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Abstract

This thesis is concerned with maximising the precision of permanently installed

ultrasonic time of flight sensors. Numerous sources of uncertainty affecting the

measurement precision were considered and a measurement protocol was suggested

to minimise variability. The repeatability that can be achieved with the described

measurement protocol was verified in simulations and in laboratory corrosion experi-

ments as well as various other experiments. One of the most significant and complex

problems affecting the precision, inner wall surface roughness, was also investigated

and a signal processing method was proposed to improve the accuracy of estimated

wall thickness loss rates by an order of magnitude compared to standard methods.

It was found that the error associated with temperature effects is the most significant

among typical experimental sources of uncertainty (e.g. coherent noise and coupling

stability). By implementing temperature compensation, it was shown in laboratory

experiments that wall thickness can be estimated with a standard deviation of less

than 20 nm when temperature is stable (within 0.1 oC) using the signal processing

protocol described in this thesis. In more realistic corrosion experiments, where

temperature changes were of the order of 4 oC), it was shown that a wall thickness

loss of 1 µm can be detected reliably by applying the same measurement protocol.

Another major issue affecting both accuracy and precision is changing inner wall

surface morphology. Ultrasonic wave reflections from rough inner surfaces result in

distorted signals. These distortions significantly affect the accuracy of wall thickness

estimates. A new signal processing method, Adaptive Cross-Correlation (AXC), was

described to mitigate the effects of such distortions. It was shown that AXC reduces

measurement errors of wall thickness loss rates by an order of magnitude compared

to standard signal processing methods so that mean wall loss can be accurately

determined. When wall thickness loss is random and spatially uniform, 90% of wall

thickness rates measured using AXC lie within 7 .5± 18% of the actual slope. This

means that with mean corrosion rates of 1 mm/year, the wall thickness estimate

with AXC would be of the order of 0.75-1.1 mm/year.

In addition, the feasibility of increasing the accuracy of wall thickness loss rate
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measurements even further was demonstrated using multiple sensors for measuring

a single wall thickness loss rate. It was shown that measurement errors can be

decreased to 30% of the variability of a single sensor.

The main findings of this thesis have led to 1) a solid understanding of the numerous

factors that affect accuracy and precision of wall thickness loss monitoring, 2) a

robust signal acquisition protocol as well as 3) AXC, a post processing technique

that improves the monitoring accuracy by an order of magnitude. This will benefit

corrosion mitigation around the world, which is estimated to cost a developed nation

in excess of 2-5% of its GDP. The presented techniques help to reduce response

times to detect industrially actionable corrosion rates of 0.1 mm/year to a few days.

They therefore help to minimise the risk of process fluid leakage and increase overall

confidence in asset management.
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Chapter 1

Introduction

1.1 Motivation

It is common industrial practice to establish a finite design life for engineering plants,

structures and components. This is because there are many degradation mechanisms,

such as corrosion, erosion, material fatigue, decarburisation, various forms of crack

formation, etc. that affect plant components [1–6]. The effect of these degradation

mechanisms can to some extent be mitigated (e.g.: by using more resistant alloys or

by injecting chemical compounds such as corrosion inhibitors). However, even exotic

alloys degrade and often operators deliberately use cheaper materials that degrade

more readily but at a somewhat predictable rate. Most components used in plants

are therefore expected to degrade as they get older.

Components that degrade over time have to be replaced before they become unfit for

service and can potentially cause failures. There is a large economic incentive to delay

replacements for as long as possible and extend component life. Non-destructive

inspection and monitoring (often called SHM) of component integrity are typically

used to measure and predict the rate of degradation. This helps to avoid failures

and enables safe plant operation, in some cases even beyond the intended design life

of the component.

An example of the scale of the component degradation problem is illustrated by

studies on the cost of corrosion, a specific degradation mechanism: Biezma et al.
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estimated that the cost of corrosion (i.e.: mitigation, prevention and replacement)

to a developed nation is of the order of 2-5% of the gross domestic product [7, 8].

Although there are accurate electrochemical techniques available to monitor corrosion,

such measurements lack the capability to localise where corrosion occurs. In addition,

electrochemical techniques do not provide a measurement of remaining component

strength. In contrast, ultrasonic non-destructive evaluation yields measurements of

the remnant wall thickness, a good indicator of component health.

The disadvantage of standard ultrasonic inspections is that they are reported to

be imprecise with a wall thickness measurement variability of up to ±1 mm [9,10].

This is because standard hand-held ultrasonic inspections are carried out manually,

resulting in large errors due to positional offsets. In addition, it takes strategic effort

to plan and execute them, since the plant needs to be shut down for inspections.

Hence they can only be carried out at certain times resulting in infrequent inspections.

Months or years may elapse between inspections and a given component may be

evaluated by different inspectors each time. Both these factors further increase

variability. Because of infrequent and imprecise measurements, it is not possible to

extract accurate corrosion rates as illustrated by Figure 1.1.a, which figure will be

repeated and explained in more detail in Chapter 2.

Permanently installed ultrasonic monitoring addresses many of the concerns as-

sociated with manual inspection because automated measurements are taken at
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Figure 1.1: Left graph shows measurement uncertainties associated with manual
inspection, whereas right graph shows uncertainties associated with permanently
installed monitoring. Both graphs show the variability of individual point measure-
ments as box plots with whiskers (box indicates 50% of measurements, while whiskers
represent 90% of measurements). The variability of trend estimates is shown by a
red patch. The real mean wall thickness in the geometrical sense is shown by a dark
red line.
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1. Introduction

fixed locations, grossly reducing coupling errors and reducing operator involvement.

Firstly, data can be collected more frequently using automated permanently installed

sensors. In addition, permanently installing sensors allows for much more repeat-

able measurements compared to manual inspections because errors associated with

sensor positioning are eliminated. More frequent and more repeatable thickness

measurements result in much more accurate wall thickness loss rate estimates.

The key challenge associated with permanently installed monitoring is to maximise

precision over the sensor lifetime (long periods of time). There are a number of

unknowns in relation to the precision of ultrasonic monitoring. What are the

dominant factors influencing measurement precision? What are the factors limiting

wall thickness loss rate estimation accuracy? Once error sources have been identified,

techniques to minimise their effect should be evaluated. Investigating these questions

with the purpose of maximising the precision of ultrasonic measurements is the

primary motivation for this thesis.

The presented work applies to ultrasonic measurements in general. Therefore moni-

toring material degradation mechanisms other than corrosion induced wall thickness

loss is also discussed. High Temperature Hydrogen Attack is an example of such

mechanisms, where small methane bubbles form in the material as a result of hy-

drogen diffusing into steel and reacting with the carbon content of the steel. The

thickness of the affected component therefore does not change, and instead the

material is weakened due to the small voids. Since the small voids are expected to

cause a drop in ultrasonic propagation velocity, such mechanisms can also potentially

be monitored ultrasonically and this was also investigated in this work.

1.2 Thesis aims and outline

The primary aim of this thesis is to gain a solid understanding of errors in permanently

installed ultrasonic monitoring setups and to experimentally demonstrate how travel

time measurement precision can be maximised to achieve unprecedented levels of

accuracy in corrosion rate measurements. In addition, it is also shown how signal

processing techniques can be used to mitigate the detrimental effects of inner wall
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surface roughness on ultrasonic measurements. The thesis is organised as follows:

First the background of wave propagation physics and the principles of ultrasonic

wall thickness measurements are introduced in Chapter 2. This chapter starts by

explaining the equations describing the physics of ultrasonic wave propagation in

bulk media. The details of wall thickness measurements using permanently installed

ultrasonic sensors are then explained. As part of this, a standard commercially

available permanently installed waveguide transducer is described. This transducer

is suitable for all conditions investigated in this theses and is used as an example

throughout the thesis to demonstrate how the presented methods can be applied.

Chapter 3 evaluates signal processing methods that can be used to mitigate uncer-

tainties inherent in ultrasonic signal acquisition. First a robust signal processing

protocol for precise ultrasonic wall thickness measurements is presented. This is

described early on as it provides a good overview of the required signal processing

steps. Following this, the investigations that were used to calibrate the parameters

of the various steps of the final protocol are described. As part of this, the maximum

possible precision that can be achieved using the waveguide sensors is established.

Although the quantitative results are specific to the waveguide sensor, it is thought

that the process of evaluation itself applies to other sensors as well.

Having established uncertainties associated with signal acquisition and processing,

Chapter 4 evaluates uncertainties associated with experimental measurements. This

chapter evaluates 3 of the most significant experimental sources of error and quantifies

them separately. Coherent noise is discussed first. Quantitative results are also

shown and evaluated for the waveguide sensor. The second issue discussed is the

coupling stability of sensors. A key advantage of permanently installed sensors is

that coupling is more stable compared to conventional sensors, however it still is not

expected to remain constant indefinitely, hence the effects of potential changes are

evaluated. The third issue that is discussed is the effect of temperature on ultrasonic

time-of-flight measurements. Beyond simple temperature compensation, the effects

of temperature gradients within the component are also evaluated.

Chapter 5 evaluates ultrasonic measurements in experiments. Here, controlled

corrosion processes are used to induce wall thickness loss, which is then monitored
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using a permanently installed ultrasonic sensor. The chapter starts by introducing

the theory of how corrosion can be induced using a forced current. This approach is

proposed as it is expected that the forced current is proportional to induced corrosion

and hence can be used to benchmark the ultrasonic wall thickness results. In addition,

theory on unforced corrosion is also presented as a more realistic alternative. As

part of this, an electrochemical measurement approach is described that can be used

to estimate the naturally occurring corrosion rate. Experimental results are then

shown using both forced and unforced corrosion cells. Electrolytes that were tested

are: NaCl, Na2SO3, distilled water, various concentrations of citric acid and HCl.

Chapter 6 evaluates another potential area of application for time-of-flight ultrasonic

measurements: material degradation mapping. Here, background on Hydrogen Attack

is presented highlighting associated safety concerns, and hence the importance of

overcoming challenges for monitoring it. It is pointed out that the effect of Hydrogen

Attack on ultrasonic waves can be modelled as a change to ultrasonic propagation

velocity. Since the degradation itself is difficult and dangerous to induce, heating is

used to create a non-uniform ultrasonic propagation velocity distribution within a

test component. This is expected to result in a non-uniform velocity distribution

similar to what would be expected to be the effect of Hydrogen Attack. During

the transient heating, ultrasonic measurements are recorded using a waveguide

sensor array. Imaging algorithms are then presented for the reconstruction of the

spatial velocity distribution based on the ultrasonic measurements. Following the

encouraging results of the feasibility study using heat, the implementation of a

Hydrogen Attack rig is presented. Results of the Hydrogen Attack measurements

are then described, including comparisons of ultrasonically measured data with SEM

images.

The effect of backwall surface morphology changes, or backwall surface roughness, is

relatively complex. Chapters 5 and 6 do mention the topic, however, because of its

complexity, it is evaluated separately in Chapter 7. More specifically, gradual geomet-

rical changes of the component surface on the accuracy of ultrasonically measured

corrosion rates are investigated in this chapter. The relevance of this is that perma-

nently installed sensors carry out frequent measurements at a fixed location, hence

the geometry of the underlying surface is expected to change only gradually between
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measurements. For this, a model to simulate gradual surface morphology changes is

introduced first. Since such morphology changes are expected to significantly affect

ultrasonic thickness estimates [11], a new arrival time estimation method is also

introduced. This new method specifically addresses the challenges of measuring wall

thicknesses of components with gradually changing surface morphologies. A large

number of gradually changing backwall surfaces are then simulated and evaluated

using both conventional and newly introduced signal processing methods.

The results of Chapter 7 suggest that under certain surface roughness conditions the

accuracy of ultrasonic wall thickness loss rate estimates is limited. Therefore Chapter

8 investigates the feasibility of using multiple transducers to monitor wall thickness

loss more accurately. Two configurations are considered. The first setup relies

on multiple transducers illuminating the same patch of the backwall surface from

different angles. The second configuration relies on multiple transducer pairs coupled

at various locations, where the mean wall loss is assumed to be the same. Both

multi-transducer configurations are evaluated for the gradually changing backwall

surface evolution conditions investigated in Chapter 7 and their performance is

compared to a single transducer pair.

All results of the thesis are then summarised in Chapter 9, where conclusions are

drawn and future work is suggested.
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Chapter 2

Background Theory and Analysis

Tools

2.1 Introduction

The purpose of this chapter is to provide the theoretical background for the work in

this thesis. First, the underlying theory of ultrasonic measurements is introduced,

including the basic governing equations of wave propagation in elastic media. The

principles of how ultrasonic waves can be used for wall thickness measurements are

then demonstrated using an existing commercially available ultrasonic sensor. A

decision was taken to use this existing ultrasonic sensor hardware as an example

experimental test setup for measurements in this thesis. It is believed that the devel-

oped methodology is also applicable to other ultrasonic setups, while specific details

and results may vary. It is then explained why permanently installed ultrasonic

monitoring in particular is more precise than traditional manual inspection methods.

Finally, a simulation technique that is capable of rapidly simulating realistic ultra-

sonic signals reflected from components of varying geometries is described. This is

particularly important for analysing the effect that subtle changes in geometry will

have on the signal.
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2. Background Theory and Analysis Tools

2.2 Wave equations and wave propagation in bulk

media

The theory of elastic wave propagation is well known. It has been studied by many

authors, see for example [12–14]. A brief summary of the underlying equations is

recalled here, in order to provide the foundation for all of the tools and techniques

used in this thesis. First, the equation of linear momentum is considered. This can

be expressed in Cartesian tensor notation as:

σij,j + Fi = ρüi (2.1)

where σij,j is the stress tensor at a point, ρ is the density of the material, Fi is the

body force per unit volume and üi is the acceleration vector of a point of the material.

For isotropic materials, the stress tensor can be expressed as a function of the strain

tensor using Hooke’s law:

σij = γεkkδij + 2µεij (2.2)

εij =
1

2
(ui,j + uj,i) (2.3)

where γ and µ are the first and second Lamé parameters in the solid, ε is the strain

tensor and δ is the Kronecker delta. By substituting Equations 2.2 and 2.3 into

Equation 2.1 with the assumption that the material is homogeneous and there are

no body forces, Navier’s equation is obtained:

(γ + µ)uj,ij + µui,jj = ρüi (2.4)

Calculating the divergence of Navier’s equation results in:

∇2Φ =
1

c2
L

Φ̈ (2.5)

where ∇ is the nabla operator, Φ is the scalar potential of the displacement field and

cL is the propagation velocity of any dilatational disturbance (longitudinal waves).

This is referred to as the wave equation for longitudinal waves. cL is therefore
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expressed by:

cL =

√
γ + 2µ

ρ
(2.6)

In contrast, performing the operation of curl on Equation 2.4 results in:

∇2H =
1

c2
T

Ḧ (2.7)

where H is the vector potential of the displacement field and cT is the propagation

velocity of transverse wave motion (shear waves). This therefore constitutes the wave

equation for shear waves. cT in Equation 2.7 can also be expressed by:

cT =

√
µ

ρ
(2.8)

Since Φ and H are the scalar and vector potentials of the displacement field, together

they constitute its Helmholtz decomposition of the displacement field:

u = ∇Φ +∇×H, with ∇.H = 0 (2.9)

Therefore the longitudinal and the shear modes describe wave motion in the bulk of

isotropic homogeneous media. They propagate within the medium independently at

different velocities, and mode conversion only takes place at boundaries. The concept

of exploiting elastic wave propagation for non-destructive testing purposes is well

established and has been implemented in a wide array of tools and methods [15–22].

The main motivation of this thesis is high accuracy measurements of progressive

degradation such as thickness loss or material property (ultrasonic velocity) change,

and therefore the next sections elaborate on how to take advantage of ultrasonic

waves for the purposes of high accuracy measurements.

2.3 Ultrasonic measurement principles

It has long been known that ultrasonic waves can be used for the purposes of wall

thickness measurements [23]. A waveguide transducer is used here to demonstrate

the principle of such measurements in Figure 2.1. The waveguide itself is a long
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thin strip with a cross section of 1 mm by 15 mm rectangle. The advantage of this

setup is that if the specimen is at a high temperature, an otherwise temperature

sensitive piezo element can be used for transduction of ultrasonic waves. The chosen

transducer uses shear horizontal (SH) waves, and the waveguide acts as a delay line

to transmit the waves into the material. Since the waveguide is used to transmit SH

waves, transduction into the sample can be achieved without exciting longitudinal

or shear vertical modes in the plane of interest. Because of the close proximity of

boundaries within a waveguide however, there are a large number of guided wave

modes that exist in it. The propagation within this waveguide proposed by Cegla

et al. [24, 25] has been extensively studied, and therefore is not investigated in this

thesis.

This transducer is typically used in a pitch-catch arrangement, which is used in this

thesis, as shown in Figure 2.1. Here, two waveguide transducers are used, one for

transmission and the second for reception. The pitch-catch arrangement is especially

advantageous as it reduces coherent noise in the measurement. This is because the

transmission coefficient of the transmitting waveguide into the sample is rather poor

and the returning signal might be masked by higher amplitude end reflections of

undesired wave modes travelling in the transmit waveguide. On transmission into a

second receiving transducer this is however not the case as the transmitted signal will

be strongest. (This is similar to the use of dual element probes that are commonly

used in UT).

During a typical acquisition using a pitch-catch setup, the sending transducer (Tx)

is first excited with a wavepacket. The excited wavepacket then travels down the

sending waveguide transducer and gets transmitted into the component that is being

tested, where it propagates to the interface of the receiving transducer via different

paths within the component as shown in Figure 2.1. The wavepackets then get

transmitted into the receiver waveguide and propagate towards the receiver piezo

element to be converted into electrical signals. An example of a measured signal is

shown in Figure 2.2.

Since the wavepaths travelled by the ultrasonic wavepacket are significantly different

in length, they arrive at the receiver at different times. These arrival times can then

be estimated. As the geometry of the setup is known and the propagation velocity
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Figure 2.1: a) shows a pitch-catch measurement setup using waveguide trans-
ducers. Here grey arrows show the paths of the ultrasonic wavepackets. b) and c)
show the beam spread of the waveguide transducer along its central planes computed
using a 3D Huygen’s model with a wavelength of 1.6 mm. b) shows the beam spread
of the sending transducer in its cross section parallel to the 1 mm edge whereas c)
shows the beam spread of the sending transducer in its cross section parallel to the
15 mm edge using the same colour scale as b).

of the ultrasonic waves can be determined, the calculation of the thickness is also

possible. Here, the propagation equations that describe the arrival times of the first

3 wavepackets (as shown in Figure 2.2) based on ultrasonic propagation velocities

and geometric considerations are shown:
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wave propagation velocity is 3250 m/s using a 2 MHz 5-cycle toneburst as excitation.
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where tn is the estimated arrival time of the nth wavepacket, wt and wr are the

lengths of the transmitter and receiver waveguide transducers, cwt and cwr are the

average propagation velocities of ultrasonic waves in the transmitter and receiver

waveguides, d is the separation of the waveguide transducers, cm is the average

propagation velocity within the material of the sample and T is the thickness of the

sample. By solving this system of equations for the thickness, the following results:

T3p =
1

4

√
c (t3 − t1)

√
c (t3 − t1) +

−4c (t2 − t1)2 + c (t3 − t1)2

4 (t2 − t1)− (t3 − t1)
(2.13)

T2p =
1

2

√
c (t1 − t2) (−2d− c · t2 + c · t1) (2.14)

where T3p is the solution for the system of equations consisting of all 3 equa-

tions (surface wavepacket, first backwall echo wavepacket and second backwall

echo wavepacket), whereas T2p is the solution for the equations only for the first two

equations. It is apparent, that both equations rely on the estimated arrival times
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and the propagation velocity of the ultrasonic waves in the material. In order to

obtain a good estimate of the mean wall thickness, which is the focus of this thesis,

it is critical that these variables are determined accurately in apriori measurements.

Both equations therefore rely on the shear velocity which is a function of material

parameters µ and ρ as described by Equation 2.8 and therefore it is expected to be a

material property. In addition, these parameters typically also vary as a function of

temperature. There are no additional environmental conditions (e.g.: ambient pres-

sure) that significantly influence these parameters under typical operating conditions.

Although stresses in the pipe wall may influence the ultrasonic propagation velocity

via the acoustoelastic effect [26], such stresses are not expected to be present during

normal operation and their effect is small compared to the effect of temperature.

They are therefore ignored in this work. The most important variable that influences

the propagation velocity of shear waves during measurements is the temperature. By

measuring temperature, it is expected that shear velocity can be determined either

by calculation (using Equation 2.8) or by calibration.

Beyond shear velocity, the variables to be determined in order to estimate wall

thickness using equations 2.13 and 2.14 are the arrival times and the separation

of waveguides. A difference between these equations is that in Equation 2.14 the

separation of waveguides (d) is required as an input parameter whereas for Equation

2.13 it is not needed. Relying on d is expected to limit the accuracy of absolute

thickness estimates, since it may not be possible to determine the effective separation

accurately for every transducer pair. The advantage of the T2p approach is that

since the separation is constant for the permanently installed sensor, the calculated

thicknesses are expected to be very repeatable.

Instead of d, Equation 2.13 relies on the arrival time of the second backwall echo t3

for the solution. This may be disadvantageous in some scenarios, as this wavepacket

is expected to be the lowest amplitude of the first 3 wavepackets. The signal-to-noise

ratio for this wavepacket is therefore smaller than for the surface and backwall echo

wavepackets, and so the variability of the estimated arrival time is expected to be

higher. This may limit the repeatability of the estimated thickness. However, since

the separation of waveguides does not have to be assumed, this is expected to result

in more accurate absolute thickness measurements. In this thesis both equations are
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used, since they both offer certain benefits under different conditions. Equation 2.14

is expected to provide more repeatable thickness estimates, whereas Equation 2.13 is

expected to provide more accurate thickness estimates in absolute terms.

