	  
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II.10.2  Analysis of SAP expression on NK cells 

Intracellular staining of the 2B4 signaling adaptor molecule SLAM-associated 

protein (SAP) was performed in negatively selected NK cells (Miltenyi 

Biotech) cultured either alone (positive control) or with sort-purified B cell 

subsets, namely, transitional, naïve, IgM memory and switched memory B 

cells at varying time points (figure II-14) to establish the optimum condition for 

B cell mediated NK+SAP+ suppression (in the presence or absence of 5 

µg/ml of anti-IL-10 anti–IL-10 receptor, anti-CD48 (5 µg/ml) and anti-2B4 (5 

µg/ml) for 48 hours at 37°C. Cells were collected and washed with 2 ml of 

PBS at 1400rpm for 10 min. Cells were then surface stained with CD56 

BV605 (Biolegend) for 20 minutes at room temperature in the dark. Cells were 

then washed and fixed/ permeabilized for 45 minutes using the 

foxp3/transcription factor staining buffer set. Cells were washed using staining 

buffer and stained with anti-SAP PE (eBiosciences) for 30 minutes in the dark 

at RT. Cells were then washed again with 2 ml of staining buffer and analyzed 

on a BD LSRFortessa flow cytometer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II-15: A graph illustrating the relationship between B cell mediated 
suppression of NK+SAP+ cells and upregulation of inhibitory NK+pSHP-1 
expression in a time dependent manner 
(N=3)	  
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II.10.3  Phosflow analysis of pSHP-1 expression on NK cells 

The flow cytometry based measurement of pSHP1-Y536 in human PBMCs 

has been previously described. In brief, selected NK cells (1 x 106/ml) were 

cultured either alone or with sort-purified B cell subsets at a 1:1 ratio at 

varying time points to determine the optimized condition for upregulation of 

pSHP-1 expression in NK cells after B cell: NK cell co-culture (figure II-14). 

Having optimized the upregulation of pSHP-1 expression, cells were cultured 

for 48 hours at 37C°. Cells were harvested and suspended in PBS 1X at room 

temperature and stained with 2µg/ml of purified CD16 mAb (BD Pharmingen) 

for 20 min at 4C° for NK stimulation. After two washings with 2ml PBS 1X, 

2µg/ml of goat anti-mouse IgG, F (ab’)2 fragment specific Ab (Jackson 

Immuno) was immediately added and cells were incubated at  37C° for 10 

min. After stimulation, cells were fixed for 10 minutes at 37°C with fix solution 

1 (Beckman Coulter, USA). After a further two washings, a 30 min surface 

staining was performed with anti-CD56 ECD (Beckman Coulter) and CD19 

APC (BD Bioscience). Cells were washed and 1mL of perm solution2 was 

added for 5 min at 37°C. Cells were washed twice and stained with  

intracellular antibody pSHP-1 [p-SH-PTP1 Antibody (Tyr 536) Santa Cruz] self 

conjugated with Alexa Fluor® 488 Antibody Labeling Kit (Invitrogen) for 40 

min in the dark at RT. After washing, cells were ready to be analysed on 

LSRFortessa (BD Biosciences) and gated on CD56+pSHP-1+ cells using both 

unstimulated B cells (negative control) and FMO (fluorescence minus one) 

control for pSHP-1 FITC figure (II-15).  

 
Figure II-16: Gating strategy of CD56+SHP-1+ cells  
Cells were gated on lymphocyte population and then CD56+NK cells. CD56+SHP-1+ 
cells (blue) were determined by SHP-1 Alexa Fluor488 FMO (shaded grey). 
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II.11  Statistical Analysis 

All values are expressed as mean, median and range as stated in the legends 

of each figure. We performed analysis of significance in Prism (GraphPad, La 

Jolla, USA) by unpaired or paired 2-tailed Student t test analysis and by 

nonparametric analysis of variance (ANOVA), as appropriate. Where p value 

was less than 0.05, the result was considered significant: *, p < 0.05; **, p < 

0.01.  
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Chapter III.  IL-10 producing B Cells With Immune Regulatory Capacity 
are Enriched Within Both the IgM Memory and Transitional 
B Cell Subset And Suppress CD4+ T cells 

 
III.1 Introduction 

In recent years, a distinct newly described subpopulation of interleukin-10 (IL-

10) producing human B regulatory (Breg) cells, that have been shown to exert 

significant immunoregulatory functions both in vitro and in vivo, has been the 

focus of intense immunological research (Mauri and Bosma., 2012). In this 

chapter, I document work (introduction, findings and illustrations and 

discussion) from my recent published work (Khoder et al., Blood 2014) titled 

Regulatory B cells are enriched within the IgM memory and transitional 

subsets in healthy donors but are deficient in chronic GVHD. Blood, 124(13), 

2034.  

The concept that suppressor B cells with regulatory properties could modulate 

the immune response, originated in the 1970’s; however, the designated term 

‘B regulatory cells’ (Breg) was first introduced nearly 30 years later (Katz et 

al., 1974, Neta and Salvin., 1974, Mizoguchi and Bhan., 2006). Despite the 

extensive body of evidence gathered, in the ensuing years since these studies 

were published, some controversy over the paucity of markers that can 

identify Bregs, particularly in humans, still exists. Tedder et al (Kalampokis et 

al., 2013) recognized IL-10-producing B cells as an emerging class of 

lymphocytes defined by an important set of regulatory functions that could be 

harnessed for therapeutic purposes.  These Bregs have been shown to 

suppress inflammatory responses in murine models of experimental 

autoimmune encephalomyelitis (EAE) (Fillatreau et al., 2002), collagen-

induced arthritis (CIA) (Mauri et al., 2003), colitis (Mizoguchi et al., 2002) and 
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the generation and maintenance of T-helper (Th) and T-regulatory (Treg) cells 

in the periphery (Wei et al., 2005). Thus far, a number of Breg phenotypic 

markers have been identified in murine models (Mauri and Bosma., 2012). 

Tedder et al demonstrated that IL-10-producing B cells  (B10 cells) 

predominantly expressed CD1dhiCD5+ and shared phenotypic features 

common to marginal zone (MZ), T2-MZ precursor, and CD1dhi CD5+ B-1a B 

cells, but did not exclusively belong to one of these B cell sub populations 

(Yanaba et al., 2008, Iwata et al., 2011). Hence, most current strategies to 

definitively identify Bregs in a reproducible manner rely on the detection of IL-

10, which inhibits proinflammatory cytokine production and differentiation of 

effector T cells (Matsushita and Tedder., 2011). Thus, a more detailed 

investigation of the Breg ‘signature’ is needed to permit meaningful 

exploration of therapies based on B cells with regulatory potential. 

 

The study of human Bregs, which share many functional characteristics with 

murine Bregs (Blair et al., 2010, Iwata et al., 2011) has been largely limited to 

IL-10-producing immature/transitional B cells in a small group of autoimmune 

diseases, including systemic lupus erythematous (SLE) (Blair et al.,2010), 

immune thrombocytopenia (ITP) (Li et al.,2012), multiple sclerosis (Correale., 

2008) and more recently implicated in cGVHD (Khoder et al., 2014, Huu et al., 

2013, de Masson et al, 2015). However, conflicting data exist as to the 

phenotypic characteristics of these cells. In the study by Blair et al (2010), IL-

10+ Breg were shown to be enriched within the CD24hi CD38hi immature 

transitional B cell compartment.  On the other hand, Tedder et al (2011) 

reported IL-10+ Breg to be enriched within the mature CD24hi CD27+ memory 
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B cell subset. Although, the exact mechanism by which IL-10 producing 

regulatory B cells mediate immunosuppression is not clearly understood. 

Despite compelling evidence to support the role of Breg dysfunction in a 

number of autoimmune conditions, (Mauri and Bosma., 2012), very little is 

known about their role in immune regulation after allogeneic hematopoietic 

transplantation (HSCT) and their activities in chronic graft-versus-host disease 

(cGVHD), where CD4+CD25+ Treg cells have attracted the lions' share of 

attention (Rezvani et al.,2006, Mielke et al., 2007).  

 

In this chapter my aim was to determine the presence of IL-10 producing 

regulatory B cells derived from peripheral blood mononuclear cells (PBMC) 

and to assess their suppressive potential on CD4+ T cell proliferation and 

effector function. My results demonstrate the presence of IL-10-secreting 

CD19+CD24hiCD38-/loIgM+ memory B cells that coexist with IL-

10+CD24hiCD38hi transitional Breg cells in healthy human donors. Moreover, 

the regulatory capacity of these human Bregs on CD4+ T cell proliferation and 

cytokine production is depended on cell-cell contact through CD80/CD86 co-

stimulatory signalling as well as IL-10 production.  
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III.2 Results 

III.2.1 Phenotypic characterization of CD19+ B cell subsets 

B cell characterization has been highlighted by a number of studies that 

recognize a number of classifying schemes, which are essential to the study 

of B cell biology in health and disease. Carsetti et al (2004) proposed to 

classify B cells through the CD24/CD38 expression profile, which 

characterizes B cell subsets as CD24hiCD38hi transitional B cells, 

CD24+CD38+ naïve B cells, CD24hiCD38lo/- memory B cells and CD24-CD38hi 

plasmablasts. The use of additional markers such as IgM can further 

distinguish between switched memory and IgM+ memory B cells (Suryani et al 

2010, Palanichamy et al, 2009). Additionally, Bohnhorst et al (2001), 

highlighted a classifying scheme referred to as Bm1-Bm5, which 

characterizes 5 B cell populations based on the phenotypic expression of IgD 

and CD38; Bm1 subset of naïve cells (IgD+CD38−); Bm2` subset of pre‐GC 

cells (IgD+CD38++); GC cells (IgD−CD38++); and Bm5 memory cells (early 

IgD−CD38+ and late IgD-CD38-). Further, phenotypic expression of CD27 

and IgD has also been proposed as a classification scheme to distinguish 

between CD27- antigen-naïve B cells and CD27+ memory B cells by Maurer 

et al (1992). However some memory B cells are also CD27-, of which 20% are 

IgM-IgD-. Additionally, as transitional cells are also CD27-, further markers 

must be used to distinguish between the phenotypic differences of naïve and 

transitional subsets. With respect to the classification of B cells based on the 

CD24 and CD38 phenotype expression, I implemented this strategy to 

characterize B cell subsets and correlated the expression of transitional, naïve 
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and memory B cells with IgD/CD27, IgM/CD27 and IgD/CD38 axis (figure III-

1). 

 
Figure III-1: CD19+ B cells subsets 
Transitional (orange), naïve (green), IgM memory B cells (blue) switched B cells 
(black) were gated on CD38 and CD24 axis and correlated with different B cell 
classifying schemes IgM/CD27, CD38/IgD and CD27/IgD. 
 
 
 
 
CD19+CD34hiCD24hi transitional B cells were further characterized as CD27-

IgMhi and IgD+, CD19+CD24+CD38+ naïve B cells were further characterized 

as CD27-IgM+ and IgD+, CD19+CD24-/loCD38hi memory B cells were further 

characterized as IgM+CD27+IgD+/lo. However some IgM memory cells also 

contained CD27-IgD- memory cells. CD19+CD24-/loCD38+ switched memory B 

cells were IgM-, CD27+ and IgD-. 

Transitional	  B	  
cells	  

Naive	  B	  cells	  

Switched	  
memory	  B	  cells	  

IgM+	  memory	  B	  
cells	  
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Further, in accord with previous studies (Suryani et al., 2010, Carsetti et al., 

2004, Palanichamy et al., 2009), extended phenotypic characterization of B 

cells in 10 healthy donors using an extended panel outlined in table II-1, 

highlighted that PB-derived subpopulations of T1, T2 and T3 transitional 

subsets could be further characterized through the differential expression of 

CD10 and CD21 pattern where T1 cells illustrated highest expression of 

CD10, which is lost as the cells mature and acquire expression of CD21. T3 

subsets had lower expression of CD10 and high expression of CD21, a 

marker of transition from immature to more mature and naïve B cells (figure  

III-2). 

 
 
 
 
 
 
 
 
 
 
 
Figure III-2: Differential expression of CD10 and CD21  
CD10 and CD21 expression distinguishes between T1 (most immature transitional 
cells) (purple), T2 (blue) and T3 (naïve) (orange) B cells based on CD24 and CD38 
expression 
 

 

Full phenotypic analysis of all four B cell subsets based on the expression of 

markers used in the extended B cell phenotype (section II.2.6.2) characterized 

transitional B cells as CD19+CD24hiCD38hiIgMhiCD27-CD10hiCD21-IgDhi, 

naïve B cells as CD19+CD24+CD38+IgM+CD27-IgD-CD10-CD21+, IgM+ 

memory B cells as CD19+CD24-CD38hiIgM+CD27+IgD+/loCD10-CD21+ and 

switched memory B cells as CD19+CD24-CD38hiIgM-CD27-IgD-CD10-CD21+. 
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III.2.2 Peripheral blood B cell subset frequencies 

B cell subsets in 10 healthy donors were characterized based on CD19+, 

CD38, CD24 and IgM expression as detailed in section II.6.2.  The frequency 

of CD19+ B cells in healthy PBMCs was 6.0% (3.21%-13.1%); 4.7%(2.55%-

7.3%) of total CD19+ B cells constituted of CD24hiCD38hi transitional B cells, 

56.4%(38.9%-69.5%) were CD24+ CD38+ naïve B cells, 20.3%(12.9%-28.1%) 

were CD24hi CD38lo CD27+IgM+ memory B cells and 14.3%(10.6%-17.4%) 

CD24hi CD38lo CD27+IgM- switched memory B cells (figure III-3). Further, I 

found no statistically significant difference on the impact of age on different 

subpopulations of CD19+ B cells. Additionally, there was also no significant 

difference in B cell subsets between gender groups, in females compared to 

males. This observation is in accord with previous reports that also did not 

find gender specific differences in CD19+ B cells (Jentsch‐Ullrich et al., 2005). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure III-3: Frequency of B cell subsets in healthy control PBMCs (n=20)  
Frequency of B cell subsets out of total CD19+ B cells was determined through flow 
cytometric analysis of B cells subsets with respect to the CD24 and CD38 
parameters. IgM+ and IgM- memory cells were subdivided as per expression of IgM. 
The line on the scatter dot plot represents median and range. 
 
 
 
I next validated the effect of freezing on the signal intensity and the frequency 

of CD19+ B cell populations against the CD24 and CD38 axis and IgM 
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expression in the same 10 fresh healthy donor samples that were frozen at -

80°c for a minimum of 8 days. No significant differences were found in the 

signal intensities or B cell subsets in paired fresh and frozen PBMC CD19+ B 

cell populations (figure III-4), which validates my panel to study frozen patient 

samples.  

 

 

 

 

 

 

 

 

 
 
 
 
Figure III-4: Effect of cryopreservation on B cell phenotype  
A. Representative FACS plots illustrating gating strategy of phenotyping CD19+ B 
cell subsets in both fresh and frozen samples. Cells gated on lymphocytes, live cells, 
CD19+ B cells and B cell subsets using CD24/CD38 axis. B. Each subset is 
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illustrated as bivariate plots representing data acquired from 10 paired fresh and 
frozen samples for transitional B cells (p= 0.0779), naïve B cells (p=0.8687), IgM 
memory (p=0.0969) and switched memory (p=0.3688) and analyzed using a paired t-
test 
 

III.2.3 Detection of IL-10 production by B cells isolated from PBMC 

A number of studies have recognized the ability of PB-derived B cells to 

produce IL-10 in response to activation with CD40L, anti-BCR and CpG. 

Using the method described in II.6.3, I tested the kinetics of IL-10 production 

by freshly selected PB B cells from 14 healthy controls, stimulated with 

irradiated CD154 expressing fibroblasts (L cells), BCR crosslinking and CpG. 

Un-stimulated purified B cells, L cells and CD154- fibroblasts were also 

cultured alone as negative controls. I found that un‐stimulated B cells 

produced negligible amounts of IL-10 (mean 14±4.5 pg/ml) and irradiated L 

cells and CD154- fibroblasts also produced small amounts of IL-10 (mean 

5.5± 6.5 and 21± 12 pg/ml respectively). Activated CD19+ B cells produced 

IL-10 in a time dependent manner. In addition, B cells stimulated with L cells 

at a ratio of 1:10 produced higher levels of IL-10 than B cells stimulated with 

BCR crosslinking or CpG in a time dependent manner (figure III-5).  

 

 

 

 

 

 

 
Figure III-5: Cumulative data illustrating levels of IL-10 production by L cell, 
CpG and BCR activated PB-derived total CD19+ B cells. 
 

Based on these results I next determined the effect of cryopreservation on the 

ability of B cells to produce IL-10 in response to L-cells. PBMCs from the 
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same healthy donors were frozen at -80° C as described in II.2.3 for a 

minimum of 3 weeks. Cryovials were thawed as described in II.2.4 and rested 

for a minimum of 4 hours at 37° C before B cell selection was performed 

(II.4.1). Cells were activated as described previously and supernatant was 

assayed for IL-10 by ELISA. Minimal differences were observed in IL-10 

levels between fresh and frozen paired samples and overall no significant 

differences were found (figure III-6). The results validate the use of frozen 

samples for the detection of IL-10 for future studies. 

 
 
 
 
 
 
 
 
 
 
Figure III-6: Effect of cryopreservation on IL-10 production by B cells activated 
by L cells for 24, 48 and 72 hours.  
Data was acquired from 10 paired fresh and frozen samples at 24 hours (p=0.4536), 
48 hours (p=0.0717) and 72 hours (p=0.0934). Each sample is depicted on bivariate 
plot and analyzed using a paired t-test, p<0.05; ns,no significant difference 
 
 
III.2.4 Detection of IL-10 production by B cells by intracellular staining 

Based on ELISA results, I used L cells to study the kinetics of IL-10 

production by B cells at different lengths of incubation (16hr, 24hr, 48hr and 

72hr) by intracellular staining as described in II.6.5. PBMC or selected B cells 

were gated on CD19+IL-10+ population to determine the production of IL-10 

in response to L cell activation. Un-stimulated cells, CD154- fibroblasts and an 

isotype control were used to validate the production of IL-10 by activated B 

cells. (figure III-7A). 
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producing B cells, which suggests that B cells exist as 2 functionally distinct 

subsets: effector and regulatory (figure III-7B). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
Figure III-7: Detection of CD19+ B cell IL-10 production by intracellular staining  
A. Gating strategy for IL-10 producing CD19+ B cells. Gated CD19+ B cells from 
lymphocyte population were assessed for CD19+IL-10+ B cells B I gated on the 
CD19+IL-10+ population within PBMC or selected B cells to determine IL-10 
production after 24 hours of coculture with L cell. The specificity of IL-10-producting B 
cells was validated by different negative controls as shown, including isotype control, 
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(IgG2aκ), unstimulated B cells incubated with BFA alone, PBMCs cultured with 
CD154- fibroblast (control cell line) and appropriately stimulated B cells without the 
addition of BFA. C. The IL-10-producing B cell population was distinct from IFN-y 
producing B cells 
 

Further, gated CD19+ B cells produced IL-10 in a time dependent manner 

(figure III-8A). I next determined the effect of cryopreservation on B cell IL-10 

production by intracellular staining. Paired PBMC from the same healthy 

donors (n=10) were frozen at -80° C as described in II.2.3 for a minimum of 3 

weeks. Cryovials were thawed as described in II.2.4 and rested for a minimum 

of 4 hours at 37° C before the assay was performed (II.4.1). Minimal 

differences were observed in frequencies of IL-10 production between fresh 

and frozen paired samples after 24 hours of stimulation and overall no 

significant differences were found (1.98% vs. 1.65%; p=0.095) respectively 

(figure III-8B). The results validate the use of frozen samples for the detection 

of IL-10 for future studies. 

 

 

 

 

 
Figure III-8: Production of IL-10 from CD19+ B cells  
A. Gated CD19+ B cells produce IL-10 in a time dependent manner (n=10) no 
significant was observed using an ANOVA test B. no significant difference was 
observed in the signal intensity of CD19+IL-10+ B cells between fresh and frozen 
paired healthy PBMC samples after 24 hours of stimulation (n=10)   
 

III.2.5 Phenotypic characterization of IL-10 producing B cells  

I next determined the phenotype of IL-10 producing B cells by using a panel of 

surface antibodies (CD19, CD24, CD38, CD27 and IgM) that have previously 
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been shown to identify a subset of IL-10 regulatory B cells (Khoder et al., 

2014, Blair et al., 2010) in combination with intracellular IL-10 staining as 

detailed in section II.6.5. PBMC were stimulated with L cells at varying time 

points of 15h, 24h, 48 and 72hr. In accord with previous results from our 

laboratory (Khoder et al., et al 2014) I observed that the phenotype of B cells 

changes significantly within 24 hours of activation, characterized by 

downregulation of CD24 and the appearance of a population of plasmablasts 

(CD24-CD38hi). Therefore, in agreement with previous data from our lab, I 

found that 15 hours of B cell activation with L cells was optimal for IL-10 

production without inducing significant changes in B cell phenotype. The 

majority of IL-10 producing B cells appeared to be enriched within the 

CD19+CD24hiCD38hiIgMhiCD27- transitional and CD19+CD38-/lo CD24hi 

CD27+IgM+ memory B cell population and relatively fewer in the 

CD19+CD38+CD24+CD27- naïve and CD19+CD24hiCD38-/loCD27+IgM- 

switched memory B cell subsets. Median-fold increases in the frequency of IL-

10 producing cells for IgM memory were 3.6 (range 2.5-4.6) and transitional 

were 4.42 (range 3.78-6.59) in comparison to naïve 0.48 (range 0.33-0.78) 

and switched 0.60 (range 0.43-0.80) B cell subsets (figure III-9A). In addition, 

CD19+IL-10+ B cells had a higher expression of CD24, CD27 and IgM. To 

validate if IL-10-producing B cells are enriched within transitional and IgM 

memory B cell subsets, I also measured IL-10 concentrations in the 

supernatants collected from sort-purified B cell subsets cultured with 

irradiated L cells. In keeping with my intracellular cytokine data, the highest 

level of IL-10 production was found in supernatants collected from transitional 
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and IgM memory B cell cultures, when compared to supernatants from naïve 

and switched memory B cell cultures (figure III-9B). 

 

 

 
 

 
 
Figure III-9: IL-10 producing B cells are enriched within transitional and IgM 
memory B cell subsets  
A. Transitional and IgM memory B cells expressed higher proportion of IL-10 
producing B cells (frequency of IL-10 producing B cells/total B cell subset frequency) 
n=3 B. Sort purified transitional and IgM memory B cells secreted higher levels of IL-
10 by ELISA after stimulation with naïve and switched memory B cell subsets (n=3). 
Bars in A and B represent median values, and upper whisker of error bar represents 
the range. P < 0.05 by nonparametric ANOVA. 
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
 
 
 
III.2.6 IL-10 producing transitional and IgM memory B cells inhibit CD4+ 

T cell proliferation  
 
I next examined whether IL-10 producing transitional and IgM memory B cell 

subsets also exhibited regulatory capacity on CD4+ T cell function. To 

evaluate this, I sort-purified transitional (CD19+CD24hiCD38hi), naïve 

(CD19+CD24+CD38+), IgM memory (CD19+CD38-/lo CD24hiIgM+) and switched 

memory (CD19+CD38-/lo CD24hiIgM-) B cells by flow cytometry from 20 healthy 

donors and cultured them with CFSE stained and anti-CD3/anti-CD28 bead-

stimulated CD4+ T cells to assess their effect on proliferating CD4+ T cells. 

The gating strategies and post-sort purity checks of B cell subsets are shown 

in figure III-10. The percentage of proliferating CD4+ T cells was assessed by 
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flow cytometry using CFSE dilution after 96 h of incubation as detailed in 

II.8.1. Results illustrated that IgM memory B cells and transitional B cells 

significantly suppressed CD4+ T cell proliferation [median percent proliferating 

CD4+ T cells 54.5%; (33%-76.5%)] and 49.8% (25%-66%)], respectively 

when compared with anti-CD3/anti-CD28 stimulated CD4+ T cells cultured 

alone (positive control) [87% (77%-92%], or with naïve; [89.0%; (77%-97%] or 

switched memory B cells [80%; (52%-97%] (figure III-11).  
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Figure III-10: Gating strategy and purity check of PB B cell sorting  
A. Multi-parametric flow cytometric gating strategy for B cell subset sorting on BD 
FACS ARIA IIIu based on CD24 and CD38 expression B. FACS plots illustrating the 
high purity of sort-purified B cell subsets are shown within the CD19+ gate 
 

 
 

 

 
 
Figure III-11: IL-10 producing Transitional and IgM memory B cells suppress 
CD4+ T cell proliferation  
A. Representative FACS plots illustrating the gating strategy of CD4+CFSE+ T cells. 
Gated CD4+ T cells from lymphocyte population were assessed for CFSE dilution by 
flow cytometry after 96 hours. Histogram overlay illustrates CFSE+ CD4+ T cells 
(blue) and negative control (grey) B. Magnetically selected and CD3/CD28 activated 
CD4+ T cells were labeled with CFSE (eBioscience) and plated either alone (positive 
control (proliferation index 2.27 – Blue) or at a 1:1 ratio with transitional (proliferation 
index 1.24 -yellow), IgM memory (proliferation index 1.65-red), naïve (proliferation 
index-2.19-orange) or switched memory (proliferation index 2.50-green) B cells. 
CFSE-stained T cells cultured with no stimulation (negative control –grey) were 
included in each experiment. C. Suppressive effects of CD19+ B-cell subsets (1:1 
ratio) on frequency of CD4+ T cell proliferation. Bars represent median values, and 
upper whisker of error bar represents the range for 20 healthy donors. *P < 0.05 by 
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nonparametric ANOVA. D. Suppressive effects of CD19+ B-cell subsets on T cell 
proliferation index (n=20). Bars represent median values, and upper whisker of error 
bar represents the range. *P < 0.05  vs positive control by nonparametric ANOVA. 
This research was originally published in Blood. Khoder, A., Sarvaria, A., Alsuliman, A., 
Chew, C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., 
Liu, E., Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., 
Molldrem, J., Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. 
Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy 
donors but are deficient in chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American 
Society of Hematology. 
 
 
 
The inhibitory effect of transitional and IgM memory B cells on CD4+ T cell 

proliferation was cell dose dependent, with the highest suppression observed 

at a ratio of 5:1 (figure III-12). I also compared the suppressive ability of IgM+ 

memory B cells and transitional B cells with that of magnetically selected 

CD25hi CD127- CD4 T cells regulatory T cells on autologous CD4+ T cell 

proliferation at a ratio of 1:1 (n=4). The suppressive ability of transitional and 

IgM memory was comparable to that of T regulatory cells (% suppression 

48.3% vs. 53.6%; 58% respectively;) as shown in figure III.13 indicating that 

transitional and IgM memory B cells exert similar suppressive function on 

CD4+ T cell proliferation as Treg. 

 

 

 
 
 
 
 

Figure III-12: Suppressive effect of transitional and IgM memory B cells on 
CD4+ T cell proliferation was dose dependent as indicated at the B cell: T cell 
ratios (n=4)  
Error bars represent mean with standard deviation.  
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
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Figure III-13: Suppressive effect of transitional and IgM memory B cells on 
CD4+ T cell proliferation was comparable to that of T regulatory cells  
Results illustrated that IgM memory B cells and transitional B cells significantly suppressed CD4+ T 
cell proliferation in a manner comparable to T regulatory cells after 96 hours of B cell/T cell co-
culture, when compared with anti-CD3/anti-CD28 stimulated CD4+ T cells cultured alone (positive 
control). Bars represent medians and upper ranges for 4 healthy donors. *P < .05 for individual 
comparisons with controls by nonparametric ANOVA; ns, not significant. This research was 
originally published in Blood. Khoder, A., Sarvaria, A., Alsuliman, A., Chew, C., Sekine, T., Cooper, 
N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., Muraro, P.A., Alousi, A., 
Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., Rouce, R., Champlin, R., 
McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells are enriched within the IgM 
memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood. 2014; 
124(13): 2034-2045. © the American Society of Hematology. 
 
 
III.2.7 IL-10 producing transitional and IgM memory B cells inhibit CD4+ 

T cell proinflammatory cytokine production 
 
In order to assess the suppressive effect of sort-purified transitional and IgM 

memory B cell subsets on CD4+ T cell effector function, sort-purified B cell 

subsets were co-cultured with anti-CD3/anti-CD28 stimulated magnetic-bead 

purified CD4+ T cells and the relative frequencies of CD4+IFNγ+ and 

CD4+TNF-α+ cells were assessed by flow cytometry. Both transitional and 

IgM memory B cells suppressed cytokine production by CD4+ T cells 

compared with CD4+ T cells cultured either alone or with naïve or switched 

memory B cell subsets (figure III-14). Consistent with these data, using 

ProcartaPlex Luminex assay, I also found suppression of IFN-γ, TNF-α and 

IL-2 production in supernatants harvested from cultures of sort purified 
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transitional and IgM memory B cells cocultured with CD4+ T cells. In contrast, 

naïve and switched memory B cell subsets failed to suppress production of 

proinflammatory cytokines by CD4+ T cells. Additionally, the suppressive 

ability of IgM memory and transitional B cells on CD4+ cytokine production 

was also comparable to that by T regulatory cells (figure III-15). Collectively, 

these results suggest that the suppressive capacity of transitional and IgM 

memory B cells on CD4+ T cell proliferation and cytokine production is 

comparable to T regulatory cells.  

 

III.2.7 Depletion of Treg cells does not influence the suppressive ability 
of transitional and IgM memory B cells 

 
I then examined if Treg cells are important for the in vitro suppressive effect of 

transitional and IgM memory B cells by depleting CD127- CD25hi Tregs from 

CD4+ T cells, using magnetic cell purification as detailed in II.4.2.2. 

Transitional and IgM memory B cell subsets were then cultured with anti-

CD3/anti-CD28 stimulated and CFSE-stained Treg depleted-CD4+ T cells at a 

ratio of 1:1. IgM memory and transitional B cells significantly suppressed the 

proliferation of Treg-depleted CD4+ T cells compared with the positive control; 

57.9% (47.5-59) vs. 58.9% (49-62.7%) vs. 89.2 (85.8-92.1) respectively, 

figure III-16, while neither naïve nor switched memory B cells exerted any 

significant suppressive effect. 
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Figure III-14: Suppressive effect of transitional and IgM memory B cells on 
CD4+ T cell cytokine production.  
A. Representative dot plots illustrating in vitro suppression of different CD19+ B cell 
subsets on anti-CD3/CD28 activated CD4+ T cell IFN-y and TNF-α production after 
48 hours of coculture B. Cumulative data summarizing B cell suppression of CD4+ T 
cell IFN-y and TNF-α production assayed by intracellular staining. Bars represent 
median values, and upper whisker of error bar represents the range for 4 healthy 
donors. *P < 0.05 for individual comparisons with controls (anti-CD3/anti-CD28 
stimulated CD4+ T cells alone) by nonparametric ANOVA; ns, not significant. 
This	  research	  was	  originally	  published	  in	  Blood.	  Khoder,	  A.,	  Sarvaria,	  A.,	  Alsuliman,	  A.,	  Chew,	  C.,	  
Sekine,	  T.,	  Cooper,	  N.,	  Mielke,	  S.,	  de	  Lavallade,	  H.,	  Muftuoglu,	  M.,	  Curbelo,	  I	  F.,	  Liu,	  E.,	  Muraro,	  P.A.,	  
Alousi,	  A.,	  Stringaris,	  K.,	  Parmar,	  S.,	  Shah,	  N.,	  Shaim,	  H.,	  Yvon,	  E.,	  Molldrem,	  J.,	  Rouce,	  R.,	  Champlin,	  
R.,	  McNiece,	  I.,	  Mauri,	  C.,	  Shpall,	  E.J.,	  and	  Rezvani,	  K.	  Regulatory	  B	  cells	  are	  enriched	  within	  the	  
IgM	  memory	  and	  transitional	  subsets	  in	  healthy	  donors	  but	  are	  deficient	  in	  chronic	  GVHD.	  Blood.	  
2014;	  124(13):	  2034-‐2045.	  ©	  the	  American	  Society	  of	  Hematology.	  
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Figure III-15: The suppressive effect of transitional and IgM memory B cells on 
cytokine production by CD4+ T cells is comparable to that of T regulatory cells 
Using Luminex assay, IFN-y, TNF-α and IL-2 levels were measured in supernatants 
harvested from cocultures of sort purified transitional and IgM memory B cell subsets 
with CD4+ T cells. Bars represent median values and upper whiskers of error bars 
represent range for 4 healthy donors. *P<0.05 for individual comparisons with 
controls (anti-CD3/anti-CD28 stimulated CD4+ T cells alone) by nonparametric 
ANOVA; ns, not significant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III-16: Depletion of Treg cells does not influence the suppressive ability 
of transitional and IgM memory B cells  
Bars represent median values and interquartile ranges from triplicate experiments. 
*P<0.05 vs. T- cell control for individual comparisons with controls (anti-CD3/anti-
CD28 stimulated CD4+ T cells alone) by nonparametric ANOVA; ns, not significant. 
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
 
 
III.2.8 The suppressive effect of transitional and IgM memory B cells is 

IL-10 dependent 
	  
I next examined the potential mechanism(s) by which transitional and IgM 

memory B cells suppress CD4+ T cell proliferation and effector function. 

CD4+ T cells were cultured either alone or at a 1:1 ratio with sort purified 

transitional and IgM memory B cell subsets in the presence of IL-10 and IL-10 

receptor (IL-10R) blocking mAbs. Blockade of IL-10 significantly restored 
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cytokine production and proliferation of CD4+ T cells co-cultured with 

transitional and IgM memory B cells, supporting previous data with transitional 

B cells (Blair et al., 2010), that the regulatory properties of transitional and IgM 

memory B cells is mediated through IL-10 (figure III-17A). However, IL-10 

blockade did not fully reverse the suppressive capacity of transitional and IgM 

memory B cells [median proliferating CD4+ T cells 78.2%; (65.6%-84.7%)]; 

and 74.6%; (66.7%-82.5%), respectively], (figure III.17B), when compared to 

the corresponding positive control  [median 92.3% (90%-94.8%)], suggesting 

that other mechanisms, most likely other soluble factors or costimulatory 

molecules, are involved in regulating Breg-mediated suppression of CD4+ T 

cells. I further illustrated that adding exogenous IL-10 to co-cultures of CD4+ 

T cells with naïve B cells or switched memory B cells induced minimal 

suppression of CD4+ T cell proliferation [median proliferating CD4+ T cells 

82%; (81%-89%)]; p=0.00649 and 81.5%; (78.8%-82.4%), p=0.0074 

respectively] (Figure III-18A), when compared with the corresponding positive 

control, [93.60% (91.6%-95%], but this effect was substantially less than that 

seen with transitional or IgM memory B cells [51% (25-63%) and 52.5% (33-

75%), respectively]. These results strengthen the hypothesis that IL-10 does 

not by itself confer suppressive capacity to B cells and further support the 

involvement of other mechanisms in Breg-mediated T cell suppression. 

Previous reports suggest that the immunoregulatory effects of B regulatory 

cells may be mediated by TGF-β (Blair et al., 2010). Therefore, I performed 

additional blocking experiments using TGF-β specific mAbs. TGF-β blockade 

had no significant impact on transitional and IgM memory B cell mediated 

suppression on CD4+ T cells (p=0.4585 and p=0.8637, respectively; n=3) 
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(figure 18B), indicating that this cytokine lacks any appreciable role in human 

Breg-mediated inhibition of T cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 
 

 
 
 
 
 
 
Figure III-17: The suppressive effect of transitional and IgM memory B cells on 
CD4+ T cells is partially dependent on IL-10. 
A. Anti-CD3/anti-CD28 stimulated CD4+ T cells were cultured with FACS-sorted CD19+ 
B cell subsets in the presence or absence of IL-10 blockade 96 hours. Unstimulated 
CD4+ T cells (negative control-grey shaded area) were included with each experiment. 
Flow cytometry histograms show proliferation of CD4+ T cells cultured alone (blue) or 
with naïve (green), switched memory (orange), IgM+ memory (red) or transitional B cells 
(yellow). Proliferation index values for histograms without IL-10 blockade are: CD4+T 
cells – 2.70, with naïve – 2.62, switched –2.91, transitional – 1.31, IgM memory – 1.48. 
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Proliferation index values for cultures with IL-10 blockade are: CD4+T cells – 2.70, with 
naïve – 2.55, switched -2.68, transitional -2.05, IgM memory -2.23. Bar charts compare 
the suppressive effect of B cell subsets on proliferating CD4+ T cells with or without IL-10 
blockade. Bars indicate medians, and whiskers indicate the upper range for 3 healthy 
donors. *P < 0.05 vs positive control or IL-10R blockade by nonparametric ANOVA. B. 
Dose titration graphs for transitional and IgM memory B cells co-cultured with CFSE-
stained CD4+ T cells in the presence of varying concentrations of anti-IL-10 and anti-IL-
10 receptor blocking antibody (n=3)  
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
 
 
 
 
 
 

 

 
Figure III-18: The suppressive effect of transitional and IgM memory B cells on 
CD4+ T cells is dependent on IL-10 but not TGF-β.  
A. Titrated effects of adding exogenous IL-10 at varying concentrations had minimal 
effect on the ability of naïve and switched memory B cells to suppress CD4+ T cell 
proliferation. B. TGF-β blocking had no significant effect on the suppressive ability of 
transitional and IgM memory B cells (n=3). Bars indicate medians, and whiskers 
indicate the range. *P <0.05 by nonparametric ANOVA. 
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., 
Chew, C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., 
Liu, E., Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., 
Molldrem, J., Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. 
Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy 
donors but are deficient in chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American 
Society of Hematology. 
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III.2.9 The suppressive effect of IL-10+ IgM memory and transitional 
B cells also depends on cell-cell contact, mediated through 
CD80/CD86   

 
Previous studies have postulated that the suppressive capability of murine 

Bregs is mediated both by the provision of IL-10 and direct contact with 

CD4+T cells (Blair et al., 2010, Mauri and Bosma., 2012, Khoder et al., 2014). 

However, it remains to be determined whether a similar direct cell-to-cell 

contact is involved in human Breg-mediated T cell suppression. To examine 

this, I performed transwell experiments, in which transitional and IgM memory 

B cells were either in direct contact or separated from anti-CD3/anti-CD28 

stimulated and CFSE-stained CD4+ T cells by a permeable membrane. 

Proliferation of CD4+ T cells was measured 96 hours after onset of culture. 

Direct co-culture of CFSE+CD4+ T cells with transitional or IgM memory B 

cells resulted in significant suppression of CD4+ T cell proliferation, median 

frequencies of proliferating CD4+ T cells are 48.9% (43.3%-65.1%) and 

47.4% (39.7%-64.7%), respectively n=5]. On the other hand, separation of B 

cell/T cell direct contact by a transwell membrane partially reversed the 

suppressive effect of these B cell subsets, [median frequencies of proliferating 

CD4+ T cells 74% (59.7%-85.5%) p=0.011 and median 67.7% (52.5%-

88.7%), p=0.0305, respectively; n=4] as shown in figure III-19. However, this 

reversal was not complete (compared with positive control). 

 

In order to examine whether a combination of IL-10 blockade and abrogation 

of direct cell-to-cell contact can completely reverse the suppressive effect of 

proposed regulatory B cell subsets on CD4+ T cell proliferation, I added IL-10 

and IL-10 receptor (IL-10R) mAbs to cultures of sort purified transitional and 
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memory B cells in a transwell setting. Subsequent addition of IL-10 blockade 

in a transwell setting almost completely abolished transitional B cell and IgM 

memory B cells mediated inhibition of CD4+ T cell proliferation [% of 

proliferating CD4+ T cells; median 87.7% (86.5%-88.3%) and median 90.4% 

(85.7%-91.0%), respectively; n=3] (figure III-19C).  

 

 
Figure III-19: Effect of B cell:T cell contact on the profiles of CD4+ T cell 
proliferation  
A. Representative histograms illustrating CD4+ T cells either directly added to sorted 
CD19+ B cell subsets at a ratio of 1:1 or placed in transwell chambers in the same 
well: CD4+ T cells alone (blue), with naïve B cells (orange), switched memory B cells 
(green) IgM+ memory B cells (red) and transitional B cells (yellow) at a ratio of 1:1. 
Unstimulated controls (grey) were included. Proliferation index values for histograms 
with direct contact are: CD4+T cells – 2.91, with naïve – 2.85, switched –3.00, 
transitional – 1.60, IgM memory – 1.41. Proliferation index values for cultures with 
transwell are: CD4+T cells – 2.91, with naïve – 3.94, switched-3.11, transitional -
2.07, IgM memory -2.28. B. Collective data (n=5) compare the effect of suppressive 
B cells on the proliferation of CD4+ T cells with or without direct cell to cell contact. 
The data are shown as medians and upper whisker of error bars are range. *P < 0.05 
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by nonparametric ANOVA; ns, not significant.  C. The suppressive capacity of IgM+ 
memory B cell and transitional B cell suppression is dependent on IL10 and cell-to-
cell contact (n=3). The data shown are medians and upper whisker of error bars are 
range. *P < 0.05 by nonparametric ANOVA; ns, not significant.  
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
 

Thus, both direct cell-to-cell contact and IL-10 production are necessary for 

Breg cells to achieve their full suppressive potential. To determine the 

mechanism by which Bregs produce IL-10 in the transwell setting, we 

measured the levels of soluble CD40L in the supernatant by ELISA assay. 

Soluble CD40L is naturally secreted by activated T cells (van Kooten et al., 

2000) and can induce IL-10 production by B cells (Iwata et al., 2011). As 

shown in figure III-20, soluble CD40L was present in co-cultures with 

CD3/CD28-activated CD4+ T cells. Hence, I propose that soluble CD40L can 

cross the membrane and induce IL-10 production by transitional and IgM 

memory B cells to suppress CD4+ T cell proliferation. 

 

 

 

 

 
 
 
Figure III-20: Anti-CD3/anti-CD28 stimulated CD4+ T cells release soluble 
CD40L, measured using the Human CD40 Ligand Quantikine ELISA kit 
(R&D) in the transwell supernatant (pg/mL) (n=4). Bars represent median 
values and error bars represent range. 
This research was originally published in Blood. Khoder, A*., Sarvaria, A*., Alsuliman, A., Chew, 
C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., 
Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., 
Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells 
are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in 
chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
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I next tested the contribution of CD80 and CD86 costimulatory signalling to 

the suppressive ability of transitional and IgM memory B cells. Although the 

addition of blocking antibodies against CD80 or CD86 molecules individually 

did not impact on the suppressive activity of IgM memory and transitional B 

cells, addition of blocking antibodies against both molecules together partially 

inhibited the ability of transitional and IgM memory B cells to suppress the 

proliferation of CD4+ T cells (figure III-21). While blockade of IL-10/IL-10R 

and CD80/CD86 individually was not sufficient to completely reverse the 

ability of transitional and IgM memory B cells, a combination of mAbs Blocking 

mAbs against all three molecules completely reversed the inhibitory effect of 

these B cell subsets. (figure III-22). 

 

 
Figure III-21: CD80 and CD86 co receptor signalling and IL-10 are both 
prerequisites for the suppressive effect of Bregs.  
A. Cumulative data representing co-receptor blockade in cultures of purified CD4+ T 
cells and sorted CD19+ B cell subsets, which did not fully reverse the suppressive 
capacity of Bregs as compared to the corresponding positive control B. Bar charts 
compare between the effect of co-receptor blocking and IL-10 blocking in CD4+ T 
cell and B cell co cultures. All bars in (a) and (b) represent median values, and upper 
whiskers indicate the range from 3 independent experiments. *P < 0.05 by 
nonparametric ANOVA; ns, not significant. This research was originally published in Blood. 
Khoder, A., Sarvaria, A., Alsuliman, A., Chew, C., Sekine, T., Cooper, N., Mielke, S., de Lavallade, 
H., Muftuoglu, M., Curbelo, I F., Liu, E., Muraro, P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, 
N., Shaim, H., Yvon, E., Molldrem, J., Rouce, R., Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., 
and Rezvani, K. Regulatory B cells are enriched within the IgM memory and transitional subsets in 
healthy donors but are deficient in chronic GVHD. Blood. 2014; 124(13): 2034-2045. © the 
American Society of Hematology. 
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Figure III-22: A combination of blocking antibodies to IL-10, IL-10R, CD80 and 
CD86 in the presence or absence of cell-to-cell contact reversed the ability of 
Breg subsets to suppress CD4+ T cell proliferation in vitro  
The bars represent median values and upper whisker of error bars indicate the range from 3 
independent experiments *P < 0.05 by nonparametric ANOVA 
This research was originally published in Blood. Khoder, A., Sarvaria, A., Alsuliman, A., Chew, C., 
Sekine, T., Cooper, N., Mielke, S., de Lavallade, H., Muftuoglu, M., Curbelo, I F., Liu, E., Muraro, 
P.A., Alousi, A., Stringaris, K., Parmar, S., Shah, N., Shaim, H., Yvon, E., Molldrem, J., Rouce, R., 
Champlin, R., McNiece, I., Mauri, C., Shpall, E.J., and Rezvani, K. Regulatory B cells are enriched 
within the IgM memory and transitional subsets in healthy donors but are deficient in chronic 
GVHD. Blood. 2014; 124(13): 2034-2045. © the American Society of Hematology. 
 

However, the suppressive effect of human transitional and IgM Memory B 

cells was independent of CD80 co-interaction with the inhibitory receptor 

CTLA-4 expressed on T cells (figure III-23). Thus, analogous to previous 

studies [Blair et al., 2010], the suppressive effect of human Breg cells is 

mediated by a number of mechanisms including the release of IL-10, cell-to-

cell contact and CD80 and CD86 costimulatory signaling. 

 

 

 
 
 
 
 
Figure III-23: CTLA-4 blocking had no significant impact on the ability of Breg 
subsets to suppress CD4+ T cell proliferation in vitro 
The bars represent median values and upper whisker of error bars represent the range from 3 
independent experiments 
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III.3 Discussion 

The delicate balance between effector T-cell function and immunoregulatory 

networks in tolerance to self- and environmental antigens has been largely 

ascribed to regulatory T cells (Rezvani et al., 2006, Mielke., 2007). Recent 

research has shed light on at least one functional group of PB-derived B cells 

in humans, CD19+CD24hiCD38hi transitional B cells, that appear to exert 

robust immune regulatory capacity (Blair et al., 2010). On the other hand, 

other studies have shown that CD40L-stimulated CD24hiCD27+ memory B 

cells can release IL-10 and exert suppression of monocyte activation and 

cytokine production in vitro; (Iwata et al., 2011, Bouaziz et al., 2010). My 

results support the immunoregulatory function of transitional B cells and 

identify IgM+ memory B cells as a new candidate Breg subset in healthy 

individuals. Both transitional and IgM memory B cells can secrete IL-10 and 

suppress both the proliferation and cytokine production of CD4+ T cells in a 

manner that was comparable with that of Tregs. This suppressive effect was 

also found to be dose dependent. Although I also found the presence of IL-10 

producing B cells within naïve and switched memory B cell subsets, albeit at 

much lower frequencies, they lacked any suppressive effect on CD4+ T cell  

function. This is in agreement with other studies that have also shown lack of 

suppressive activity in naïve B cells (CD27- IgM+) (Blair et al., 2010, Iwata et 

al., 2011). However, as we have no means of purifying exclusively those B 

cells that express IL-10 in sufficient quantities to perform functional studies, it 

is also possible that a number of distinct regulatory B cell subsets may exist. It 

is therefore important to continue looking for more specific markers of IL-10 

producing B cells, given that they might play a significant role in the 
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maintenance of the balance between tolerance and autoimmunity. 

Furthermore, this discovery broadens the proportion of PB-derived regulatory 

B cell subset within circulating total CD19+ B cells from <5% 

(CD19+CD24hiCD38hi transitional cells only) to 20%-30% (transitional plus 

CD19+CD24hiCD38-/loIgM+CD27+ memory B cells), suggesting a prominent 

role for Bregs in the maintenance of immune tolerance. 

The mechanism through which transitional and IgM memory B cell subsets 

suppressed CD4+ T cell proliferation and effector function was partially via the 

provision of IL-10. IL-10 blockade led to partial reversal of CD4+ T-cell 

proliferation in the presence of either IgM memory or transitional B cells, 

which supports the role of IL-10 in mediating the suppressive effect of Bregs. 

However, as this reversal was not complete, these findings suggest that the 

regulatory function of Breg subsets is at least partly IL-10 dependent. 

Recombinant IL-10 has been tried in some autoimmune diseases such as 

Crohn’s disease, rheumatoid arthritis and psoriasis. In the majority of clinical 

trials, systemic administration of recombinant IL-10 was not associated with 

clinical improvement with the exception of psoriasis (Sanz et al., 2008). 