It should be noted here that the waveguide transducers were chosen because they are

commercially available and are mechanically robust. They are suitable for many of

the cases that are of interest in this thesis, such as high temperature measurements

and corrosion monitoring. However, the techniques that are presented here are aimed

to be more generally applicable and are not transducer specific.

2.4 High Accuracy Monitoring Using Permanently

Installed Sensors

Ultrasonic thickness measurements as described in the previous section have been

used for manual hand-held inspections for more than 50 years [23], and such manual

inspection techniques are still standard practice in industry [27, 28]. Because of

positional offsets and coupling uncertainties in between measurements as well as

operator slips and errors, the repeatability of manual measurements is limited. Errors

of the order of 0.25-1 mm are expected [9, 10]. In addition, some of the pipes in

petrochemical applications are hard to access. For example pipes have to be stripped

of insulation, excavated from underground locations or scaffolding has to be built

to reach pipes in overhead locations. Consequently, measurements are typically

inaccurate and are carried out infrequently.

Permanently installed monitoring drastically reduces uncertainties associated with

coupling and positional offsets. In addition, automated measurements are possible.

Altogether this results in more frequent and more repeatable measurements compared

to manual handheld inspection. Repeatability of the order of tens of nanometres have

been reported in [29] and [P3]. Furthermore, permanently installed monitoring allows

for substantial improvements in the accuracy to which mean wall thickness loss rates

can be estimated. In a plant integrity assessment context accurate thickness loss

rate estimation is very valuable, since it can be used for the early identification of

corrosion/erosion activity, it can be correlated with changing process conditions and
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can be used as input to control corrosion inhibition strategies. Achieving a sufficient

level of accuracy for this has not been possible using standard manual inspection

techniques.

The potentially higher accuracy in monitoring wall thickness loss rates using perma-

nently installed sensors can be illustrated by considering the statistical uncertainty

of a slope evaluated by discrete point measurements, see Figure 2.3. The variation of

the slope can be linked to the uncertainty associated with each individual measure-

ment. Assuming that the standard deviation of individual thickness measurements

are the same, the standard deviation of the slope can be determined based on the

temporal separation of the measurements. It can be shown that improvements in the

repeatability of the individual measurements and the temporal separation between

measurements have a dramatic effect on the accuracy with which trends can be

estimated [30]:

σslope =
σ√∑

(ti − t̄)2
(2.15)

where σslope is the standard deviation of the slope, σ is the standard deviation of the

individual thickness measurements, i is the index number of individual measurements,

ti are the times of measurements and t̄ is the mean of all ti.

By assuming that N number of measurements are carried out at equal ∆t intervals
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Figure 2.3: The left graph shows measurement uncertainties associated with
manual inspection, whereas the right graph shows uncertainties associated with
permanently installed monitoring. Both graphs show the variability of individual
point measurements as box plots with whiskers (box indicates 50% of measurements,
while whiskers represent 90% of measurements). The variability of trend estimates
is shown by a red patch. The real mean wall thickness in the geometrical sense is
shown by a dark red line.

42



2. Background Theory and Analysis Tools

in a period of t̂ = N ·∆t time, it is possible to expand Equation 2.15. In addition, by

assuming that N is large, the effect of ∆t on the standard deviation of the slope can

be estimated (the derivation of this is explained in the Appending in Section A.1):

σslope =
σ
√

12

∆t
√
N3 −N

N>>1
≈ σ

√
12

∆tN3/2
=
σ
√

∆t
√

12

t̂3/2
(2.16)

This means that the variability of the slope is proportional to the variability of

individual measurements and is also proportional to the square root of the time

interval between measurements. In other words, increasing the time interval between

measurements by a factor of four doubles the slope variability. Hence, the concept of

permanently installing sensors is expected to achieve a potential improvement in trend

estimation accuracy of multiple orders of magnitude compared to manual methods,

as standard deviation is improved by eliminating coupling errors and positional errors

driving down σ and because very frequent measurements are possible i.e. improving

both contributors to slope uncertainty.

The distinction about thickness precision (equivalent to the term thickness repeata-

bility) and thickness accuracy should be pointed out here. The absolute accuracy

of individual thickness measurements is expected to improve only marginally using

permanently installed compared to manual hand-held sensors. It is the repeatability

of thickness measurements that is improved by multiple orders of magnitude when

using permanently installed ultrasonic sensors. In turn, this significant improve-

ment in repeatability and the increase in measurement frequency enables substantial

improvements in trend estimation accuracy. Hence, improvements in thickness mea-

surement repeatability and trend estimation accuracy are the main focus of this

thesis, but not improvements in thickness measurement accuracy.

2.5 DPSM (Distributed Point Source Method) sim-

ulation approach

There are many parameters and processes that have to be adjusted to optimise

the measurement setup, such as acquisition hardware, signal processing tools and

thickness calculation approaches. Ideally, any optimisation process is carried out in
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simulations first, where uncertainties are minimal and are easily controlled compared

to experimental data. Simulation tools are therefore introduced early on in this

thesis. They will be used throughout the thesis as the basis of parametric studies or

investigations.

One of the most popular simulation approaches is the Finite Element Method

(FEM) [31,32]. FEM relies on discretising the domain of the material into nodes and

elements that make up a mesh. Because of the discrete mesh that covers the entire

domain, it is very versatile and non-uniform material properties are straightforward

to incorporate in the model. However, it is not numerically efficient in cases where

wave propagation over large parts of bulk material has to be simulated. To some

extent this can be mitigated by creating hybrid FEM models that mesh the feature

of interest and the transducer only and use analytical formulations to propagate

wavefields in the bulk material. [33–36]. Although such an approach does improve

computational efficiency, it still relies on meshing parts of the domain, and its

performance is limited.

As an alternative the DPSM (Distributed Point Source Method) as proposed by

Placko and Kundu [37] is considered. The DPSM is a semi-analytical method

originally developed to solve field equations for a wide array of engineering problems

(e.g.: for ultrasonic, magnetic, eletromagnetic fields). DPSM is mesh-free, which

allows for a potential performance improvement compared to methods relying on

discrete meshes such as FEM. Instead, DPSM relies on point sources to simulate the

behaviour of boundaries and interfaces.

This method has been successfully implemented to simulate signals for the waveguide

sensor (also used in this thesis) by Jarvis et al. [11], which was verified against FEM.

In this thesis the same implementation is used, with some parametric adjustments as

described here. This implementation relies on the assumption that SH waves can be

modelled in 2D using an acoustic wave propagation model. This is because in a 2D

model SH waves reflect from boundaries without mode conversion, since the direction

of motion is perpendicular to the simulated plane. Hence the equation describing

SH wave propagation is identical to that of acoustic wave propagation in 2D [12].

Furthermore, Jarvis et al. noted, that the cross-sectional width of the transducer

(1 mm) is relatively small compared to the wavelength (λ ∼ 1.6 mm) whereas the
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cross-sectional length of the transducer is relatively large (15 mm). This conveniently

allows for the simplifying assumption that the transducer can be modelled in two

dimensions of the central plane of the transducer. Although the same 2D assumption

about the internal wall surface is not as realistic, Jarvis et al. [38] concluded that

such 2D simulations still capture the majority of the physical interactions on the

backwall surface. With the 2D assumption the DPSM model for shear horizontal

waves is equivalent to an acoustic model and implies that no mode conversion takes

place at interfaces, as the simulated displacement is perpendicular to the plane in

which modelling takes place. Phenomena such as beam spread from the transducer,

multiple scattering and diffraction effects are fully simulated.

DPSM can be used to simulate monochromatic waves, therefore in order to implement

a temporal domain simulation, the frequency components of the excitation signal

using the Fast Fourier Transform (FFT) are first calculated. DPSM then simulates

the response of the system for each and every frequency component. The response of

the simulated system can then be reconstituted in the temporal domain by applying

an Inverse Fast Fourier Transform (IFFT).

The simulation problem is therefore simplified to considering a single frequency

component at one time. The central assumption of the DPSM model is that a

large number of point sources placed at a small offset from an interface can be

used to model the wave excitation, reflection and transmission behaviour of that

interface. In DPSM, point sources can be active or passive. Active point sources are

used to simulate areas of predefined pressure, such as the interface of a transmitter

transducer. Passive point sources are used to simulate interactions on boundaries,

such as the backwall surface of a sample. The excited wavefield of active and passive

point sources are identical, and is a function only of wave number, distance, time

and angular frequency as described by the Green’s function:

P (r, t) = AH
(2)
0 (kr) · eiωt (2.17)

where the P is the pressure at time t separated by distance r from the point source,

k is the wave number, ω is the angular frequency, H
(2)
0 is the zero order Hankel

function of the second kind and A is a complex constant relating to strength and

phase of the wave excitation of the point source. It should be noted here that it is
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only A that is unique to a point source.

The logic of how DPSM then simulates the wavefield is the following: na active point

sources are placed close to the interface of the transmitter transducer as shown in

Figure 2.4. Boundary condition equations prescribing the source pressure are set up

at the interface below each active point source, resulting in na number of boundary

condition equations. Because of this, the sum of the wavefields excited by the active

point sources at those boundary points are known. This can be formulated as a

linear system of equations:

PBC = QTSAS (2.18)

QTS =


H

(2)
0 (kr1

1) H
(2)
0 (kr1
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where PBC is the vector of prescribed pressures at the boundary points, AS is the

amplitude constant associated with each active point source, QTS is the matrix

of wave propagation equations (from Equation 2.17) from active point sources to

the boundary points, N is the number of active point sources, M is the number of

boundary locations and rba is the distance between point source a to boundary point

b. Since only the vector AS is unknown, it can be calculated by:

AS = [QTS]−1 PBC (2.20)

Once the values in vector AS are calculated, all variables associated with the active

point sources are defined.

The same logic can be applied to compute the response of a reflecting surface. Namely

a large number of passive point sources are placed at a small offset from the reflecting

interface. The boundary condition of zero-pressure is then assumed on the backwall

interface itself. Since the wavefield at the backwall boundary is equal to the sum

of active and passive point sources, an equation similar to Equation 2.20 can be

formulated, which in turn can be used to calculate the variables associated with the

passive point sources. The total field response at any point can be calculated as a
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sum of contributions from all active and passive point sources.

In the implementation used in this thesis DPSM relies on placing point sources

close to the interface of the transducer and the backwall surface. An example of the

geometry of such a setup is shown in Figure 2.4. Here, the transmitter transducer is

simulated by 100 active point source with a radius of 5 µm offset from the transducer

interface by 5 µm. The backwall surface is simulated by 800 passive point sources

with a radius of 25 µm offset from the transducer interface by 25 µm. The receiver

transducer is simulated by 50 receiver points that do not interact with the field

placed on top of the interface.

The DPSM promises a simulation accuracy that has been shown to be as accurate as

an equivalent FEM model but with a speed increase of an order of magnitude [11,38],
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Figure 2.4: a) DPSM model of the permanently installed ultrasonic sensor
on a flat backwall surface. Blue circles are the active point sources simulating the
transmitter transducer. Red circles are passive point sources simulating the backwall
geometry. Continuous black lines are shown where a zero pressure boundary condition
has been applied. Dashed lines are purely for visual purposes only and therefore no
boundary condition was applied to them. b) shows the simulated signal based on
the model. The first wavepacket in the signal is the surface wavepacket. The second
wavepacket is the backwall echo.
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and hence is used as the primary simulation tool in this thesis.
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2.6 Summary

In this chapter the basics of ultrasonic wave propagation have been summarised.

After this, the concept of ultrasonic thickness measurements based on time-of-

flight estimation was described. Throughout the thesis experimental validation

of simulation results will be sought, therefore a particular transducer setup for

testing results is required. The SH waveguide transducer was chosen because it

is readily available and used for monitoring in the field. The general features of

the waveguide transducer were described in this chapter, as it will be used for

most experimental measurements. A number of variables were highlighted that are

expected to influence the variability of the wall thickness measurement (e.g.: the

contact patch of the waveguide transducer, coherent noise caused by the waveguide

transducer, arrival time estimation, determination of ultrasonic propagation velocity

etc.). These variables and their effect on the ultrasonic measurement is central to

this thesis, and are therefore investigated systematically in the next chapters. The

concept and advantages of permanently installed monitoring were then explained,

emphasising their potential for thickness measurement repeatability and accurate

mean wall thickness loss rate estimates. Following this, the DPSM was presented as

the primary ultrasonic wave simulation approach to be used in this thesis.
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Chapter 3

Uncertainty in Arrival Time

Determination (Signal Processing)

3.1 Introduction

The aim of this thesis is to maximise the accuracy to which ultrasonic degradation

monitoring measurements are carried out. For this purpose, the previous chapter has

introduced the concept of permanently installed ultrasonic monitoring and elaborated

on how high precision ultrasonic monitoring can be realised. In order to maximise

the precision of estimated wall thicknesses, it is also important to implement a signal

processing protocol with good noise rejection. This chapter is aimed principally at

minimising random noise and its effects on ultrasonic measurements. Systematic

error sources, mostly associated with experimental factors such as the effect of

temperature, are investigated in Chapter 4 and are not considered here. This chapter

is organised as follows:

The first section describes a robust signal processing protocol that was found to

result in accurate ultrasonic wall thickness measurements. This is presented early

on as it is a very good overview of all the signal processing steps that are required.

Following this, the various studies and investigations that were used to arrive at

this final protocol are presented. The performance of this setup is demonstrated

using the waveguide sensor. In addition, results showing the expected performance of
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transducers with different excitation frequencies and characteristic SNRs compared

to the waveguide sensor are also described.

3.2 Signal Processing Protocol Overview

Here a specific signal processing implementation is presented, that was developed to

maximise wall thickness measurement precision. The final protocol that was found

to perform best is as follows:

� A 2 MHz 5-cycle Von Hann-windowed (sometimes referred to as Hanning-

windowed) toneburst is produced to be used as excitation signal

� The excitation signal is digitised at 50 MHz sampling frequency, 14bit resolution

and ±12 V amplitude using suitable hardware

� The excitation signal is sent to the transducer

� The response is measured on the receiving transducer at 50 MHz sampling

frequency and 12bit resolution

� A bandpass filter is applied to the received signal using a 5th order Butterworth

filter between frequencies 1.6 MHz and 2.4 MHz

� The signal is averaged 320 times

� The signal is upsampled to a virtual sample frequency of 512 MHz

� Arrival times of consecutive echoes in the signal are estimated using cross-

correlation (XC) and linear interpolation between samples to find the peak of

the XC function with the best possible precision

Experimentally measured wall thickness estimates using this signal processing proto-

col are shown in Figure 3.1 to demonstrate the performance of this protocol. The

standard deviation of these wall thickness estimates is 14 nm, therefore verifying

that very high repeatability can be achieved. This signal processing protocol was

the conclusion of a series of investigations of how certain parameters related to the

signal acquisition process affect arrival time precision. These will be described in the

following order:
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Figure 3.1: Wall thickness measurements based on experimentally acquired
signals following the outlined signal processing protocol. The standard deviation of
measurements is 14 nm.

� Performance comparison of arrival time estimation methods

� Interpolation methods with various signal acquisition settings

� The effect of raw waveform signal to noise ratio (SNR) on the uncertainty in

estimated arrival time

� The choice of frequency of the excitation signal

3.3 Performance evaluation using the waveguide

sensor

3.3.1 Comparison of arrival time estimation methods

In order to accurately estimate the wall thickness of a sample, accurate arrival time

estimation is key. Here techniques that are typically used for arrival time estimation

are discussed. Their implementation is also described, and the repeatability of

estimated wall thicknesses using each method is then compared in simulations.
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Figure 3.2: The figure shows the Hilbert-envelope (green line) of a sample
waveform (black line) and its estimated arrival times using P2P (green vertical lines).
Red horizontal lines show the calculated thresholds for each wavepacket. FA arrival
times calculated based on the intersection of thresholds (6dB here) and the Hilbert
envelope are also displayed (red vertical lines).

A commonly used arrival time estimation concept is based on calculating an envelope

function for the waveform [39]. These methods are often referred to as Envelope

Peak or Peak-to-Peak (P2P) methods. In this thesis the P2P notation is used

throughout to avoid confusion. Some P2P methods use the raw signal, but most rely

on computing an envelope function for the measured waveform. This ignores phase

information and is believed to be more robust. One way to achieve this is via the

Hilbert-transform. The Hilbert transform applies a 90o phase shift to all frequency

components of the signal [40], hence it can be used to calculate the envelope of the

signal by:

E(t) =

√
f (t)2 +H (f (t))2 (3.1)

where f(t) is the function for which the envelope is calculated, H (f (t)) is the

Hilbert transform of f(t) and E(t) is the computed envelope. A sample waveform

along with its Hilbert-envelope is shown in Figure 3.2. Other methods exist that

compute a similar envelope function, such as filtering using finite impulse response

(FIR) filters [41, 42]. The result however is fundamentally the same as a band-

pass filter and the Hilbert-transform, namely an envelope function with a limited
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Figure 3.3: The figure shows the cross-correlation function (blue line) of a
sample waveform (black line) with a synthetised 180 o toneburst and the estimated
arrival times of that waveform using XC (blue vertical lines).

frequency spectrum, where the phase information is ignored. Based on the computed

envelope, the arrival times of the various wavepackets are estimated by determining

the maximum peaks of the envelope function. P2P methods are simple to implement.

The calculation of the envelope is straightforward and since typically only a small

number of peaks are present in it, their identification is easy and can be robustly

automated.

First-Arrival (FA) is another method to estimate arrival times of wavepackets [11]. It

also relies on calculating an envelope function and finding the peaks of that function.

FA then establishes a threshold as a function of the amplitude of each peak - e.g. the

threshold for the each wavepacket is determined as -6 dB of its amplitude. Since for

each wavepacket this threshold is determined independently, the threshold for each

wavepacket will be different. The crossing of this threshold and the envelope function

is then taken as the arrival time for a given wavepacket. This is shown in Figure 3.2

directly compared to a P2P arrival times. Since FA is based on an envelope as well,

it is only marginally more complex to implement than P2P methods.

Cross-correlation (XC) is another popular arrival time estimation method [11,39].

Cross-correlation is defined as the sliding dot product of a function with the complex

conjugate of another. In the context of arrival time estimation, cross-correlation
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behaves as a form of similarity metric between two signals as a function of time-lag.

This can be used for arrival time estimation by cross-correlating the synthesised

toneburst that is transmitted at the beginning of a measurement with the received

signal. An example of a correlation function is shown in Figure 3.3. The peaks of

the resulting cross-correlation function therefore represent the times where the two

functions correlate well. The arrival times of the wavepackets in the waveform are

then estimated by determining the time of the biggest peaks in the cross-correlation

function.

A difficulty that may arise during this process is that in some cases the received

wavepackets may be distorted compared to the sent toneburst. Phase shifts in the

received signal are a typical form of distortion, caused by characteristics of the

transducer itself, coupling to the sample and reflections from various interfaces in

the sample. It is assumed here that such shifts do not occur after a given transducer

has been coupled and so repeatability is assumed to be unaffected.

Beyond these three fundamental methods, there have been reports suggesting that

combining some of them may result in more accurate arrival time estimation al-

gorithms. Yu [39] proposes to estimate arrival times by calculating the envelope

function of the received waveform and cross-correlating it with the envelope function

of the sent toneburst. In the report by Yu [39], it was recognised that this approach

was chosen since the standard P2P method appeared to be unstable because of

what was described as dispersion effects. In this thesis it is assumed that signals

are dispersion-free, in which case such an approach is not expected to offer any

advantages.

In addition, other more complex methods also exist that can be used for arrival time

estimation. The wavelet transform is one of the many possible methods that can be

used for feature detection and arrival estimation [43]. Its potential has been recognised

for defect detection, since it can be used to describe the temporal distribution of

harmonic components [43]. However, such a method offers limited advantages in this

thesis, since here the frequency spectrum of the reflection of ultrasonic waves is well

defined and not expected to change. Since only the temporal shift of wavepackets

is to be determined in this thesis, cross-correlation is expected to estimate arrival

times with similar accuracy, hence the wavelet transform is not investigated in this
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thesis. The split-spectrum processing (SSP) method is another possible candidate

for arrival time estimation [43]. SSP is also based on multi-frequency analysis, and

therefore SSP is also omitted from this investigation for similar reasons.

Three arrival time estimation methods - P2P, FA and XC - were evaluated to find

which method is capable of determining arrival time with the highest precision. The

chosen methodology for this is as follows: a signal is simulated using the previously

presented DPSM method by transmitting a 2 MHz 5 cycle Hann-windowed toneburst

that has been reported to work well with the waveguide transducer [25] into a sample

with a uniform wall thickness of 10 mm. This signal is simulated at 512 MHz sampling

rate. No quantisation error is introduced (other than what is implicit in a double

precision variable), therefore ideal sampling resolution is assumed. It is expected

that the random noise level for a single raw experimentally measured waveform using

a waveguide is approximately -52 dB, therefore -52 dB white Gaussian noise is added

onto the simulated signals. Here, signal to noise ratio is interpreted as the ratio of

the standard deviation of random noise and the maximum amplitude of the signal.

The noiseless simulated waveform and the signal with added noise are shown in

Figure 3.4.

The simulated signal is then filtered and averaged 320 times following the outlined
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Figure 3.4: Simulated waveform using DPSM (green line). Signal with added
−52 dB white Gaussian noise (blue line).
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signal processing protocol. Since it is the repeatability of arrival times that is of

interest, altogether 100 averaged waveforms are simulated using this protocol. These

100 waveforms are then evaluated using all three arrival time estimation methods. It

should be noted that although waveforms are simulated with parameters that are

characteristic of the waveguide transducer (i.e. characteristic SNR and transducer

geometry), it is thought that the comparison of arrival time estimation methods

is not specific to this transducer and the comparison is expected to apply to other

transducers using a different geometry with signal to noise ratios of similar order of

magnitude.

The distribution of calculated thicknesses for all three methods are shown in Figure

3.5 and their standard deviations are shown in Table 3.1. It is clear that the variability

of XC is approximately an order of magnitude lower than any other method, which

is as expected because of its better noise suppression compared to other considered

methods. Because of this, XC is used as the default arrival time estimation method

throughout this thesis.

In addition, it should be noted here that the absolute accuracy of all methods appears

to be comparable. The mean thickness calculated in simulations for XC is 10.065

mm, for P2P it is 10.123 mm and for FA it is 10.175 mm. It is expected that

the small differences come from small biases of each method, which may possibly

be compensated. This is not considered here, since this performance evaluation is
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Figure 3.5: Distribution of calculated thicknesses using all three signal processing
methods for simulated signals. XC thicknesses are shown in blue, P2P results are
shown in green and FA results are shown in red. All distributions are shown for each
method around their corresponding mean calculated thickness.
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STD of arrival time [ps] STD of thickness [nm]
P2P FA XC P2P FA XC
53.9 51.6 3.63 88.1 84.4 5.95

Table 3.1: Standard deviations of time differences between backwall echo and
surface wavepacket in the left three columns. In the right three columns, the standard
deviations of thicknesses are shown. All values calculated for a simulated plate with
a wall thickness of 10 mm and an ultrasonic velocity of 3250 m/s

aimed solely at improving repeatability, and since XC offers the best repeatability,

no further effort is put into evaluating other methods.

3.3.2 Evaluation of Signal Acquisition and Interpolation

It has been demonstrated in the previous section that very high wall thickness

estimate precision is achievable using XC. These simulations however assumed that

signals can be acquired at very high sampling rates without any quantisation error.

In practice however signal acquisition hardware capable of high sampling rates and

quantisation levels may be costly. In addition, signal acquisition hardware has to be

deployed for each permanently installed sensor, and therefore the cost and complexity

of the signal acquisition hardware is expected to be critical. Hence, it is of interest

to investigate how low the parameters of the signal acquisition hardware can be kept

while still maintaining high precision for thickness estimates. This was evaluated

next.

The parameters of the signal acquisition instrument that are considered here are

sampling frequency and maximum number of quantisation levels as both of these

parameters may limit precision. First, limitations associated with sampling frequency

are discussed. The entire frequency spectrum of a toneburst with a centre frequency

of 2 MHz that is used with the waveguide sensor is below 4 MHz, which means

that according to the Nyquist-Shannon sampling theorem 8 MHz sampling rate is

sufficient to avoid aliasing. It should be recognised however, that this finite signal

sampling potentially limits the precision of extracted arrival times as the correlation

functions that are used with XC are calculated with the same sampling frequency

basis as the waveform they are based on. Hence, peaks that are extracted from these

waveforms will also be limited by the sampling frequency. In order to overcome
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this limitation in accuracy, interpolation to increase the potential accuracy of the

extracted arrival times beyond the sampling limit is employed.

A typical interpolation approach is to fit a proxy curve to the function to be

interpolated. The proxy curve can then be differentiated and its peaks can be

determined more accurately than that of the original function. This approach

was adopted by Honarvar et al. [44]. In the report by Honarvar. [44] polynomial

interpolation scheme was used, where the order of the fit and number of points to be

used were parameters that have to be determined based on the system itself.

As an alternative to this approach, an interpolation scheme based on the discrete

Fourier transform (DFT) is described here, which aims to increase the virtual sampling

frequency of signals. As previously stated, the highest frequency component of the

toneburst that is used in this thesis is approximately 4 MHz, therefore a sampling

frequency of just 8 MHz satisfies the Nyquist-Shannon sampling criterion. Once a

signal has been sampled at sampling rate of 8 MHZ or above, it is possible to apply

a DFT to that signal, and zero-pad it in the frequency domain. This zero-padding

explicitly asserts that the unmeasured frequency components are zero. Following this,

an inverse DFT is applied, resulting in an increase of virtual sampling rate [45,46].

The amount of increase in virtual sampling rate is a function of the zero-padding

in the frequency domain: doubling the number of points in the frequency domain

results in doubled virtual sampling frequency in the time domain. This method of

zero-padding in the frequency domain for the benefit of increase in virtual sampling

frequency is referred to as upsampling in this thesis.

It should be recognised that upsampling waveforms to very high frequencies is not

practical. Instead, upsampling is used in combination with interpolation. The signal

processing protocol evaluated here therefore first upsamples a waveform and then

applies a linear fit to its slope to interpolate the arrival of wavepackets.

The performance of this interpolation method is evaluated using various sampling

parameters by simulating signals with DPSM and superposing white Gaussian noise

to achieve an SNR of 52 dB. An example of such a waveform was shown in Figure 3.4.

Once the noise has been superposed onto the signals, they are quantised either with

8bit, 10bit or 12bit precision, as these are thought to be conservative quantisation
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Upsampled No upsampling
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8bit 10bit 12bit 8bit 10bit 12bit
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g 8 MHz 21.9 17.4 18.3

S
a
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p
li
n
g 8 MHz 179 135 131

16 MHz 18.1 11.6 11.4 16 MHz 18.9 12.1 12.3

32 MHz 13.4 8 8.4 32 MHz 14.3 7.9 8.3

64 MHz 10.9 6.4 5.8 64 MHz 10.3 6.4 6.1

Table 3.2: Standard deviation of estimated thicknesses [nm] on a 10 mm thick
simulated sample based on waveforms with 52 dB white Gaussian noise averaged
320 times. The left column shows results with upsampling to 512 MHz, whereas the
right column shows results without upsampling.

levels. Waveforms are simulated at 4 different sampling frequencies: 8, 16, 32 and 64

MHz. Altogether 200 waveforms are generated for each parameter set, each of them

an average of 320 raw quantised waveforms following the defined signal processing

protocol. This process is carried out both with upsampling to 512 MHz, and also

without any upsampling. The resulting standard deviations are shown in Table 3.2.

It can be seem from Table 3.2 that increasing quantisation resolution or sampling rate

are both favourable in all cases. The data in the table also reveals that upsampling

can decrease variability by approximately 80% when sampling frequency is low (8

MHz), but it does not make a significant difference for results at high sampling

frequencies (64 MHz). It is assumed that this is because linear interpolation of slope

is accurate for sampling frequencies of 64 MHz and higher. It is expected therefore

that upsampling to approximately 64 MHz is effective in decreasing measurement

variability, but higher virtual sampling frequencies are of no real benefit.

In order to verify these results experimentally, a Handyscope HS3 (TiePie engineering,

Sneek, Netherlands) was selected for signal generation and acquisition purposes. The

technical specifications of this instrument are as follows: output impedance: 50

Ohm, input impedance: 1 MOhm, output signal amplitude: ±12 V peak-to-peak,

maximum sampling rate for signal generation and acquisition: 100 MHz, quantisation

for signal generation: 14bits, quantisation for signal acquisition: 8bits at 100 MHz

or 12bits at 50 MHz.

Beyond the considerations of the appropriate signal acquisition parameters that have

already been discussed in this section, it is also critical to make sure that various
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impedances in the signal generation circuit allow for efficient signal propagation into

and out of the transducers. The output impedance of the Handyscope is quoted to

be Z = 50 Ohm. The selected waveguide sensor relies on piezoelectric transducers,

which are generally considered high impedance in electric circuits at low frequencies.

At 2 MHz however, the impedance of piezoelectric transducers is expected to be of

the order of Z ∼ 100 Ohm [47]. Although the impedance of the specific piezoelectric

element used for the waveguide sensor has not been characterised, its impedance is

also expected to be of similar order of magnitude. Therefore the sending transducer

can be directly connected to the signal generator of the Handyscope resulting in

good power transfer. Since the impedance of the resulting transduction circuit is of

the order of Z ∼ 150 Ohm, the Handyscope is expected to be able to provide the

necessary power without amplification required i.e. a current of 80 mA= 12 V
150 Ohm

at

its rated 12 V output voltage. As for the receiver piezoelectric transducer, this can be

modelled as a voltage source as a basic approximation [48]. Measuring signals from

the receiver transducer is therefore directly possible using the high input impedance

(Z = 1 MOhm) input channel of the Handyscope.

Using this setup, 100 waveforms were collected, each the average of 320 raw waveforms.

These waveforms were then processed using the signal processing protocol described

in this chapter. The resulting thicknesses are shown in Figure 3.1. In the figure it

is also shown that the standard deviation of the wall thickness estimates is 14 nm,

hence confirming that it is possible to acquire wall thicknesses at this precision using

the waveguide sensor.

In summary, it is concluded that even at very modest sampling frequencies (8 MHz)

and quantisation resolutions (8bits) it is possible to achieve a repeatability of the

order of tens of nanometres (using the 5-cycle 2 MHz centre frequency toneburst).

This was then verified experimentally using a waveguide sensor. Achieving even

higher repeatability is theoretically possible, it is expected that experimental issues,

such as temperature fluctuations, limit repeatability. Increase in repeatability is

therefore not pursued any further with this setup. Instead, the next sections evaluate

whether similar precision can be achieved using sensors other than the waveguide

sensor.
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3.4 Performance evaluation using generic trans-

ducers

The previous sections demonstrated that wall thickness estimates with a variability

of the order of tens of nanometres can be measured using the waveguide sensor with

the signal processing protocol described in this chapter. The protocol that was used

for this is expected to perform well with other transducers as well, but it is of interest

to quantify differences in performance. Different transducers may have different

characteristic SNRs or may be sensitive to different frequency ranges compared to

the waveguide transducer. In this chapter these two variables are investigated. First,

it is quantified how averaging can be used to improve SNR. Secondly, it is evaluated

how the choice of excitation signal frequency affects the precision of estimated wall

thicknesses.

3.4.1 The effect of waveform SNR

The response of the ultrasonic measurement system will always be affected by random

noise regardless of the chosen transducer. It is acknowledged that this measured

noise is inherent in the analogue circuit [49]. In order to investigate how transducers

of various SNR perform in ultrasonic measurements, it is critical to first clarify how

the SNR can be improved in processing and how it affects measurements. As part

of the signal processing protocol discussed here, filtering and averaging is applied

to measured waveforms to mitigate the effect of random noise. The details and

limitations of this are described here.

The frequency spectrum of the toneburst that is used to excite the transducer, such

as the waveguide sensor, in an ultrasonic measurement is relatively narrow, therefore

frequency selective filtering is possible. This is achieved by attenuating the frequency

components of the received signal that are not components of the sent toneburst,

ideally without affecting the frequency components that are intentionally excited.

A 5th order Butterworth band-pass filter is selected for this purpose, also known as

a maximally-flat magnitude filter [50]. As established, a toneburst with a centre

frequency of 2 MHz was selected for the waveguide sensor, therefore the cut-off
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frequencies of the filter are set to be 1.6 MHz and 2.4 MHz. The interested reader

can find the frequency response of the Butterworth filter in [50].

In addition, averaging waveforms is a straightforward approach to attenuate the

components of random noise that are indistinguishable from the components of the

excited signal based on frequency selective filtering. The basic concept of averaging

is simple: measure a large number of waveforms in quick succession, and numerically

average the measured signals. In implementation however, it is difficult to take

advantage of averaging a large number of waveforms, as averaging a large number

of waveforms can take excessively long. This is an issue because the concept of

averaging relies on the assumption of stationary signals, which is increasingly likely

to break down if averaging takes place over longer periods of time. The maximum

time limit over which waveforms are practical to average is not investigated here

however, as this is expected to be highly specific to a given experimental setup e.g.

measuring 320 waveforms to average using the Handyscope takes 21 seconds. Hence

it is assumed that of the order of 300 averages is near the practical limit using the

waveguide sensor in experiments.

A simple way to evaluate performance of averaging is to estimate the improvement

in signal to noise ratio that can be achieved with it. The signal to noise ratio of

raw waveforms acquired using the waveguide sensor is assumed to be 52dB (with

SNR interpreted as the ratio of the standard deviation of noise and the maximum

amplitude of the signal). A large number of waveforms are therefore generated by

adding 52dB white Gaussian noise onto noise-free simulated signals.

Figure 3.6 shows the improvement in SNR using averaging. The SNR of waveforms

is plotted against the number of averages. Using the data on this figure, it is possible

to estimate how raw waveforms with signal to noise ratios other than 52 dB perform

when processed using these techniques. Figure 3.6 shows that the relationship

between the logarithm of averages and SNR is linear with a slope of 10 dB/decade.

This is consistent with the theory that the standard deviation of a random variable

when averaging independent measurements is expected to decrease by the square-root

of the number of averages [51]. As a rule of thumb, it is interesting to note therefore

that if the SNR of the raw signal measured by a different transducer is for example

42 dB (i.e. 10 dB less than the waveguide sensor), the number of averages would
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Figure 3.6: Signal to noise ratio of waveforms acquired with averaging (blue
circles). A linear fit to measured SNRs is also shown (dashed black line).

need to be increased by a factor of 10 to reestablish an SNR of 52 dB.

3.4.2 Thickness STD improvement as a function of SNR

In addition to quantifying how SNR is affected by various transducers and as a

function of averaging, it is also of interest to evaluate how the SNR improvement

translates into improvement of wall thickness estimate precision. This is investigated

in this section.

Similarly to previous sections, here waveforms were generated with 52 dB white

Gaussian noise added. These 5-cycle Hann windowed 2 MHz signals were simulated

with a sampling rate of 64 MHz and quantisation of 12bit. The signals were then

averaged in groups of 2, 4, 8, 16..256 resulting in SNRs of 52, 55, 58, 61..72 dB. Both

band-pass filtering and upsampling to 512 MHz were applied. The waveforms were

then processed using XC. The standard deviation of resulting thicknesses is shown

in Figure 3.7 as a function of SNR.

It has been explained in the previous section that if the SNR of a raw waveform is

decreased, it is possible to increase the number of averages to compensate. Based on

Figures 3.6 and 3.7 therefore it is possible to estimate the precision of wall thickness

estimates using transducers of arbitrary SNR. As an example, consider the waveguide
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Figure 3.7: Standard deviation of thicknesses using XC as a function of SNR
for waveforms acquired using averaging (blue circles) where the excitation signal was
a 5-cycle Hann windowed 2 MHz toneburst. SNR was measured as the maximum
amplitude of the signal divided by the standard deviation of the noise.

transducer in a pitch-catch arrangement, which is capable of acquiring signals of 52

dB SNR. Averaging 320 raw signals an SNR of 76 dB is achieved resulting in a wall

thickness precision of 6 nm.

3.4.3 Alternative Excitation Signal Frequencies

Most transducers are expected to differ from the waveguides not only in their

characteristic SNRs but also in frequency characteristics. It has been explained that

the waveguide is limited to excitation frequencies near 2 MHz. Other transducers

may work well with other frequencies, and hence it is of interest to evaluate what

frequency ranges may result in the most repeatable thicknesses. This section therefore

investigates how the variability of wall thickness estimates changes as a function of

excitation frequency.

An example simulated waveform that can be acquired using a 2 MHz 5 cycle toneburst

as excitation on a 10 mm thick sample is shown in Figure 3.8 using a pitch-catch

setup such as the waveguide sensor. In addition, two more waveforms are also shown,

one acquired using a 0.85 MHz 5 cycle toneburst and another with a 20 MHz 5

cycle toneburst. As can be seen from the figure, frequencies lower than 0.85 MHz
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Figure 3.8: Figure shows 3 ultrasonic signals on a 10 mm simulated sample using
various frequency tonebursts. Top graph was simulated with a 0.85 MHz toneburst,
the middle graph with a 2 MHz toneburst and the bottom graph with a 20 MHz
toneburst.

would result in the wavepackets overlapping when the wall thickness of the measured

component is less than 10 mm and hence are not considered practical for any setup

regardless of transducer.

Frequencies higher than 0.85 MHz however are feasible to use and it is of interest to

see how varying frequency affects the precision of wall thickness precision. To evaluate

this, here a large number of signals were simulated with DPSM using tonebursts of

various frequencies as excitation that were transmitted into a sample with a uniform

wall thickness of 10 mm. The frequency range between 0.85 MHz and 20 MHz was

evaluated here. Signals were simulated with sampling rates of 512 MHz and without

any quantisation error introduced. In addition, white Gaussian noise was added

onto the signals to simulate real behaviour. Three signal to noise ratio values were

investigated: 42,52 and 62 dB. The results of estimated wall thickness variability are

shown in Figure 3.9.

As Figure 3.9 shows, the variability of estimated wall thicknesses decreases with

frequency when signal to noise ratio is constant. It should be noted however that

in practice higher attenuation is typically associated with higher frequencies [52].

Hence, the SNR is expected to decrease with high frequency bursts and as a result
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Figure 3.9: Standard deviation of wall thicknesses using tonebursts of various
frequencies for excitation with signal to noise ratios of 42 dB (shown in red), 52 dB
(shown in green) and 62 dB (shown in blue).

repeatability may not improve. Although the waveguide transducer is limited to using

a 2 MHz toneburst, it is therefore expected that this does not impose a significant

limitation on precision.

3.5 Conclusions

This section has presented a signal processing protocol that can measure ultrasonic

wall thickness at very high precision. One of the key findings of this chapter was

that arrival time estimation is most precise using cross-correlation (XC) which was

therefore used in the protocol. In addition, the effect of averaging on both SNR and

thickness precision was quantified. It has also been shown that it is critical to use an

excitation signal with a centre frequency of 2 MHz or more to avoid the overlap of

wavepackets and maximise precision.

The performance of the final signal processing protocol was demonstrated in experi-

ments using the waveguide sensor. It has been shown that a wall thickness standard

deviation of 14 nm can be achieved in laboratory conditions. Even when the sampling

rate was limited at 8 MHz and quantisation was limited to 8bits a standard deviation

of 21 nm was shown to be achievable.

67



Chapter 4

Uncertainty in Experimental

Measurements

4.1 Introduction

The previous chapter has discussed and evaluated potential error sources in signal

acquisition and processing. Discussion of experimental issues has been limited to those

directly involved in signal acquisition (e.g.: signal quantisation). Within the context

of this thesis, this chapter is aimed at investigating the most common experimental

error sources in order to further increase precision of ultrasonic measurements.

Discussed topics include measurement errors associated with coherent noise, coupling

variability as well as compensation of the effects of temperature.

Coherent noise is the first of the common issues considered here. In ultrasonic

signals coherent noise is frequently caused by imperfect transducers or backscatter

from structural features such as large grains. Coherent noise cannot be reduced via

averaging, as it is stationary. In the experiments performed in this thesis the most

significant source of coherent noise is the imperfect waveguide transducer. The noise

in this case consists of unintentionally excited modes that propagate at different

velocities in the waveguide. Such coherent noise can be observed as a form of tail

after each wavepacket in the signal. As the tail of a preceding wavepacket may not

die down before the next wavepacket arrives, a form of systematic error in arrival
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time extraction may be introduced.

Another error source that was investigated is the variability of coupling to the

sample. In order to provide measurements with as little variability as possible, it

is critical for signals from permanently installed ultrasonic sensors to remain as

constant as possible. It is however relatively difficult to maintain constant coupling

over long periods of time and under different environmental conditions. Sensors may

be expected to operate for multiple years, during which the couplant may dry out or

bonding material may change properties [53]. For the particular case of the waveguide

sensor, dry coupling is used, which is thought to be relatively robust compared to

other coupling techniques. It is expected that differential thermal expansion of the

attachment assembly may still introduce fluctuations in coupling pressure as the

temperature of the monitored component changes. Hence, some changes in coupling

are expected in practice and were investigated.

Beyond error sources specific to the sensor technology that is used, external factors

such as temperature changes of the sample may also introduce error in the mea-

surement. Previous sections have highlighted that temperature compensation is key

to achieve highly repeatable thickness measurements. This section first looks at

calibration curves for temperature compensation for different materials. In order for

the compensation to be effective in application, it is clear that it is critical to measure

the temperature of the sample accurately. Since monitoring high temperature pipes

is an important application for permanently installed sensors, temperature gradients

are expected to be present in the pipe wall. This implies that the outside pipe

surface, where temperature compensation measurements can be carried out, may not

accurately reflect the effective temperature of the full depth of the pipe wall. This

temperature gradient effect may limit the accuracy of temperature compensation

and hence was investigated.

In addition, inner wall surface morphology may also influence the accuracy of

thickness measurements. Uneven inner wall surface geometry, or rough backwall

surfaces, cause distortion in the ultrasonic signal that is reflected from them. Since

ultrasonic measurements rely on this reflection to determine arrival times and the

thickness of the sample, such distortion can significantly increase the variability of

thickness measurements. This interaction is relatively complex however, and was
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therefore investigated separately in Chapter 7.

4.2 Coherent noise

Coherent noise is a common phenomenon that affects ultrasonic signals. For per-

manently installed ultrasonic sensors, backscatter from grains is a typical source of

coherent noise, since spatial variations cannot be taken advantage of [54]. Other

potential sources of coherent noise include imperfect coupling or inherent transducer

limitations such as ringing [55] or multiple modes propagating at different velocities

in a waveguide transducer [25]. This section focuses on the effects of coherent noise

on estimated time of flights regardless of the source of the noise.

An example waveform affected by coherent noise is shown in Figure 4.1.a. This

waveform was measured using the previously described waveguide transducer on a 10

mm thick mild steel sample. In this case, it is apparent that unintentionally excited

modes of the waveguide sensor contribute to the measured waveform between the

main wave packet arrivals. It is also apparent in Figure 4.1.a. that very little noise is

measured before the surface wave, it is therefore concluded that these unintentionally

excited modes propagate slower than the signal itself, therefore coherent noise in this

example appears as a tail after each wavepacket.