Similarly in my experiments, the addition of exogenous IL-10 to co-cultures of 

naïve or switched memory B cells failed to suppress CD4+ T cells to the same 

extent as seen with transitional and IgM memory B cell subsets, suggesting 

that cellular contact may be required for IL-10 to deliver immune regulation. 

Indeed, transwell experiments and CD80/CD86 blockade confirmed that cell-

to-cell contact was needed for IgM memory and transitional B cells to exert 

their full suppressive activity on CD4+ T cell function. In addition, whereas in 

mice TGF-β has been shown to mediate Breg cell-suppressive activity in 
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experimental diabetes (Tian et al., 2001), in my study transitional and IgM 

memory suppressive capacity was not dependent on TGF-β production.  

Previously published work in murine models has highlighted an important role 

for Bregs in protection against cGVHD (Huu et al., 2013, Weber et al., 2014) 

and a role for IL-10 deficiency in cGVHD pathogenesis (Barak et al., 1995, 

Korholz et al., 1997). In keeping with previous studies, previous work 

performed by Dr. Khoder, a previous member of Dr. Rezvani’s laboratory has 

also provided evidence of a deficiency in IL-10 producing B cells in cGVHD 

patients that were also refractory to CD40 activation (Khoder et al., 2014). 

These findings are in keeping with reports in SLE where Bregs were refractory 

to CD40 engagement, associated with reduced phosphorylation of STAT3 

downstream of CD40 (Blair et al., 2010). Additionally, as a result of the 

impaired IL-10 production, Dr. Khoder in our group (2014) observed a 

significantly lower ratio of IL-10+ B cells to IFN-γ+CD4+ T cells in cGVHD 

patients compared with the control group, which implies an imbalance 

between the regulatory B-cell and effector T-cell compartments, analogous to 

that recognized with Tregs during the development of cGVHD (Yamashita et 

al., 2004). My findings in this chapter may provide support for future 

investigations of regulatory B cell–based therapy to tip the scales in favor of 

immune regulation. It also highlights the need for more specific markers to 

define IL-10 producing B cells, given that they might play a significant role in 

the maintenance of the balance between tolerance and autoimmunity. 
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Chapter IV IL-10 producing regulatory B cells are enriched in cord and 
may play a role in protection against GVHD after cord blood 
transplantation 

 
 
 
IV.1  Introduction 

Allogeneic hematopoietic SCT (HSCT) is a potentially curative option for 

many patients with high-risk hematological malignancies (Daikeler et al, 2009, 

Barrett and Battiwala, 2010). However, approximately 70% of patients who 

require an allograft will lack an HLA-identical sibling donor, and many in this 

group will lack a suitably matched unrelated donor (Koh and Chao, 2008). 

 

Human cord blood (CB) is widely used as a source of hematopoietic stem 

cells (HSC) for many patients who lack a fully matched related or unrelated 

donor due to their less stringent requirement for human leukocyte antigen 

(HLA) matching (Beaudette-Zlatanova et al., 2013, Komanduri et al., 2007, 

Stanevsky et al, 2009). Most adult and larger adolescent patients receive two 

CB units matched at ≥4/6 HLA alleles in order to overcome the limited cell 

dose in a single CB graft and to accelerate engraftment (Komanduri et al, 

2007, Stanevsky et al., 2009, Newell et al., 2013). Although an increased 

incidence of acute GVHD after double-unit CBT (DUCBT) compared with 

single CBT has been described (Cutler et al., 2011, Ballen et al, 2013) a lower 

incidence of extensive chronic GVHD has been reported after both single and 

double CBT compared with other stem cell sources, despite broader HLA 

disparity (Beaudette-Zlatanova et al., 2013, Komanduri et al., 2007, 

Stanevsky et al., 2009). 
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Alloreactive reactions between donor-derived CD4+ and CD8+ T lymphocytes 

have typically been considered to be the chief effector cells arbitrating the 

pathogenesis of acute and chronic GVHD (Shimabukuro-Vornhagen et al., 

2009, Rezvani et al., 2006). Several independent lines of evidence clearly 

demonstrate a critical breakdown in peripheral B-cell tolerance and insufficient 

immune regulation after allogeneic HSCT (Kapur et al., 2008, Khoder et al, 

2014). Indeed, evidence of typically activated B cells by increased signaling 

networks through ERK and AKT pathways have been reported in B cells 

isolated from patients with cGVHD (Allen et al., 2012, Sarantopoulos et al., 

2015). IL-10 producing B cells (B10 cells) with regulatory capacity, commonly 

known as regulatory B cells (Bregs) are a newly identified subset of 

suppressor B cells, shown to exhibit inhibitory function on the immune system. 

Mizoguchi and collaborators, first introduced the term “regulatory B cells” in 

2002 (Mizoguchi and Bhan., 2006). Since these seminal observations, a 

considerable body of evidence has conclusively demonstrated the 

significance of IL-10-producing regulatory B cells in divergent models of 

autoimmunity, infection, and cancer (DiLillo et al., 2010, Yang et al., 2013, 

Tedder et al., 2015, He et al., 2014), and more recently cGVHD 

(Sarantopoulos et al., 2015, Khoder et al., 2014., de Masson et al., 2015). To 

date, discrepancies in the cell surface antigens studied and a lack of 

consensual definitions of the Breg subset phenotypes limit the direct 

comparison of human B cell subsets with regulatory function. In murine 

studies, B cells with regulatory function were found within B10 cells, MLN B 

cells, marginal-zone B cells, T2-MZP cells, and Tim-1+ Bregs (Mauri and Blair 

et al., 2014, Blair et al., 2010, He et al., 2014). The phenotype of Breg cells in 
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humans has yet to be fully elucidated. Blair and coworkers (2010) have 

described human Bregs as CD19+CD24hiCD38hi, a phenotype that is usually 

used to define a population of human transitional B cells. Furthermore, recent 

evidence showed human Bregs, identified through IL-10 intracellular staining, 

to be contained within the CD24hiCD27+ B cell subset (de Masson et al., 2015, 

Iwata et al., 2011). 

 

I previously illustrated in Chapter III, that Bregs are enriched within both the 

transitional and IgM memory B cell subsets and mediate T cell suppression in 

an IL-10 dependent, as well as contact-dependent manner (mainly through 

CD80/CD86). Moreover, Khoder et al (2014) showed that Bregs are deficient 

in recipients of HLA-matched sibling or matched unrelated donor HSCT with 

chronic GVHD.  

 

Cord blood is a rich source of transitional B cells. Whereas 

CD19+CD24hiCD38hi transitional B cells represent approximately 4% of 

peripheral blood B cells in healthy adults, they are abundant in cord blood 

(near 50% of B cells), with their frequency progressively decreasing during 

infancy (Sims et al., 2005, Marie-Cardine et al., 2008, Cuss et al., 2006, Ha et 

al., 2008). In contrast to PB, CD24hiCD38− CD27+ memory B-cells are absent 

in CB and only become detectable in the first year of life (Cuss et al., 2006, 

Ha et al., 2008). Thus, I hypothesized that the higher frequencies of B cells 

with regulatory phenotype in CB may contribute to the lower rates of chronic 

GVHD post-CBT. 
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Here, I show that IL-10-producing B cells with Treg-independent 

immunosuppressive properties are enriched in CB. They suppress T cells 

through production of IL-10, as well as by cell-cell contact-mediated 

mechanisms involving CTLA-4. Moreover, we found a robust recovery of IL-

10-producing B cells by 6 months post CBT, with significantly greater 

frequencies than seen in the peripheral of healthy donors or in patients prior 

to CBT. Furthermore, Breg reconstitution in patients with GVHD was 

significantly impaired in comparison to patients without GVHD.  Taken 

together, these studies suggest a protective role for CB-derived B cells in the 

development of cGVHD in CBT recipients and support the development of 

strategies to exploit CB as a source regulatory B cells  in the treatment of this 

disease. 
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IV.2  Results 

IV.2.1  Cord Blood B cell Phenotype and subset frequencies 

Phenotypic characterization of CB revealed the presence of two distinct B cell 

populations: CD19+CD38hiCD24hi transitional B cells (a population that 

includes immature B cells) and CD19+CD38intCD24int naïve B cells (primarily 

mature B cells) (figure IV-1). In contrast to the phenotypic analysis described 

for peripheral blood B cells in chapter III, CD24hiCD38− CD27+ memory B-cells 

are almost absent in CB. In keeping with previously published studies, further 

phenotypic characterization confirmed that the majority of 

CD19+CD38hiCD24hi transitional B cells are also IgMhiIgDhiCD10+CD27−, 

whereas CD19+CD38intCD24int naive B cells are IgMintIgD+CD10−CD27− (Sims 

et al., 2005, Marie-Cardine., 2008, Ha et al., 2008, Palanichamy et al., 2009).  

Figure IV-1: Phenotypic characterization of cord blood B cell subsets 
Representative FACS plots illustrating gating strategy on lymphocyte population, total 
CD19+ B cells and CD19+CD38hiCD24hi transitional B cells and CD19+CD38intCD24int 

naive B cells 
 

 

The frequency of CD19+ B cells in healthy cord blood mononuclear cells 

(CBMCs) was 6.0% (3.21%-13.1%); 22.2%(11.42%-28.0%) of total CD19+ B 

cells comprised of CD24hiCD38hi transitional, 63.2%(58.8%-72.8%) of CD24+ 
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CD38+ naïve and 2.14%(1.38%-3.64%) of CD24hi CD38lo CD27+ memory B 

cells (figure IV-2). 

 

 

 

 

 

 

 
Figure IV-2: Frequency of B cell subsets in healthy control CBMCs  
Frequency of B cell subsets (n=10) out of total CD19+ B cells in healthy controls was 
determined through flow cytometric analysis of B cells subsets with respect to the 
CD24 and CD38 parameters. The line on the scatter dot plot represents median and 
error bars represent range 
 

I next validated the effect of freezing on the signal intensity and the frequency 

of CD19+ B cell populations against the CD24 and CD38 axis in paired fresh 

and frozen samples (stored at -80°c for a minimum of 8 days) from 10 CB 

units. No significant differences were found in the signal intensities or B cell 

subsets in paired fresh and frozen CBMC CD19+ B cell populations (figure 

IV-3), which validates my panel to study frozen patient samples that have 

been collected and cryopreserved.  
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Figure IV-3: Effect of cryopreservation on B cell phenotype for each subset is 
illustrated as bivariate plots representing data acquired from 10 paired fresh 
and frozen samples 
Data was analyzed using a paired t-test for total CD19+ B cells (p=0.9064), transitional B cells 
(p=0.9225) and naïve B cells (p=0.9104) 
 

IV.2.2  Human cord blood is enriched in IL10-producing CD19+ B cells  

IL-10 production has long been considered a defining trait of Breg cells 

(Tedder., 2015, Mauri and Blair., 2014, Iwata et al., 2011). I first determined 

whether freshly isolated CB-derived CD19+ B cells produced IL-10 by 

magnetically purifying CD19+ B cells from CBMCs and co-culturing them with 

either irradiated fibroblasts transfected with CD154 (CD40L cells), CpG or 

BCR ligation for 24, 48 or 72 hours to study the kinetics of IL-10 production as 

described in section II.7.3. Resting B cells were also cultured alone as 

negative control. I found that that CB-derived CD19+ B cells had the capacity 

to produce IL-10 in response to stimulation by BCR ligation, CD40L or CpG in 

a time-dependent manner [figure IV-4A]. Human IL-10+ B cells from 

peripheral blood have been previously shown to be enriched within the 

CD19+CD24hiCD38hi transitional and CD24hiCD27+ and CD19+CD27+IgM+ 

memory cells (Khoder et al., 2014, Blair et al., 2010, Iwata et al., 2011). To 

discover the source of IL-10-producing B cells in CB, I magnetically isolated 

total CD19+ B cells and also sort-purified naïve and transitional B cells from 

healthy CB units and stimulated them with either CD40L, CpG, BCR ligation 

or a combination of all three for 48 hours and measured the concentrations of 
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IL-10 in the culture supernatants measured by ELISA.  Based on the previous 

ELISA results, I chose to stimulate CB-derived B cell subsets for 48 hours, 

which allowed sufficient production of IL-10 detection by ELISA without 

compromising CB B cell viability staining with trypan blue (data not shown). 

Interestingly, stimulation of transitional and naive B cells with a combination of 

CD40 ligation, CpG and BCR engagement resulted in significantly more IL-10 

production than when cultured with each stimulus alone (figure IV-4B).  

 

 
 
Figure IV-4: IL-10 production in CB-derived B cells after stimulation with 
CD40L, CpG or BCR ligation  
A. Bar graphs showing cumulative data of IL-10 production from CB-derived CD19+ 
B cells in response to stimulation with CD40L, CpG and BCR ligation in a time 
dependent manner (n=10) B. Cumulative data illustrating IL-10 production from CB 
total CD19+ B cells, and sort purified naïve and transitional B cell subsets after 
stimulation with CD40L, CpG, BCR ligation or a combination of all. Resting B cells 
(un-stimulated) were used in each experiment as a negative control.  
The bars in A and B represent mean and the error bars represent range 
 

I next determined the effect of cryopreservation on IL-10 production by B 

cells. Paired CBMC from the same cord blood units were frozen at -80° C as 

described in II.2.3 for a minimum of 3 weeks. Cryovials were thawed as 

described in II.2.4 and rested for a minimum of 4 hours at 37° C before B cell 

selection was performed (II.4.1). Cells were activated as described previously 

for 48 hours and supernatant was assayed for IL-10 by ELISA. Minimal 

differences were observed in IL-10 levels between fresh and frozen paired 
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samples and overall no significant differences were found (figure IV-5). The 

results validate the use of frozen samples for the detection of IL-10 for future 

studies. 

 

 

 

 

 

 

 
Figure IV-5: Effect of cryopreservation on IL-10 production by total CD19+ B 
cells and sort-purified transitional and naïve B cell subsets activated with 
CD40L, CpG and BCR ligation.  
Data was acquired from 10 paired fresh and frozen samples and analyzed using a 
paired t-test; ns, no significant difference. 
 

These results are in agreement with previous studies that have also described 

transitional B cells as IL-10 producing suppressor cells (Khoder et al., 2014, 

Mauri and Blair., 2014, Blair et al., 2010). However, I also propose a novel 

and previously undescribed attribute of naïve CB B cells as an IL-10 

producing B cell subset. These findings are in contrast to Breg studies in PB, 

reporting that naive B cells do not possess suppressive function (Khoder et 
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al., 2014). However, my results underscore the regulatory capacity of 

immature transitional B cells (CD19+CD24hiCD38hi), as previously shown by 

our group and others (Khoder et al., 2014, Mauri and Bosma., 2012, Blair et 

al., 2010) and support CB-derived naïve B cells as a candidate Breg subset. 

 
 
 
IV.2.3  Sort purified naïve and transitional B cells from CB inhibit 

proliferation and pro-inflammatory cytokine production by 
peripheral CD4+ T cells in a dose-dependent manner 

 
To gain further insight into the suppressive capacity of CB-derived IL-10-

producing transitional and naive CB B cells on CD4+ T cell function, I sort-

purified transitional (CD19+CD24hiCD38hi) and naïve (CD19+CD24+CD38+) B 

cell subsets as well as total CD19+ B cells from CB units (n=10) and 

evaluated their suppressive effects on PB CD4+ T cell proliferation and 

cytokine production by flow cytometry as detailed in section II.8.1 and II.8.3 

respectively. The gating strategies and post-sort purity checks are outlined in 

figure IV-6. Results illustrated that following 96-hour of co-culture with 

peripheral CFSE-stained CD4+ T cells (stimulated with anti-CD3/anti-CD28 

beads) at a B cell: T cell ratio of 1:1, total CD19+ B cells as well as both naive 

and transitional B cells significantly suppressed CD4+ T cell proliferation 

[median percent proliferating CD4+ T cells 71.8%; (64.9%-78.9%) and 68.0% 

(63.4%-77.9%) and 64.1% (58.7%-69.2%), respectively], when compared with 

anti-CD3/anti-CD28 stimulated CD4+ T cell alone (positive control) [94.6% 

(86.7%-97.5%] (figure IV-7). These effects were cell dose-dependent, with 

the highest suppression observed at a Breg: CD4+ T cell ratios of 5:1 and 

10:1 for CD19+ total B cells as well as transitional and naïve B cell subsets 

(figure IV-8).  In order to assess the suppressive effect of CB-derived B cells 
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on CD4+ T cell effector function, total CD19+ B cells and sort-purified 

transitional and naïve B cell subsets were co-cultured with anti-CD3/anti-

CD28 stimulated magnetic-bead purified CD4+ T cells. Similarly, I also found 

that CD19+ total B cells and both transitional and naïve B cell subsets 

suppressed IFN-γ, TNF-α and IL-2 production by ex vivo stimulated PB CD4+ 

T-cells in supernatants harvested from B cell/T cell cultures through ELISA 

assays as detailed in section II.8.3 (figure IV-9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-‐‑6: Gating strategy and purity checks of CB B cell sorting  
Multi-parametric flow cytometric gating strategy for sorting B cell subsets on BD 
FACS ARIA IIIu. Following lymphocyte gate and cell doublet discrimination, CD19+ B 
cells are then sort-purified based on CD24 and CD38 expression into 2 subsets, 
CD19+CD38hiCD24hi transitional B cells and CD19+CD38intCD24int naïve B cells. 
FACS plots illustrating the high purity of sorted B cell subsets are shown within the 
CD19+ gate 
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Figure IV-‐‑7: Cord Blood derived B cell subsets suppress allogeneic CD4+ T cell 
proliferation  
A. Representative dot plots showing the gating strategy of CD4+CFSE+ T cells. 
Gates were made on the lymphocyte population, CD4+ T cells followed by dot plots 
of CD4+CFSE+ T cells. Gate was determined based on CFSE intensity of 
unstimulated CD4+ T cells. B. Magnetically selected and CD3/CD28 activated PB-
CD4+ T cells were labeled with CFSE (eBioscience) and plated either alone (positive 
control – Blue) or at a 1:1 ratio with total CD19+ B cells (green), transitional (yellow) 
or naïve (orange). CFSE-stained T cells cultured with no stimulation (negative 
control –grey) were included in each experiment. Proliferation index values for 
histograms are: CD4+T cells – 2.87, with total CD19+ B cells- 1.94, naïve – 2.23, and 
transitional – 1.79 C. Suppressive effects of CB derived CD19+ B-cell subsets (1:1 
ratio) on CD4+ T cell proliferation index in vitro (n=14).  
In (C) and (D), bars represent median values and upper whiskers indicate the range. 
*P < 0.05 by nonparametric ANOVA; ns, not significant 
 
 

 

Figure IV-8: The suppressive effect of CB derived CD19+ B cells and 
transitional and naïve B cell subsets on CD4+ T cell proliferation is dose 
dependent as indicated at the B cell: T cell ratios (n=4) 
Error bars represent mean with standard deviation. 
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Figure IV-9: CB-derived CD19+ B cells and both transitional and naïve B cell 
subsets suppressed IFN-γ, TNF-a and IL-2 production by ex vivo stimulated PB 
CD4+ T-cells in supernatants harvested from cultures of CB-derived B cells or 
Tregs cocultured with CD4+ T cells 
Bars represent median values and upper whisker of error bars represent range from 
6 independent experiments. *P < 0.05 by nonparametric ANOVA. 
 
 

I further compared the suppressive capacity of naive and transitional B cells 

with that of cord blood derived Tregs, defined as CD4+CD25hiCD127- T cells. 

In experiments in which magnetically purified cord blood derived Tregs were 

cocultured with peripheral CD4+ T cells at a 1:1 ratio, and the cultured cells 

stimulated with anti-CD3/anti-CD28 beads, the inhibition of T-cell proliferation 

and IFN-γ, TNF-α and IL-2 production by CB-Bregs was comparable to that 

achieved by Tregs (figure IV-7 and IV-9). Collectively, these results suggest 

that the suppressive capacity of total CD19+ B cells and transitional and naive 

CB-derived B cell subsets on CD4+ T cell proliferation and cytokine 

production is comparable to that of T regulatory cells.  

I next determined whether pre-treatment of CB CD19+ B cells with CpG, 

CD40 and BCR ligation to induce IL-10 production could potentiate their 

suppressive capacity. These results indicate that ‘pre-activated’ CB-derived 

total CD19+ B cells as well as pre-activated sort-purified transitional and naïve 

B cell subsets suppress CD4+ T cell proliferation and cytokine production 

significantly more potently than their  ‘non-activated’ counterpart (figure IV-

10). 
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Figure IV-‐‑10: Pre-treatment of CB CD19+ B cells with CpG, CD40 and BCR 
ligation potentiated the suppressive capacity of CB-derived B cells  
A. CD4+ T cell proliferation and B. Effector function, when compared to their non-
induced counterparts. In (A) and (B), bars represent mean and upper whiskers 
indicate the range. *P < 0.05 by paired t-test. 
 
 
 
 
IV.2.4  IL-10 contributes to the suppressor function of cord blood derived 

transitional and naïve B cells 
 
To clarify the mechanism(s) by which CB derived naive and transitional B 

cells suppress CD4+ T cell proliferation and effector cytokine function, I 

cultured PB CD4+ T cells alone or at a 1:1 or 5:1 B : T cell ratio with total 

CD19+ B cells or with naïve or transitional B cell subsets purified from CB 

units in the presence or absence of mAbs against IL-10 and IL-10 receptor 

(IL-10R) in 4 independent experiments. IL-10 blockade partially restored the 

proliferation of CD4+ T cells cocultured with the CB-derived total CD19+ B 

cells, naïve or transitional B cell subsets at both a 1:1 (figure IV-11) and 5:1 B 
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: T cell ratios (figure IV-12). These results indicate that the regulatory 

property of CB-derived Bregs is at least partially IL-10-mediated. Our finding 

that IL-10 blockade could not fully suppress CB-B cell-mediated T cell 

suppression suggests that other mechanisms may be involved in mediating 

the suppressive function of CB-derived regulatory B cells. Consistent with 

these data, I also found that IL-10 blockade did not fully reverse the 

suppressive capacity of either transitional or naïve CB B cell on CD4+ T cell 

cytokine production (figure IV-13), These data further support the 

involvement of other mechanisms in CB-Breg mediated T cell suppression. 
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Figure IV-‐‑11: IL-10 blockade partially reversed the suppressive effect of CB 
derived B cells on T cell proliferation and effector function.  
Representative histograms show CFSE-stained anti-CD3/anti-CD28 stimulated 
proliferating CD4+ T cells when cultured alone (positive control) or at a 1:1 ratio with 
CB derived total B cells or sort purified naïve and transitional B cell subsets with and 
without IL-10 blockade. Proliferation index values for histograms without IL-10 
blockade are: CD4+ T cells alone-3.09, with total CD19+ B cells-2.24, naïve-2.10, 
transitional-1.90. Proliferation index values for histograms with IL-10 blockade are: 
CD4+ T cells alone-3.09, with total CD19+B cells-2.55, naïve-2.33, transitional 2.27. 
Data are representative of 4 independent experiments. Bars represent median values 
and upper whisker of error bar represent range. *P < 0.05 by nonparametric ANOVA. 
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Figure IV-‐‑12: IL-10 blockade partially reversed the suppressive effect of CB 
derived B cells at a 5:1 (B cell: T cell) ratio  
Representative histograms show CFSE-stained anti-CD3/anti-CD28 stimulated 
proliferating CD4+ T cells when cultured alone (positive control) or at a 5:1 ratio with 
CB derived total B cells or sort purified naïve and transitional B cell subsets with and 
without IL-10 blockade. Data are representative of 4 independent experiments. Bars 
represent median values and upper whisker of error bar represent range. *P < 0.05 ** 
P<0.01 by nonparametric ANOVA. 
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Figure IV-‐‑13: IL-10 blockade partially reversed the suppressive effect of CB 
derived B cells on CD4+ T cell cytokine production at a 1:1 and 5:1 (B cell: T 
cell) ratio  
Bar graphs represent the suppressive activity of CB-derived total B cells, transitional 
and naïve subsets on anti-CD3/anti-CD28 stimulated CD4+ T cell cytokine 
production when cultured at a 1:1 or 5:1 B cell to T cell ratio in the presence or 
absence of IL-10 blockade. Supernatants were harvested from B cell/T cell co-
cultures and assayed for the presence of IL-2, IFN-y and TNF-a production by 
ELISA. Data is representative of 4 independent experiments. Bars represent median 
values and upper whisker of error bars represent range. *P < 0.05 by nonparametric 
ANOVA. 
 