In order to investigate this behaviour, a simple simulation model was used. First, a

pulse-echo measurement is carried out using a single waveguide without a sample

attached. A waveguide transducer with a SNR of 16 dB has been selected for this.

This SNR value was measured as the maximum amplitude of the pulse echo reflection

divided by the maximum amplitude of coherent noise measured 2.5 cycles after

the main arrival in the same waveform (shown in blue in Figure 4.1.a.). This is

thought to result in relatively conservative error estimates, since it has been reported

that 30 dB or better SNR is usually achieved using the waveguide transducer [24].

The result of a pulse-echo measurement is a wavepacket that has travelled in both

directions in the waveguide. The recorded signal therefore contains a wavepacket

that is followed by a coherent noise tail. This waveform is then superposed onto

itself with scaled amplitude and an arbitrary time-shift applied. This simulates the
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behaviour of a surface and backwall echo reflection that would be expected as a

result of thickness measurement. Since the time shift can be controlled, the effective

underlying synthetic thickness of the sample can be precisely set and compared to

thickness values estimated by signal processing.

This model was set up to scale the backwall echo wavepacket to 150% of the surface

wavepacket amplitude. Time shifts were applied to represent a synthetic thickness

range of 4− 12 mm by assuming a propagation velocity of 3250 m/s. An example

waveform is shown in Figure 4.1.b. Waveforms were generated starting with the

largest timeshift equivalent to a synthetic thickness of 12 mm. Following this, 200

more waveforms were generated simulating a synthetic thickness loss of approximately

37 µm per step. Once waveforms were simulated, XC was applied to calculate arrival

times, following which thicknesses were estimated.
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Figure 4.1: a) shows a waveform recorded with the waveguide sensor setup in
pitch-catch mode. b) shows a waveform synthesised by superimposing two copies
of a pulse-echo waveform shown in c). Therefore the surface and backwall echo
wavepackets of b) are identical but horizontally offset and vertically (amplitude)
scaled. On all three figures coherent noise is shown in blue.
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Figure 4.2: a) shows the absolute thickness error of estimates as a function
of synthetic thickness. b) shows the normalised wall thickness loss rate error as a
function of synthetic thickness.

Comparing the synthetic thicknesses to the estimated thicknesses, the maximum

disagreement across the whole simulated thickness range was 6 µm as shown in Figure

4.2.a. This error is very small, and it is expected that other sources of variability

are more limiting to absolute thickness accuracy. Therefore in this thesis absolute

thickness error caused by coherent noise is assumed to be negligible.

Corrosion rate is often also desired and so the estimation of slope error is also

important. Hence, the wall thickness loss rate error was calculated by normalising

the error with the analytically calculated loss rate according to the following equation:

r =
ra − rm
ra

(4.1)

where r is the normalised wall thickness loss rate error, ra is the pre-set synthetic

wall thickness loss rate of 37 µm per step and rm is the estimated wall thickness

loss rate between consecutive steps. The normalised wall thickness loss rate error

is displayed in Figure 4.2.b. It can be seen from the figure that up to 6% error is

expected. This error however is expected to apply only in the worst case for small

amounts of wall thickness loss (< 0.3 mm) as can be seen on the figure.

The SNR of the waveguide selected for this investigation is assumed to be relatively

poor, and so it is expected therefore that this error estimate is the worst case

scenario. It should also be noted here that even though this result is specific to the
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measurement system relying on the waveguide transducers, it is thought that such a

simple protocol can be applied to any system affected by coherent noise in order to

evaluate its effects.

4.3 Changes in coupling geometry

4.3.1 Problem statement

Long term stability of measurements is critical for permanently installed sensors. A

typical issue over long periods of time is the stability of the transducer coupling.

Dry-coupling is expected to be more stable compared to the more common bonded

coupling. Over the course of multiple years however, dry coupling may still be subject

to small changes. Such changes are expected to be a long term result of temperature

variations, both as seasons change and as the operating temperatures of pipes vary.

This is because differential thermal expansion of various materials (i.e. studs welded

to the pipe, coupling clamp and the waveguides) in the sensor coupling assembly

may alter coupling pressure.

Changes in the ultrasonic signal are therefore expected over time. First, simulations

were carried out to see how subtle changes to coupling may affect the ultrasonic

signal. Then the results of simulations were compared to experimental measurements

on a compression testing machine.

4.3.2 Simulations

Coupling stability issues associated with differential thermal expansion are expected

to affect most dry-coupled sensors. Although the concept is generic, presented

quantitative results are specific to the waveguide sensor that was chosen as an

example geometry. In order to clarify how the waveguide sensor is coupled onto

samples, the cross-sectional geometry of the sensor is shown in Figure 4.3.b. For

additional context, Figure 4.3.a. shows an isometric view of the relatively complex

coupling assembly. Two studs are welded on the specimen, onto which the coupling
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assembly of the sensor is placed. By tightening nuts on the welded studs, the coupling

pressure of the sensors can be adjusted.

As shown in Figure 4.3.b., when the sensor is coupled, contact between transducers

and sample is made via an approximately 0.5 mm by 12 mm contact patch. It is

expected that increasing coupling pressure caused by differential thermal expansion

will cause the tip of the transducers to deform. As a result, the effective contact

patch width of 0.5 mm is expected to grow wider. It is not expected to exceed 1 mm,

the width of the transducer itself. The 12 mm dimension is expected to change by

approximately the same amount, resulting in 12.5 mm long contact patch. However,

this is expected to have far less significant effect on the beam spread when compared

to the change in the width of the transducer from 0.5 mm up to 1 mm and hence its

effect is ignored.

In order to evaluate how contact patch changes influence the ultrasonic signals,

DPSM simulations were carried out on a 10 mm thick sample block. It was assumed

that the separation of the waveguides remains constant and that parameter df (shown

dw

d

df

a) b)

a hw

Force

View b)

Waveguide
transducers

Contact patchSample

Coupling
assembly

Figure 4.3: Figure a) shows the coupling assembly of the waveguide sensor
highlighting that studs (shown in red) are used to force the sensor onto the sample.
Figure b) shows the cross-section of the two waveguide transducers from the angle
shown in a). The separation between the transducers is d = 2 mm, the width of a
single transducer is dw = 1 mm, the width of the horizontal contact interface of the
waveguide is df , the angle of the chamfer is a = 11o and the height of the chamfer
is hw ≈ 0.1 mm. Initially, df is 0.5 mm for an undeformed waveguide transducer.
However, as the transducer tip is coupled in a stress state near yield, small variations
in coupling forces can result in plastic deformation. As a result, the contact patch
may potentially grow as large as df = 1 mm.
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Figure 4.4: The red line is a simulated waveform for a sensor where both
waveguides are coupled along a 0.5mm wide contact patch. The black line is a
simulated waveform for a contact patch width of 1mm. In both cases a 2 MHz 5-cycle
toneburst as was used as excitation

in Figure 4.3.b.) varies from 0.5 mm to 1.0 mm. Example simulated waveforms are

shown in Figure 4.4. It can be seen from the figure that as the contact patch widens

the amplitude of the backwall echo wavepacket increases. The amplitude of the

surface wavepacket decreases however. This is because as the contact patch of the

transducer grows to 1 mm, its size becomes comparable to the 1.6 mm wavelength

of the 2 MHz burst excited in the specimen. Hence with a wider contact patch,

the wave that is excited will be more collimated and so less energy will propagate

horizontally. Once the waveforms were simulated, they were filtered and arrival

times were extracted using XC. The arrival times of the surface and backwall echo

wavepackets were then used to estimate the thickness of the simulated sample. The

resulting estimated thicknesses are shown in Figure 4.5 as a function of simulated

contact patch width. It is apparent from the figure that up to 0.1 mm thickness

error may be introduced by changing the width of the contact patch.
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Figure 4.5: Plot shows estimated thicknesses for various contact patch widths
based on arrival time extraction with XC from simulated ultrasonic signals with a 2
MHz 5-cycle toneburst as excitation using Equation 4.2 to calculate the thickness
and an ultrasonic velocity of 3250 m/s (as used in the DPSM simulation).

4.3.3 Experimental verification

The results obtained via simulations of various contact patch sizes indicate that

the accuracy of estimated thicknesses may vary by as much as 0.1 mm depending

on contact patch size. This result was achieved by evaluating the full range of

geometrically feasible contact patch sizes. The aim of this section is to experimentally

verify that the assumed range of contact patch sizes is realistic. In order to do this,

a forced deformation measurement was set up using an Instron compression testing

machine shown in Figure 4.6. The experimental data presented here was jointly

measured and evaluated by Balint Herdovics and I.

The Instron machine was used to apply compressive load onto the sensor assembly

and to measure the displacement of the attachment assembly while applying that

load. Figure 4.7.a. shows the extension-load plots of 5 loading cycles applied with

3kN, 4kN, 5kN, 6kN and 7kN maximum compressive load. Each of these load

cycles were repeated 5 times. These specific load values were chosen as they are

representative of what is expected during sensor installation. It is apparent from

the figures, that as maximum load increases, the remnant compressive extension at

zero load increases as well, which indicates plastic deformation of the waveguide

sensor. At 7kN compressive load, the vertical plastic deformation of the system is

approximately 0.3 mm. The majority of this plastic deformation is assumed to be at

the contact tip of the waveguide sensor.
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Figure 4.6: a) shows the Instron machine setup. Here, the waveguide sensor is
inside a cylinder that is used to apply compressive load. b) shows how this load is
applied and how the waveguide sensor is positioned inside the cylinder. Here red
arrows are used to emphasise how compressive load is applied. In this setup both
compressive load and compressive extension are measured at the load cell shown in
a).

During the measurement, ultrasonic signals were also recorded continuously. The

amplitude of the measured signals are shown in Figure 4.7.b. It is observed that at a

given compressive load, signal amplitude is highest if the sensor had been previously

exposed to even higher loads. The plastic deformation and the continuously increasing

signal amplitude suggest that the contact patch size does increase as compressive

coupling load is applied. In addition, it is also noted that increasing load above

6kN does still introduce further plastic deformation, but it does not further increase

signal amplitude. It is therefore inferred that the maximum contact patch width of 1
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Figure 4.7: a) shows the compressive load-extension graph for the waveguide
sensor. b) shows the amplitude of the backwall echo amplitude of the received
signals. Compression cycles to different maximum loads are shown by different
colours. Magenta shows cycles with a max. load of 3 kN, red with 4 kN, green with
5 kN, blue with 6 kN and cyan with 7 kN max. load. 5 cycles are shown for each of
the 5 maximum load values and so 25 compression cycles are shown in total.
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Figure 4.8: Wall thickness estimates using XC (with a 2 MHz 5-cycle toneburst)
for the waveguide sensor during the compression testing. Colours shown here
correspond to those in Figure 4.7.a. and b.

mm is reached at approximately 6kN compressive load.

In order to quantitatively compare these findings with the simulated data, the

thicknesses were estimated based on the experimentally measured waveforms. The

estimated thicknesses are plotted against compressive load in Figure 4.8. It can

be seen from the figure that the overall range of thicknesses is approximately 0.1

mm (between 9.76 mm and 9.86 mm), which is in agreement with the simulated

results. It is therefore concluded that the initial hypothesis that the contact patch

may vary as a function of compressive load is correct. Furthermore it can be seen

that by coupling the sensor to a compressive load of 7kN at first attachment and

then loosening it to 5kN may result in the most stable thickness estimates. This

means that ±2 kN load variations may result in minimal thickness variations (of the

order of ∼ 10 micrometers).
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4.4 Effects of temperature

4.4.1 Calibration measurements

It is well known that ultrasonic propagation velocity varies as a function of tempera-

ture [25, 56]. Temperature variations of just 20 oC are expected to cause ultrasonic

propagation velocity changes of the order of 0.5%. Similar temperature variations

in some cases may occur over short periods of time, caused by process condition

changes or even daily temperature variations. If uncompensated, such temperature

changes are expected to skew both short and long term corrosion rate estimates. In

order to minimise the effect of temperature on ultrasonic measurements, temperature

compensation is investigated in this section.

Since ultrasonic propagation velocity changes are being considered, it should be

noted that ultrasonic propagation velocity is also a function of material constants,

as explained in Chapter 2. It is therefore expected that the ultrasonic propagation

velocity-temperature curve will differ for various materials. Accurate calibration

curves however are not well reported in the literature. In this thesis a selection of

steel alloys were evaluated in order to assess the extent to which variability can be

expected. Altogether 6 steel alloys were selected for this purpose. Their composition

is summarised in Table 4.1.

A sample of each of these 6 alloys was selected and a waveguide sensor was coupled

onto each of them. A K-type thermocouple was then spot welded onto each of the

samples 10 mm from the contact patch of the ultrasonic sensor. The quoted accuracy

Grade
C [%]

(max)
Mn [%]

P [%]

(max)

S [%]

(max)

Si [%]

(max)
Ni [%] Cr [%] Mo [%]

Thickness

[mm]

S275 0.25 1.6 0.05 0.05 0.05 - - - 9.98 ± 0.005

304 0.08 2 0.04 0.03 1 8-11 18-20 - 9.84 ± 0.005

316 0.08 2 0.04 0.03 0.75 14 16-18 3 9.65 ± 0.005

Cr 12 0.04-0.17 0.40-0.65 0.04 0.04 0.15-0.40 - 0.80-1.15 0.45-0.60 9.67 ± 0.005

Cr 5 0.15 0.30-0.60 0.04 0.03 0.5 - 4.00-6.00 0.45-0.65 10.17 ± 0.005

Cr 9 0.15 0.30-3.60 0.03 0.3 1 - 8.00-10.0 0.90-1.10 9.59 ± 0.005

Table 4.1: Composition of steel alloys selected for temperature compensation
calibration. Thicknesses of the samples were measured using a micrometer (0.01mm
precision).
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of the thermocouples was 1 oC, whereas the standard deviation of their temperature

readings was measured to be ∼ 0.05 oC. This is equivalent to a thickness estimate

standard deviation of 100 nm for a 10 mm thick component. The samples were

then placed into a furnace (Model: Elite BSF12/27, Max. Temp.: 1200 oC, Max.

Power: 5 kW) where they were slowly heated from room temperature to 450 oC

with a heating rate of 1 oC per minute. This slow heating rate was chosen to allow

the samples more time to reach a uniform temperature distribution throughout the

sample, resulting in more accurate temperature measurements. In order to avoid

the transient coupling effect of the transducers explained in Section 4.3, this heating

cycle was repeated 3 times for all samples with the intention that only the 3rd cycle

is to be used for calibration measurements.

During the heating cycles, ultrasonic measurements were also carried out. The arrival

times for the measured waveforms were estimated using XC. Thermal expansion is

ignored here, and so the thickness of the samples is assumed to be constant (see

below), therefore the previously introduced thickness equation can be inverted to

estimate propagation velocity at all temperatures using the arrival times from the

measured waveforms.

T2p =
1

2

√
c (t1 − t2) (−2d− c · t2 + c · t1) (4.2)

c =
d−

√
d2 + 4T 2

2p

t1 − t2
(4.3)

where T2p is the thickness calculated using the arrival times of the surface and

backwall echo wavepackets, c is the propagation velocity of the ultrasonic wave, t1 is

the arrival time of the surface wavepacket, t2 is the arrival time of the backwall echo

wavepacket and d is the separation between the transducers. Equation 4.2 is the

previously introduced equation for estimating thickness. Equation 4.3 is the result

of inverting Equation 4.2 for calculating ultrasonic propagation velocity based on

the arrival times and the thickness.

Note, that this inversion assumes that the thickness is constant, and so ignores thermal

expansion of the sample that causes the thickness to change with temperature. This

also implies, that once the velocities are calculated and are used for temperature

compensation, the calculated thicknesses will not change as a function of temperature.
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Figure 4.9: Temperature calibration curve for S275 (blue line), 304 (green line),
316 (magenta line), CR 12 (cyan line), CR 5 (yellow line) and CR 9 (black line)
alloys. The curves are shown for all samples for the 3rd heating cycle. The curves
are shown both for heating up and cooling down.

This formulation is preferred, since the thickness change caused by thermal expansion

is only temporary, and does not cause any permanent wall thickness change, whereas

it is only permanent wall thickness loss that is of interest in this thesis.

Based on this equation the ultrasonic propagation velocity can be estimated and

plotted against measured temperature. Figure 4.9 shows results of the 3rd heating

cycle for all samples, including heating up and cooling down. As shown on the figure,

the hysteresis between heating up and cooling down is small - less than ∼ 0.2% for all

samples. It is therefore assumed that coupling changes do not significantly influence

these measurements and the coupling is stable. This also indicates that the heating

was slow enough to avoid any significant temperature hysteresis. It is also apparent

from the results that over the temperature range of approximately 400 oC a velocity

drop of close to 10% is observed for all investigated materials. This qualitatively

agrees with previously reported values [25,56]. Therefore these measurements are

expected to be accurate.

As outlined above, one of the aims of this section is to establish the range of

variability between calibration curves of various alloys. As can be seen from Figure

4.9, differences in some cases are significant. The largest offset between curves (CR9

and 316) was found to be of the order of 10%. It is concluded here that using the
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appropriate calibration curve is therefore critical.

Since the full calibration data is available for this thesis, these calibration curves are

used directly in order to maximise accuracy. It is not practical however to report

the large number of measurements as a reference. Instead, the calibration curves are

approximated by means of polynomial fits, so that they can be concisely summarised

by only a few variables. Typically ultrasonic propagation velocity-temperature

calibration curves are approximated by linear fits [25]. Since the measurements

reported here are more repeatable than what is typically available in the literature,

quadratic fits have also been applied to the measured curves. The overview of linear

fits is shown in Table A.1 whereas the overview of quadratic fits is shown in Table

A.2 in the Appendix. These tables describe both the parameters of the fits and the

maximum error that is caused when using the fit.

In summary, linear fits may result in estimated ultrasonic propagation velocity

errors as large as 12 m/s (∼ 0.4%) whereas the maximum error introduced by the

quadratic fit is 3.75 m/s (∼ 0.1%) over the whole temperature range (20 oC to 400

oC). It is therefore concluded that quadratic fits provide more accurate fits and are

recommended instead of the the standard linear fit.

4.4.2 Temperature gradients

As described in the previous section, temperature compensation is critical for accu-

rate wall thickness and wall thickness loss rate estimates. In order to successfully

implement temperature compensation, temperature calibration measurements were

first carried out. These measurements were carried out in a furnace, where heating

was chosen to be slow and uniform. This allowed for accurate temperature readings,

which could then be linked to changes in ultrasonic propagation velocity. In field

applications however, where temperature readings are used for the inverse problem,

the temperature measurements typically have to be performed in less controlled

conditions.

A typical limitation in field conditions is non-uniform heating. An example of this can

be pipes of petrochemical plants that are ultrasonically monitored. Pipe temperatures
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Figure 4.10: Figure shows high temperature fluid and low temperature air
surrounding the pipe wall, which result in a non-uniform temperature distribution
within the pipe wall.

have to be monitored in order to apply accurate temperature compensation. Such

pipes often carry high temperature fluids. Because of this, a temperature gradient can

exist within the pipe wall, where the inside surface of the pipe is higher temperature

compared to the outside of the pipe, commonly surrounded by air. Since it is only the

outside of the pipe that is accessible for temperature measurements, the temperature

gradient within the pipe wall is difficult to estimate. This phenomenon is expected

to affect pipes, pressure vessels or other containers where the temperatures within

said containers are different from the ambient temperature. It is not clear however,

how large an error is introduced if this gradient effect is ignored and the temperature

compensation is implemented by assuming that the outside surface temperature is

accurate.

In order to investigate this, a 1D transient heat propagation simulation was used to

study the phenomenon, a sketch of which is shown in Figure 4.10. This simulation

models the system by assuming that heat is transferred between the fluid and

the inner pipe wall surface via convection and heat is transferred within the pipe

wall via conduction. The interaction between the outer pipe surface and air is

modelled as heat convection. It is assumed in the simulation that initially the

system is in equilibrium and all points of the system (fluid, pipe and air) are at

a uniform 20 oC temperature. Following this, the fluid is heated up linearly to

a higher temperature which is then kept constant until the end of the simulation.

The temperature of air is kept constant throughout the simulation. An example

of such a transient temperature evolution is shown in Figure 4.11.a. The variables

therefore that describe this transient temperature evolution are the heating rate

Q and maximum temperature difference (∆Θ). Heating rates from Q = 6 − 2000
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oC/min were investigated. For ∆Θ, values from 10 oC to 380 oC are evaluated.

In addition to the predefined temperature changes, the remaining variables are defined

here. The only geometric parameter of the system is pipe thickness T , for this values

of 5 mm,10 mm and 20 mm are simulated. In order to describe the heat conduction

within the pipe, the heat transfer coefficient of the pipe material is assumed to be

k = 50 W
m·K [57–59] and its heat diffusivity is assumed to be α = 1.4 · 10−5 m/s [59].

These are thought to represent the heat transfer parameters of carbon steel [57–59].

Parameters describing convection are subject to more variability. Conditions, such

as flow rates and fluid turbulence within the pipe may influence the rate of heat

convection from fluid to pipe. Similarly, insulation on the outside of the pipe or

wind conditions may influence the rate of convection on the outside surface of the

pipe. Hence, for heat convection coefficients the following ranges of values were

investigated: ha = 1− 20 W
m2K

, hw = 50− 1000 W
m2K

where ha is the heat convection

coefficient between the pipe and air, and hw is the heat convection coefficient between

the fluid and the pipe. The simulation was set up using the defined parameters was

carried out as described by Simonson et al. [60].