 

Previous reports suggest that the immunoregulatory effects of B regulatory 

cells may be mediated by TGF-β (Blair et al., 2010). To pursue the notion that 

TGF-β might at least partly mediate  the immunoregulatory capacity of CB 

regulatory B cells, I performed additional blocking experiments using TGF-β-

specific mAbs. The failure of TGF-β blockade to alter the suppression of 

CD4+ T cells by either CD19+ total B cells, transitional or naive B cells (figure 

IV-14), indicates that this cytokine lacks any appreciable role in human CB 

derived Breg-mediated inhibition of peripheral T cells.   
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Figure IV-‐‑14: TGF-β blockade has no significant effect on the suppressive 
function of CB derived Bregs  
Cumulative bar graphs histograms show CFSE-stained anti-CD3/anti-CD28 
stimulated proliferating CD4+ T cells when cultured alone (positive control) or at a 1:1 
or 5:1 ratio with CB derived total B cells or sort purified naïve and transitional B cell 
subsets with and without TGF-β blockade. Data are representative of 4 independent 
experiments. Bars represent median values and whiskers indicate the upper ranges. 
No significant differences were found between B cell subsets with or without TGF-β 
blockade by nonparametric ANOVA. 
 

 

IV.2.5  The suppressive activity of CB Bregs is partially dependent on 
cell-to-cell contact, mediated through CD80/86 and CTLA-4  

 
The suppressive capability of Bregs has previously been shown to be 

mediated by both the secretion of IL-10 and direct contact with CD4+ T cells 

in both murine and human studies (DiLillo et al, 2010, Khoder et al., 2014, 

Mauri and Blair., 2014, Blair et al., 2010). It is unclear, however, whether 

direct cell-cell contact contributes to human CB-derived Breg-mediated T-cell 

suppression. To examine this mechanism, I performed transwell experiments, 

in which CB-derived total CD19+ B cells or sort-purified transitional and naive 

B cell subsets were either in direct contact or separated from anti-CD3/anti-

CD28-stimulated and CFSE-stained PB CD4+ T cells by a permeable 

membrane. The proliferation of CD4+ T cells was measured at 96 hours after 

the culture was initiated. Separation of CB-derived B cells from anti-CD3/anti-

CD28-activated CD4+ T cells by a transwell membrane partially reversed the 
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suppressive effect of these CB-Bregs at a B cell: T cell ratio of 1:1 (figure IV-

15). This suppressive effect was also evident at higher B cell to T cell ratios of 

5:1 (figure IV-16). However, this reversal was not complete (compared with 

positive control). 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure IV-‐‑15: Effect of direct B cell: T cell contact on CD4+ T cell proliferation 
(cocultured at at a 1:1 ratio)  
Representative histograms show CFSE-stained anti-CD3/anti-CD28 stimulated 
proliferating CD4+ T cells when cultured alone (positive control) or in direct cell-cell 
contact or separated using transwells at a ratio of 1 B cell :1 T cell;  we studied CB 
derived total B cells or sort purified naïve and transitional B cell subsets. Bar graphs 
illustrate collective data representative of 4 independent experiments, which compare 
the suppressive activity of CB-derived B cells on T cell proliferation in the presence 
or absence of direct cellular contact. Bars represent median values and upper 
whisker of error bars represent the range. *P < 0.05 by nonparametric ANOVA. 
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Figure IV-‐‑16: Effect of direct B cell: T cell contact on CD4+ T cell proliferation 
(cultured at 5:1 ratio) 
Representative histograms show CFSE-stained anti-CD3/anti-CD28 stimulated 
proliferating CD4+ T cells when cultured alone (positive control) or cultured in direct 
cell-cell contact or separated using transwell chambers (transwell) at a ratio of 5 B 
cells :1 T cell; we studied CB derived total B cells or sort purified naïve and 
transitional B cell subsets. Bar graphs illustrate collective data representative of 4 
independent experiments, which compare the suppressive activity of CB-derived B 
cells on T cell proliferation in the presence or absence of direct cellular contact. Bars 
represent median values and upper whisker of error bars represent the range. *P < 
0.05 by nonparametric ANOVA 
 

Similarly, separation of CB-derived total CD19+ B cells and sort-purified 

transitional and naïve subsets from CD4+ T cells by transwell only partially 

reversed their ability to suppress IFN-γ, TNF-α and IL-2 production by ex vivo 

activated PB CD4+ T-cells at both a 1:1 and 5:1 B cell to T cell ratios (figure 

IV-17). Thus, I next asked whether a combination of IL-10 blockade and 

abrogation of direct cell-cell contact could completely reverse the suppressive 
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effect of CB candidate regulatory B cells on CD4+ T-cell proliferation and 

cytokine production. The addition of IL-10/IL-10R blocking mAbs to either 

purified total CB CD19+ B cells or transitional or naive B cells in the transwell 

setting completely abolished the suppressive effect of CB B cells on CD4+ T-

cell proliferation  and cytokine production (figure IV-18).   

 
 

 
 

 
 

 
Figure IV-‐‑17: Effect of cell-to-cell contact on CB B cell-mediated suppression of 
CD4+ T cell cytokine production  
I compared the suppressive activity of CB-derived B cells on T cell cytokine 
production in the presence or absence of direct cellular contact. Anti-CD3/anti-CD28 
stimulated CD4+ T cells were cultured either alone (positive control) or at a 1:1 or 5:1 
cell ratio with CB derived total B cells or sort purified naïve or transitional B cell 
subsets. The B and T cells were either in direct cell contact or separated by transwell 
membrane. Bars represent median values and upper whisker of error bars represent 
the range. *P < 0.05 by nonparametric ANOVA 
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Figure IV-‐‑18: The suppressive capacity of CB-derived B cells is dependent on 
IL10 and cell-to-cell contact 
Bars represent median values and upper whiskers indicate the range from 3 
independent experiments. No significant differences were found between a 
combination of transwell and IL-10 blockade in B cell:T cell co-cultures vs. positive 
control (anti-CD3/anti-CD28 stimulated CD4+ T cells alone) by nonparametric 
ANOVA at both a 1:1 and 5:1 B cell:T cell ratio. 
	  
	  
	  
	  
I next examined whether soluble CD40L is the trigger for IL-10 production in 

the transwell setting. I measured the levels of soluble CD40L that is naturally 

secreted by activated T cells (van Kooten and Banchereau., 2000) in the 

supernatant harvested from the transwell cultures by ELISA, to determine 

whether soluble CD40L can induce IL-10 production by B cells (Iwata et al., 

2011). As is shown in figure IV-19, soluble CD40L was present in the 

cocultures with CD3/CD28-activated CD4+ T cells. For this reason, I propose 
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that soluble CD40L can cross the membrane and induce IL-10 production by 

CB-derived transitional and naive B cells to mediate T-cell suppression. 

 

 

 

 

 

 

Figure IV-19: Anti-CD3/anti-CD28 stimulated CD4+ T cells release soluble 
CD40L, measured using the Human CD40 Ligand Quantikine ELISA kit (R&D) in 
the transwell supernatant (pg/mL). 
Bars represent medians and upper whiskers represent range from 3 independent 
experiments. 
 
 
 
Prompted by evidence from both murine and human B-cell experimental 

systems (Chapter III, Khoder et al., 2014., Blair et al., 2010, Mauri et al., 

2010), I next tested the contribution of CD80 and CD86 costimulatory 

signaling to the suppressive capacity of sort-purified CB derived transitional or 

naïve B cell subsets. Although the addition of blocking antibodies against 

CD80 or CD86 molecules individually was not sufficient to reverse the 

suppressive activity of total CD19+ B cells or naïve and transitional B cell 

subsets (figure IV-22), addition of blocking antibodies against both molecules 

partially inhibited the ability of CB B cell subsets to suppress the effector 

function and proliferation of PB CD4+ T cells at both T cell: B cell ratios of 1:1 

and 5:1 (figure IV-20). Thus, the suppressive effect of CB-Breg cells is at 

least partially mediated by CD80/CD86 costimulatory signaling, consistent 

with findings in human and murine experimental models (Khoder et al., 2014, 

Blair et al., 2010, Mauri and Bosma., 2012).  
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Figure IV-20: CD80 and CD86 co receptor signalling is a prerequisite for the 
suppressive effect of Bregs.  
A. Cumulative data representing CD80 and CD86 co-receptor blockade in cultures of 
purified CFSE-stained proliferating CD4+ T cells and sorted CB-derived CD19+ B cell 
subsets, which partially reversed the suppressive capacity of Bregs on CD4+ T cell 
proliferation as compared to the corresponding positive control at a 1:1 and 5:1 B cell 
to T cell ratios (n=4) B. Bar charts compare the effect of CD80 and CD86 co-receptor 
blocking on CD4+ T cell IFN-γ, TNF-α and IL-2 production at a 1:1 and 5:1 B cell to T 
cell ratios (n=4). Bars represent median values and upper whisker of error bars 
represent the range. *P < 0.05 by nonparametric ANOVA 
 

 

Previous evidence has illustrated that CD80/CD86 molecules co-interact with 

the CTLA-4 inhibitory receptor on T cells. (Minguela et al., 2000, Jago et al., 

2004). I next determined whether the suppressive effect of CB derived 

regulatory B cells was dependent on CD80 and CD86 co-interaction with 

CTLA-4. Addition of blocking antibody against CTLA-4 significantly inhibited 

the ability of CB-B cell subsets to suppress the effector function and 
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proliferation of peripheral CD4+ T cells at both T cell: B cell ratios of 1:1 and 

5:1  (figure IV-21). However, this reversal was not complete when compared 

to CD4+ T cell alone (positive control). Consequently, the reversal of CB-

derived regulatory B cell suppression by CTLA-4 blockade was further 

enhanced when combined with CD80/CD86 blockade (figure IV-22). These 

results provide evidence for an important interaction between CD80/CD86 on 

CB-derived Bregs and CTLA-4 on CD4+ T cells in Breg mediated T cell 

suppression. While the blockade of IL-10, CD80/CD86 and CTLA-4 

individually was not sufficient to completely reverse the suppressive capacity 

of CB-derived transitional and naïve B cells, this endpoint was achieved with a 

combination of mAbs against all molecules (figure IV-22).  
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Figure IV-21: CTLA-4 blockade significantly inhibited the ability of CB B cell 
subsets to suppress the effector function and proliferation of peripheral CD4+ 
T cells at both 1:1 and 5:1 ratios  
A. Cumulative data representing CTLA-4 blockade in cultures of purified CFSE-
stained proliferating CD4+ T cells and sorted CB-derived CD19+ B cell subsets, 
which partially reversed the suppressive capacity of Bregs on CD4+ T cell 
proliferation as compared to the corresponding positive control at a 1:1 and 5:1 B cell 
to T cell ratio (n=4) B. Bar charts compare the effect of CTLA-4 blocking on CD4+ T 
cell IFN-γ, TNF-α and IL-2 production at a 1:1 and 5:1 B cell to T cell ratio. Bars 
represent median and whiskers indicate the range from 4 independent experiments. 
*P < 0.05 by nonparametric ANOVA 
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Figure IV-22: A combination of blocking antibodies to IL-10, CTLA-4, CD80 and 
CD86 fully reversed the ability of CB-Breg subsets to suppress CD4+ T cell 
proliferation in vitro 
Bars represent median values and upper whiskers of error bars represent the range 
from 3 independent experiments. 
 
 
IV.2.6  Depletion of Treg cells does not influence the suppressive ability 
of transitional and naïve CB B cells  
 
To test whether the in vitro suppressive effects of IL-10 producing CB derived 

transitional and naive B cells are partly mediated by Treg cells, I depleted 

CD4+ T cells of CD127- CD25hi Tregs by using magnetic bead cell purification 

as described in section II.4.2.2. CB-derived total CD19+ B cells and naive and 

transitional CB B cell subsets were cultured with anti-CD3/ anti-CD28-

stimulated and CFSE-stained Treg-depleted CD4+ T cells at a T cell: B cell 

ratio of 1:1 and 5:1. Both subsets and total CD19+ B cells significantly 

suppressed the proliferation of Treg-depleted CD4+ T cells when compared 

with the corresponding positive control (figure IV-23).  
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Figure IV-23: Depletion of Treg cells does not influence the suppressive ability 
of transitional and naïve CB B cells 
Bars represent median values and upper whisker of error bars represent the range 
from 3 independent experiments. *P < 0.05 by nonparametric ANOVA 
 
 
IV.2.7  Regulatory B cells in cord blood may account for lower rates of 

GVHD after CBT 
 
Rapid B-cell recovery following allo-HSCT has been reported to correlate with 

lower rates in cGVHD (Beaudette-Zlantanova et al, 2013, Shimabukuro-

Vornhagen et al., 2009, Sarantopoulos et al., 2015). Thus, given the ability of 

CB derived CD19+ B cell subsets to control CD4+ T cell function, and the low 

incidence of severe cGVHD in CB recipients (Beaudette-Zlantanova et al, 

2013, Komanduri et al., 2007, Stanevsky et al., 2009), I hypothesized that the 

higher frequencies of B cells with regulatory properties in CB grafts may 

contribute to the lower rate of GVHD post-CBT. 

To test this hypothesis, I first determined the frequency and proportion of total 

CD19+ B cells in sequential blood samples collected   pre-transplant and at 

intervals of 90 days for up to 1 - 2 years post-CBT (Table IV-1). Total CD19+ 

B cells from healthy cord blood units were also analyzed as the control group. 

CD19+ B cells could be detected at low frequencies as early as 1-month post-

CBT, and increased in frequencies and absolute numbers per µL of CD19+ B 

cell populations between 3-9 months post transplant (figure IV-24), after 
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which the B cell population progressively decreased. By 1-year post-CBT 

there were no significant differences in the frequency and numbers of 

circulating B cells in CBT recipients, CB units and healthy donor PB.  

 

To further determine the kinetics of IL-10 producing Breg recovery after CBT, I 

next determined the relative frequencies of IL-10+CD19+ B cells in PB 

samples collected from 17 post CBT recipients before and at intervals of 90 

days for up to 1 year post CBT and at 2 years. In the first 1-3 months post 

CBT  B cells activated through CD40L followed by PMA+ionomycin 

stimulation had low IL-10 production; however, by 3-9 months post CBT there 

was a significant increase in the ability of B cells to produce IL-10, with high 

frequencies and absolute numbers of CD19+IL-10+ B cells (figure IV-25). 

During these months, the frequency of CD19+IL-10+ B cells was significantly 

higher than the frequency of IL-10 producing B cells found in the PB of 

healthy individuals or fresh cord blood (figure IV-26), but progressively 

reduced after 9 months post transplant, to levels comparable to that of healthy 

individuals. The early and robust reconstitution of both CD19+ B cells and the 

IL-10+ B cell pool post CBT supports an important role for donor CB-B cells in 

protection against development of cGVHD. 
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Table IV-1: Clinical characteristics of patients 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	   N=17	  
Age	  in	  years	  Median	  (range)	   42	  (21-‐64)	  

	  
Sex	   	  
Females,	  n	  (%)	  
Males,	  n	  (%)	  

12	  (70.6)	  
5	  (29.4)	  

Race,	  n	  (%)	   	  
White	   11	  (64.7)	  
Black	   2	  (11.8)	  
Hispanic	   3	  (17.6)	  
Asian	   1	  (5.9)	  
HLA	  matching,	  n	  (%)	   	  
4+4	   11	  (64.7)	  
4+5	   2	  (11.8)	  
5+5	   2	  (11.8)	  
Conditioning	   	  
Flu/Cy/TBI	   5	  	  (29.4)	  
Flu/Mel/Thio	   9	  (52.9)	  
Flu/Mel140	   2	  (11.8)	  
Bu/Flu/Clo/TBI	   1	  (5.9)	  
Diagnosis,	  n	  (%)	   	  
Primary	  AML	   9	  (52.9)	  
Secondary	  AML	   3	  (17.6)	  
CML	   2	  (11.8)	  
CLL/NHL	   3	  (17.6)	  
Cytogenetics,	  n	  (%)	  	   	  
Favorable	   	  1(5.9)	  
Intermediate	   8	  (47.1)	  
Unfavorable	   8	  (47.1)	  
Disease	  Status	  at	  transplant,	  n	  
(%)	  

	  

CR1	   8	  (47.1)	  
CR2/CR3	   4	  (35.3)	  
Active	  Disease	   3	  (17.6)	  
ALC	  (k/µL)	  Median,	  range	  
Day	  30	  ALC,(x	  106/L)	  Median(range)	  

0.87	  (0.20	  –	  5.28)	  
406	  (70-‐931)	  

Acute	  GVHD,	  n	  (%)	   8	  (47.1)	  
Chronic	  GVHD,	  n	  (%)	   7	  (41.2)	  
Relapse,	  n	  (%)	   5	  (29.4)	  
PFS,	  days	  Mean,	  (95%	  CI)	   1578.3	  (1139.4-‐2017.3)	  
Overall	  Survival,	  days	  Mean,	  (95%	  CI)	   1606	  (1131.7-‐2080.4)	  
Follow-‐up,	  median	  (range),	  days	   1219	  (165-‐2283)	  
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Figure IV-24: B cells from CBT recipients exhibit an early and robust 
reconstitution of CD19+ B cells  
Total CD19+ B cell counts and frequencies were analyzed in sequential blood 
samples collected from CBT recipients and were significantly elevated in CB 
recipients at 3-9 months post transplant. The figures represent mean values and 
errors bars represent range (n=17) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure IV-25: B cells from Cord Blood transplant recipients exhibit an early and 
robust reconstitution of IL-10 B cell pool  
Thawed CBMC were used to isolate total CD19+ B cells and cultured with CD40L for 
48 hours. A. The relative frequencies and secretion (pg/ml) of IL10+CD19+ B cells in 
17 post CBT patients were significantly elevated B. The absolute counts of 
IL10+CD19+ B cells in CBT recipients were elevated at 3-9 months post transplant. 
A and B figures represent mean values and errors bars represent range (n=17) 

Pre
 T

ra
nsp

lan
t

1 m
onth

3 m
onth

6 m
onth

9 m
onth

1 y
ea

r

2 y
ea

r
0

20

40

60

%
 o

f C
D

19
+ 

B
 c

el
ls

Pre
 T

ra
nsp

lan
t

1 m
onth

3 m
onth

6 m
onth

9 m
onth

1 y
ea

r

2 y
ea

r
0

500

1000

1500

2000

N
o.

 C
D

19
+ 

B
 C

el
ls

 p
er

 µ
l

Pre
 T

ra
nsp

lan
t

1 m
onth

3 m
onth

6 m
onth

9 m
onth

1 y
ea

r

2 y
ea

r
0

2

4

6

%
 o

f C
D

19
+ 

IL
-1

0+
 B

 c
el

ls

Pre
 T

ra
nsp

lan
t

1 m
onth

3 m
onth

6 m
onth

9 m
onth

1 y
ea

r

2 y
ea

r
0

100

200

300

400

500

IL
-1

0 
pg

/m
L

Pre
 T

ra
nsp

lan
t

1 m
onth

3 m
onth

6 m
onth

9 m
onth

1 y
ea

r

2 y
ea

r
0

10

20

30

40

50

N
o.

 C
D

19
+ 

IL
-1

0+
 B

 C
el

ls
 p

er
 µ

l

A	  

B	  



	   184	  

 
Figure IV-26: Bar graph compares IL-10 secretion in supernatants of activated 
total CD19+ B cells in healthy PB, healthy cord blood units and patients 6 
month post CBT assayed by IL-10 ELISA.  
The figures represent median values and errors bars represent range. *P < 0.05 by 
nonparametric ANOVA. 
 
 
 
I next examined the frequencies and absolute numbers of recovering CD19+ 

B cells and CD19+IL-10+ B cells at multiple time-points post CBT in patients 

who developed GVHD [acute (n=8) and chronic (n=7)] (n=9) compared to 

patients without GVHD (n=8) to further elucidate the protective role for CB- 

derived donor Breg in GVHD after CBT.  

Patients with GVHD had significantly lower frequencies and absolute counts 

(per µl) of CD19+ B cells in the first 3-9 months post CBT compared to 

patients without GVHD (figure IV-27).  Similarly, CBT recipients with GVHD 

had lower frequencies and absolute numbers of IL-10 producing-CD19+ B 

cells compared to those without cGVHD (figure IV-28). Our results are in line 

with previous studies that have also reported lower IL-10 producing Bregs in 

patients with GVHD than in healthy donors after allo-HSCT (Rowe et al., 

2006, Khoder et al., 2014, Weber et al., 2014). No significant differences were 

observed in the transitional and naïve B cell compartments in patient with or 

without GVHD.  
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Our data support our hypothesis that the robust recovery of B cells with 

regulatory properties in CB grafts observed during the first 3-9 months post 

CBT may contribute to the low incidence of GVHD post-CBT. Collectively, 

these data suggest a novel and protective role for IL-10 producing Bregs in 

the regulation of human cGVHD after CBT. 

 

Figure IV-27: CD19+ B cell frequencies and absolute counts per µl in patients 
with GVHD. Patients with cGVHD (n=9) had significantly decreased CD19+ B 
cell reconstitution when compared to patients who did not develop cGVHD 
(n=8)  
The figures represent mean values and errors bars represent range. *P < 0.05 and ** 
P<0.01 by unpaired t-test. 
 
 

 
Figure IV-28: CD19+IL-10+ B cell frequencies and absolute numbers in patients 
with GVHD. Patients with cGVHD (n=9) had significantly decreased CD19+IL-
10+ Breg cell reconstitution when compared to patients who not develop 
cGVHD (n=8)  
The figures represent mean values and errors bars represent range. *P < 0.05 and ** 
P<0.01 by unpaired t-test. 
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To further confirm that the recovering B cells after CBT have regulatory 

capacity, CD19+ B cells were magnetically isolated from sequential PB 

samples collected and cryopreserved from post CBT recipients (as described 

above) and cultured with anti-CD3/anti-CD28-activated allogeneic 

CFSE+CD4+ T cells from healthy individuals for 96 hours. B cells from 

patients at 6 and 9 months had a significantly greater suppressive capacity on 

CD4+ T cell proliferation when compared to fresh cord blood B cells (figure 

IV-29). My result indicate the presence of an expanded population of IL-10 

producing regulatory CD19+ B cells at 6-9 months, which posses greater 

suppressive function on T cell proliferation, supporting an important role for 

Bregs in limiting or preventing the severity of cGVHD.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure IV-29: Expanded population of IL-10 producing regulatory CD19+ B cells 
posses greater suppressive function on T cells as compared to healthy cord 
blood B cells.  
Magnetically isolated CD19+ B cells from post CBT patients collected at varying time 
points after CBT were cultured with anti-CD3/anti-CD28-activated CFSE+CD4+ T 
cells from healthy individuals for 96 hours at a 1:1 B cell: T cell ratio. Cells were 
harvested and stained for CD4+ CFSE+ proliferating T cells. The bars represent 
median values and errors bars represent range. *P < 0.05 by nonparametric ANOVA. 
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IV.3  Discussion 

Regulation of the delicate balance between effector T cell activities against 

invading pathogens and the tolerance of self- and environmental antigens has 

been largely ascribed to regulatory T (Treg) cells (Rezvani et al., 2006).  The 

pathophysiology of GVHD involves impaired regulatory mechanisms of 

tolerance between recipient tissues and donor-derived immunity (Blazar et al., 

2012). Our understanding of the function of Bregs in this disease is limited. 

Recent research has described a functional group of IL-10 producing 

CD19+CD24hiCD38hi transitional B cells in human PB that possess immune 

regulatory capacity (Blair et al., 2010, Khoder et al., 2014). Conversely, other 

studies have identified human IL-10 producing B cells to be contained mainly 

within the CD24hiCD27+ memory B cell compartment (de Masson et al., 2015, 

Iwata et al., 2011). In addition to these studies, Khoder et al reconciled the 

results of previous studies and demonstrated that regulatory subsets of IL-10-

secreting CD19+IgM+CD27+ memory B cells coexist with IL-

10+CD24hiCD38hi transitional B cells in healthy human donors and play a role 

in protection against cGVHD after HSCT (Khoder et al., 2014).  

 

Recently published work has also established the presence of 

CD19+CD38hiCD24hi immature transitional B cells that are abundant in human 

cord blood (Ha et al,. 2008, Cuss et al., 2006). Here, we underscore the 

regulatory capacity of CB-derived immature transitional B cells, and identify 

naïve B cells as new candidate Breg subset that can be identified in CB. I 

propose that within the CB-CD19+ B cell pool there exist 2 distinct subsets; 

CD19+CD38hiCD24hi transitional B cells and CD19+CD38intCD24int naïve B 
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cells, both of which are functionally regulatory. My results signify the 

suppressive capacity of CB-derived Bregs on peripheral CD4+ T cell 

proliferation and effector function.  

 

Despite several phenotypic and functional similarities between human PB- 

and CB-derived Bregs, (Cuss et al., 2006, Marie-Cardine et al., 2008),  our 

study revealed a number of key differences. In contrast to previous studies 

that ascribed regulatory capacity to PB-derived CD24hiCD27+ or CD27+IgM+ 

memory cells (Khoder et al., 2014, Iwata et al., 2011), memory B-cells are 

absent in CB (Ha et al., 2008). Further, unlike PB-naïve B cells that failed to 

suppress CD4+ T cells (Khoder et al., 2014), our discovery presents a novel 

suppressive role for naïve B cells in CB and broadens the proportion of Bregs 

in CB, suggesting a prominent role for these functional CB-derived B cells in 

the maintenance of immune tolerance.  

 

My data further demonstrate that the suppressive capacity of CB-Breg was 

augmented in the presence of pre-activated B cells co-cultured with CD4+T 

cells, suggesting that in human PB, Breg designation may not be limited to the 

memory and transitional B cell subsets described previously and it is likely 

that discrete subsets of naïve and switched memory B cells could also be 

induced to exert regulatory function in response to CD40-ligand signaling 

provided by activated T cells, analogous to reports of inducible Tregs during 

inflammation (Feuerer et al., 2009).  

Similar to previous reports of PB-Bregs, the mechanism by which CB-derived 

total CD19+ B cells and naïve and transitional B cell subsets suppress CD4+T 
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cell function was mediated synergistically through IL-10 production and cell-

to-cell contact (Blair et al., 2010, Khoder et al., 2014). IL-10 blockade partially 

reversed CD4+ T cell proliferation and effector cytokine secretion in the 

presence of total CD19+, naïve or transitional B cells. In contrast to reports in 

murine Breg studies (Mizoguchi and Bhan., 2006, Mauri and Bosma et al., 

2012), I did not find a significant role for TGF-β in CB B cell-mediated T cell 

suppression. However, exogenous addition of IL-10 to CD4+ T cells alone 

failed to induce significant CD4+ T cell suppression, supporting the existence 

of additional mechanisms of CB-B cell-mediated T cell suppression.  

Additional mechanistic studies using transwell and CD80/86 blockade 

confirmed that CD80 and CD86 interactions between B cells and CD4+ T cells 

work synergistically with IL-10 production for Bregs to exert their full 

suppressive effect on CD4+ T cell function. Our findings are in agreement with 

previous studies with human PB Bregs that describe the involvement of CD80 

and CD86 as an important feature of their suppressive capacity (Blair et al., 

2010, Khoder et al., 2014) and with murine studies of intestinal inflammation 

where CD86 especially has been noted to facilitate B cell suppression (Mann 

et al., 2007, Mizoguchi et al., 2000). Conversely, the involvement of CD80 and 

CD86 co-interaction with CTLA-4 on T cells in CB-Breg-mediated T cell 

suppression is in contrast to findings with PB-Breg, where their suppressive 

activity was found to be independent of CTLA-4 (Khoder et al. 2014). 

However, a similar mechanism is employed by CD80 expressed on DCs, 

which acts preferentially as a ligand for CTLA-4 and mediates Treg cell 

suppression (Zheng et al., 2004). The differences in CTLA-4 mediated 

suppressive mechanisms between CB-B cells and PB-B cells found in my 
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study may be attributed to different compositions of B cells subsets, as CB 

cells are largely composed of naïve cells that may be more susceptible to 

CTLA-4 blocking than PB-B cells. 

Additionally, while the blockade of IL-10/IL-10R, CD80/CD86 and CTLA-4 

individually was not sufficient to fully reverse the suppressive activity of CB-

Bregs, this endpoint was achieved with a combination of mAbs against all 

molecules mediating the prevention of IL-10 and cell-cell contact. 

 

The role of Bregs in cord blood transplantation and GVHD has not been 

previously studied. Several studies have reported that immune reconstitution 

after CBT is characterized by an expansion in B cells during the first year post 

transplant (Komanduri et al., 2007, Nakatani et al., 2014, Beaudette-

Zlatanova et al., 2013, Saliba et al., 2015, Lucchini et al., 2015). 

 

Here, I report on B cell reconstitution in 17 CBT recipients; B cells could be 

detected at low frequencies as early as 1-month post-CBT, where the majority 

of B cells had a CD24high CD38high transitional profile. Further I observed 

expanded frequencies and absolute numbers of CD19+ B cell populations 

between 3-9 months, after which the B cell population progressively 

decreased. By 1-year post CBT there were no significant differences in the 

frequency and numbers of circulating B cells in CBT recipients and healthy 

donors.  My data further illustrate a similar pattern in the kinetics of IL-10 

producing CD19+ B cell reconstitution after CBT.  

I further demonstrated that CBT recipients that developed GVHD (acute n=8 

and chronic n=7) had a reduced CD19+ B cell recovery when compared to 
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CBT recipients that did not develop GVHD (n=8). In addition, CD19+ B cells 

isolated from CBT recipients with GVHD were refractory to stimulation and 

had significantly impaired reconstitution of CD19+IL-10+ B cells 3-9 months 

after CBT when compared to patients without GVHD. These results are in 

accord with similar studies that have also found low frequencies of IL-10 

producing B cells in cGVHD patients following AHSCT when compared to 

AHSCT recipients without cGVHD (Rowe et al., 2006, Khoder et al., 2014, 

Weber et al., 2014). Collectively, these results postulate that the early 

recovery of B cells post-CBT may define a protective role for Bregs in GVHD 

setting. However, limiting factors associated with the heterogeneous patient 

group of CBT recipients, in terms of disease background, conditioning 

regimen, cytogenetics that differ amongst the patient cohort, may affect the 

data derived and require further consideration. 

However, at present we have no means of purifying exclusively those B cells 

that express IL-10 in sufficient quantities for functional studies. Thus, given 

the potential role of Bregs in the maintenance of the balance between 

tolerance and autoimmunity, it imperative to search for a unique Breg 

signature for the identification of IL-10-producing B cells with 

immunoregulatory capacity. 

 

This study defines a novel role for CB derived donor Bregs in protection 

against cGVHD, and support the development of strategies to evaluate novel 

B-cell directed therapies for the prevention or treatment of cGVHD, 

specifically targeting B cell reconstitution and function after transplant. Hence, 

strategies to selectively target B effector cells following B-cell depletion 
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therapy whilst preferentially sparing regulatory B cells are required. Thus, to 

counterbalance immune regulation and induce protection against GVHD, so 

that GVHD is either prevented or attenuated, infusion of donor-derived Bregs 

early in the patient’s post-transplant regime may be an attractive approach. 

The potential of in-vitro expanded CB-derived IL-10 producing Bregs as an 

invaluable source of off-the-shelf treatment of human GVHD merits further 

investigation. 
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Chapter V.  Control of NK functions by Human IL-10 producing 
CD19+CD24hiCD38hi Transitional and CD19+CD27+IgM+ 
memory cells in Acute Myeloid Leukemia 

 
 
V.1 Introduction 

In recent years, IL-10-producing B cells, a distinct newly recognized subset of 

B regulatory (Breg) cells that maintain immune tolerance and are critical in 

host suppression of autoimmune diseases have been the focus of intense 

research in immunology (Mauri et al., 2013). Breg cells have been shown to 

exert significant immunoregulatory functions both in vitro and in vivo (Qian et 

al., 2012) through the production of the immunosuppressive cytokine 

interleukin IL-10 and TGF-beta (Mauri et al., 2013), and appear to play 

important roles in autoimmunity and in cancer (DiLillo et al., 2010, Bouaziz et 

al., 2008).  

The identification of suppressor B cells that could down-regulate the immune 

response, originated in 1974 however, the term ‘regulatory B cells’, was first 

introduced by Mizoguchi and Bhan nearly 30 years later (Mizoguchi et al., 

2006, Yang et al., 2013). Despite the extensive body of evidence 

accumulating in the ensuing years since these studies were published, 

reinforcing the notion of B cells as potential regulatory cells, some controversy 

over the paucity of markers that can unequivocally identify Bregs, particularly 

in humans, still exists. Blair and colleagues (2010) have elegantly described 

human Bregs as CD19+CD24hiCD38hi, a phenotype that typically delineates 

human transitional B cells. Conversely, Iwata et al (2011) described human 

IL-10 producing B cells to be contained mainly within the CD24hiCD27+ 

memory B cell compartment.  
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In addition to these studies, recently published data from my work (Khoder et 

al., 2014), syndicates previous studies and shows that IL-10-secreting 

CD19+IgM+CD27+ memory B cells coexist with IL-10+CD24hiCD38hi 

transitional B cells in healthy human donors and significantly suppressed the 

proliferation and cytokine production of anti-CD3/anti-CD28-stimulated 

autologous CD4+ T cells through both IL-10-dependant and cell-to-cell 

contact mediated mechanisms (Chapter III).  Khoder et al (2014) further 

highlighted that IL-10 producing B cells are deficient in patients with chronic 

graft-versus-host disease (cGVHD), supporting their role in the pathogenesis 

of cGVHD. 

 

A new wave of research provides evidence that Bregs may play a role in 

cancer progression. A first indication that B cells and antibodies could be 

tumor-promoting came from studies conducted almost 60 years ago. In these 

early works, Kaliss (1958) found that transfer of tumor-specific antibodies 

augmented growth of transplanted tumor cells, whereas absence of B cells 

limited tumor formation (Brodt and Gordon, 1982). In addition, recent animal 

studies have demonstrated that Bregs support tumor growth in mouse models 

of malignancies though IL-10-mediated suppression of effective anti-tumor T 

cell responses (Visser et al, 2005., Inoue et al, 2006, Horikawa et al., 2011., 

Shao et al., 2014) . Further, Dililio et al (2013) has also highlighted IL-10-

producing B cells to be expanded in patients with chronic lymphocytic 

leukemia (CLL), suggesting that Bregs might support cancer progression in 

humans. Despite mounting evidence supporting a role for Breg cells in 

promoting tumor growth through inhibition of T cell proliferation and effector 
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function, there are currently no data on the interaction of Bregs with other 

immune effectors important in tumor-immune surveillance such as natural 

killer (NK) cells. 

 

NK cells are important components of the innate immune system and play an 

important role in tumor immune surveillance (O’Hanlon, 2004, Ljunggren and 

Malmberg, 2007, Waldhauer and Steinle, 2008). NK effector function is 

dictated by the integration of signals received through germ-line-encoded 

receptors that can recognize ligands on their cellular targets. Functionally, NK 

cell receptors are classified as activating or inhibitory (Ljunggren and 

Malmberg, 2007). In cancer patients, NK cell activation can be hampered by 

downregulation of major histocompatibility complex (MHC) class I molecules 

on target cells (missing self theory) (Smyth et al, 2002, Ljunggren and Karre, 

1990) and/or upregulation of proteins such as NKG2D ligands on ‘distressed’ 

cells (induced self theory) (Vivier et al, 2008), but Giringhelli et al (2005) 

suggested that other mechanisms may also play a role in blunting NK cell 

responses against cancer. Indeed, increased frequencies of regulatory T cells 

(Tregs) have been shown to correlate with cancer progression and hamper 

NK cell function (Ghirenghelli et al, 2005, Pedrozo-Pacheo et al, 2013).   

Recent studies have shed light on the existence of NK-B cell bidirectional 

cross-talk, through the interaction of CD48 on B cells with, 2B4, on NK cells 

(Yuan et al, 2010., Gao et al, 2006., Gao et al, 2005, Lee et al, 2006). NK 

cells can influence the ability of B cells to secrete antibodies, to present 

antigens to T cells and activate switch recombination while pre-activated B 

cells in turn upregulate IFN-y production by NK cells (Gao et al., 2006 and 
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Yuan et al, 1992).  Signaling lymphocyte activation molecule–associated 

protein (SAP) is essential for the activating function of 2B4 and signalling, and 

can bind to all 4 immuno-receptor tyrosine-based switch motifs (ITSMs) of 

2B4 (Assarsson et al, 2005., Stark and Watzl, 2006). Phosphorylated ITSM 

can also recruit the inhibitory phosphatases SHP-1, SHP-2 and SHIP 

(Assarsson et al, 2005). SAP can inhibit the interaction between 2B4 and 

these inhibitory signalling molecules and in its absence, 2B4 can bind to the 

negative signaling molecules and mediate an inhibitory signal (Eissman et al, 

2005 and Endt et al., 2007). Therefore 2B4 can also function as an inhibitory 

receptor when engaged by CD48-expressing cells or tumor targets (Lee et al., 

2006).  

 

Here I report that IgM memory (CD19+IgM+CD27+) and transitional 

(CD19+CD24hiCD38hi) regulatory B-cell subsets from human PB suppress 

NK cell effector function and proliferation. This suppressive effect was 

mediated by predominantly cell-cell contact mediated through 2B4-CD48 

signaling. Moreover, I demonstrate that the same populations of B cells are 

expanded in the PB of patients with AML and exert potent suppression of NK 

effector function and proliferation. My findings have important clinical 

implications, as they suggest that Bregs may impact effector anti-tumor NK 

cell responses in AML and other cancers and support strategies to target 

these cells for optimal anti-cancer immunotherapy.  
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V.2 Results 

V.2.1 Human IL-10 producing CD19+CD24hiCD38hi transitional and   
CD19+CD27+IgM+ memory cells suppress NK cell cytotoxic 
function 

 
The pathological relevance of the Treg-NK cell interaction has been shown in 

a number of tumor models (Smyth et al., 2006) and in patients with cancer 

(Pedrozo-Pacheo et al., 2013, Ralainirina et al., 2007) however the interaction 

between Bregs and NK cells is unknown. Khoder et al (2014) has recently 

reported that IL-10 producing B cells are enriched within the 

CD19+CD24+CD38+ transitional and CD19+IgM+CD27+ memory B cell 

subsets (Chapter III) and possess regulatory properties through inhibition of 

CD4+T cell proliferation and effector function. To determine if Bregs also 

suppress NK function, I sort-purified IgM memory B cells  (CD19+CD24–

CD38hiIgM+), switched memory B cells (CD19+CD24-CD38hiIgM-), naïve B 

cells (CD19+CD24+CD38+), and transitional B cells (CD19+CD24hiCD38hi) as 

described previously (section II.5) from the PB of healthy donors and co-

cultured them at a 1:1 ratio with magnetically purified autologous CD56+CD3- 

NK cells (section II.4.3) for 48 hours, in the presence of IL-15 (15ng/ml). The 

gating strategies and post-sort purity checks of B cell subsets are shown 

in figure III-10. Effector function of NK cells co-cultured with B cell subsets 

was assessed against K562 target cells by measuring the frequencies of 

degranulated (CD107a+) CD56+ NK cells as a marker of cytotoxicity and 

TNF-α and IFN-γ producing CD56+ cells by flow cytometry as described in 

section II.9.2. Transitional and IgM memory B cells suppressed CD107a 

degranulation, and expression of IFN-γ and TNF-α by NK cells in response to 

K562 targets compared to CD56+CD3-NK cells cultured alone. In contrast, 
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naïve and switched memory B cells had no significant effect on the NK 

effector function (figureV-1). The inhibitory effect of transitional and IgM 

memory B cells on NK effector function was cell dose dependent with the 

highest suppression observed at a ratio of 5:1. (figure V-2).  We further found 

that Bregs can suppress the effector function of autologous and allogeneic NK 

cells to a similar extent (figure V-3).  
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Figure V-1: Transitional and IgM memory B cells suppress NK effector function  
Sort purified B cell subsets were co-cultured with selected NK cells at a 1:1 ratio in 
the presence of K562 target cells. A. Gating strategy illustrating gated lymphocyte 
population, live cell gate and CD56+ NK cells B. Representative FACS plots 
illustrating the inhibitory effect of both transitional and IgM memory B cell subsets 
that significantly suppressed the frequencies of CD107a degranulation, TNF-α and 
IFN-γ producing CD56+ cells. Naïve and switched memory B cells had no significant 
effect on the NK effector function C. Cumulative data summarizing the suppressive 
effect of Breg subsets on NK effector function (n=14). Bars represent median values 
and upper whiskers represent the range. *P < 0.05 by nonparametric ANOVA; ns, not 
significant 
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Figure V-2: The suppressive effect of transitional and IgM memory B cells on 
NK effector function was cell dose dependent (n=4) 
Each symbol represents mean and errors bars represent range 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure V-3: The suppressive effect of transitional and IgM memory B cells on 
NK effector function was comparable on both autologous (Auto) and allogeneic 
(Allo) NK cells n=4 
All comparisons were made using a paired t-test. 
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Granzyme B and perforin are important for the ability of NK cells to kill their 

targets (Ralainirina et al., 2007). Transitional and IgM memory B cells 

significantly suppressed perforin production by NK cells, when compared with 

NK cells alone (figure V-4A).  Interestingly, only transitional B cells could 

suppress granzyme B production by NK cells in response to K562 targets 

(figure V-4B). 

The suppressive ability of transitional and IgM memory B cells on NK 

cytotoxicity was further confirmed using chromium (51Cr) release assay, 

which measures target cell lysis (Shah et al., 2013).  The cytotoxicity of NK 

cell co-cultured with transitional and IgM memory B cell subsets against K562 

cells was significantly lower than NK cells co-incubated with naïve and 

switched subsets or NK cells cultured alone (representative from n=14 

experiments) (figure V-4C). 

We then compared the suppressive capacity of transitional and IgM memory 

B cells with that of regulatory T cells (Treg), defined as CD25hi CD127- CD4 T 

cells.  

 

Magnetically purified Treg were co-cultured with autologous NK cells at 1:1 

ratio in 4 independent experiments and cultured cells were stimulated with 

target K562 cells as described previously. The suppression of NK effector 

function and cytotoxicity by Tregs, and transitional and IgM memory B cells 

was comparable, (Figure V-5), indicating that transitional and IgM memory B 

cells can suppress NK effector function to a similar extent as Treg. 
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Figure V-4: Transitional and IgM memory B cells suppress NK cytotoxicity 
Cumulative data representing the suppressive effect of Bregs A. on NK perforin 
production (n=3). Bars represent median values and upper whisker of error bars 
represent the range B. granzyme B production (n=3). Bars represent median values 
and upper whisker of error bars represent the range and C Chromium release 
(n=14). This figure reports median values and error bars indicate interquartile ranges.  
In A-C, *P < 0.05 by nonparametric ANOVA was used to compare between different 
individual groups. 
 
 
 
 

 
Figure V-5: The suppressive effect of transitional and IgM memory B cells on 
NK effector function was comparable to Tregs (n=4) 
Bars represent median values and upper whisker of error bars represent the range. 
*P < 0.05 by nonparametric ANOVA 
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V.2.2 Transitional and IgM memory B cells suppress proliferation of 
CD56+CD3- NK cells 

 
IL-10 producing B regulatory cells have been shown to sharply suppress T 

cell proliferation (Khoder et al., 2014). To assess whether IL-10 enriched 

transitional and IgM memory B cell subsets exert a similar inhibitory effect on 

NK cell proliferation, I cultured magnetically purified allogeneic CFSE labelled 

NK cells alone or with sort purified B cell subsets in the presence of 

exogenous IL-2 (500U/ml) for 8 days (n=12) at a ratio of 1:1 as described in 

II.9.1. Transitional and IgM memory B cells suppressed NK cell proliferation 

[median percentages of proliferating NK cells, 40.5% (31.6-62.7%) and 48.6% 

(38.5-58.5%), respectively], when compared with NK cells cultured alone 

[median percentage of proliferating NK cells, 79.2% (69.8-89.1%)], or cultured 

with naïve nor switched memory B subsets (figure V-6).  I further compared 

the suppressive capacity of IgM memory and transitional B cells on NK 

proliferation with that of Tregs. At a 1:1 ratio, the inhibition of NK-cell 

proliferation by transitional IgM memory B cells was comparable to that of 

Tregs (figure V-6). Together, these results show that transitional and IgM 

memory B cells share with Tregs a robust capacity to suppress proliferation of 

NK cells. Transitional and IgM memory B cells suppressed NK cell 

proliferation in a dose-dependent manner, with near complete abrogation of 

NK cell proliferation at a ratio of 10 B cells: 1 NK cells (figure V-7). 
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Figure V-6: Transitional and IgM memory B cells suppress NK proliferation  
Sort purified B cell subsets were co-cultured with magnetically selected and CFSE 
stained NK cells at a 1:1 ratio in the presence of 500IU/mL of exogenous IL-2 for 8 
days. A. Gating strategy illustrating i. lymphocyte gated population ii. CD56+ NK cells 
iii unstimulated CFSE-stained NK cells (negative control) iv. IL-2 stimulated NK cells 
(positive control) B. Representative histograms illustrating the proliferating CD56+ 
NK cells labeled with CFSE (eBioscience) plated either alone (blue, proliferation 
index 1.85) or at a 1:1 ratio with transitional (yellow, proliferation index 1.47), IgM 
memory (red, proliferation index 1.51), Naïve (green, proliferation index 1.97) or 
Switched memory B cells (orange, proliferation index 1.84). C. Cumulative data 
summarizing the suppressive effect of Breg subsets and autologous Treg on NK 
proliferation (n=8). Bars represent median values and upper whisker of error bars 
represents the range. *P < 0.05 by nonparametric ANOVA; ns, not significant 
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Figure V-7: The suppressive effect of transitional and IgM memory B cells on 
NK proliferation is cell dose dependent (n=4) 
The figure reports mean values and error bars represent range. 
 
 
V.2.3  Human IL-10 producing transitional and IgM memory B cell 
subsets   modulate expression of NK co receptors and suppress ADCC 
 
To investigate the underlying mechanisms through which transitional and IgM 

memory B cells suppress NK cell function, I next examined whether co-culture 

with these regulatory B cell subsets modulated the phenotypic expression of 

11 inhibitory and activating receptors, as depicted in Table II-2, on the surface 

of NK cells (section II-9.3). Co-culture of healthy donor NK cells with 

transitional and IgM memory B cells, but not naïve or switched memory B 

cells, resulted in downregulation of NKG2D, CD16, DNAM-1, and NTB-A 

expression on the surface of NK cells (figure V-8). The expression of other 

activating molecules did not vary following co-culture with B cell subsets. In 

contrast, 2 inhibitory receptors, ILT and Siglec-7, were upregulated on the 

surface of NK cells co-cultured with transitional and IgM memory B cells but 

not naïve or switched memory B cell subsets. I did not find a difference in 

NKG2A or KIR expression. Taken together, these results indicate that defects 

in NK cell phenotype modulated via Bregs may contribute to the development 

and persistence of the disease in patients with AML.  

CD16 is transmembrane protein that induces a potent series of signals 

resulting in cytokine production and cytotoxic effector activity via ADCC. 
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These results suggest that Breg subsets may suppress NK mediated ADCC. 