The results of an example simulation are shown in Figure 4.11.a. and b. The
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Figure 4.11: Top graph shows the temperature evolution of a simulated T = 10
mm thick sample. Variables for this simulation were: ha = 20, hw = 80,∆Θ = 10 oC
and heating rate = 6 oC/min. Bottom graph shows maximum error by assuming
surface temperature (METEST) as well as the steady state error by assuming surface
temperature (SETEST).
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most interesting metric on these plots is the effective temperature error by assuming

surface temperature (ETEST) shown as a black line. ETEST quantifies the difference

between the outside surface temperature of the simulated pipe and the effective

temperature averaged along the ultrasonic wavepath. Because of this, ETEST is the

source of error in temperature compensation at any given time in the simulation. The

most notable features of the ETEST plot are the maximum transient error (METEST)

and the steady state error (SETEST). Instead of showing the full transient plots for

all parameter combinations, only METEST and SETEST are used to describe the

error introduced by the 1D heat gradient.

Steady state effective temperature error by assuming surface temperature

(SETEST)

Firstly, the steady state error (SETEST) is considered here. Since steady state error

(SETEST) is not a function of the heating rate, the only parameters of the heat

propagation model it is expected to depend on are T , ∆Θ, ha and hw. Therefore

simulations have been carried out with all predefined parameter values for these 4

variables. Before the data is presented however, some simplifications are made here

to present this 4 dimensional dataset concisely.

It is noted here that the steady state error (SETEST) is directly proportional to

∆Θ for all simulated parameter sets. In other words, if ∆Θ is doubled, the steady

state error (SETEST) will double regardless of any other parameter value. The error

introduced in steady state error (SETEST) by this linear fit is negligible compared to

the simplification of the simulation itself and is of the order of 0.05%. It is therefore

sufficient to plot steady state error (SETEST) results for one particular ∆Θ value,

since the interested reader can easily calculate other relevant steady state error

(SETEST) values.

In addition to ∆Θ, the steady state error (SETEST) is close to proportional to the

thickness for all simulated parameter sets as well. Similarly to ∆Θ, if the thickness

is doubled, the steady state error (SETEST) will double as well regardless of any

other parameter value. Here, the linear fit is less good and may introduce up to 39%

error in estimated steady state error (SETEST) values.
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Figure 4.12: Estimated steady state error (SETEST) values in degrees C for
a 20 mm thick pipe. The maximum temperature difference in the simulation was
∆Θ = 380 oC. Results can be scaled for other thicknesses and ∆Θ values as described
in text.

For ha and hw variables no such simplifications are made. Hence, the results of

estimated steady state error (SETEST) values are plotted in Figure 4.12 as a function

of both ha and hw. The plot shows that with ∆Θ = 380 oC and T = 20 mm, the

maximum plausible steady state error is approximately 1.4 oC. Errors for other T

and ∆Θ values can be approximated linearly by SETEST (ha, hw) · T
20 mm

· ∆Θ
380oC

where SETEST (ha, hw) is the relevant error value directly from Figure 4.12. Based

on the ultrasonic propagation velocity-temperature calibration curve established in

the previous section this results in about 0.025% propagation velocity error. This is

also equivalent to a thickness error of 5 µm for a 20 mm thick pipe for ∆Θ = 380 oC.

Maximum transient effective temperature error by assuming surface tem-

perature (METEST)

In addition to the steady state error (SETEST), the maximum transient error

(METEST) is also evaluated here. METEST is expected to be a function of the

already established 4 variables T,∆Θ, ha and hw as well as the heating rate Q. Since

there are 5 parameters that influence the maximum transient error (METEST), it is

even more difficult to concisely present an overview of the simulated dataset. It is

86



4. Uncertainty in Experimental Measurements

ha

h
w

Maximum transient error for thickness = 20mm; ∆Θ = 380oC, Q = 228.00oC/min

1 3 5 7 9 12 14 16 18 20

50

156

261

367

472

578

683

789

894

1000

E
ff

ec
ti

v
e

te
m

p
er

a
tu

re
er

ro
r

[o
C

]

2

3

4

5

6

7

8

9

10

11

12

Figure 4.13: Estimated maximum transient error (METEST) values for a 20 mm
thick pipe. The maximum temperature difference in the simulation was ∆Θ = 380
oC. The heating rate was 228 oC/min

expected that the effect of T and ∆Θ on the maximum transient error (METEST)

are both close to linear, and so the maximum transient error (METEST) is plotted

only against the remaining 3 parameters. Results are therefore shown on three

separate figures: Figure 4.13 in this section, whereas Figures A.1 and A.2, are found

in the Appendices.

In order to approximate the behaviour of T and ∆Θ, their effect is estimated by

linear fits the following way:

METEST (ha, hw, Q, T,∆Θ) = METEST (ha, hw, Q, 20mm, 380oC)·

· ∆Θ

380oC
· (at1 · T + at0) (4.4)

where METEST (ha, hw, Q, T,∆Θ) is the maximum transient error value being

estimated, METEST (ha, hw, Q, 20mm, 380oC) are values from Figures 4.13, A.1 and

A.2, whereas at1 and at0 are parameters of a linear fit. With values at1 = 5.55 · 10−2

and at0 = −1.091 · 10−1, the maximum transient error value can be estimated to

an accuracy of 92%. This means that maximum transient error (METEST) values

estimated via Equation 4.4 may be up to twice as large or half of the real values.
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It can be seen from Figure 4.13 that transient errors of the order of 10 oC may

feasibly occur if assuming that temperature measured on the outside surface of a

pipe is accurate to compensate ultrasonic thickness with. Based on the ultrasonic

propagation velocity-temperature calibration curve established in the previous section

this results in about 0.2% propagation velocity error. This is also equivalent to a

thickness error of 40 µm for a 20 mm thick pipe.

4.5 Summary

This chapter has discussed and evaluated common experimental error sources in

ultrasonic wall thickness measurements. Measurement uncertainties associated with

coherent noise, coupling variability and temperature effects have been investigated.

The introductions and descriptions of these error sources were kept general, in order

to be applicable for a range of ultrasonic applications regardless of hardware choice.

Quantitative results were presented for a specific sample application, the waveguide

sensor that is used throughout this thesis.

It was found that coherent noise pattern specific to the waveguide transducer does

not significantly limit the absolute accuracy of ultrasonic thickness estimates. The

absolute wall thickness error caused by coherent noise was shown to be less than

6 µm using a waveguide transducer with a signal to noise ratio of 16 dB. This is

considered to be the worst case scenario, as 30 dB is thought to be usually achievable

using waveguides. It was also found that wall thickness loss rate estimates may be

skewed by up to 6% as a consequence of coherent noise using the same 16 dB SNR

transducer. This was accepted as one of the limitations of wall thickness loss rate

estimation using waveguide sensors.

Coupling uncertainties were shown to introduce a wall thickness estimate variability

of up to 0.1 mm. This variability however would self regulate after temperature

cycling during normal operation of the inspected component. Alternatively, coupling

to a load of 7 kN and then reducing load to 5 kN the sensor while it is being attached

would also stabilise coupling and would eliminate associated variability.

The effects of temperature on ultrasonic wave propagation velocity have also been eval-
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uated. It was determined based on previous reports that temperature compensation

is necessary, as even small temperature variations (∼ 10 oC) can introduce significant

errors in wall thickness and wall thickness loss rate estimates. For reference, ∼ 10 oC

temperature error would introduce a thickness error of approximately 20 µm on a 10

mm thick sample. Because of this, first the variability of temperature measurements

was estimated. It was found that with a K-type thermocouple temperature of the

sample can be measured with a standard deviation of ∼ 0.05 oC, which is equivalent

to a thickness estimate variability of 100 nm for a 10 mm pipe. This error is relatively

large compared to the error due to random noise and signal processing techniques

alone. It is therefore concluded that the limiting factor of wall thickness estimate

repeatability is the error introduced by temperature compensation.

Furthermore, it was found that temperature measurements may in some cases be

limited in accuracy because of non-uniform temperature distribution within the

pipe wall. Pipes which carry high temperature fluids were investigated as they were

thought to be a typical example of this phenomenon. This is because such pipes are

exposed to different temperatures on their internal and external surfaces, and so a

1D temperature distribution exists within the pipe wall. Temperature readings are

only accessible from the outside surfaces of pipes however, these are not an accurate

approximation for the the effective temperature along the ultrasonic wavepath. It

was found that as a result of such temperature gradients, temperature compensation

errors may be as large as 10 oC during transients for a 20 mm thick pipe with

∆Θ = 380 oC and Q = 228oC/min (equivalent to 40 µm error for a 20 mm thick

component) and up to 1 oC in steady state with ∆Θ = 380 oC (equivalent to 4 µm

error for a 20 mm thick component).
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Chapter 5

Ultrasonic Measurements During

the Corrosion Process

5.1 Introduction

Previous chapters of this thesis have discussed techniques to maximise the precision

of ultrasonic wall thickness monitoring. Although many of the possible sources

of error were investigated separately, the performance of the whole permanently

installed ultrasonic monitoring system has not been verified experimentally, which

is therefore the motivation of this chapter. Since corrosion monitoring is one of

the possible applications of ultrasonic monitoring, this section compares predicted

corrosion rates in controlled laboratory corrosion experiments to ultrasonic wall

thickness loss estimates.

This chapter therefore first introduces key concepts that are essential for inducing

corrosion in a controlled way. As part of this, two rig designs are proposed for inducing

corrosion. First, forced corrosion is evaluated, which allows for quick confirmation of

ultrasonic monitoring accuracy. Secondly, an unforced corrosion rig was constructed,

which was expected to result in more realistic corrosion environments and rates,

however these are then more difficult to control.

Some of the material described in this chapter has been published before as conference

proceedings in [P3] and [P6].
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5. Ultrasonic Measurements During the Corrosion Process

5.2 Theory of corrosion

Corrosion by definition refers to metal loss, which most commonly occurs by oxida-

tion [61,62]. Many papers and books have been dedicated to evaluate and describe

corrosion, a small selection of which is referred to here [61–65]. Within the petro-

chemical industry alone there are wide range of forms that commonly occur, such as

naphthenic acid corrosion [2], sulfidic corrosion [1], hydrochloric acid corrosion [1],

etc. The complexity of contributing factors (e.g. pH, temperature, electrolyte con-

stituents, flow rate of electrolyte) associated with corrosion is large, and it is often

difficult to give accurate quantitative estimates of corrosion based on electrochemical

considerations alone.

Instead of characterising various forms of corrosion, this section aims to induce

corrosion as simply as possible. By minimising variables, corrosion becomes more

predictable and controllable. This then allows for straightforward verification of

the ultrasonic thickness measurements, by comparing them to electrochemically

predicted corrosion rates.

5.2.1 Basic corrosion process

Mild steels are some of the most affordable steels [66], and therefore are frequently

used for a variety of applications [66,67]. They have long been known to be susceptible

to various forms of corrosion [68], but their use still remains economically viable and

they are used as pipe material. This is because their degradation can be anticipated

and predicted and continuously improving corrosion monitoring capabilities help

extend the lifetime of such pipes. Hence, mild steel samples are used in this thesis

for corrosion experiments, as it is a relevant material and corrosion can be easily

induced.

The largest fraction of mild steel is iron Fe and the oxidation of Fe is the most

important reaction that characterises metal loss. This oxidation reaction is described

by the following equation:

Fe −−→ Fe2+ + 2 e− (5.1)

91



5. Ultrasonic Measurements During the Corrosion Process

Figure 5.1: Cross-section of forced corrosion rig. Induced corrosion is proportional
to the current applied between cathode and anode.

In electrochemical terms, this reaction takes place at the anode, which in this chapter

is a mild steel sample that is being corroded. The most straightforward approach to

force this reaction is to apply a current across an electrolyte from a counter electrode

(cathode) to the sample of interest, which thereby is expected to induce corrosion.

In order to experimentally verify this, a corrosion rig was built. This is shown in

Figure 5.1.

The operation of the rig is depicted on a diagram shown in Figure 5.2. First a

permanently installed waveguide sensor is coupled onto a mild steel sample. Using the

PC

Potentiostat

Handyscope

Ultrasonic sensor

Forced
corrosion rig

Reservoir

Figure 5.2: Diagram of forced corrosion rig. Dashed lines show electrolyte
tubing and dotted lines show electrical connections.
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5. Ultrasonic Measurements During the Corrosion Process

signal acquisition and processing protocol described in previous chapters, ultrasonic

wall thickness measurements are initiated and carried out throughout the experiment

with a Handyscope HS3 (TiePie engineering, Sneek, Netherlands). A controlled

area of the sample below the footprint of the ultrasonic sensor (diameter=21.3 mm,

area=452 mm2 sealed with an O-ring) is exposed to an electrolyte that is pumped

through the cell. By applying a current between a cathode and the sample using

an Elektro-Automatic PS 8000 DT power supply (Viersen, Germany), corrosion is

forced on the exposed area of the sample. The advantage of forcing corrosion in this

fashion is that induced corrosion is proportional to the current applied on the sample

assuming that the corrosion is uniform across the surface. Since thickness loss is

proportional to the current, it can be calculated by Faraday’s law:

Corrosion Rate
[m

s

]
=

MFeI

2FAρFe
(5.2)

where MFe is the molar mass of iron, I is the forced current, F is Faraday’s constant,

A is the exposed area of the sample and ρFe is the density of iron. Specifically for

the setup used, this equates to Corrosion Rate[ mm
year

] = 2570.8 I ≈ 2500 I.

5.2.2 Unforced corrosion

Forcing corrosion by applying current allows for accurately controllable wall thickness

loss, it is therefore expected to be useful for verifying the accuracy of ultrasonic

wall thickness loss measurements. In forced corrosion experiments, the induced

corrosion rate will necessarily be higher than what would naturally occur because of

the applied current. Hence, a second set of experiments is proposed, which relies on

a corrosive electrolyte to induce corrosion. Here, a corrosive substance (e.g.: citric

acid) is dissolved in distilled water in order to induce corrosion. The concentration of

the solution is the only control mechanism this setup has, since the corrosion current

depends on the degree to which the electrolyte promotes oxidation of the surface.

In these experiments the rate of corrosion is not directly controlled, an alternative

method of corrosion rate prediction is hence required. Linear polarisation resistance

(LPR) measurements are commonly used for estimating corrosion current [69]. This

technique is based on the assumption that the polarisation resistance of the system
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around its equilibrium potential is inversely proportional to the corrosion current at

equilibrium [69]:

Icorr =
B

Rp

(5.3)

B =
βa · βb

2.303(βa + βb)
(5.4)

where Icorr is the corrosion current at equilibrium, βa and βc are the anodic and

cathodic Tafel constants, B is an intermediate constant and Rp is the polarisation

resistance. βa and βc are expected to be constant and according to [70] B can

be assumed to be B ∼ 26. Hence, only Rp has to be monitored during corrosion

measurements.

In order to measure polarisation resistance Rp, a small voltage has to be applied to the

sample (referred to as the working electrode) compared to its equilibrium potential.

This applied voltage is referred to as the overpotential. Since the applied overpotential

is small, only small forced currents are expected, which do not significantly contribute

to the corrosion process. It is therefore possible to approximate the corrosion current

at equilibrium without significantly disturbing the system. By substituting Icorr into

Equation 5.2, the corrosion rate can also be estimated.

In a LPR measurement therefore both current and potential on the sample (the

working electrode) need to be accurately controlled and measured. In an electrochem-

ical cell, this is most typically achieved by using separate electrodes for measuring

current and potential [71]. Altogether 3 electrodes are used in such a cell: a counter,

a reference and a working electrode.

The reference electrode is used as a potential reference. Since no large current flows

on the reference electrode, its potential can be assumed to be constant [71]. The

experiments described in this chapter rely on a silver chloride reference electrode (Ag

/AgCl), which is denoted on all plots referring to absolute potentials. In contrast, the

counter electrode is used to apply the majority of the required current. Its potential

is irrelevant, and is not estimated.

To implement this and to measure the corrosion current in an unforced corrosion

cell therefore the addition of a reference electrode is required. A new rig was
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built in order to add this capability. This is shown in Figure 5.3. The operation

of this unforced corrosion rig can be described as follows: first, the sample with

a permanently installed waveguide sensor coupled is attached to the rig with its

surface polished to 1200 grit. Similarly to the forced corrosion rig, ultrasonic wall

thickness measurements are initiated and carried out throughout the experiment

using the signal acquisition and processing protocol described in previous sections.

The reference electrode and a stainless steel counter electrode are then inserted into

the rig. The electrolyte inlet and outlet tubes are then connected to a pump and

the chosen electrolyte is cycled through the system. After this, a LPR measurement

is initiated using a potentiostat (Gill AC, ACM Instruments, Grange-over-Sands,

United Kingdom). The potentiostat is used to first measure the equilibrium potential

of the sample. Following this, an overpotential linearly changing in the range of ±20

mV around the equilibrium potential is applied to the working electrode (the sample)

over a period of 2 minutes, during which the current that is supplied to the working

electrode is measured. The slope of the measured current-overpotential curve is then

assumed to be the polarisation resistance Rp of the cell. Such LPR measurements are

then repeated every 4 hours in order to track any potential corrosion rate changes.

The ultrasonic measurements can be compared to the corrosion rates estimated using

the LPR measurements.

It should be noted here that probes that are capable of LPR measurements in

Reference electrode

Counter electrode

Inlet

Outlet

Sample
Ultrasonic sensor

Inlet

Outlet

Reference electrode

Sample

Ultrasonic sensor

Figure 5.3: Figure a. shows an isometric view of the full unforced corrosion
rig, whereas Figure b. shows a cross-sectional view of the same rig. A sample and a
waveguide sensor coupled onto the sample is shown on both plots. Note that the
ultrasonic sensor is shown in full view (not cross-sectional view) on both figures.
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application are commercially available as intrusive probes that can be inserted into

pipes. For example, see [70] or the products of Rohrback Cosasco (Santa-fe Springs,

USA). There are two main limitations to LPR measurements in applications however.

Firstly, the probes are intrusive and if they fail it is a major issue to reinstate them.

Secondly, the LPR measurement is best suited to characterise the electrolyte itself

rather than the actual effect that it has on the wall thickness. This is because the

entire pipe wall acts as an electrode and it is hard to quantify the exact area that

the measurement applies to making it mostly a qualitative tool.

5.2.3 pH dependence

The previous sections established two approaches to estimate corrosion current, one

for forced and and another for unforced corrosion. Both methods however relied on

Equation 5.2 to estimate wall thickness loss based on corrosion current. An implicit

assumption in Equation 5.2 was that any material that has oxidised has also been

lost in terms of wall thickness. While this assumption is true when corrosion is first

initiated on a polished surface, under certain conditions the corrosion product may

interfere with any further corrosion. A common everyday example of this is the

phenomenon of passivation. Passivation occurs when the corrosion product protects

the corroding material from exposure to the corrosive environment hence preventing

further corrosion. The behaviour of passivation may be affected by many variables

(e.g.: material parameters, interaction of electrolyte and material, temperature, etc.).

The pH of the electrolyte has been reported to influence the solubility of the corrosion

product, and even passivation of mild steel was observed at high pH values [72]. In

order to better understand the effect of pH on the corrosion behaviour of mild steel,

a Pourbaix diagram of Fe is considered. Pourbaix diagrams show stable phases as

a function of pH and absolute potential in aqueous electrochemical systems. The

Pourbaix diagram of Fe is shown in Figure 5.4 (reproduced based on [69]).

This diagram is interesting because it shows that at approximately pH 9 and below

iron can undergo corrosion in two different oxidation states: as Fe2+ and Fe3+ [69].

Since both of these species are soluble in water, corrosion at these pH levels is

expected result in uniform wall thickness loss. Between pH 9 and 13 however the

corrosion product of iron is Fe3O4 and Fe2O3, which is expected to passivate the
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Figure 5.4: Pourbaix diagram of iron in an aqueous electrolyte at 25 oC
reproduced based on [69]. Factors such as the concentration of dissolved Fe2+ and
Fe3+ ions as well as temperature also have a small effect on this plot, however these
effects are assumed to be negligble in this study.

interface of iron, i.e. an oxide layer that stays on the surface of the steel and

impedes OH– ions from reaching the surface so that further oxidation of Fe is slowed

down/prevented [69]. In field applications, passivation would typically be considered

beneficial, as it hinders further corrosion. When external current is applied with

the goal of forcing corrosion however, such as experiments described in this chapter,

passivation introduces some uncertainty with regards to how the corrosion will occur.

It is expected that as soon the interface of the sample is passivated, the forced current

will break down small areas of the passive layer, where further corrosion will occur.

This is therefore expected to result in a form of non-uniform thickness loss. In order

to evaluate this, as part of the forced corrosion experiments, high pH corrosion was

also investigated using Na2SO3 as an electrolyte.
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5.3 Experimental results with forced corrosion

5.3.1 Forced corrosion using a NaCl electrolyte

The most important aim of this chapter is to establish how accurate the ultrasonic wall

thickness loss rate measured using permanently installed sensors is when monitoring

throughout the corrosion process. The simplest and quickest way to verify this is by

means of forced corrosion. First, a NaCl electrolyte is evaluated. This was chosen

since an aqueous solution of NaCl is conductive, making it very suitable for forced

corrosion experiments. In addition, it is commonly available, affordable and safe to

use.

The forced corrosion rig was set up using a 0.376 w/w % NaCl electrolyte. A mild

steel sample with a waveguide sensor coupled was attached to the corrosion rig. A

K-type thermocouple was then welded on the sample for the purposes of temper-

ature compensation. Although temperature compensation was used, the rig was

placed in a room with relatively stable temperatures, and during the measurements

temperature fluctuations of the sample were measured to be less than 0.1 oC during

each measurement. Measurements were initiated and operated remotely, so that

forced ventilation caused by the operator could be avoided (e.g.: any movement

or breathing). Once the sample was set up, a forced current was then applied to

sample remotely. Multiple rounds of this experiment were carried out with corrosion

currents of 2.5mA, 3mA, 5mA and 10mA.