To determine whether transitional and IgM memory B cells suppress IFN-y, 

TNF-a and CD107a production induced by CD16 activation, magnetically 

selected CD56+CD3- human NK cells were activated with plate bound anti-

CD16 mAB for 5 hours alone or with sort purified B cell subsets at a 1:1 (B 

cell: NK cell) ratio as described in section II.9.4. Breg-NK co-culture resulted 

in significant suppression in IFN-y and TNF-a expression, and CD107a 

degranulation by NK cells following CD16 activation, when compared to the 

corresponding positive control (figure V-9).  These results highlight the role of 

transitional and IgM memory B cell subsets as potent suppressor cells of NK 

activity and ADCC. 
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Figure V-8: Transitional and IgM memory B cells modulate NK phenotype  
A. Representative histograms were generated using FlowJo and gates for each 
marker (blue) was determined by corresponding FMO (shaded grey) with calculated 
MFI to determine the effect of NK: B co-culture B. cumulative data (n=8) illustrating 
the changes in NK phenotype when cultured alone or with B cell subsets. Bars 
represent median values and upper whisker of error bars represents the range. *P < 
0.05 by nonparametric ANOVA 
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Figure V-9: Transitional and IgM memory B cells suppress NK mediated ADCC. 
NK cells were activated with plate bound anti CD16 mAB either alone or with sort 
purified B cell subsets. After culture, cells were collected and stained with 
corresponding antibodies to assess the frequencies of TNFa, IFN-g and CD107a. A. 
Dot plots were generated by gating on lymphocyte population then live cells, then 
CD56+CD3- NK cells (n=3) B. Cumulative data illustrating Transitional and IgM 
Memory B cells suppress NK mediated ADCC. (n=3). Bars represent median values 
and upper whisker of error bars represents the range. *P < 0.05 by nonparametric 
ANOVA 
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B cells suppress NK cell proliferation and cytotoxicity though IL-10, 

magnetically isolated NK cells were cultured with sort purified IgM memory or 

transitional B cells at a 1:1 ratio in the presence or absence of mAbs against 

IL-10 and IL-10 receptor (IL-10R) as described in section II.9.5.  IL-10 

blockade only partially restored NK effector when co-cultured with transitional 

or IgM memory B cell subsets as observed through intracellular cytokine 

staining and ELISA by harvesting the supernatant after B cell and NK cell 

culture (figure V-10A-C).  
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Figure V-10: The suppressive ability of B cells on NK function is partially 
reversed upon IL-10mAB blockade 
A. Dot plots of IFNγ and TNFa expression by CD56+ NK cells cultured alone 
(positive control) or in the presence of indicated B cell subsets with and without IL10 
blocking antibodies. B. Bar charts compare between frequencies of IFNγ, TNFa and 
CD107a+ CD56+ NK cells. The results were compared with paired t test analysis, ∗p 
< 0.05. (n=3) C. Bar charts compare representing IFNγ and TNFa production by NK 
cells with or without B cell co-culture and IL-10 blockade through ELISA (n=3) D.IL-
10 blocking partially reverses the inhibitory effect of Breg subsets on NK proliferation. 
(n=4). In B-D, bars represent median values and upper whisker of error bars 
represents the range. *P < 0.05 by nonparametric ANOVA 
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Further, IL-10 blockade did not fully reverse the suppressive capacity of either 

transitional or IgM memory B cell subsets on NK cell proliferation [median 

percentages of proliferating NK cells, 52.7% (47.4-70.5%) and 60.4% (50.5-

66.4%), respectively; (n=4) compared with 81.9% (71.2-88.1%) for the 

positive control] (figure V-10D).  Addition of exogenous IL-10 to NK cells 

cultured alone induced marginal suppression of NK cell cytolytic function 

(figure V-11), but this effect was substantially less than that seen when NK 

cells are cultured with transitional or IgM memory B cells. Taken together, 

these data suggest that the immunoregulatory properties of transitional and 

IgM memory B cells on NK cell function are likely mediated through 

mechanisms other than IL-10. 

 

 

 

 

 
 
 
Figure V-11: Addition of exogenous IL-10 to NK cells induced marginal 
suppression of NK effector function when assessed by intracellular staining 
for of IFNγ, TNFa and CD107a+ 
Bars represent median values and upper whisker of error bars represents the range. 
*P < 0.05 by nonparametric ANOVA and comparisons were made between each 
concentration of IL-10 ng/ml. 
 

To pursue the notion that TGF-β might mediate at least part of the 

immunoregulatory effects of Bregs on NK cells, we performed additional 

blocking experiments using TGF-β-specific mAbs. TGF-β blockade had no 

significant impact on the suppression of NK effector function by either 

transitional or IgM memory B cells (p=0.46 and p=0.86, respectively; n=3), 
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indicating that TGF-β lacks any significant role in human Breg-mediated 

inhibition of NK cell effector function (figure V-12). 

 

 
 
Figure V-12: The suppressive capacity of transitional and IgM memory 
regulatory B cell subsets is independent of TGF-β 
Bars represent median values and upper whiskers of error bars indicate the ranges 
(n=3). *P < 0.05 by nonparametric ANOVA 
 

A dynamic, bi-directional interaction exists between NK cells and CD19+ B 

cells (Yuan et al., 2010, Gao et al., 2006).  However, to date, no studies have 

assessed the interaction between Bregs and NK cells. To examine if the 

suppressive effect of Bregs on NK cells requires direct cell-to-cell interaction, I 

cultured purified CD56+CD3- NK cells either alone or at a 1:1 ratio with sorted 

IgM memory or transitional B cells either in direct contact or separated in a 

transwell by a permeable membrane as described in section II.9.6. The 

proliferation of K562-stimulated and CFSE-stained CD56+CD3- NK cells was 

measured 8 days after the culture was initiated. Separation of transitional and 

IgM memory B cells from K562-activated CD56+ NK cells by a transwell 

membrane reversed their suppressive effect on NK effector function nearly 

completely when compared with NK cells co-cultured in direct contact with 

these B cell subsets when assessed by both intracellular staining through flow 

cytometry and ELISA assay performed on supernatants harvested from NK/B 

cell co-cultures (figure V-13A-B). Concurring with my findings, abrogation of 
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cell-to-cell contact by a transwell assay also significantly reversed the 

suppressive effect of transitional and IgM memory B cells on NK cell 

proliferation (figure V-13C). These results indicate that the suppressive effect 

of transitional and IgM memory B cells on NK cell proliferation and effector 

function is mediated mainly by direct cell-to-cell contact.  

 

I next determined if a combination of IL-10 blockade and abrogation of direct 

cell-cell contact could completely reverse the suppressive effect of candidate 

regulatory B cells on CD56+ NK-cell proliferation and cytolytic function. 

Whereas IL-10 blockade alone did not fully reverse the suppressive effect of 

either sort-purified transitional or IgM memory B cells on the proliferation or 

cytotoxic function of CD56+CD3- NK cells, the addition of IL-10 and IL-10R 

Abs in a transwell setting completely abolished the suppressive effect of these 

B cell subsets on NK-cell proliferation and cytotoxic function (figure V-14). 

These results suggest that both IL-10 and cell-to-cell contact are pre-

requisites for regulatory B cells to achieve their full suppressive potential. 
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Figure V-13: Cell to Cell contact is required for the inhibitory effect of Bregs on 
NK cell function 
A. Bar graphs illustrate the suppressive ability of B cells on NK effector function was 
reversed upon abrogation of cell-to-cell contact by a permeable membrane in a 
transwell assay. Sort purified B cell subsets were co-cultured with NK cells at a ratio 
of 1:1. Regulatory B cell subsets appeared to suppress frequencies of NK IFNy, 
TNFa and CD107a production at cell-cell contact but not in the absence of contact. 
(n=4) B. Bar graphs depicting results from supernatants that were collected from NK-
B co-cultures in a transwell setting and measured by ELISA assay for TNFa and IFNy 
(pg/ml) production after 48 hours of co-culture. Data is representative of 3 
experiments C. Negatively selected CFSE stained CD56+CD3- NK cells were co-
cultured with sort purified with B cell subsets either directly or in the presence of a 
permeable membrane in a transwell assay for 48 hours. In the absence of cellular 
contact B cell inhibitory effect on NK proliferation was reversed significantly. (n=4) In 
A-C, bars represent median values and upper whiskers of error bars indicate the 
ranges. *P < 0.05 by nonparametric ANOVA 
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Figure V-14: Both IL-10 and Cell to Cell contact are required for the full 
potential of Breg suppression on NK cell function  
A. Bar graphs illustrate the suppressive ability of B cells on NK effector function was 
significantly reversed upon abrogation of cell-to-cell contact and IL-10 suggesting 
that both IL-10 and cell-to-cell contact are contributors to the full potential of Breg 
suppression (n=3) B. Bar graphs depicting the absence of IL-10 and cell-to-cell 
contact inhibited the suppressive function of Breg on NK proliferation (n=3). In A and 
B, bars represent median values and upper whiskers of error bars indicate the 
ranges. *P < 0.05 by nonparametric ANOVA 
 
 
 
 
V.2.5  Breg-NK cell cross-talk is mediated through the 2B4-CD48 axis 

Previous studies have shown that 2B4, a co-receptor on NK cells, interacts 

with CD48, widely expressed on hematopoietic cells, to generate bidirectional 

signals and cross-talk (Yuan et al., 2010, Gao et al., 2006, Messmer et al., 

2006, Mathew et al., 2005, Assarsson et al., 2004). Recent murine and human 

studies suggest that 2B4 can also function as an inhibitory rather than an 

activating co-stimulatory receptor when engaged by CD48-expressing tumor 

targets (Lee et al., 2006). I therefore next investigated whether CD48 on 

transitional and IgM memory B cells can act as an inhibitory receptor upon 

interaction with 2B4 on NK cells.  

0

20

40

60

80

100

%
 N

K
 P

ro
lif

er
at

io
n

NK Alone
Transitional B cells
IgM Memory B cells
Naive B cells
Switched B Cells

0

20

40

60
%

 o
f I

FN
 y

+ 
 N

K
 C

el
ls

0

20

40

60

%
 o

f T
N

Fa
+  

N
K

 C
el

ls

0

20

40

60

%
 o

f C
D

10
7a

+ 
 N

K
 C

el
ls NK Alone

Transitional B cells
IgM Memory B cells
Naive B cells
Switched B Cells

A"

!Transwell!and!IL-
10/IL-10R!mAbs! -!!+!!!!-!!!+!!!-!!!+!!!!-!!+!
!

!!!!!!!!!!!!! "!!+!!!!"!!!+!!!"!!!+!!!!"!!+!
!

*" *"

*"
*"

*" *"

!!!!!!!!!!!! "!!+!!!!"!!!+!!!"!!!+!!!!"!!+!
!

B"

!!!!!!!Transwell!and!!
!!!!!!!IL-10/!IL-1R!mAB!!!!!!!!-!!!+!!!!!!-!!!!+!!!!!!-!!!+!!!!!!-!!!+!
!

*" *"



	   216	  

To test the contribution of 2B4 and CD48 co-stimulatory signaling to the 

suppressive capacity of sort-purified transitional or IgM memory B cell 

subsets, blocking antibodies against CD48 and 2B4 molecules were added to 

co-cultures of B cell subsets and NK cells as described in section II.9.5 to 

study the interaction of Breg-NK interaction through the 2B4 and CD48 axis. 

Addition of CD48 and 2B4 molecules to co-cultures of sort purified B cell 

subsets and magnetically selected NK cells nearly completely reversed the 

suppressive effect of transitional and IgM memory B cells on NK cell 

proliferation and cytotoxic function (figure V-15). Thus, the suppressive effect 

of human Breg cells on PB-NK function is mediated primarily by 2B4/CD48 

co-stimulatory signaling. Further, whereas IL-10 blockade alone did not fully 

reverse the suppressive effect of either sort-purified transitional or IgM 

memory B cells on the proliferation or cytotoxic function of CD56+CD3- NK 

cells (V.2.4), the addition of IL-10 and IL-10R to CD48 and 2B4 blocking 

completely abolished the suppressive effect of these B cell subsets on NK-cell 

proliferation and cytotoxic function (figure V-16), which in accord with my 

transwell with IL-10 blocking assays as described previously. 
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Figure V-15: The suppressive ability of B cells on NK effector function is 
mediated by 2B4 and CD48 interaction  
A. Blocking antibodies against CD48 and 2B4 were added to B cell and NK cell co-
cultures at a 1:1 ratio to prevent the interaction between 2B4 and CD48. Frequencies 
of CD107a+, TNFa+ and IFNy+ CD56+CD3- NK cells was assessed. (n=4). B. 
Supernatants were collected from NK-B co-cultures to measure the presence of 
TNFa and IFNy with the blocking of 2B4 and CD48 (n=4). C. Blocking antibodies 
against CD48 and 2B4 were added to B cell and NK cell co-cultures at a 1:1 ratio to 
prevent the interaction between 2B4 and CD48. Frequencies CFSE+ CD56+CD3- 
NK cells was assessed. (n=3). In A-C, bars represent median values and upper 
whiskers of errors bars indicate the ranges. *P < 0.05 by nonparametric ANOVA 
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Figure V-16: Cell-to Cell contact and IL-10 are both required for the full capacity 
of suppression by Transitional and IgM Memory B cells on NK cytotoxic 
function and proliferation 
Percentage suppression was calculated for NK+IFNy+ cells, NK+TNFa+ cells, 
NK+CD107a+ and CFSE+NK+ cells in the presence of IL-10 blocking, 2B4 blocking, 
CD48 blocking and transwell. Data shows that a combination of IL-10 blocking and 
abrogation of cell to cell contact reversed the suppressive effect of transitional and 
IgM memory B cell subsets. Bars represent median values and upper whiskers of 
error bars indicate the ranges from 4 independent experiments.  
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V.2.6  Reduced expression of SAP and upregulation of pSHP-1 mediates 
B regulatory cell suppression of NK cells through CD48 and 2B4 
interaction 

 
 
Triggering of 2B4 (CD244) on the surface of NK cells can induce NK–cell 

activation, co-stimulation, or even inhibition (Morandi et al., 2005, Eissman et 

al., 2005, Endt et al., 2007). The signaling lymphocyte activation molecule–

associated protein (SAP) can bind to all 4 immuno-receptor tyrosine-based 

switch motifs (ITSMs) of 2B4. The phosphorylated ITSM can additionally 

recruit the phosphatases SHP-1, SHP-2 and SHIP. SAP can also act as an 

inhibitor of interactions between 2B4 and these inhibitory molecules.  

 

To test the contribution of 2B4 and CD48 co-stimulatory signaling to the 

suppressive capacity of sort-purified transitional or IgM memory B cell 

subsets, I co-cultured NK cells with sort purified B cells subsets (naïve, 

switched memory, IgM memory and transitional) at a 1:1 ratio for 48 hours as 

described in section II.10.2, to determine the inhibitory effect of transitional 

and IgM memory B regulatory subsets on the expression of SAP+NK+ cells 

through CD48 and 2B4 signalling. Co-culture of NK cells with both transitional 

and IgM Memory B cells results in downregulation of the 2B4-activated SAP in 

NK cells [median percentages of NK+SAP+ cells, 52.7% (47.4-70.5%) and 

60.4% (50.5-66.4%), respectively; (n=4)] compared to 97.5% (94.9-98.8%)] in 

NK cells cultured alone  (figure V-17). These results highlight an important 

mechanism of Breg suppression and indicate that CD48 on the surface of 

Bregs block 2B4-mediated NK cell activation by reducing expression of the 

2B4-associated SAP molecule, which in turn contributes to inhibition of NK 

function. 



	   220	  

 
 
 
 
 
 

 
 

 
 
 
 
 
 
Figure V-17: Co-culture of NK cells with both transitional and IgM Memory B 
cells results in downregulation of the 2B4-activated SAP in NK cells  
A. Gating strategy illustrating CD56bright+SAP+ NK cells. Magnetically selected 
CD3-CD56+ NK cells were cultured either alone or with sort purified B cell subsets: 
naïve, switched, transitional and IgM memory for 48 hours. Following incubation, 
cells were collected and stained for CD56+SAP+ NK cells. Cells were gated on 
lymphocytes, CD56+bright NK cells and CD56bright+SAP+ NK cells. B. Transitional 
and IgM Memory B cells downregulated the expression of SAP+NK+ cells when co-
cultured with NK cells at 1:1 cell ratio. Data is representative of 3 independent 
experiments. Bars represent median values and upper whiskers of error bars indicate 
the ranges. *P < 0.05 by nonparametric ANOVA 
 
 
 
To further dissect how Bregs may be modulating the expression of NK+SAP+ 

NK cells I first determined the impact of IL-10 on SAP expression, as both 

transitional and IgM memory B cells are enriched in IL-10 producing cells. NK 

cells were cultured with IgM memory or transitional B cells at a 1:1 ratio in the 

presence or absence of mAbs against IL-10 and IL-10 receptor (IL-10R).  IL-

10 blockade had minimal effect on restoring SAP expression on NK cells 

when co-cultured with transitional or IgM memory B cell subsets (figure V-
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18A). Addition of exogenous IL-10 to NK cells cultured alone induced 

marginal suppression of SAP expression on NK cells (figure V-18B). These 

data suggest that IL-10 by Bregs does not play a significant role modulating 

SAP expression in NK cells. 

 
To determine if cell-cell contact between Breg subsets and NK cells is 

required for downregulation of SAP expression by NK cells, NK-B cell 

interaction was prevented either by a transwell system through a permeable 

membrane or by the addition of blocking antibodies against CD48 and 2B4 

molecules, either separately or together, as described in section II.10.2.  

Prevention of NK-B cell interaction by a transwell membrane or by addition of 

CD48 and/or 2B4 molecules to co-cultures completely reversed NK cell SAP 

downregulation by transitional and IgM memory B cells (figure 19). My results 

highlight an important role for 2B4-CD48 interaction in inducing 

downregulation of the activating molecule SAP, thereby facilitating 

interactions of negative regulatory molecules, such as SHP-1 with 2B4. 

Hence, the suppressive effect of transitional and IgM memory B cell subsets 

may be mediated by through 2B4-CD48 interaction, which induces inhibitory 

signalling through 2B4 by down regulation of SAP. 
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Figure V-18: IL-10 had minimal contribution to SAP expression on NK cells 
when co-cultured with transitional or IgM memory B cell subsets  
A cumulative data representing the effect of IL-10 blockade on restoring suppressed SAP 
expression by transitional and IgM memory B cell subsets (n=3). Bars represent median 
values and upper whiskers of error bars indicate the ranges. *P < 0.05 by 
nonparametric ANOVA B. Addition of exogenous IL-10 had minimal impact on SAP 
expression in CD56+ NK cells (n=3). The figure represents median values with range. No 
statistically significant difference was found between different individual groups by 
nonparametric ANOVA. 
 
 

 

 
Figure V-19: Prevention of NK-B cell cell-to-cell interaction completely reversed 
NK cell SAP downregulation by transitional and IgM memory B cells  
A. Dot plots representing frequencies of NK+SAP+ expression with 2B4 and CD48 
blocking which reverses the downregulation SAP by transitional and IgM memory B cells 
when compared with NK cells cultured with naïve or switched memory B cell subsets or 
NK cells cultured alone (positive control) B Bar graphs representing negatively selected 
CD3-CD56+ NK cells were cultured at a 1:1 ratio with sort purified B cell subsets for 48 
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hours in the presence of 2B4 and CD48 mAbs. In the absence of 2B4 and CD48 
interaction, the inhibitory activity of Bregs was reversed (n=3) C. In the absence of NK-B 
cellular contact by a transwell membrane, inhibitory effect of transitional and IgM Memory 
B cells on SAP expression on NK cells was reversed. N=4. In B and C, bars represent 
median values and upper whiskers of error bars indicate the ranges. *P < 0.05 by 
nonparametric ANOVA 
 

 

To test if 2B4-CD48 interaction induces expression of the inhibitory molecule 

pSHP-1 in NK cells, sort purified transitional and IgM memory B cell subsets 

were co-cultured with NK cells for 48 hours and expression of pSHP-1 in NK 

cells was examined using the phosphoflow assay as described in section 

II.10.3. NK cells cultured either alone or with naïve or switched memory B cell 

subsets did not express pSHP-1, however NK cells cultured with transitional 

and IgM memory B cells upregulated pSHP-1 expression [figure V-20]. These 

results support my hypothesis that Breg mediated suppression of NK cells is 

dependent on 2B4-CD48 interaction by inducing downregulation of the 

activating molecule SAP, and thereby facilitating interactions of negative 

regulatory molecules, such as SHP-1 with 2B4.  

 

To test the contribution of IL-10 by Bregs to upregulation of pSHP-1 in NK 

cells, IgM memory or transitional B cells were cultured with NK cells at a 1:1 

ratio in the presence or absence of mAbs against IL-10 and IL-10 receptor (IL-

10R).  IL-10 blockade had minimal effect on pSHP-1 expression in NK cells 

(figure V-21A). Addition of exogenous IL-10 to NK cells cultured alone 

induced marginal expression of pSHP-1 on NK cells (figure V-21B).  
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Figure V-20: NK cells cultured with transitional and IgM memory B cells 
upregulated pSHP-1 expression  
A. Sort purified transitional and IgM Memory B cells upregulate the expression of 
pSHP-1. Magnetically selected CD56+CD3- NK cells were co-cultured with sort 
purified B cell subsets at a 1:1 ratio for 48 hours after which cells were collected and 
tested for the presence of pSHP-1 by phosflow assay kit (Beckman Coulter). Cells 
were gated on lymphocytes population and then CD56+NK cells. CD56+SHP-1+ 
cells (blue) were determined by SHP-1 Alexa fl 400 FMO (shaded grey). Transitional 
and IgM memory B cells up regulated the expression of SHP-1. B Bar graphs 
illustrate NK co-cultured with transitional or IgM memory B cells upregulated the 
expression of pSHP-1, inhibitory downstream protein of 2B4 signalling pathway 
(n=6). Bars represent median values and upper whiskers of error bars indicate the 
ranges. *P < 0.05 by nonparametric ANOVA 
 
 
 
Next, in order to determine if CD48-2B4 interaction induces pSHP-1 

expression in NK cells, NK-B cell interaction was prevented by transwell or 

with the addition of blocking antibodies against CD48 and 2B4 molecules. 

Addition of CD48 and 2B4 molecules to co-cultures or prevention of cell-cell 

contact using a transwell device completely reversed upregulation of pSHP-1 

in NK cells by transitional and IgM memory B cells (figure V-22). 
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Figure V-21: IL-10 had minimal contribution to pSHP-1 expression on NK cells 
when co-cultured with transitional or IgM memory B cell subsets  
A. Bar graphs illustrate IL-10 blocking alone had minimal effect on the expression of 
pSHP-1 in NK co-cultures with transitional and IgM memory B cells (n=3) B The effect of 
varying concentrations of adding exogenous IL-10 had no significant effect on the 
expression of pSHP-1 on CD56+CD3- NK cells (n=3). Both A and B, the bars represent 
median values and upper whisker of error bars indicate the range. No significant 
differences were found by nonparametric ANOVA. 
 
 
In order to determine the relation between pSHP-1 and SAP expression I 

studied a time course and found that as regulatory B cell subsets down-

regulates SAP expression, pSHP-1 expression is augmented in a time 

dependent manner (figure V-23).  Thus, the suppressive effect of human 

Breg cells involves not only the release of IL-10 and cell-cell contact, but also 

mediation of these factors by 2B4/CD48 co-stimulatory signaling. 

 Taken together, these data support my hypothesis that Breg subsets inhibit 

NK cell activation primarily through direct cell-cell contacted mediated via 

CD48-2B4 interactions, by downregulating expression of the activating 

molecule SAP and upregulating expression of the inhibitory molecule pSHP-1. 

  

Figure V-22: In the absence of NK-B cellular contact via 2B4 and CD48 blocking 
(right) and transwell (left) assays inhibitory effect of Bregs on SHP-1 
expression was reversed  
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Data is representative of 3 independent experiments and bars represent median values 
and upper whiskers of error bars indicate the ranges. *P < 0.05 by nonparametric 
ANOVA 
 
 
 
 

 
Figure V-23: Time kinetics of SAP and pSHP-1 expression on NK cells 
highlighting the unique relationship between both the frequency (left) and mean 
fluorescence intensity (MFI) (right) of negative regulatory molecule pSHP-1 
expression and downregulation of activating 2B4-associated SAP molecule (n=4). 
The figures represent mean values and error bars represent range. 
 
 
 
V.2.7  2B4 and CD48 mediated NK-B cell interaction activates 

JAK/STAT3 pathway in transitional and IgM Memory regulatory B 
cell subsets 

 
Next I investigated the bi-directional cross-talk between NK and regulatory B 

cell subsets. I hypothesized that Breg mediated suppression of NK cells may 

be a consequence of 2B4 and CD48 mediated NK-B cell interaction, which 

activates JAK/STAT3 pathway in transitional and IgM Memory regulatory B 

cell subsets, activating the regulatory function of the B cell subsets. Greater 

production of IL-10 was observed in NK-B cell co-culture than resting B cells 

alone (figure V-24). This suggests that cell-to-cell contact between NK cells 

and B cells may perhaps activate B cells to regulate their IL-10 mediated 

suppressive function.   We next examined if this phenomenon was mediated 

through phosphorylation of the STAT3 pathway (p-STAT3) in Breg subsets.  
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Figure V-24: B cells co-cultured with NK cells produced greater IL-10 than 
resting B cells cultured alone.  
Supernatants were harvested after cultured NK-B cell co-culture and measured for IL-10 
production through ELISA assay (n=4). Bars represent median values and upper 
whisker of error bars represents the range. *P < 0.05 by nonparametric ANOVA 
 
 

Coculture of NK cells with transitional and IgM memory B cells from healthy 

controls resulted in upregulation of p-STAT3 in transitional and IgM memory 

and to a much lesser extent in naïve and switched B cell subsets (figure V-

25A-B). These findings indicate that NK cell interaction with B cells results in 

phosphorylation of the STAT3 pathway in transitional and IgM memory B cells 

and suggest that proximal signals induced by NK cells may induce regulatory 

activity in transitional and IgM memory B cells. I next explored whether 

preventing NK-B cell interaction, either by culturing the cells the presence of a 

transwell membrane or by the addition of blocking antibodies against CD48 

and 2B4 molecules could reverse NK-induced STAT3 phosphorylation in B 

cell subsets. Inhibition of cell-cell contact completely NK cell-induced STAT3 

phosphorylation in transitional and IgM memory B cell subsets [Figure V-

25C].  

Taken together, these data indicate that 2B4 on NK cells interacts with CD48 

on transitional and IgM memory B cells to induce regulatory function by 

generating bidirectional signals and cross-talk. 
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Figure V-25: Activated B cells upregulate JAK/STAT3 pathway.  
A. Sort purified CD19+B cell subsets were cultured with NK cells or fibroblasts expressing 
CD40L to determine the frequency of STAT3 expression. B cells were derived from the 
lymphocyte population then CD19+ gate. CD19+JAK/STAT3+ cells (blue) were determined by 
PE FMO as indicated (shaded grey). B. Histograms representing expression of STAT3 in B 
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cell subsets after stimulation with CD40L, NK cells, NK cells with CD48/2B4 blocking 
antibodies or with H202 (positive control). CD19+STAT3+ cells (blue) were determined by PE 
FMO as indicated (shaded grey) and unstimulated B cells (orange) C. Bar graphs represent 
STAT3 expression in transitional and IgM memory B cell subsets.  Addition of CD48 and 2B4 
mAbs inhibited the upreglation of the JAK/STAT3 pathway in NK-B co-cultures. Bars 
represent median values and upper whisker of error bars represents the range. *P < 0.05 by 
nonparametric ANOVA 
 

 
V.2.8  Patients with AML have increased frequencies of IL-10 producing 
B cells  
 
The microenviroment of acute myelogenous leukemia (AML) is suppressive 

for immune effector cells (Stringaris et al., 2014). To determine if patients with 

AML have higher frequencies of B cell subsets with regulatory capacity, I 

measured transitional and IgM memory B cells in the PB of 13 patients with 

AML (Table V-1) at diagnosis and13 healthy controls. In comparison with 

healthy controls, AML patients had significantly higher frequencies and 

absolute numbers of transitional and IgM memory B cells [figure V-26].  

 

 

 

 

 

 

 

Figure V-26: Patients with AML have greater frequencies of transitional and IgM 
memory B cells than healthy controls  
Frequencies of B cell subsets: naïve, switched, transitional and IgM memory B cells 
were significantly different in AML patients than healthy controls. AML patients 
expressed expanded population of B regulatory subsets transitional and IgM memory 
B cells (n=13). Bars represent mean values and upper whisker of error bars 
represents the range. *P < 0.05 by unpaired t-test. 
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Table V-1: Clinical Characteristics of Patients with AML 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  All	  N=13	  
Age	  in	  years	  Median	  (range)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  68	  (20-‐80)	  	  
Sex	   	  
Female,	  n	  (%)	  
Male,	  n	  (%)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  8	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  7	  (53.8%)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  6	  (46.2%)	  

Race	   	  
White	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  8	  (63.5%)	  
Black	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  (7.7%)	  
Hispanic	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4	  (30.8%)	  
Diagnosis,	  n	  (%)	   	  
Primary	  AML	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  9	  (69.2%)	  
Secondary	  AML	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4	  (30.8%)	  
Cytogenetics,	  n	  (%)	  	   	  
Poor	  Risk	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  12	  (92.3%)	  
Day	  30	  ALC	  (k/µL)	   	  
Median,	  range	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.98	  (0.19	  –	  8.18)	  
Mean,	  S.D.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2.4	  (4.1)	  
Disease	  status	   	  
Remission	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  (15.4%)	  
Died	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  11	  (84.6%)	  
WBC	  (k/µL)	   	  
Median,	  range	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  15.5	  (0.8-‐65.9)	  
Mean,	  S.D.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  22.97	  (21.4)	  
PB	  Blasts	  (%)	   	  
Median,	  range	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  34	  (11-‐97)	  
Mean,	  S.D.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  48	  (29.4)	  
%	  CD19+	  B	  Cells	   	  
Median,	  range	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  15.2	  (4.46	  -‐	  35.4)	  
Mean,	  S.D.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  17.9	  (9.4)	  
%	  CD19+	  IL-‐10+	  Cells	   	  
Median,	  range	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  11.5	  (2.12	  -‐	  27.5)	  
Mean,	  S.D.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  12.8	  (8.8)	  
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To determine if the expanded B cell populations in AML had the capacity to 

produce IL-10, I measured IL-10+CD19+ B cells following stimulation with L 

cells as described in section II.6.5. AML patients had significantly higher 

frequencies and absolute numbers of IL-10-producing B cells compared to 

healthy controls [figure V-27]. I next determined whether this functional 

difference noted in the overall population of IL-10+CD19+ B cells may 

contribute to an altered ratio of regulatory-to-effector cells in AML patients. 

Patients with AML had a significantly higher IL-10+CD19+ B-cell/ CD56+CD3- 

NK-cell ratio, whether in terms of relative frequency or absolute counts, 

compared with that for healthy control group [figure V-28]. These results 

suggest that patients with AML present an expanded population of potential 

IL-10 producing B regulatory cells, which may contribute to suppressed NK 

frequencies, absolute counts and function, thus, promoting cancer 

progression through an imbalance in immunoregulatory and effector subsets. 

For this reason, I next investigated if the expanded population of IL-10 

producing candidate regulatory CD19+ B cells derived from AML patients 

could suppress NK cell function in vitro in a similar fashion to healthy PB 

transitional and IgM memory B cells as described previously.  
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Figure V-27: Patients with AML have abnormally higher frequencies and absolute 
numbers of IL-10-producing B cells at diagnosis compared to healthy controls  
A. Magnetically selected CD19+ B cells from AML patients and healthy controls were 
incubated with L cells alone for 48 hours. PMA, Ionomycin and BFA were added for the last 6 
hours of culture and cells were surface stained for the expression of CD19 and intracellular 
staining for IL10. Representative FACS plot of IL10 IC staining in gated CD19+ B cells AML 
patients and Healthy controls. Frequencies of IL10+ CD19+ B cells were assessed relative to 
isotype controls n=13 B. B cells from AML patients had higher frequencies and absolute 
numbers of total CD19+ B cells and produced higher frequencies and absolute numbers of 
IL10+ B cells when stimulated with L cells compared with healthy controls (n=13). Figure 
represents mean value and whiskers of error bars represent the ranges. *P < 0.05 and 
**p<0.01 by unpaired t-test. 
 

A"

AML$

Healthy$
Control$

CD19$

CD19$ CD19$

CD19$

CD19$

CD19$

IL
41
0$

IL
41
0$

IL
41
0$

IL
41
0$

SS
C4
A$

SS
C4
A$

Total"CD19+"B"cells" CD19+"IL310+"B"cells" IL310"isotype"control"

A
bs

ol
ut

e 
N

um
be

r o
f C

D
19

+ 
IL

-1
0+

 B
 c

el
ls

Hea
lth

y c
ontro

l

AML P
ati

en
ts

0

50

100

150

200

250

B"

Fr
eq

ue
nc

y 
of

 C
D

19
+ 

B
 c

el
ls

Hea
lth

y c
ontro

l

AML P
ati

en
ts

0

10

20

30

40

Fr
eq

ue
nc

y 
of

 C
D

19
+ 

IL
-1

0+
 B

 c
el

ls

Hea
lth

y c
ontro

l

AML P
ati

en
ts

0

10

20

30
*" *"

Hea
lth

y c
ontro

l

AML P
ati

en
ts

0

1000

2000

3000

A
bs

ol
ut

e 
N

um
be

r o
f C

D
19

+ 
B

 c
el

ls

**" **"



	   233	  

 
Figure V-28: Patients with AML had a significantly higher IL-10+CD19+ B-cell/ 
CD56+CD3- NK-cell ratio, whether in terms of relative frequency or absolute 
counts, compared with that for healthy control group  
The box and whiskers plot extends from the 25th to 75th percentiles and were computed by 
Graphpad Prism software from 13 independent experiments. The line in the middle of the box 
is plotted at the median and the whiskers represent the range. *P < 0.05 and **p<0.01 by 
unpaired t-test. 
 

 

Purified CD19+ B cells from the PB of AML patients and healthy controls were 

co-cultured at a 1:1 ratio with magnetically purified healthy control NK cells for 

48 hours as described in section II.9.2. NK cell effector function was then 

assessed against K562 target cells by measuring the frequencies of 

degranulated (CD107a+) CD56+ NK cells and TNF-α and IFN-γ producing 

CD56+ cells by flow cytometry.  AML CD19+ B cells induced significant 

suppression of CD107a degranulation, and expression of IFN-γ and TNF-α by 

NK cells in response to K562 targets when compared to B cells from healthy 

controls [figure V-29A-B].  The potent suppressive effect of AML CD19+ B 

cells on NK cytotoxicity was further confirmed using chromium (51Cr) release 

assay [figure V-29C]. These results support my hypothesis and suggest that 

expanded population of IL-10 producing CD19+ B cells in AML patients may 

act directly on suppressing NK cells and thus contributing to progression of 

AML. 
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Figure V-29: Total CD19+B cells from AML patients exhibited greater 
suppressive function on NK effector function than total CD19+ B cells from 
healthy control 
A. Magnetically selected total CD19+ B cells from AML patients and Health controls 
were co-cultured with selected healthy NK cells at a 1:1 ratio for 48 hours. 
Representative dot plots illustrate gated frequencies of CD56+IFN-y+ NK cells, 
CD56+TNF-a NK cells and CD56+CD107a+ NK cells cultured alone (positive 
control), with total CD19+ B cells from AML patients or total CD19+ healthy B cells B. 
Bar graph represents total CD19+B cells from AML patients exhibited greater 
suppressive function on NK effector function than total CD19+ B cells from 
healthy control (n=9). Bars represent median values and upper whiskers of 
error bars represent the range. *P < 0.05 by nonparametric ANOVA C.Total 
CD19+B cells from AML patients exhibited greater suppressive function on NK 
cytotoxicity than total CD19+ B cells from healthy control when compared with 
healthy NK cells alone (positive control) (n=6). The figure represents mean values 
and error bars represent range. *P < 0.05 by nonparametric ANOVA 
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I also investigated if coculture of purified AML CD19+ B cells with healthy 

donor NK cells induced changes in the expression of activating and inhibitory 

receptors on NK cells [figure V-30]. Co-culture resulted in downregulation of 

the activating NK co-receptors NKG2D, DNAM-1, NTB-A and natural 

cytotoxicity receptors, NKp46 and NKp30 and upregulation of the inhibitory 

receptors NKG2A, Siglec-7 and ILT.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure V-30: NK cells from AML patients at diagnosis were shown to have 
dysfunctional expression of receptors when compared to health control NK 
cells 
Frequencies of NKG2D, CD16, DNAM-1, NKp46, and NKp30 was significantly lower 
in AML NK cells whereas, expression of Siglec-7, ILT and NKG2A was significantly 
elevated when compared to the expression of these receptors in healthy controls 
(n=9). No differences of receptor expression between the 2 groups was found for 
Pan KIR and NKp44. Bars represent mean values and error bars represent range. 
*p<0.05 and **p<0.01. Statistical analysis was performed using a non-paired t test.  
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Given my earlier findings that IgM memory and transitional B cells suppress 

NK cell function via 2B4-CD48 interaction, resulting in down regulation of the 

activating molecule SAP and upregulation of the inhibitory regulator pSHP-1, I 

further evaluated whether AML B cells suppressed NK cell function through a 

similar mechanism. NK cells from AML patients had significantly lower 

expression of SAP and higher expression of pSHP-1 than healthy control NK 

cells [figure V-31]. Further, AML CD19+ total B cell significantly suppressed 

the expression of SAP and consequently upregulated the expression of 

pSHP-1 in healthy PB NK cells, when compared with total CD19+ B cells from 

healthy controls [figure V-32]. 

 

Collectively, my findings demonstrate transitional and IgM memory B 

regulatory cells inhibit NK cell activity suggesting that B regulatory cells can 

directly act on NK cells, a unique phenomenon which may recognize Bregs as 

contributing factors that may be recruited and exploited by leukemic cells to 

evade immunesurveillance.  
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Figure V-31:	  Dysfunctional NK cells from AML patients had reduced expression 
of SAP and increased expression of negative regulator pSHP-1 than healthy 
controls  
Magnetically selected CD3-CD56+ NK cells from AML patients and healthy controls 
were stained for SAP and SHP-1 expression. Data representative of n=12 and 
highlight both the frequency and MFI of SAP and pSHP-1 expression. Bars represent 
mean values and errors bars represent range. *p<0.05 and **p<0.01 by a non-paired 
t test.  
 
 

 

 

 
Figure V-32: Dysfunctional B cells from AML patients significantly reduced 
expression of SAP and increased expression of negative regulator pSHP-1 
Magnetically selected CD19+ B cells from AML patients were co-cultured with 
healthy NK cells at a 1:1 ratio for 48 hours. After the culture period NK cells were 
stained for SAP and SHP-1 expression (n=8). Bars represent mean values and 
errors bars represent range. *p<0.05 by a non-paired t test. 	   
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V.3 Discussion 

In recent years, a number of studies in mice and humans have identified a 

distinct subpopulation of B cells with significant regulatory function. Despite 

increasing evidence showing an important role for Bregs in autoimmunity 

(Mauri et al., 2013, Yang., 2013), lack of a clear phenotype or the paucity of 

specific markers have hampered their in depth characterization. In this study, I 

demonstrate the capacity of human CD19+CD24hiCD38hi transitional and 

CD19+IgM+CD27+ memory B cells to significantly inhibit the effector function 

and proliferation of NK cells in a contact-dependent manner. 

 

Previous studies in mice and humans have shown that the Breg-mediated 

suppression of cell proliferation and effector function is mediated through both 

IL-10 and cell-cell contact-mediated mechanisms (Yang et al., 2013, Blair et 

al., 2010, Iwata et al., 2011, Khoder et al.,2014). In addition, TGF-β has also 

been shown to be an important mediator of Breg suppression in experimental 

models of diabetes (Tian et al., 2001). In contrast, I show here that IL-10 

secretion is not a major mechanism for regulatory B cell-mediated 

suppression of NK cell proliferation and function. Instead, transitional and IgM 

memory B cells require direct cell-cell contact to suppress NK cells. 

 

There is evidence for bi-directional crosstalk between NK cells and B cells, 

mediated through interactions involving CD48-2B4 and CD40-CD40L (Yuan et 

al., 2010, Gao et al., 2006, Blanca et al., 2001, Sinha et al., 2010). I did not 

detect any soluble CD40L in my NK-B cell co-culture experiments (data not 

shown) and thus did not pursue this interaction further. Instead, I found an 
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important role for CD48-2B4 in mediating suppression of NK cells by Breg 

subsets. CD48 is expressed widely on hematopoietic cells including B, T and 

NK cells and binds to the 2B4 co-receptor on the surface of NK cells (Yuan et 

al., 2010, Gao et al., 2006,	  Sinha et al., 2010, Assarsson et al., 2005, Lee et 

al., 2006). B cells can activate NK cells (Gao et al., 2006, Sinha et al., 2010). 

However, in my study I show an important role for CD48-2B4 interaction in 

mediating the suppressive effect of Breg subsets on NK cell proliferation and 

effector function. Blocking either CD48 or 2B4 resulted in near complete 

abrogation of the suppressive effect of CD19+CD24hiCD38hi transitional and 

CD19+IgM+CD27+ memory Breg subsets on NK cells and resulted in 

restoration of NK cell proliferation and effector function. My findings are 

supported by murine studies reporting that CD48 on tumor cells can interact 

with 2B4 on NK cells and inhibit their function (Lee et al, 2006), supporting the 

notion that CD48-2B4 interaction can induce both positive and negative 

signals.	  

 

To understand this phenomenon more mechanistically, I studied the 2B4 

signaling pathway in NK cells. In humans, NK cell activation through 2B4 is 

accompanied by the phosphorylation of immunoreceptor tyrosine-based 

switch motifs (ITSMs) in its cytoplasmic tail and the recruitment of SLAM-

associated protein (SAP), a signaling adaptor protein (Stark et al., 

2006,Eissman et al., 2005). SAP is crucial for 2B4 to deliver activating signals 

to NK cells. In the absence of SAP, the phosphorylated ITSM of the 2B4 

receptor recruits inhibitory signaling molecules such as SHP-2, SHP-1, SHIP 

(Assarsson et al., 2005, Eissmann et al., 2005), resulting in dephosphorylation 
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of downstream molecules involved in NK cell activation (Hallet et al., 2006, 

Moretto et al 2003). The importance of SAP in immune regulation was first 

highlighted by SAP mutation found in cases of X-linked lymphoproliferative 

(XLP) disease, an immunodeficiency disorder characterized by 

lymphoproliferation and abnormal responses to Epstein-Barr virus (EBV) 

infection. Patients with XLP have also been found to exhibit impaired NK cell 

cytotoxicity (Eissmann et al., 2005, Hallet et al., 2006, Lanier et al., 2008). 

 

Here, I showed that the interaction between CD48, on transitional and IgM 

memory Breg subsets, but not naïve or switched memory B cells, and 2B4 on 

NK cells results in downregulation of, SAP and recruitment of pSHP-1. The 

effect of Breg subsets on SAP and SHP was completely reversed upon 

disrupting the interaction between 2B4 and CD48 using blocking antibodies, 

suggesting a crucial role for this axis in the mechanism of Breg-mediating NK 

cell suppression.  It is quite possible that additional signaling pathways also 

play a role in Breg-mediated suppression of NK function. Indeed, Assarsson 

et al (2005) have noted that 2B4 and CD48 both reside within glycolipid-rich 

microdomains, which contain many other molecules that may be involved in 

signaling, and additional studies of 2B4-CD48 signaling pathways involved in 

Breg-mediated suppression of NK cells are underway.  

 

Blair et al (2010) highlighted that CD19+CD24hICD38hI transitional B cells 

require the activation of the CD40/STAT3 signaling pathway to exert their 

immunoregulatory function on CD4+ T cells. Here I show that following 

coculture with B cells subsets, NK cells trigger phosphorylation of STAT3 in 
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both IgM memory as well as transitional B cell subsets (but to a much lesser 

extent in naïve and switched memory B cells). Taken together, these data 

support the existence of bidirectional 2B4-CD48-mediated cross-talk between 

NK cells and B cells and suggest that NK cells can deliver signals to 

regulatory B cell subsets, and the latter in turn deliver inhibitory signals to NK 

cells by inducing downregulation of SAP and recruitment of pSHP. 

 

Recent reports in murine models indicate that Bregs can potently inhibit 

antitumor immune responses (Balkwill et al., 2013, He et al., 2014) and 

clinically, IL-10-producing B cells have been shown to play an important role 

in resistance to anti-CD20 mAb therapy in patients with B-cell lymphoma 

(Horikawa, et al., 2011). My report provides for the first time functional 

evidence for a significant increase in Bregs with potent suppressive activity 

against NK cells in the peripheral blood of patients with AML.  

Coculture of AML CD19+ B cells with healthy donor NK cells resulted in 

significant suppression of SAP, recruitment of pSHP-1, and significant 

suppression of healthy donor NK cell proliferation and function. It is 

noteworthy that ex vivo-purified NK cells from AML patients expressed 

significantly less SAP and, higher pSHP-1 than their normal counterpart, 

further supporting the notion that in AML, engagement of 2B4 on NK cells by 

CD48 on B cells will deliver inhibitory signals to NK cells, resulting in 

suppression of their effector function. Although earlier studies have 

demonstrated that CD48 on hematopoietic cells interacts with 2B4 on NK cells 

to generate bidirectional activating signals and cross-talk (Gao et al., 2005, 

Yuan et al., 2010, Messmer et al., 2006, Mathew et al., 2005, Assarsson et 
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al., 2004), this is the first study to provide mechanistic insights into inhibitory 

cross-talk between NK cells and Breg subsets and to demonstrate the 

relevance of this inhibitory axis in acute myeloid leukemia. However, The AML 

patients were derived from a very heterogeneous group and factors such as 

immunosuppressive AML blast cells may also have affected NK properties in 

AML samples and require further consideration. 

 

The immune microenvironment in AML displays a spectrum of abnormalities, 

including aberrant expression of immunomodulatory cytokines (Stringaris et 

al., 2014, Ferrara and Schiffer., 2013, Lion et al., 2012) and numerical and 

functional alterations in immunoregulatory subsets such as Tregs and 

myeloid-derive suppressor cells (Ustan et al., 2011, Szczepanski et al, 2009). 

Our findings point to the existence of a broader network of immunoregulatory 

cells, also involving Bregs, that can be recruited and exploited by leukemic 

cells to evade immunesurveillance. Breg-mediated suppression of NK cell 

function may have important implications not only on cancer immune 

surveillance and defense against pathogens but also in determining response 

to therapy.  For instance, Bregs may negatively impact the effectiveness of 

immunotherapies in AML, such as antibody-dependent cellular cytotoxicity 

(ADCC) of tumor-targeted monoclonal antibodies (e.g., anti-CD33 mAbs). 

This data will have implications for other cancers and studies to explore the 

role of Bregs in other types of cancer and the consequences of their depletion 

on NK cell antitumor activity in vivo are currently under way. Finally, I propose 

that depletion of Breg subsets may be a novel strategy to enhance cancer 

immunity in humans.  
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Chapter V1.  General Discussion and Future plans 

VI.1 General Discussion 

In recent years, a distinct newly described subpopulation of IL-10-producing B 

regulatory (Breg) cells, that have been shown to exert significant 

immunoregulatory functions both in vitro and in vivo, has been the focus of 

intense immunological research (Mauri and Bosma., 2012). Breg cells have 

been shown to exert suppressive functions through the production of IL-10 in 

various diseases, including inflammation, cancer, autoimmunity and more 

recently cGVHD (DiLillo et al., 2010, Sarantopoulos et al., 2015, Khoder et al., 

2014). Bregs suppress a variety of immune cells through differing 

mechanisms (Rosser et al., 2014). Further, the understanding of human Breg 

suppressive function and interaction with other effector cells may facilitate the 

understanding of imbalance between regulatory and effector subsets that 

leads to loss of tolerance and induction of allo-reactivity in GVHD.  

Despite the extensive body of evidence reinforcing the notion that B cells can 

exert immunoregulatory function, controversy over the paucity of markers that 

can unequivocally identify Bregs particularly in humans still exists. Blair and 

colleagues have elegantly described human Bregs as CD19+CD24hiCD38hi, a 

phenotype that typically delineates human transitional B cells (Blair et al., 

2010). Conversely, Iwata et al (2011) described human IL-10 producing B 

cells to be contained mainly within the CD24hiCD27+ memory B cell 

compartment (de Masson et al., 2015, Iwata et al., 2011). In addition to these 

studies, Khoder et al syndicates previous studies and demonstrates that IL-

10-secreting CD19+IgM+CD27+ memory B cells coexist with 

IL10+CD24hiCD38hi transitional B cells in healthy human donors and 
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significantly suppresses the proliferation and cytokine production of 

autologous CD4+ T cells through both IL-10-dependant and cell-to-cell 

contact mediated mechanisms. Further, considerable evidence from murine 

studies supports the presence of more than one Breg phenotype. Thus, 

discrepancies in the cell surface antigens studied and a lack of consensual 

definitions of the Breg subset phenotypes hampers their in depth 

characterization.  

 

In my PhD thesis, I studied the phenotypic and functional characterization of 

Breg subsets in peripheral blood and cord blood and their potential interaction 

with other immune effector cells (CD4+ T cells and CD56+ NK cells). This 

understanding may aid the development of Breg cells as novel therapeutics 

for the treatment of immune-mediated diseases including GVHD and cancer. 