Results of these experiments are shown in Figure 5.5. The figures show relative

thicknesses, as it is wall thickness loss that is of interest and not absolute wall

thicknesses. The ultrasonic wall thickness estimates were calculated using two arrival

times or two peaks (surface and first backwall echo wavepacket). Three peak based

thicknesses are not displayed, since they are nearly identical to those of two peak

based thicknesses, and hence were omitted from the figure. The figures do not show

the temperature of the sample, however it was measured and used for temperature

compensation. The temperature of the sample was measured to be within 21.1± 0.1

oC throughout all of the measurements and changed less than 0.1 oC during each of

the measurements.
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Figure 5.5: Crosses show ultrasonically measured wall thicknesses during 1 hour
forced corrosion measurements. Grey crosses show results for 10mA forced current,
red crosses are for 5mA forced current, magenta crosses are for 3mA and green
crosses are for 2.5mA forced current. The electrochemically predicted corrosion rates
for these measurements are shown with blue dashed lines.

As shown by the figure, during first 30 minutes of the measurements, no current

was applied. During this period, the standard deviation of ultrasonically measured

wall thicknesses was estimated to be approximately 20 nm. As the figure shows,

various rates of current were then applied. Applying 10mA corrosion current results

in good agreement between predicted and ultrasonically measured wall thickness

loss rates. When lower current is applied, such as 3mA or 5mA, a short activation

period is introduced. After the activation period, the agreement is good between

predicted and ultrasonically measured wall loss rates. It should be pointed out that

the predicted corrosion rate for 5mA current is half as high as for 10mA. It may

appear contradictory to this, that the overall lost wall thickness caused by 5mA is

less than half compared to that caused by 10mA current. This however is caused

only by the activation period, which in effect decreases the wall thickness amount

lost during the 1 hour period. Another interesting feature of the activation period is

that the lower the applied current is, the longer the activation period becomes. It is

thought that this is because it takes time to achieve the equilibrium of ion exchange

on the sample surface as well as diffusion in the electrolyte. Furthermore, below

approximately 2.5mA applied current the wall thickness loss does not settle at a

clear rate and instead keeps fluctuating. In summary therefore the corrosion rate is
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predictable at high corrosion currents (5mA or above), but becomes less predictable

within the observed time frame at low currents (2.5mA or below).

5.3.2 Forced corrosion using a Na2SO3 electrolyte

A second experiment was also carried out to evaluate the behaviour of forced corrosion

at high pH conditions. For this, a saturated solution of sodium sulfite (Na2SO3) was

used (∼ 270 g/L [73]). The pH of the saturated solution is reported to be higher

than 9, hence it falls within the pH range where passivation of the metal surface is

expected.

A measurement was set up initially using an aqueous NaCl solution similarly to the

experiment in the previous section. A forced current of 10mA was applied, and the

system was left to corrode for a period of approximately an hour, during which the

NaClelectrolyte was recirculated to and from an open reservoir. Injection of the

saturated Na2SO3 solution was then initiated directly into the corrosion rig. After a

period of 45 minutes, the injection of the Na2SO3 solution was terminated, and the

mixture of Na2SO3 and NaCl electrolytes was recirculated.

The ultrasonic wall thickness loss measurements during this experiment are shown

in Figure 5.6. As the figure shows, the wall thickness loss rate is proportional to

applied current while the sample is exposed to NaCl electrolyte. When Na2SO3

is injected, a temporary thickness increase is observed. This is thought to be the

result of a temporary temperature instability caused by the injected Na2SO3 solution,

since its temperature was 5 oC higher than that of the NaCl electrolyte. Although

both solutions were prepared with constituents of identical temperature, the offset

was introduced by the exothermic reaction of dissolving Na2SO3 in water. Once

the transient temperature effect subsided however, the ultrasonically measured wall

thickness loss rate decreased significantly compared to the NaCl solution.

It should be noted here that Figure 5.6 shows both two peak and three peak based

thickness estimates. This is because discrepancies between the two estimates are

important to clarify. As Figure 5.6 shows, before Na2SO3 was introduced to the

system, the agreement between two peak and three peak thickness estimates was

100



5. Ultrasonic Measurements During the Corrosion Process

Time

T
h

ic
k
n

es
s

[µ
m

]

11:50 12:20 12:50 13:20 13:50 14:20 14:50 15:20 15:50 16:20
-6

-4

-2

2

N
a
2
S

O
3

V
o
lt

a
g
e

[m
V

]

11:50 12:20 12:50 13:20 13:50 14:20 14:50 15:20 15:50 16:20
0

500

1000

1500

2000

2500

C
u

rr
en

t
[m
A

]

11:50 12:20 12:50 13:20 13:50 14:20 14:50 15:20 15:50 16:20
0

2

4

6

8

10

N
a
2
S

O
3

st
o
p

p
ed

0

2p
3p

Figure 5.6: Top subplot shows applied current and voltage betweed cathode and
anode during a forced corrosion measurement using NaCl and Na2SO3 electrolytes.
The bottom subplot shows the ultrasonic wall thickness results for the experiment.
Red line shows ultrasonic thickness estimates calculated using two peaks (surface and
first backwall echo wavepackets) whereas the blue line shown ultrasonic thickness
estimates based on three peaks (surface, first backwall echo and second backwall
echo wavepackets).

good. When Na2SO3 was introduced to the system, the two estimates were no

longer in agreement. Visually comparing the backwall of a sample after the Na2SO3

experiment to a sample after a NaCl corrosion experiment reveals that the Na2SO3

introduced non-uniformity on the backwall surface as shown in Figure 5.7. This

non-uniform corrosion is presumed to be the effect of preferential corrosion as the

passive layer is broken down. The resulting backwall is expected to interfere with the

reflection of ultrasonic signals from it, hence introducing variability in the calculated

wall thicknesses.
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With Na2SO3 With NaCL

Figure 5.7: Left photo shows the exposed backwall surface area of a sample
that was exposed to forced corrosion using a Na2SO3 electrolyte. Right figure shows
the exposed backwall surface area of a sample that was exposed to forced corrosion
using a NaCl electrolyte

5.4 Experimental results with unforced corrosion

5.4.1 Unforced corrosion using citric acid

The previous section has evaluated the accuracy of estimated wall thickness loss

using ultrasonic monitoring techniques described in this thesis. It has shown that

wall thickness loss rates of the order of 1 µm per hour caused by forced corrosion

can be monitored accurately using ultrasonic techniques. While the previous section

verified the potential accuracy of the ultrasonic monitoring methods discussed in this

thesis, this was achieved by expediting corrosion processes by applying a current to

the sample. Corrosion rates therefore are expected to be relatively high compared to

that of unforced corrosion. In this section smaller corrosion rates caused by unforced

corrosion are evaluated.

In this section, citric acid is evaluated as an electrolyte. Citric acid was chosen

since it is accessible, safe and is expected to result in relatively low corrosion rates.

Various concentrations of aqueous citric acid solutions were tested, namely 1%, 0.5%,

0.04% and 0% (distilled water) concentrations by weight. The pH of these solutions

estimated to range between pH 3 for the highest concentration of citric acid to pH

7 for distilled water. This was not measured or calculated more accurately, since

the induced corrosion is not expected to be linked directly to pH. Instead, it is

102



5. Ultrasonic Measurements During the Corrosion Process

noted that the estimated pH range falls within the domain of corrosion without

passivation according to the Pourbaix diagram on Figure 5.4. In each experiment

800 mL solution of the given concentration was prepared using distilled water in a

1000 mL vessel. The vessel containing the solution was connected to the unforced

corrosion rig according to the diagram shown in Figure 5.8.

Each electrolyte was circulated for 14 hours. A mild steel sample was used for

all experiments, ground with 1200 grit emery paper before each experiment. The

ultrasonic waveguide sensor was coupled to the sample and was not removed be-

tween measurements, in order to maximise repeatability and eliminate uncertainty

associated with changing coupling.

During each experiment LPR measurements were also carried out in order to estimate

corrosion rates. Before results are shown however, it should be noted that the

corrosion rates calculated using LPR measurements are typically affected by various

sources of error, and cannot be relied upon unconditionally as an accurate corrosion

rate measurement without verification [74]. Relevant error sources include IR drops

caused by current flowing through the resistive electrolyte that is exacerbated by

poor electrode placement and deviations from linearity in polarisation data [74]. It

is expected that a significant error source in the experiments described here is poor

location control of the reference electrode, which can result in significant IR drops

Potentiostat

Handyscope

PC

Ultrasonic sensor
Reservoir

Corrosion rig

Figure 5.8: Diagram of unforced corrosion rig. Dashed lines show electrolyte
tubing, whereas dotted lines show electrical connections. Ultrasonic sensor is upside-
down, as this allows the sample to be positioned below the electrolyte, and hence
avoid any bubbles collected at the interface.
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and therefore skewed LPR measurements. For this reason it would seem sensible

that placing the reference electrode close to the sample would result in minimal error.

However, this distorts current flow locally, a phenomenon known as shielding [75].

A small capillary referred to as a Luggin probe is sometimes used to minimise this

effect, which may be placed close to the surface of the sample as its size is small and

it minimally distorts current flow [75]. However in practice Luggin probes are also

still subject to some error, as a practical implementation cannot be infinitely small.

In addition, standard probes were too large to fit in the unforced corrosion rig and

hence a Luggin probe was not used in the experiments described here.

Instead, it is acknowledged that LPR based corrosion rate predictions may be affected

by such errors and an approach to compensate them is outlined here. In order to

maintain repeatability of the error introduced by poor reference electrode placement,

the position of the reference electrode was fixed at 5mm from the sample surface in

all experiments. While evaluating corrosion rates based on LPR measurements, it

became apparent that all corrosion rates measured using this LPR setup are a factor

of 2 less than ultrasonically predicted wall loss rates. It was assumed that this was

caused by the poor reference electrode placement. As a compensation approach, all

presented LPR corrosion rates in this thesis are multiplied by a factor of 2 and are

referred to as scaled LPR corrosion rates.

Wall thickness loss estimates based on scaled LPR measurements and ultrasonically

measured relative wall thicknesses are shown in Figure 5.9. It can be seen from the

figure that higher concentration of citric acid in principle results in higher rates of

wall thickness loss. It is also apparent, that there is a saturation effect observed at

a citric acid concentration of 0.5% and higher. Increasing citric acid concentration

beyond 0.5% does not further increase the corrosion rate.

Overall, the agreement between ultrasonically measured wall thickness loss and the

scaled LPR results is good. Before quantitative conclusions are drawn however,

potential sources of error in the ultrasonic measurements are discussed here. As

Figure 5.9 shows, the ultrasonic wall thickness loss rate estimates are not as linear

as seen in forced corrosion measurements. It can also be seen that deviations from

the scaled LPR thicknesses are up to 1 µm for the measurements shown in green

on the figure. Although this drift is most clear at 0.04% concentration (shown in

104



5. Ultrasonic Measurements During the Corrosion Process

green), smaller drifts can also be observed in the rest of the measurements as well.

This is thought to be the effect of temperature, as the temperature conditions of

unforced corrosion experiments were less controlled compared to forced corrosion

experiments described in the previous section. While the widest temperature range

during forced corrosion experiments was 0 .1 oC, the temperature during the 0.04%

citric acid measurement was 27± 2 oC - therefore an overall temperature range of 4

oC. According to calculations in Chapter 4, a temperature measurement error of just

∼ 0.5 oC may result in an error of 1 µm and therefore temperature inaccuracies are

the likely source of this error.

In summary, the biggest deviations of ultrasonic measurements from scaled LPR

corrosion rate predictions were of the order of 1 µm. Since an interesting application

of such measurements is prediction of yearly corrosion rates, it is valuable to calculate

the smallest detectable wall thickness loss rate based on the determined sensitivity.

The smallest detectable wall thickness loss rate within 24 hours is expected to be 1

µm/day ∼ 0.35 mm/year. Similarly, the smallest detectable wall thickness loss in 7

days is expected to be 1 µm/week ∼ 0.05 mm/year.
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Figure 5.9: Figure shows wall thickness loss estimates during unforced corrosion
experiments with various concentrations of citric acid. Ultrasonically estimated wall
thicknesses (based on two peaks) are shown with solid lines, while scaled LPR wall
thicknesses are shown with dotted lines (note that the blue, yellow and magenta
dotted lines overlap). Colours refer to various concentrations of citric acid. Distilled
water results are shown in red, citric acid concentration of 0.04% is shown in green,
0.5% is shown in blue, 1% is shown in yellow and 1.25% is shown in magenta.
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5.4.2 Unforced corrosion using hydrochloric acid (HCl)

In addition to citric acid, the effect of hydrochloric acid (HCl) was also evaluated.

HCl was chosen as it is more frequently encountered in the petrochemical industry.

In this section an electrolyte concentration of 1M (3.5 w/w %) was investigated.

This concentration is 12 times diluted compared to concentrated 12M (37 w/w%)

HCl [76] and was chosen because reports of such concentration are prevalent [77–81].

As described above, a wide array of papers have been dedicated to evaluating the

corrosion effects of HCl on mild steel, a selection of which is referred to here [77–81].

All of the referred papers evaluate the corrosion inhibition effect of either heat

treatment methods or corrosion inhibitor chemicals in 1M HCl solutions. While

they focus on various corrosion inhibition effects, as control measurements they all

evaluate the corrosion rate caused by the 1M HCl solution on untreated mild steel

samples without any corrosion inhibition. Estimated uninhibited corrosion rates in

referred papers vary between ∼ 2 mm/year to ∼ 80 mm/year.

It is apparent that the corrosion rate depends on factors that are not considered

in this thesis. These are thought to be temperature effects on corrosion processes,

oxygen availability at the sample, contaminants such as other ions dissolved in

the electrolyte, etc. It falls outside the scope of this thesis to evaluate how each

of these influences may affect corrosion phenomena. Instead, it is concluded that

estimated corrosion rates based on literature alone cannot be relied upon exclusively

and accurate online measurements of corrosion rates are key.

The unforced corrosion cell was therefore set up using a 1M HCl solution. The

experimental procedure used for HCl was otherwise identical to that of citric acid,

the HCl solution was circulated in the rig inducing corrosion without applying an

external current. LPR corrosion rates and ultrasonic thickness estimates were also

measured during the measurement. The results of the experiment are shown in

Figure 5.10.

As the figure shows, both two peak and three peak measurements are displayed.

Although deviations of approximately 0.5 µm are measured from the linear fit, it is

also apparent that these deviations occur during periods of temperature transients.
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5. Ultrasonic Measurements During the Corrosion Process

It should be noted here that temperature propagation simulations were carried out

in previous sections, that quantified the error in ultrasonic thicknesses as a result

of temperature gradients within the sample. These simulations however assumed

that the temperature of air on the outside surface of the sample were constant and

evaluated gradients caused by internal temperature changes only.

Air temperature changes on the outer side of the pipe may however also introduce

error, since the thermocouple measuring the temperature of the sample is directly

exposed to that environment. Such errors are expected to be highly specific to

thermocouple type, thermal mass of thermocouple, insulation of thermocouple from

air, air flow directly affecting the thermocouple, etc. It is thought that insulating

the thermocouple and preventing direct airflow would minimise such error, this

was not implemented however. Instead, the error introduced by the thermocouple

sensor that was used in this thesis is considered, which was consistently less than

1 µm. This may not be representative of what could be achieved in field, but it is

thought that protecting the temperature sensor from rapid temperature changes

should minimise error in such conditions as well and hence comparable results should

be achievable. As a final thought, it should also be noted that by continuously
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Figure 5.10: Top subplot shows the measured temperatures during the unforced
1M HCl corrosion experiment. Bottom subplot shows the scaled LPR corrosion
rates (dotted line), three peak ultrasonic wall thickness estimates (crosses), two peak
ultrasonic wall thickness estimates (solid line) and a linear fit applied to two peak
thicknesses (red line).
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a. Before polishing b. During polishing

Figure 5.11: Figure a. shows the patch of backwall surface of the mild steel
sample that was exposed to a 1M HCl electrolyte during a 20 hour unforced corrosion
experiment. A separate zoomed in image highlights a groove. Figure b. shows the
same surface during grinding and repolishing highlighting the groove.

monitoring temperature it is possible to identify time periods when temperature

gradients are low, during which ultrasonic measurements are expected to be accurate.

Having acknowledged the apparent small drifts on the figure, it is clear that overall

the ultrasonically measured wall thickness loss rates are close to linear. Over a

period of 20 hours a wall thickness loss rate of approximately 2.5 µm/20 hours = 3

µm/day = 1mm/year was measured using both ultrasonic wall thickness estimating

methods, whereas 4.5 mm/20 hours = 5.2 µm/day ∼ 2 mm/year was measured

using the scaled LPR measurements. The corrosion rate predicted by scaled LPR

measurements therefore falls within the order of magnitude of possible corrosion

rates as reported in the literature [77–81].

The ultrasonically estimated corrosion rate is therefore lower than that of scaled

LPR measurements. This is explained once the bottom surface of the sample is

inspected, this is shown in Figure 5.11. As the figure shows, a groove was noted on

the 1M HCl corroded sample. This indicates that the sample preferentially corroded

below the O-ring. According to [82], chloride ions concentrate in crevices and even

low levels can lead to corrosion, which is known as crevice corrosion.

This preferential corrosion below the O-ring explains the difference between LPR and

ultrasonic estimated corrosion rates. Ultrasonic measurements interrogate the surface

area directly below the sensor, and hence are not influenced by corrosion near the

O-ring. LPR measurements however estimate corrosion loss based on electrochemical
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measurements of the entire surface, and hence provide an average estimate over

that surface. Since the corrosion rate under the small area of the O-ring is high, it

increases the average of LPR corrosion rate estimates compared to the ultrasonic

ones. Hence this result is in line with expectations when observing a preferential

corrosion phenomenon.

5.5 Summary

In this chapter it was demonstrated that permanently installed ultrasonic monitoring

can be used to accurately monitor wall thickness loss caused by corrosion. It

was shown that under stable temperature conditions the standard deviation of

ultrasonically estimated wall thicknesses was 20 nm. It was also shown in forced

corrosion experiments that a uniform wall thickness loss rate of less than 500 nm is

detectable within one hour under stable temperature conditions. It was not possible

to predictably force corrosion of less than 500 nm per hour, and hence lower rates

could not be verified using forced corrosion.

In unforced corrosion experiments wall thickness loss rates between 35 nm and 350 nm

per hour were investigated. Temperature conditions during unforced measurements

were not kept stable and it was pointed out that ambient temperature changes

introduced small temporary drifts in ultrasonic measurements. It was concluded that

even with such drifts, wall thickness loss can be detected and accurately monitored

once it exceeds 1 µm total wall thickness loss. As an example, 0.1 mm/year wall

thickness can be detected in 3.65 days. This is exciting because 0.1 mm/year wall

thickness loss rate in industry is the approximate threshold above which active

control of corrosion is considered. Achieving response times of the order of a few

days for ultrasonic measurements potentially opens the door to use the wall thickness

loss measurements for the purpose of optimising process conditions.

It was also demonstrated that ultrasonic wall thickness measurements interrogate

the area of the sample that is directly below it, and so wall thickness measurements

are not affected by corrosion in other areas of the material where the ultrasonic

beam does not interact with the surface. In contrast to this, it was found that the
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LPR measurements averaged data over the whole electrode area so that also crevice

corrosion around the O-ring of the rig influenced the recorded corrosion rate.
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Chapter 6

Material Degradation Mapping

6.1 Introduction

Techniques presented in this thesis concentrate on maximising the precision of time-

of-flight based ultrasonic monitoring. Wall thickness loss monitoring is a common

application of this and is the main focus of the thesis. However, it is also possible

to estimate the propagation velocity of ultrasonic waves using the same time-of-

flight measurements when the distance of propagation is known. It is expected that

the progress of material degradation mechanisms that weaken the structure due

to voiding, for example high temperature hydrogen attack (HTHA), can also be

monitored by tracking ultrasonic travel time. This is because the small voids caused

by HTHA change the properties of the bulk material, which in turn is expected to

result in effective ultrasonic propagation velocity changes.

This chapter starts by reviewing literature on hydrogen attack. This review elaborates

on how hydrogen attack can be modelled in experiments and also links propagation

velocity changes to the volume fraction of voids in a material. A feasibility study is

then described, with the goal to create a non-uniform ultrasonic velocity distribution

within the material via another simpler method. This is achieved by applying heat

and creating a non-uniform temperature distribution in the sample, which can be

linked to propagation velocity changes. Ultrasonic measurements are carried out

using a waveguide transducer array on a heated sample, in order to collect data
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from as many angles of the non-uniform temperature distribution as possible. A

review of imaging methods is then presented, with the aim to reconstruct the entire

non-uniform temperature map. The implementation of two imaging methods are

then described in more detail, which are used to reconstruct the temperature maps.

Following the feasibility study relying on heat to introduce a non-uniform propagation

velocity map, an experimental rig that was conceived to physically induce hydrogen

attack is presented. The presented method induces hydrogen attack electrochemically

by forcing electrolysed hydrogen into the steel. The experiment needs to take place

at high temperature and the steel sample is therefore immersed in molten salt as

outlined by Tsubakino [83]. Measurements from the rig, acquired using permanently

installed ultrasonic sensors while hydrogen attack is being induced are then presented.

Following this, the results are discussed and conclusions are drawn.

Some of the material described in this chapter has been published in [P4].