 

For the phenotypic characterization of B cells, I designed an extended panel 

of surface antibodies, using a constellation of markers reported in a number of 

B-cell classification schemes. The panel was validated using freshly isolated 

healthy control samples and their frozen counterparts. I correlated the 

different B cell subsets namely, transitional, naïve, IgM+ memory and non-

switched memory B cells according to different B cell classifying schemes, 

each of which had limitations as a result of limited surface markers used. I 

therefore, extensively phenotyped CD19+ B cell subsets based on CD24 and 

CD38 axis, with use of additional markers including IgM, CD27, CD21 and 

CD10 to characterize B cell subsets and demonstrated that CD38/24 

combination with IgM could be used as a sorting panel.  
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The intracellular detection of IL-10 combined with flow cytometric phenotyping 

demonstrated the presence of IL-10–producing B cells that were enriched 

within the CD19+CD24hiCD38hiIgMhiCD27- transitional and CD19+CD38-/lo 

CD24hi CD27+IgM+ memory B cell population and relatively fewer in the 

CD19+CD38+CD24+CD27- naïve and CD19+CD24hiCD38-/loCD27+IgM- 

switched memory B cell subsets. The functional assessment of sort purified 

transitional and IgM memory B cells supports the immunoregulatory functions 

of transitional B cells and identify IgM+ memory B cells as a new candidate 

Breg subset in healthy individuals. This discovery broadens the proportion of 

PB-derived regulatory B cell subset within circulating total CD19+ B cells, 

suggesting a prominent role for Bregs in the maintenance of immune 

tolerance. Both IL-10 enriched transitional and IgM memory B cells exerted 

suppressive function on proliferation and cytokine production of CD4+ T cells 

in a manner that was comparable with that of Tregs. Although I also found the 

presence of IL-10 producing B cells within naïve and switched memory B cell 

subsets, albeit at much lower frequencies, they lacked any suppressive effect 

on CD4+ T cell function. This is in agreement with other studies that have also 

shown lack of suppressive activity in naïve B cells (CD27‐ IgM+) (Blair et al., 

2010, Iwata et al., 2011). Moreover, the regulatory capacity of these human 

Bregs on CD4+ T cell proliferation and cytokine production was dependent on 

both cell-cell contact and IL-10 production. These finding are consistent with 

Blair et al’s report where the suppressive effect of CD19+CD24hiCD38hi 

transitional B cells was also partially mediated by IL-10 (Blair et al., 2010). On 

the other hand, although Tedder et al’s study also demonstrated a subset of 

IL-10 producing CD24hiCD27+CD148+ memory B cells, this subset failed to 
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suppress CD4+T cells and instead was shown to suppress both IFNγ and 

TNFα production of CD14+ monocytes (Iwata et al., 2011). Thus contrary to 

these results, in this study, IL-10+ B cells were defined as CD27+IgM+ CD38-/lo 

CD24hi memory B cells and were found to suppress CD4+ T cells. 

Conclusively, for clinical purposes, sort‐purification based on a phenotype of 

transitional and IgM memory B cells is likely to yield an enriched population of 

IL-10+Breg. Further, in the majority of clinical trials, systemic administration of 

recombinant IL-10 was not associated with clinical improvement with the 

exception of psoriasis (Sanz et al., 2008). Similarly in my experiments, the 

addition of exogenous IL-10 to co-cultures of naïve or switched memory B 

cells failed to suppress CD4+ T cells to the same extent as seen with 

transitional and IgM memory B cell subsets, suggesting that cellular contact 

may be required for IL-10 to deliver immune regulation. Indeed, transwell 

experiments and CD80/CD86 blockade confirmed that cell-to-cell contact was 

needed for IgM memory and transitional B cells to exert their full suppressive 

activity on CD4+ T cell function. These findings may provide support for future 

investigations of regulatory B cell–based therapy to tip the scales in favor of 

immune regulation for the treatment of GVHD.  

 

As I found that human Bregs are enriched within both the transitional and IgM 

memory B cell subsets and since CD19+CD24hiCD38hi transitional B cells 

are abundant in cord blood (CB) (near 50% of B cells), I next studied Bregs in 

CB and their potential regulatory function. My findings support the notion that 

CB may offer an invaluable source of off-the-shelf regulatory B cells for the 

treatment of GVHD and other autoimmune conditions. 
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Allogeneic hematopoietic SCT (HSCT) is a potentially curative option for 

many patients with high-risk hematological malignancies, however the high 

onset rate of acute and chronic graft-versus-host disease (GVHD) remains a 

major obstacle its success (Daikeler et al, 2009, Barrett and Battiwalla, 2010). 

Human CB is widely used as a source of HSC for many patients and a lower 

incidence of chronic extensive GVHD has been reported after CBT compared 

with other stem cell sources, despite broader HLA disparity (Beaudette-

Zlatanova et al., 2013, Komanduri et al., 2007). Alloreactive reactions 

between donor-derived CD4+ and CD8+ T lymphocytes have typically been 

considered to be the chief effector cells arbitrating GVHD pathogenesis 

(Shimabukuro-Vornhagen et al., 2009, Rezvani et al., 2006). Our 

understanding of the function of Bregs in this disease is limited. However, 

recent evidence has postulated a role for B cell dysregulation in the 

development of GVHD (Shimabukuro‐Vornhagen et al., 2009, Sarantopoulos 

et al., 2015). In keeping with these studies, previous research has also 

highlighted protective role for IL-10 producing regulatory B cells in the 

regulation of GVHD (Rowe et al., 2006, Lee et al., 2012, Huu et al., 2013, 

Weber et al., 2014, Khoder et al., 2014, de Masson et al., 2015). 

However, further insights into the mechanistic role of B cells in this debilitating 

disease is required to highlight the therapeutic benefits of targeting B cells in 

GVHD. 

 

I therefore next determined whether cord blood-derived B cells possess 

regulatory function as seen with peripheral blood-derived Bregs, which may 

contribute to the lower rates of chronic GVHD seen in CBT recipients.  
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Extensive phenotypic characterization of CB-derived B cells revealed the 

presence of two distinct B cell populations: CD19+CD38hiCD24hi transitional B 

cells (a population that includes immature B cells) and CD19+CD38intCD24int 

naïve B cells (primarily mature B cells). In contrast to peripheral blood B cells, 

CD24hiCD38− CD27+ memory B-cells are almost absent in CB and only 

become detectable in the first year of life (Cuss et al., 2006, Ha et al., 2008). 

The phenotype panel was validated on both freshly isolated CB-derived B 

cells and their frozen counterparts before applying it to frozen samples from 

post-CBT patients.  

I next demonstrated that IL-10+CD19+ B cells are enriched within both CB-

derived transitional and naïve subsets and exert suppressive function on 

allogeneic CD4+ T cell function. I propose that within the CB-CD19+ B cell 

pool there exist 2 distinct subsets; CD19+CD38hiCD24hi transitional B cells 

and CD19+CD38intCD24int naïve B cells, both of which are functionally 

regulatory. 

Despite several phenotypic and functional similarities to PB-B cells, this study 

revealed a number of key differences between human PB- and CB-derived 

Bregs. In contrast to PB-derived CD24hiCD27+ and CD27+IgM+ memory 

cells that have been ascribed with regulatory capacity by previous studies, 

memory B-cells were absent in CB (Iwata t al., 2011, Khoder et al., 2014). 

Further, unlike PB-naïve B cells that failed to exert suppressive activity on 

CD4+ T cells, our discovery presents a novel suppressive role for naïve B 

cells in CB and broadens the proportion of Breg in CB, suggesting a 

prominent role for these functional CB-derived B cells in the maintenance of 

immune tolerance.  
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Functional assessment of CB-derived total CD19+B cells as well as sort 

purified transitional and naïve B cell subsets revealed that these populations 

suppressed both the proliferation and effector cytokine production of 

allogeneic peripheral blood-derived CD4+T cells in a manner that was 

comparable to CB-derived Tregs. This suppressive capacity was further 

augmented in the presence of pre-activated B cells co-cultured with CD4+T 

cells suggesting that in human PB, Breg designation may not be limited to the 

IgM memory and transitional B cell subsets described previously and it is 

likely that discrete subsets of naïve and switched memory B cells could also 

be induced to exert regulatory function in response to CD40 ligand signaling 

provided by activated T cells, analogous to reports of inducible Tregs during 

inflammation (Feuerer et al., 2009). Similar to previous reports of PB-Bregs, 

the mechanism by which CB-derived naïve and transitional B cells suppress 

CD4+T cell function was mediated synergistically through IL-10 production 

and cell-to-cell contact involving CD80/CD86 and CTLA-4 (Blair et al., 2010, 

Khoder et al., 2014). These findings are in agreement with previous studies 

with human PB Bregs that describe the involvement of CD80 and CD86 as an 

important feature of their suppressive capacity (Blair et al., 2010, Khoder et 

al., 2014) and with murine studies of intestinal inflammation where CD86 was 

noted to facilitate B cell suppression (Mann et al., 2007, Mizoguchi et al., 

2000). Interestingly, I found involvement of CTLA-4 in the suppressive 

mechanism of CB-Bregs; this is in contrast to data with PB Bregs where 

CTLA-4 was not found to play a major role in their suppressive function 

(Khoder et al. 2014). However, a similar mechanism is employed by CD80 

expressed on DCs, which acts preferentially as a ligand for CTLA-4 and 
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mediates Treg cell suppression (Zheng et al., 2004). This study provides 

support that CD80 and CD86 on Bregs may also function as ligands for 

CTLA-4 and could play a role in Breg suppressive function. 

 

The role of Bregs in cord blood transplantation and GVHD has not been 

previously studied. I next investigated whether CB-Bregs account for lower 

rates of GVHD after CBT. Several studies have reported that immune 

reconstitution after CBT is characterized by an expansion in B cells during the 

first year post transplant (Komanduri et al., 2007, Nakatani et al., 2014, 

Beaudette-Zlatanova et al., 2013, Saliba et al., 2015, Lucchini et al., 2015). 

In accord with these published work, I found a robust expansion in both the 

frequencies and absolute numbers of CD19+ B cells and IL-10 producing 

CD19+B cells during the first 3-9 months post CBT, after which the B cell 

population progressively decreased and by 1-year post CBT there were no 

significant differences in the frequencies and numbers of circulating B cells 

and IL-10+B cells in CBT recipients and healthy donors. The recovering B 

cells at 6-9 months post-CBT were found to be more suppressive on a cell per 

cell basis when compared to B cells derived from cord blood. These results 

suggest a role for the expanded population of IL-10 producing B-cell 

population in CBT patients in mediating T-cell suppression and thus reducing 

the severity of GVHD. A previous study by Stiff et al also postulated that 

robust B cell recovery might attenuate T cells responses post CBT 

(Beaudette-Zlatanova et al., 2013). I further demonstrated that CD19+IL-10+ 

B cell recovery was impaired in patients with GVHD compared to those 

without GVHD after CBT, and that B cells isolated from CBT recipients with 
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GVHD were refractory to stimulation and were unable to produce IL-10. These 

results are in accord with similar studies that have also found low frequencies 

of IL-10 producing B cells in cGVHD patients following AHSCT than in AHSCT 

recipients without cGVHD (Rowe et al., 2006, Khoder et al., 2014, Weber et 

al., 2014), suggesting that the early recovery of B cells post CBT may define a 

protective role for Bregs in GVHD setting.  

This study defines a novel potential role of CB derived donor Bregs in 

reducing the risk of GVHD, emphasizing the potential of novel B-cell directed 

therapies for the prevention or treatment of GVHD.  

Further, although there is no unique marker to purify exclusively suppressor B 

cells that express IL-10, my studies illustrate that at IL-10+B cells are enriched 

in selected B cell compartments in both peripheral and cord blood. This 

serves as an advantage in using Breg based therapies compared to Treg for 

use in the treatment of GVHD, since there is currently no defined Treg 

phenotype to accurately identify human Treg as a result of discrepancies 

between surface markers and cell plasticity. Additionally, recent in vitro 

human data, indicating that activated B cells directly suppress allogeneic 

CD4+ T-cell proliferation through inducing the expansion of alloantigen-

specific suppressor Tregs further supports a significant advantage in the 

development of Breg cell based immunotherapy and suggests the use of 

inducing B-cell expanded Treg cells for treatment of GVHD (Chen et al., 

2009). 

 

 Moreover, the use of anti-CD20 B-cell depleting agent, Rituximab in cases 

where B cells are considered the main arbitrators for disease pathology may 



	   252	  

need to be avoided as all described regulatory B cells express CD20. Hence, 

strategies to selectively target B effector cells whilst preferentially sparing 

regulatory B cells are required. Thus, to tip the scales in favor of immune 

regulation and induce protection against GVHD, so that GVHD is either 

prevented or attenuated, infusion of donor-derived Bregs early in the patient’s 

post-transplant regime may be essential. Therefore, the potential of in-vitro 

expanded CB-derived IL-10 producing Bregs as an invaluable source of off-

the-shelf treatment of human GVHD also merits further investigation. 

 

To date, recent evidence has firmly identified the suppressive capacity of 

Bregs on T cell function in murine models and humans, which maintains 

immune tolerance and is critical in host suppression of autoimmune diseases 

(Iwata et al., 2011, Mauri and Bosma., 2012, Rosser and Mauri., 2015). 

However, recent studies have also highlighted a role for Bregs in cancer 

progression (Inoue et al., 2006, DiLillo et al., 2013, Horikawa et al., 2011, 

Shao et al. 2014). Despite mounting evidence supporting a role for Breg cells 

in autoimmunity and promoting tumor growth through inhibition of T cell 

proliferation and effector function, there is limited data on the interaction of 

Bregs with other immune effectors important in tumor-immune surveillance 

such as natural killer (NK) cells. NK cells are important components of the 

innate immune system and play an important role in tumor immune 

surveillance (O’Hanlon, 2004, Ljunggren and Malmberg, 2007, Waldhauer 

and Steinle, 2008). In cancer patients, NK cell activation can be hampered by 

downregulation of major histocompatibility complex (MHC) class I molecules 

on target cells (missing self theory) (Smyth et al, 2002, Ljunggren and Karre, 
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1990) and/or upregulation of proteins such as NKG2D ligands on ‘distressed’ 

cells (induced self theory) (Vivier et al, 2008), but Giringhelli et al suggested 

that other mechanisms may also play a role in blunting NK cell responses 

against cancer. Indeed, increased frequencies of regulatory T cells (Tregs) 

have been shown to correlate with cancer progression and hamper NK cell 

function (Ghirenghelli et al, 2005, Pedrozo-Pacheo et al, 2013).  Although 

recent studies have shed light on the existence of NK-B cell bidirectional 

cross-talk, through the interaction of CD48 on B cells with, 2B4, on NK cells 

(Yuan et al, 2010., Gao et al, 2006., Gao et al, 2005, Lee et al, 2006), no 

studies to date have explored the role of Breg and NK interaction.  

I therefore next determined the effect of Breg mediated suppression of NK 

function. Both PB-derived and IL-10 enriched transitional and IgM memory B 

cells suppressed the proliferation, effector function and cytotoxicity of 

CD56+CD3-NK cells in a manner that was comparable with that of PB-Tregs. 

Previous studies in mice and humans have shown that Breg-mediated 

suppression of T cells is mediated through both IL-10 and cell-cell contact-

mediated mechanisms (Yang et al., 2013, Blair et al., 2010, Iwata et al., 2011, 

Khoder et al.,2014). In contrast, I found that IL-10 secretion is not a major 

mechanism for regulatory B cell-mediated suppression of NK cell proliferation 

and function. Instead, transitional and IgM memory B cells require direct cell-

cell contact to suppress NK cells. Although, there is evidence for bi-directional 

crosstalk between NK cells and B cells, mediated through interactions 

involving both CD48-2B4 and CD40-CD40L (Yuan et al., 2010, Gao et al., 

2006, Blanca et al., 2001, Sinha et al., 2010), I did not detect any soluble 

CD40L in my NK-B cell co-culture experiments and thus did not pursue this 
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interaction further. Instead, I found an important role for CD48-2B4 interaction 

in mediating suppression of NK cells by Breg subsets. Although, previously 

published work has shown that B cells can activate NK cells through B cell-NK 

cell cross-talk (Gao et al., 2006, Sinha et al., 2010), in my study I show an 

important role for CD48-2B4 signalling pathway in mediating suppression of 

NK function through induction of inhibitory signalling via 2B4 by Bregs. 

Although 2B4 is commonly associated with delivering activating signals to NK 

cells through SAP (a signalling adapter molecule), my findings are in accord 

with murine studies reporting that CD48 on tumor cells can interact with 2B4 

on NK cells and inhibit their function (Stark and Watzl., 2006, Lee et al, 2006). 

The mechanistic suppression of NK cells by Breg through CD48-2B4 

signalling was mediated through downregulation of SAP, which is crucial for 

2B4 to deliver activating signals to NK cells and recruitment of pSHP-1, an 

inhibitory signalling molecule recruited in the absence of SAP. These findings 

are supported by cases of X-linked lymphoproliferative (XLP) disease, where 

patients have also been found to exhibit impaired NK cell cytotoxicity through 

2B4/SAP dysfunction (Eissmann et al., 2005, Hallet and Murphy., 2006, 

Lanier., 2008). Furthermore, it is quite possible that additional signaling 

pathways also play a role in Breg-mediated suppression of NK function. 

Indeed, Assarsson et al have noted that 2B4 and CD48 both reside within 

glycolipid-rich microdomains, which contain many other molecules that may 

be involved in signaling, and additional studies of 2B4-CD48 signaling 

pathways involved in Breg-mediated suppression of NK cells are underway 

(Assarsson et al., 2005). 
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Since the interaction between CD48, on transitional and IgM memory Breg 

subsets, but not naïve or switched memory B cells induces an inhibitory effect 

on NK function via 2B4, I studied the effect of NK cells on Breg subsets. Blair 

et al highlighted that CD19+CD24hICD38hI transitional B cells require the 

activation of the CD40/STAT3 signaling pathway to exert their 

immunoregulatory function on CD4+ T cells (Blair et al., 2010). In keeping with 

these findings, I found that NK cells trigger phosphorylation of STAT3 in both 

IgM memory as well as transitional B cell subsets (but to a much lesser extent 

in naïve and switched memory B cells). Collectively, these data support the 

existence of bidirectional 2B4-CD48-mediated cross-talk between NK cells 

and B cells and suggest that NK cells can deliver signals to regulatory B cell 

subsets, and the latter in turn deliver inhibitory signals to NK cells by inducing 

downregulation of SAP and recruitment of pSHP. To further unravel whether 

Bregs may exert potent suppressive activity promoting cancer progression 

and NK effector dysfunction, I functionally characterized CD19+ B cells in the 

peripheral blood of patients with AML.  The immune microenvironment in AML 

displays a spectrum of abnormalities, including aberrant expression of 

immunomodulatory cytokines (Stringaris et al., 2014, Ferrara and Schiffer., 

2013) and numerical and functional alterations in immunoregulatory subsets 

such as Tregs and myeloid-derive suppressor cells (Ustan et al., 2011, 

Szczepanski et al, 2009). 

AML patients had increased frequencies and absolute numbers of both 

CD19+ B cells and IL-10-producing B cells in comparison to healthy controls. 

Further, patients with AML had a significantly higher IL-10+CD19+ B-cell/ 

CD56+CD3- NK-cell ratio, compared with that for healthy control group 
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suggesting that an altered ratio of regulatory-to-effector cells in AML may 

suppress NK cell number and function, thus, promoting cancer progression. 

Coculture of AML CD19+ B cells with healthy donor NK cells resulted in 

significant suppression of SAP, recruitment of pSHP-1, and significant 

suppression of healthy donor NK cell function. It is noteworthy that ex vivo-

purified NK cells from AML patients expressed significantly less SAP and, 

higher pSHP-1 than their normal counterpart, further supporting the notion 

that in AML, engagement of 2B4 on NK cells by CD48 on B cells will deliver 

inhibitory signals to NK cells, resulting in suppression of their effector function.  

Conclusively, this is the first study to provide mechanistic insights into 

inhibitory cross-talk between NK cells and Breg subsets and to demonstrate 

the relevance of this inhibitory axis in acute myeloid leukemia. 

These findings point to the existence of a broader network of 

immunoregulatory cells, also involving Bregs that can be recruited and 

exploited by leukemic cells to evade immunesurveillance. Breg-mediated 

suppression of NK cell function may have important implications not only on 

cancer immune surveillance and defense against pathogens but also in 

determining response to therapy.  For instance, Bregs may negatively impact 

the effectiveness of immunotherapies in AML, such as antibody-dependent 

cellular cytotoxicity (ADCC) of tumor-targeted monoclonal antibodies (e.g., 

anti-CD33 mAbs). These data may have implications for other cancers and 

studies to explore the role of Bregs in other types of cancer and the 

consequences of their depletion on NK cell antitumor activity in vivo are 

currently under way. Finally, I propose that depletion of Breg subsets may be 

a novel strategy to enhance cancer immunity in humans.  
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VI.2  Conclusion 

Based on these data, I propose that an imbalance between regulatory B cells 

and immune effector subsets leads to loss of tolerance and perpetuation of an 

inflammatory process that may induce allo-reactivity in GVHD or suppress 

anti-tumor activity through inhibition of immune effector responses. These 

findings have important clinical implications and suggest that Bregs may be 

exploited to treat immune-mediated diseases. Adoptive transfer of donor-

derived Bregs early in the patient’s post-transplant course may tip the scales 

in favor of immune regulation, so that GVHD is either prevented or attenuated, 

an may offer a potentially effective immunomodulatory therapy for the 

treatment of GVHD. Conversely, strategies to deplete Bregs for optimal anti-

cancer immunotherapy may benefit antitumor activity in AML and other 

cancers.   
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VI.3  Future Plans 

In my thesis, I have proposed that an imbalance between regulatory and 

proinflammatory networks leads to loss of tolerance and induction of GVHD. I 

have shown a robust expansion in both frequencies and absolute numbers of 

CD19+ B cells and IL-10 producing CD19+B cells in the first 3-9 months after 

CBT, which were also found to exert greater suppressive function on healthy 

PB-CD4+T cells when compared to CD19+ B cells from cord blood units. 

These results postulate that attenuated T cell responses (Komanduri et al., 

2007, Beaudette-Zlatanova et al., 2013) and the lower risk of cGVHD after 

CBT may be a result of robust regulatory B cell recovery. To further assess 

whether robust expansion of B cells attenuates T cell responses post CBT 

leading to protection against GVHD, I propose to phenotypically and 

functionally characterize T cells subsets and determine effector T 

cell/regulatory B cell ratio in terms of frequency and absolute counts in CBT 

recipients with and without GVHD development post transplant. These results 

will highlight whether a reduced regulatory network may cause an increased 

proinflammatory effector function leading to inflammation and GVHD 

pathology post CBT.  

 

I have further shown that AML patients had increased frequencies and 

absolute numbers of both CD19+ B cells and IL-10-producing B cells in 

comparison to healthy controls. Further, patients with AML had a significantly 

higher IL-10+CD19+ B-cell/ CD56+CD3- NK-cell ratio, compared with that for 

healthy control group suggesting that an altered ratio of regulatory-to-effector 

cells in AML may suppress NK cell number and function, thus, promoting 
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cancer progression. I further plan to determine if this phenomena is still 

present in AML patients after remission to better understand whether NK 

dysfunction in relation to effector function and expression of SAP and an 

altered Breg/NK ratio may be a prognostic marker for survival outcome in 

patients with cancer. 

 

I have demonstrated that IL-10-producing regulatory B cells are enriched 

within PB-derived transitional and IgM memory B cell subsets and within CB-

derived transitional and naïve subsets. Both CB-derived and PB-derived Breg 

have been shown to exert suppressive capacity on CD4+ T cell effector 

function, which has implications in a cGVHD setting post transplant as 

described previously. Subsequently, as CD8+T cells possess a pathogenic 

role in aGVHD, I propose to explore the suppressive function of Breg on this 

effector subset, that may facilitate a broader understanding of the therapeutic 

benefits of Breg therapy in GVHD and their potential in aGVHD setting.  

 

In my study, I found that PB-derived Breg subsets, transitional and IgM 

memory B cells share functional similarities. I propose to study the gene 

expression profiling of these subsets with the aim of identifying a unique 

signature for this population of regulatory cells, by using IL-10 cytokine 

capture beads to purify IL-10+B cells. The identification of a specific marker 

for regulatory B cell subsets may aid strategies to target the selected 

depletion of these cells for treatment of AML and other cancers. Finally to 

confirm that Bregs can attenuate or suppress cGVHD, I propose to infuse 

these CB-derived and PB-derived regulatory B cells in minor and major 
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mismatched mouse models of cGVHD to evaluate the effect of Breg infusion 

as a potential therapy.  

 

In particular, murine studies of B-cell depletion have reported a preferential 

expansion of the Breg cell subset in the reconstituting B-cell population has 

(Palanichamy et al, 2009, Blair et al., 2010, Yang et al., 2013). Hence, it will 

be noteworthy to evaluate the effect of adoptive transfer of PB-Bregs and CB-

Bregs either alone or with in vivo B-cell depletion as a treatment option for 

GVHD and other autoimmune conditions.  

Further, whereas the direct administration of IL-10 has had limited beneficial 

effect due its short half life, the adoptive transfer of Bregs is likely to be more 

effective as they are able to continually secrete IL-10 (Yang et al., 2013). 

I therefore, propose to develop strategies to trigger the expansion of Breg 

population to maintain or induce immune tolerance. To study this, I will 

stimulate B cells with appropriate stimulations including CD40, BCR ligation 

and/or CpG with growth factors and other cytokines in vitro for the generation 

of Bregs for adoptive transfer, which could play a pivotal role in 

immunosuppression to achieve tolerance in transplantation.  
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