6.2 Hydrogen Attack

The phenomenon of hydrogen attack has attracted substantial attention over the

years. The mechanism of the degradation is well known: it occurs in carbon steels

when hydrogen diffuses into the steel at high partial pressures and produces methane

further reacting with the metal carbides [84]. Therefore cavities filled with high

pressure methane are formed. This degradation poses a complex problem as it can

reduce the structural strength of the material [85]. Design codes have been introduced

based on the Nelson curves to avoid certain grades of steel in environments that are

susceptible to hydrogen attack [1], but there have still been failures in equipment

that has been in service for long periods [86] and the Nelson curves have been

adjusted several times. Prescott [86] concludes that the equipment operating under

conditions that cause hydrogen attack should be considered as if it was degrading

even if the operation of the equipment was designed according to the Nelson curves.

It is necessary therefore to monitor the condition of the vessel in use.

It is thought that ultrasonic detection of hydrogen attack is potentially achievable.

The ultrasonic properties of the degraded material are expected to change due to the
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methane voids. This has previously been exploited, however currently implemented

detection techniques are very much operator dependent and therefore the reliability

of testing is subjective [87]. In addition, the accuracy of standard coupled velocity

measurements is not well reported when used for material degradation. Yi i.e. [88]

carried out thickness measurements relying on times of flight using standard coupled

probes and concluded that the uncertainty of time of flight measurements may be up

to 1 mm/10 mm = 10%. This is not sufficient for accurate evaluation of hydrogen

attack.

Based on a report by Eliezer [89] the diameter of the voids caused by hydrogen attack

is in the order of 2 µm - the wavelength of the ultrasonic signal used (frequency in

the range of 1-10 MHz) is of the order of 1 mm which is 3 orders of magnitude larger

than the microstructural changes and suggests that these changes can be modelled as

changes to the bulk ultrasonic parameters. Significantly higher frequencies however

cannot be used for the measurement because of attenuation problems.

Chatterjee [90] proposes to estimate the changes by calculating the effective bulk

modulus and density (using a simple ’law of mixtures’ equation) of a voided material.

This can be used to evaluate the altered ultrasonic propagation velocity in the

following way:

%effective = (1− vf )%material + vf%void (6.1)

µeffective = µmaterial(1− 45/23vf + 2.1v2
f ) (6.2)

cvoided =

√
µeffective
%effective

(6.3)

where %material and %void are the densities of the bulk material and of the void, vf is

the void fraction, µ is the shear modulus and c is the propagation velocity of shear

waves. The resulting relationship between propagation velocity and void fraction in

the range of interest of this study (vf = 0%− 3%) is close to linear:

cvoided = p1 · vf + p0 (6.4)

where p1 = −16.25m
s

and p0 = 3246.7m
s

are the linear fit coefficients for vf =

0%− 3.5%. The maximum error of the fit is 0.44m
s

= 0.01%.
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There are more advanced models than the Chatterjee model, see e.g. Hirsekorn

i.e. [19] and Caleap i.e. [21]. At late stages of the material degradation approaches

such as proposed by Bowler i.e. [91] should also be considered. The Chatterjee

model however is a suitable approximation at low void fractions where the voids are

uniformly distributed. These are all expected to be valid assumptions at the onset

stage of hydrogen attack.

6.3 Non-uniform Propagation Velocity Distribu-

tion

Although the conditions at which hydrogen attack occurs are well established, it

is still difficult to induce it in laboratory conditions. This is because hydrogen is

highly flammable, and is therefore dangerous at high temperatures. In order to

quickly evaluate whether it is feasible to monitor hydrogen attack using permanently

installed ultrasonic sensors, an alternative approach is described here. It is proposed

to create a non-uniform velocity distribution similar to what would be the observed

in hydrogen attack within a sample by means of heating. The waveguide transducers

that are used in this thesis are designed to withstand high-temperatures, therefore

Figure 6.1: Sketch of setup with steel specimen and cylindrical heating element.
The central temperature profile is assumed to be 2 dimensional and hence simulations
of this region are shown in Figure 6.2. The location of the thermocouples relative to
the test piece and the sensor assembly are shown as T1 − T5. (The location of T3 is
at x = 0 as shown on the image)
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Figure 6.2: An example of a simulated 2D temperature distribution. The
parameters of the simulation are described in Section 6.5

this approach seems like an ideal choice as the propagation velocity changes can be

introduced in a short period of time.

The aim is therefore to create a 2D temperature distribution within the measurement

plane of the test piece. In order to achieve this, a 100 mm long 500W cylindrical

(D = 10 mm) heating element (sourced from: RS Components Ltd. Birchington

Road, Corby, Northants, NN17 9RS, United Kingdom, stock number: 724-2103)

was used to create a temperature distribution that could be modelled in 2D at

the central plane of the test piece as shown in Figure 6.2. Since the relationship

between the local temperature and ultrasonic propagation velocity is known, a one

dimensional ultrasonic array attached to the surface of the plate can monitor the

2D spatial changes in the ultrasonic propagation velocity within the material. This

configuration has also been investigated in simulations (illustrated by Figure 6.2)

in order to be able to assess the proposed reconstruction techniques in a noise-free

environment. The simulations were based on a two-dimensional steady state heat

conduction model described in [60].

6.3.1 Calibration of the Ultrasonic Propagation Velocity’s

Dependence on Temperature

In order to accurately convert the propagation velocity values to temperature, a

calibration measurement is needed on the sample that will be used for this feasibility

study. Although the calibration curves established in a previous chapter of this thesis
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could be used, the calibration is repeated here to maximise accuracy. The sensor

assembly comprising of 20 waveguide sensors and a clamping assembly was slowly

heated up to 120 oC with a Corning 6796-620D hotplate (Corning Incorporated,

Tewksbury, USA) by placing the bottom of the sample on the hotplate and insulating

it on all sides using rockwool. During this, the temperature distribution within

the sample was measured using 5 K-type thermocouples at the locations shown in

Figure 6.1. The heating gradient of the hotplate was chosen to be sufficiently low

to ensure uniform temperature distribution, as verified by the thermocouples (all

showing the same temperature to within less than 1 oC). Based on Equation 6.5

and assuming homogeneous temperature distribution the calibrated propagation

velocity-temperature curve was calculated according to the following equations and

is shown in Figure 6.3.

ccalibij =
2

√
d2ij
4

+ T 2 − dij
T SBWij

(6.5)

ccalib = mean(ccalibij ) (6.6)

ccalib = k1Θ + k0 (6.7)

where dij is the nominal separation between waveguides number i and j, T is

the thickness of the test piece, ccalibij is the calibrated propagation velocity at each

temperature between waveguides number i and j, tSBWij is the time of flight difference

between surface wavepacket and backwall echo wavepacket (described in detail in

Section 6.6.2), ccalib is the average calibrated velocity at each temperature level

Figure 6.3: Measured ultrasonic shear velocity within the temperature range from
25 oC to 116 oC (crosses) and their linear fit (continuous line). Each measurement
point is the average of 380 waveforms measured at each temperature level
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(calculated as the arithmetic mean of all obtained ccalibij values), k1 and k0 are the

parameters determined by the calibration, and Θ is the temperature. Altogether

380 waveforms were evaluated at each temperature level and so each calibration

point is the average of 380 propagation velocity values. The relationship between

the propagation velocity and temperature is assumed to be linear and is described

by equation 6.7. The linear fit for the calibration points resulted in the following

constants: k1 = 3254.9m
s

and k0 = −0.4981m/s
oC

. This is comparable to the calibration

curves obtained in Chapter 4. According to the results of the calibration measurement

and the estimated effects of hydrogen attack, the ultrasonic velocity change over the

temperature range investigated in this study (20 − 110oC) is equivalent to a void

fraction of 0− 3.5% of hydrogen attack (using Equation 6.4 as an estimate).

6.3.2 Reconstruction Algorithms

The goal of the reconstruction is to quantitatively extract the ultrasonic propagation

velocity map within the material based on the data from the waveguide sensor

array. It is therefore important to choose a reconstruction algorithm suitable for

the conditions of the measurements described in this chapter. In order to choose

the appropriate imaging approach the main aspects of currently existing techniques

are considered, namely the underlying physical assumptions and possible solution

methods.

Several possible wave propagation modelling approaches may be considered from an

imaging point of view. The most widely used modelling approaches are the straight

and bent ray approximations [92], [93], both of which ignore diffraction and so the

potential resolution of the reconstructed image is limited. The advantage of these

approaches however is that they are relatively easy to implement and should result

in a robust algorithm especially in the case of a low contrast image.

In order to account for diffraction the Born or the Rytov approximations are com-

monly considered [94]. Their advantage is a potential resolution gain, however these

assumptions are highly restrictive as they require the observed object to be low con-

trast and small relative to the wavelength and potentially result in the reconstruction

being more sensitive to noise.
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Another option is the non-linear, full wave inversion method [95]. This approach uses

a numerical approximation (e.g. finite difference method) of the underlying wave

equation as its physical model. The selected solution method must then determine a

suitable set of parameters (e.g.: material properties at all points on a grid) such that

the signals from the model match the measurements from the array. In theory this

approach avoids the problems associated with the approximations described above,

however its implementation is complicated and experimental issues are difficult to

account for using a forward model, so very high signal-to-noise ratio data, taken from

a very controlled environment is required for such a method to be of practical use.

As mentioned above, another critical aspect of the imaging approach to consider is

its solution method. Traditionally direct solution methods were used, often based on

the Fourier transform (for example straight ray tomography based on the Fourier

Slice theorem) [94]. Such an approach is particularly attractive if the reconstruction

is carried out with data from a simple array configuration, such as a circle, which

allows parallel projections through the object or if computing resources are limited.

Fast modern processors, however, allow iterative algorithms to be employed; iterative

methods are often easier to implement and are suitable for more general sensor

configurations.

In this chapter the imaging is carried out based on the projection data measured by

a waveguide sensor array, which means that the limited field of view of the setup

combined with the high level of noise means that little additional information could

be extracted through the more accurate physical modelling methods. A straight ray

imaging approach using the Kaczmarz method as an iterative solver [96] was therefore

selected for reconstructing the velocity map. Altogether this has the advantage of

being relatively insensitive to noise and fairly simple to implement while still providing

an accurate reconstructed image [94]. The details of the implementation are discussed

in Section 6.4.1.

As an alternative approach to address the problem of limited field of view and the

noise levels of the measurements an Assumed Distribution method is considered.

It is expected that the most apparent issue of the reconstruction will be the lack

of sufficient vertical resolution regardless of the reconstruction method, as the

dataset simply does not include horizontal projections. It is proposed therefore
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as an alternative reconstruction approach to assume a vertical distribution of the

ultrasonic propagation velocity based on considerations related to the cause of

propagation velocity change. This allows for the data from low angle, long wavepaths

to be replaced, which are therefore the lowest signal-to-noise ratio waveforms of

the dataset. Instead, assumptions of vertical propagation velocity distribution

are used. In the case of this study the propagation velocity change is caused by

temperature inhomogeneities around a point-like heatsource, which is approximated

by an exponential distribution as further explained by Section 6.4.2. As hydrogen

attack is linked to diffusion of hydrogen into the steel it may be possible to model it

just like temperature diffusion.

6.4 Implementation of reconstruction

Based on the approach introduced in previous sections, the reconstruction of the

spatial ultrasonic propagation velocity distribution from the time of flight data

acquired by the waveguide sensor array is considered in this section. Two different

algorithms are investigated: the Kaczmarz algorithm, which uses only geometrical

assumptions about the positions of the transducers and the time of flight data

extracted from the 380 acquired waveforms and the Assumed Distribution method,

which uses only the data acquired by adjacent transducers and assumptions about

the temperature distribution within the material. These methods are described in

detail below.

6.4.1 The Kaczmarz Algorithm (Algebraic Reconstruction

Technique)

The assumption of the Kaczmarz algorithm is that the image reconstruction based

on the observed data is described by the following equation:

Ax = b (6.8)

where b = (b1, ..., bM) ∈ RM is the observed data (in this case the time of flight
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data), x = (x1, ..., xN) ∈ RN is the actual image (distribution of ultrasonic shear

wave velocity in the sample), and A = Aij is a non-zero N×M matrix that describes

the relationship between the observed data and the points of the image. Each row of

matrix A contains therefore coefficients of each wavepath linked to all of the points

of the image. The main problem of the reconstruction based on equation (6.8) is the

large data dimension and noise in the observed data. The Kaczmarz method (also

referred to as Algebraic Reconstruction Technique (ART) [96]) is one of the most

popular solvers of overdetermined linear systems [97], [98].

Because of its iterative nature this approach addresses the problem of large data

dimensions. It is also relatively simple to implement - every iteration step calculates:

xk+1 = xk +
bi − 〈ai, xk〉
||ai||22

ai (6.9)

where xk is the kth iteration of the reconstructed image, i = (k mod m) + 1 and

ai, ..., aN ∈ RN denote the rows of A. Therefore the algorithm cycles through the rows

of A and adjusts a part of the reconstructed image based on the criteria described

by the given row of A and the measured data (b). This essentially means that in

each cycle the algorithm adjusts some of the pixels in the image (as described by

the rows of A) based on the backwall echo arrival time of each wavepath. After

cycling through the data enough times the image is expected to converge to the real

distribution.

In order to increase the convergence rate of the original Kaczmarz algorithm a

randomization is introduced so that the rows would not have to be reevaluated one

after another, but in a random order [97] with the aim to speed up the iteration.

It is necessary therefore to set the probability of each row. Strohmer and Vershynin

in [98] and [99] propose to set the probability to the Euclidean norm of the row, and

therefore the revised algorithm is described by:

xk+1 = xk +
bp(i) − 〈ap(i), xk〉
||ap(i)||22

ap(i) (6.10)

where p(i) takes the values in {1, ..., N} with probabilities
||ap(i)||22
||A||2F

. Here ||A||F denotes

the Frobenius norm of A. The implementation of this algorithm and the calculation

120



6. Material Degradation Mapping

of constants are described in the next section.

The calculated average velocities for each wavepath are used as input data (see

Section 6.6.2). In order to be able to discretise the spatial distribution of the

propagation velocity a grid was created to serve as the image of the reconstructed

velocity map. The resolution of the image can be chosen arbitrarily - the resolution

in this chapter was chosen to be 1.5 pixels per millimetre, resulting in a resolution

of 85 by 57 pixels. The reconstruction also requires matrix A (in equation 6.8)

to be determined. This matrix quantifies the relationship between the velocity at

each pixel and the measured data. The pixels are assumed to have an effect on the

average velocities of the wavepaths in a certain distribution - in this calculation a

polynomial distribution function has been used weighted by they coordinate of the

pixel described by equation 6.11,6.12, which are therefore necessary to produce a

smooth image.

Pmn =
MT −M0

T
yn +M0 (6.11)

Amn = dr − (
l

Pmn
)r (6.12)

where Pmn is the weighting coefficient based on the yn coordinate of pixel n, r is

the exponent of the polynomial distribution, d is the nominal separation between

neighbour waveguides, l is the distance between the given wavepath and point and

Amn are the elements of the matrix A defined by equation 6.8. The distribution

described by Equation 6.12 (effectively the shape of an upside-down parabola curve)

has negative values - these have to be replaced by zeros in order to achieve the

intended functionality. The approximation therefore weighs in pixels close to the

wavepath more than the ones further away from it, as shown in Figure 6.4. The

following values have been used for the coefficients mentioned above: r = 0.1,

M0 = 0.5, MT = 4. As an example one row of the A matrix is shown in Figure 6.4

reshaped as an image.

With all the constants defined, the reconstruction algorithm requires an estimated

image with which to start the iteration. For this purpose the calculated propagation

velocities for each wavepath are averaged for each pixel, weighted by the corresponding

coefficients in matrix A. The resulting image is taken as step 0.
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Figure 6.4: Coefficients for the wavepath between waveguide number 3 and 12
and each point of the velocity map

6.4.2 Assumed Distribution Method

An alternative reconstruction method is proposed based on the following consid-

erations: the temperature distribution is assumed to be exponential around the

heatsource, therefore its spatial distribution can be described by the following:

Θ(r) = exp (−q1 · r + q0) + Θ0 (6.13)

Θ(x, y) = exp (−q1

√
(x− x0)2 + (y − y0)2 + q0) + Θ0 (6.14)

where r is the distance from the point-like heat source, x and y are the horizontal

and vertical coordinates of points where the temperature is evaluated, x0 and y0

are the coordinates of the heat source, Θ0 is a temperature constant describing the

asymptote of the temperature distribution function and q1 and q0 are the parameters

for which the equation will be solved. In practice x0 is determined as the mean

x coordinate of the waveguide pair registering the biggest temperature (which is

equivalent simply to the waveform with the biggest time of flight change), whereas y0

is assumed to coincide with the bottom surface of the flat backwall. The relationship

between propagation velocity and the temperature is assumed to be linear which is

defined by equation 6.7. Equations 6.7 and 6.14 yield the formulation of the spatial

distribution of the propagation velocity (equation 6.15):

c(x, y) = k1 · (exp (−q1 ·
√

(x− x0)2 + (y − y0)2 + q0) + Θ0) + k0 (6.15)

In order to be able to evaluate the function described by Equation 6.15, the time of
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flight data from the neighbouring waveguides are taken into consideration, because

the closer the waveguides are, the higher the amplitude of the received signal is and

this results in high signal to noise ratio and low variability in the measurements.

Using cS,corrij (defined in Section 6.6.2) and the surface velocity as boundary conditions

the equation can be solved for a and c in an iterative way.

q0(x) = ln(
csurface − k0

k1

−Θ0) + q1

√
x2
ij + y2

ij (6.16)

ccorrij
∼=

L∫ L
0

1

k1(exp (−q1·
√

(xij−x0)2+(y−y0)2+q0)+Θ0)+k0
dy

(6.17)

where xij, yij is the coordinate of the surface point halfway between waveguides i

and j = i+ 1 and y is the vertical coordinate of the pixel to be evaluated (vertical

resolution can be arbitrary, as the assumed temperature distribution function can be

evaluated at any number of points). The requirement of the iteration is to find q1,

where equation 6.17 is true. This can be achieved using the bisection method, using

q1 as the parameter and Equation 6.17 as the equation to solve.

The only constant not quantified so far is Θ0, which is the the asymptote of the

temperature distribution function. This constant has to be set very carefully as

if its value is set too low then the estimated temperature of the hotspot will be

lower than its actual temperature. However it is certain that the value of Θ0 has

to be lower than the coldest point within the test piece, because it denotes the

asymptote of the temperature distribution curve - therefore the value of Θ0 is set

to be equal to the surface temperature, as it is the lowest known temperature

within the material, and so it is certain that the temperature of the hotspot will be

over-estimated. (In case of degradation monitoring over-estimation of the defect is

more desirable than underestimation because of safety reasons.) Onceq1 and q0 are

obtained the temperature distribution based on the Assumed Distribution method

can be reconstructed.
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6.5 Reconstruction of simulated data

In order to evaluate the implementations of the reconstruction methods described

in Section 6.4 they are compared using simulated temperature distributions so that

the effect of noise can be eliminated - for this purpose a simulated temperature

distribution map has been created. The simulation was based on a two-dimensional

steady state conduction model described in [60]. All boundaries were set to be

convective. The temperature constant was chosen to be Θ0 = 51 oC and the heat

convection constant (describing the heat transfer between the sample and air during

cooling) to be h = 1 W
m2K

. The resulting temperature distribution is shown in Figure

6.5.a.

The constants determined by the calibration in Section 6.3.1 were used to convert

the temperature map into velocities and therefore their relationship is linear. The

Figure 6.5: Reconstructed temperature distribution estimated from times of
flights calculated from a simulated temperature distribution shown in Figure a.
using the Randomized Kaczmarz algorithm shown in Figure c. and the Assumed
Distribution method shown in Figure d. All of these images are displayed on
identical color-scales as shown. (The array of sensors is located along the top edge
of the image). For better numerical comparability Figure b. shows the horizontal
temperature distribution at y = 0 mm - the continuous line shows the actual simulated
temperature on the backwall, the dashed line shows the temperature distribution
reconstructed by the Assumed Distribution method and the grey dotted line shows
the distribution reconstructed by the Kaczmarz method
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time of flight values and velocities were computed analytically without simulating

ultrasonic waveforms. The locations of the wavepaths relative to this velocity map

were determined in the following way: the endpoint coordinates of the wavepaths

were calculated based on the known attachment point coordinates of each waveguide.

In order to calculate the times of flight along each wavepath the value of the velocity

map were evaluated along each wavepath using linear interpolation. For the linear

interpolation, both the surface wavepath and backwall echo wavepath were sectioned

with a spacing of dS = 0.001 mm resulting in n and m number of sections accordingly.

Therefore the time of flight for each wavepath was:

tsurfaceij =
n∑
h=1

1

ch
dS (6.18)

tbackwallij =
m∑
h=1

1

ch
dS (6.19)

where ch is the interpolated velocity at the differential line element number h. It is

acknowledged that this straight-ray model ignores a) refraction and b) diffraction,

but these were considered negligible due to a) the low contrast and b) the smoothly

varying nature of the velocity field.

Once the time of flight values have been calculated, the two presented reconstruction

algorithms can be applied. The simulated field is shown in Figure 6.5.a. and the

reconstructed images are shown in Figure 6.5.b. and 6.5.c. For better comparability

the distribution along the backwall of the sample (y = 0 mm) is shown in Figure

6.5.d.

The results show that the Assumed Distribution method estimates the temperature

of the hotspot to within 2− 3 oC and estimating the backwall temperature to within

5 oC elsewhere, while the Kaczmarz algorithm has an offset error of 20 oC.
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6.6 Reconstruction from experimental data

6.6.1 Signal Processing

The ultrasonic sensor array, the cylindrical heating element and test piece assembly

shown in Figure 6.2 were used to capture waveforms to also experimentally evaluate

the methods described in this chapter. The signal acquisition for these measurements

has to be very fast as the transient temperature distribution is continuously changing.

For signal generation and data acquisition purposes an M2M MultiX LF fully parallel

array controller (M2M S.A., Les Ulis, France) was used, which is able to capture the

380 waveforms in a fraction of a second. As an approximation to the ideal toneburst,

a 5 cycle square wave was used as a transmitted signal. The repetition rate of the

measurements was 0.5 kHz and each saved waveform was calculated as the average

of 16 measured waveforms.

Cegla i.e. [24] describe the behaviour of the waveguides assuming an ideal sent

toneburst and conclude that the signal to noise ratio of the sensor is about 30 dB, as

the excitation of undesirable modes in the waveguide cannot be completely avoided.

Since the noise caused by the undesirable modes is coherent it cannot be removed

by averaging. Another limitation of the setup is the signal generator of the array

controller. As the sent toneburst is approximated by a 5 cycle square wave, its

frequency spectrum is expected to be less ideal, which results in unwanted frequency

components in the signal. These phenomena can be observed in Figure 6.6 showing

a sample waveform measured with the setup.

Three different toneburst packets are clearly identifiable in Figure 6.6 nevertheless

- the arrival of the surface skimming wavepacket, first backwall echo and second

backwall echo wavepacket. A lower frequency tail wave close to the surface skimming

wave caused by the imperfect sent toneburst is present as well followed by coherent

noise between wave packets, which is explained by the dispersion in the waveguides

as previously described. These phenomena cannot be avoided using the current

array controller, their effect can only be reduced by band-pass filtering. Ultimately

however the filters cannot eliminate all of the unwanted components and so they

contribute to what is handled as coherent noise in the waveforms. The time of flight
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Figure 6.6: A sample waveform recorded at room temperature using the ultrasonic
waveguiie transducer array. The arrival of the surface skimming wavepacket, first
backwall echo and second backwall echo are clearly visible

data required for the reconstruction therefore is extracted from the necessarily noisy

waveforms using signal processing tools described here.

6.6.2 Calculation of Times of Flight

The signal processing applied in this chapter is similar to the rest of the thesis, but

is summarised here to clarify small differences. The fundamental frequency of the

sent toneburst here is 2 MHz, therefore first a 5th order band-pass Butterworth filter

with cut-off frequencies at 1.2 MHz and 2.8 MHz is applied to the signal. Once the

signal has been filtered, it is cross-correlated with an ideal noise-free toneburst. A

toneburst is used here because its frequency spectrum is well defined and has been

shown to work well with the waveguide transducers in previous sections. The peak

times of the resulting cross-correlation function are then interpreted as the arrival

times of each wave packet.

The goal of this chapter is to assess the spatial distribution of the propagation velocity

within the material of the test piece; therefore the time of flight of the backwall

echo wavepackets has to be obtained with as high accuracy as possible. For this

purpose the first backwall echo wavepacket is considered. The measured peak times

of this wavepacket however also include the time needed to propagate through the

waveguides - this term needs to be subtracted in order to obtain the time of flights

within the material of the test piece only.
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For this purpose the arrival time of the surface skimming wavepacket is subtracted

from the arrival time of the first backwall echo and this difference is used as an input

for the reconstruction. This formulation of the problem eliminates the time of flights

within the waveguides, but requires additional assumptions to be made about the

sensor assembly.

tSBWij = tbackwallij − tsurfaceij (6.20)

where tsurfaceij is the measured arrival time of the surface skimming wavepacket from

waveguide i to j and tSBWij is the time difference of the first backwall echo wavepacket

and the surface wavepacket between waveguides i and j. In order to calculate

the average propagating velocity over the backwall echo path based on tSBWij it is

necessary to obtain the propagation velocity of the surface skimming wavepackets.

In the case of isotropic and homogeneous propagation velocity distribution (and

so homogeneous temperature distribution) the average velocities of the surface

wavepacket and the backwall echo wavepacket are equal, therefore the calibration

measurements can be carried out problem-free.

Common degradation mechanisms do not affect the surface wavepacket, therefore

the velocity of the surface wavepacket is straightforward to track, as it is only

influenced by the surface temperature, which can be measured externally (e.g.: using

thermocouples). In the case of simulated heat distributions the temperature of the

surface was within ±1.5 oC, therefore all the surface velocities are assumed to have

the same propagation velocity. The calculation of this velocity is carried out using

the following equation:

ĉsurface = MED(
djk

tsurfaceij − tsurfaceik

) (6.21)

where MED means that the median of the indicated data set is extracted and djk is

the separation of waveguides j and k. As the calculation involves 380 waveforms per

measurement the median of the dataset is used as opposed to averaging in order to

prevent the noisier outlier waveforms to impair the precision of the calculation.

The obtained median surface velocity can now be used to calculate the average
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propagation velocity along each backwall echo wavepath

cSij =
2

√
d2ij
4

+ T 2

tSBWij +
dij

ĉsurface

(6.22)

where cSij denotes the calculated average propagation velocity over the backwall echo

path from waveguide i to j.

In order to further decrease variability caused by the differences in each waveguide,

the calculated high temperature propagation velocities are corrected based on the

ambient propagation velocities.

cS,corrij = cSij − c
S,ambient
ij + cS,ambientij (6.23)

where cS,ambientij denotes the backwall velocities evaluated using tSBWij at room temper-

ature and cS,ambientij is the arithmetic mean of all cS,ambientij values. This correction is

based on the reasonable assumption that the average velocity measured at room tem-

perature is precise and the variations come from the specific waveguide combinations

(e.g.: coupling conditions, waveguide imperfections, differences in the piezoelectric

elements, and so on).

The benefit of extracting the time of flights of the backwall echo wavepackets using the

surface wavepacket is not immediately obvious, since a much more straightforward

approach exists. The alternative would be to use pulse-echo waves (waveforms

produced by sending and receiving with the same waveguide), which would allow to

extract the time of flights within the waveguides directly, and subtract this value

from tbackwallij in order to calculate the time of flights of the backwall echo wavepackets.

Indeed, pulse-echo waves are recorded as part of a full matrix capture, however it is

practically impossible to carry out pulse-echo measurements on both the sending and

receiving waveguide at the same time as the actual pitch-catch measurement takes

place, which means that the temperature of the sample and the waveguides will have

changed between measurements. In comparison the arrival of the surface wavepacket

can be extracted from the very same waveform as the backwall echo wavepacket, it

is certain therefore that all of the waveguide-related variabilities are cancelled out

and so the surface wavepacket arrival times were chosen as reference for the signal
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processing.

6.6.3 Experimental Measurements

The reconstruction of the experimental measurements described in this section

are expected to differ from the simulated results due to noise, that experimental

measurements introduce into the dataset. A measurement was carried out to evaluate

the variability introduced by the experimental setup and the processing methods in

use.

In order to evaluate the variability of the sensor assembly, measurements were carried

out at room temperature. Altogether 60 datasets were acquired 12 seconds apart

resulting in 60 · 380 = 22800 waveforms in 12 minutes. The results are shown in

Figure 6.7. The maximum of the calculated standard deviation map is 0.23 m/s,

which is 0.007% of the propagation velocity (while sending with waveguide number

19 and receiving with number 15 as shown in Figure 6.7). Based on the calibrated

temperature-propagation velocity relation this yields a variability of 0.45 oC over the

wavepath for this specific waveguide combination, which is the worst case scenario.

Figure 6.7: Standard deviation of the propagation velocities calculated for each
waveguide pair measured at room temperature
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6.6.4 Evaluation of Reconstruction Methods with Experi-

mental Measurement Data

In the case of experimental measurements the exact temperature distribution within

the test piece is unknown. The temperature of the test piece therefore was monitored

using 5 thermocouples while heating the assembly. These were attached by welding

in the locations shown in Figure 6.1.

The measurements carried out with the assembly were evaluated using the Random-

ized Kaczmarz algorithm and the Assumed Distribution method defined in Section

6.4.2 and were compared to the measurements carried out with the thermocouples.

Sixty datasets were acquired while the test piece was being heated. The reconstructed

images at the highest temperatures are shown in Figures 6.8.a., 6.8.b. In order to

demonstrate the importance of the position of the heat source a second measurement

was carried out with the heating element repositioned by 10 mm. The reconstructed

images from the measurements carried out with the repositioned heat source are

shown in Figures 6.9.a., 6.9.b. (shown at the highest measured temperature).

The figures described above account for the static snapshots at a given time. The

evolution of temperatures in time for the centred and repositioned case are shown in

Figures 6.10.a., 6.10.b. These figures show the temperature of the hotspot measured

by the thermocouples and reconstructed with the algorithms described in this chapter

for all the 60 datasets that have been acquired.

Figure 6.8: Reconstructed temperature distribution estimated from times of
flights calculated from an experimental measurement with heating element at location
y = 0, x = 0 mm using the Randomized Kaczmarz algorithm (a.) and using the
Assumed Distribution method (b.) 591 seconds after start of heating
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Figure 6.9: Reconstructed temperature distribution estimated from times of
flights calculated from a measurement using the Randomized Kaczmarz algorithm (a.)
and using the Assumed Distribution method (b.) after repositioning the cylindrical
heating element to y = 0, x = 10 mm. The measurement was carried out 590 seconds
after start of heating.

Figure 6.10: Evolution of the temperature at the hottest point of the material
evaluated with different methods. The continuous line shows temperature measure-
ments carried out using the thermocouples, the black dashed line shows the results
of the Assumed Distribution method and the blue dashed line shows results of the
Kaczmarz method. Image a. shows the measurement where the heating element is
attached in the middle of the sample, while image b. shows the measurements where
the heating element is attached at an offset of 10 [mm] from the middle of the array.
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6.6.5 Discussion

It is clear that the Assumed Distribution method presented in Section 6.4.2 provides

a more accurate reconstruction in the case of simulated data compared to the

Kaczmarz algorithm. In simulations, the Assumed Distribution method estimates

the temperature of the hotspot to within 2− 3 oC, while the Kaczmarz algorithm

provides a less accurate estimation (the reconstructed hotspot had a 20 oC offset

error).

The reconstructed images based on measured data are similar, however the incon-

sistent noisy data causes the Kaczmarz algorithm to perform even less accurately

compared to the simulated case. It still provides a very rough estimate of the propa-

gation velocity distribution within the material and so in this case the Kaczmarz

algorithm is able to estimate the temperature of the hotspot with an accuracy of

the order of ±30 oC. The estimation accuracy of the Assumed Distribution method

however is of the order of ±5 oC, therefore outperforming the Kaczmarz algorithm.

As shown in Figures 6.10 a. and b. the relative error of each method stays consistent

while increasing the temperature of the hotspot.

The figures reconstructed by the Kaczmarz algorithm indicate that the primary source

of variability is the lack of vertical resolution, which is caused by the limited field of

view of the ultrasonic sensor array. This geometrical limitation however cannot be

overcome by simply extending the array as the longer the waves propagate within

the material the more attenuated they are, which in turn increases the variability of

the extracted time of flight data (due to loss of signal to noise ratio).

In comparison to this shortcoming of the Kaczmarz algorithm the preliminary

assumption of straight wavepaths introduces negligible errors, which was one of the

initial concerns associated with this algorithm. This is because the biggest ultrasonic

velocity change is of the order of 2% (which is equivalent to a void fraction of about

3.5% based on the Chatterjee model), therefore the error introduced by ignoring

ray-bending is insignificant compared to the limitations of the geometry.

The Assumed Distribution method circumvents the problem of deducing vertical

resolution from noisy data by assuming the vertical temperature distribution and
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therefore ultrasonic velocity distribution. This approach has been shown to be more

effective, however the assumptions made are specific to the phenomenon of diffusion,

that can be described by an exponential decay from the source. This is a good

model for heat transfer and diffusion of heat into the component. Hydrogen attack

is dependent on diffusion of hydrogen into the steel and the Assumed Distribution

Method therefore is also a likely candidate for describing the estimate of damage due

to reaction of the diffused hydrogen with the carbon in the steel, provided it is linearly

related to the amount of hydrogen. This distribution is not explicitly investigated

in the literature, and the discussion of hydrogen attack in [87], [100], [101] only

imply the effect of a step function in the damage. Based on governing rate equations

and physical origins however there are strong analogies between heat transfer by

conduction and mass transfer by diffusion [102], therefore the assumptions required

for hydrogen attack are likely to be similar to the ones in this study.

In addition to these findings, it should be noted that a significant difference between

temperature distribution and material degradation produced ultrasonic velocity

change is the arrival time of the surface wavepacket. The measurements presented in

this section involved creating a large temperature gradient within the specimen by

applying heat, which is transferred quickly within the material to the surfaces, and

so the extraction of the arrival time of the surface wavepacket required additional

assumptions to be made. In the case of material degradation however the surface

wavepacket should not be affected, therefore the arrival times can potentially be

extracted more precisely.

6.7 Hydrogen Attack Experiments

6.7.1 Description of rig

Since the feasibility study using heat has shown that ultrasonic monitoring has the

capability of monitoring changes that are expected from hydrogen attack, it is clear

that implementing a hydrogen attack induction rig is worthwhile. As described in

the previous section, hydrogen attack is caused by high partial pressure hydrogen

diffusing into steel at high temperatures. The most straightforward approach to
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Figure 6.11: Figure shows the diagram of the molten salt hydrogen attack rig.
This figure was produced based on [83].

induce hydrogen attack in the laboratory is by recreating a similar environment by

means of a high temperature pressure vessel [103]. It is however very difficult to

construct a rig which would allow only one side of the sample to be exposed, thus

allowing ultrasonic measurements to be captured on the opposite side. Hence, an

alternative electrolysis based approach is considered in this section based largely on

the research of Tsubakino i.e. [83].

A diagram showing the principle of operation of the selected molten salt hydrogen

attack rig is shown in Figure 6.11. Measurements on this rig can be carried out

by heating NaOH in an inert container to 400 oC, which is significantly above its

melting point of 318 oC [104]. Once the NaOH melts, a Pt-coated MgO stabilised

zirconia reference electrode and a graphite counter electrode are inserted into the

now liquid electrolyte all sourced from Sigma-Aldrich Company Ltd., Gillingham,

UK. These electrodes are used as suggested by [83].

Meanwhile, water is heated up to 80 oC in a separate vessel. Once both solutions

have reached the desired temperatures, argon gas is bubbled through the water in

order to carry water vapour into the molten NaOH at a flow rate of 2 · 10−6 m3/s.

Once a current is applied to the working electrode (the sample) that is immersed

partially in the molten salt, the electrolysis of water results on hydrogen evolution

on the surface of the sample.

Tsubakino evaluated the efficiency of this setup by current density as a function of
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applied overpotential, which is a good indicator of the rate at which reactions occur

at the interface of the working electrode. Tsubakino concluded that the applied

current resulted in the evolution of hydrogen on the sample surface. The expected

void fraction caused by hydrogen attack however was not quantified. Although SEM

snapshots of the charged samples were presented, no control images were shown, and

therefore it is not possible to estimate the volume fraction of the created voids. It

further questions the quantitative relevance of the figures included in the report of

Tsubakino that the surfaces shown are photographs of unpolished fractured surfaces.

It is thought that such a fracture would preferentially occur in the material where

the density of imperfections of any kind is highest. Hence, no good reference was

found with regards to the expected void fraction caused by electrochemically induced

hydrogen attack. Instead, the approach chosen in this thesis is to compare SEM

figures of samples before and after inducing hydrogen attack in order to evaluate the

whether hydrogen attack was induced on the sample.

6.7.2 Experimental Results

This molten salt based hydrogen attack induction rig was built. Figure 6.12 shows

the results of a 5 hour measurement using the rig, during which an ultrasonic sensor

was permanently installed on a sample immersed partly in the molten salt. The most

interesting feature of the measured dataset is the relative ultrasonic propagation

velocity shown in Figure 6.12.b., as it is expected to correlate with the induced

hydrogen attack. In addition to the measured values, two horizontal lines are also

shown to help visually interpret the variability of the measured values. These

horizontal lines represent the propagation velocity change that would be expected

from 1% void fraction hydrogen attack on 10% of the wall thickness.

As can be seen from the figure, the variability of ultrasonic measurements is too high

to be able to measure changes of the order of 1% void fraction accurately. With such

high variability it was not possible to measure changes once a forced current was

applied to the sample represented by a vertical red line on the figure. The reason for

the low precision is simply the continuous loss of signal amplitude as shown in Figure

6.12.c. Subsequent repetitions of the experiment confirmed that the ultrasonic signal

amplitude rapidly degrades when the sample is inside the molten salt container. It
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was found that the signal amplitude drop is caused by corrosion of the waveguide

sensor contact patch. When the rig was disassembled, a small amount of NaOH

was observed on the top surface of the sample even when the sample was not fully

immersed in the molten salt.

Since the ultrasonic measurements were inconclusive, SEM photographs of the sample

were evaluated before and after the hydrogen attack experiment. These images are

shown in Figure 6.13. In both cases, the sample was polished using a grit size of 800.

Although small voids can be observed on the hydrogen attack charged sample shown

in Figure 6.13.b, the number of such voids is not conclusively higher than that of a

control sample shown in Figure 6.13.a.

It was not possible therefore to confirm that inducing hydrogen attack was successful.

In the future, it may be possible to improve the rig design to better protect the
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Figure 6.12: Figure a) shows the temperature of the sample (blue line), the
hotplate used for heating (red line) and the measured temperature of the NaOH
(magenta line). Figure b) shows the relative ultrasonic propagation velocity changes
(blue line) and when current was applied to the sample (red vertical line). For
reference, Figure b) also shows the amount of relative velocity change that would be
introduced by 1% void fraction of hydrogen attack over 10% of the material thickness
with horizontal black lines. Figure c) shows the maximum amplitude of the measured
ultrasonic signal.
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a) b)

Figure 6.13: Figure a) shows an SEM photograph of a mild steel sample before
the experiment. Figure b) shows an SEM photograph of the same sample after the
experiment. In both cases the sample was polished to 800 grit.

ultrasonic sensors from corrosion. This would improve the precision of ultrasonic

measurements, as the signal amplitude would not be expected to decrease over time.

It would also allow the experiment to be extended for longer periods of time, since

the degradation of the signals would no longer be a limiting factor. Higher degrees

of material degradation would therefore be possible to induce, which would be easier

to verify using both ultrasonic methods and SEM images. Improving the molten

salt rig was not attempted however due to time limitations, but may be interesting

future work.

6.8 Summary

This chapter investigated the feasibility of using permanently installed ultrasonic

sensors for monitoring high temperature hydrogen attack. A non-uniform ultrasonic

velocity distribution, which is expected to be the effect of hydrogen attack and

similar degradation mechanisms, was created by applying heat to the specimen.

This temperature map was used to evaluate the feasibility of reconstructing the

propagation velocity map within the material. The temperature range investigated

in this study (20− 110 oC) is equivalent to a void fraction of 0− 3.5% of hydrogen

attack.

Based on the simulated and experimental results, the equipment and methods used
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are precise enough to measure local temperature changes of the order of ±30 oC using

the Kaczmarz (ART) algorithm and ±5 oC using the Assumed Distribution method

presented here with a resolution of 1.5 pixels per millimetre equivalent to ∼ 0.7 mm

per pixel (which is half the wavelength of the signal within the material). These

values are equivalent to a local ultrasonic propagation velocity change of ±15m
s

and

±2.5m
s

respectively, which is equivalent to a local void fraction of 0.9% and 0.15%.

These initial results thus showed that the techniques may be useful to monitor the

progress of hydrogen attack.

A molten salt rig using NaOH was therefore built to induce hydrogen attack in

a mild steel sample. The results of measurements using the hydrogen attack rig

however were inconclusive, as environment inside the molten salt container induced

rapid corrosion on the contact patch of the waveguide transducers. Because of this,

ultrasonic measurement results degraded quickly, and the experiment had to be

stopped prematurely. It was not possible to verify experimentally that hydrogen

attack can be monitored using the proposed permanently installed ultrasonic sensor.

It was proposed for future work instead to design a new rig that would protect the

contact patch side of the sample and would prevent any contact-side corrosion.
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Chapter 7

Thickness Loss Measurements on

Evolving Rough Surfaces

7.1 Introduction

As discussed in previous chapters, the potential repeatability of permanently installed

ultrasonic thickness monitoring is below the micrometre level in laboratory conditions.

In practice however, measurement conditions are not as stable or predictable, which

may significantly increase variability of the thickness measurements. Most of the

possible sources of error, namely variable coupling conditions, temperature changes

and gradients as well as random noise in the signal have been discussed in previous

chapters of this thesis. The most complex issue to characterise however is caused by

shape changes of the internal pipe surface, or backwall surface, and is discussed in

this chapter.

Uneven backwall geometries, or rough backwalls, cause distortion in the ultra-

sonic wavepacket that is reflected from them. The distortion of the backwall echo

wavepacket is expected to cause errors in the arrival time estimation, and thus in

the thickness measurement. This phenomenon has been investigated in 2D sim-

ulations by Jarvis et al. [11]. In the paper by Jarvis et al. individual backwall

samples were generated as random Gaussian distributed surfaces. Correlation lengths

of 0.4 mm(0.25λ); 0.8 mm(0.5λ); 1.6 mm(λ); 2.4 mm(2λ) and RRMS ranges of 0.02

140



7. Thickness Loss Measurements on Evolving Rough Surfaces

mm(0.01λ) to 0.3 mm(0.19λ) with increments of 0.02 mm(0.01λ) were generated,

where λ is the wavelength of the ultrasonic signal. Ultrasonic signals were then

simulated for the generated geometries. Three standard signal processing methods

(Cross-Correlation, Peak-to-Peak and First Arrival) were used to calculate thick-

nesses from the signals. The study evaluated the distribution of the calculated

thicknesses and concluded that the error of mean wall thickness estimates may be as

large as millimetres regardless of the applied signal processing methods. Although

these simulations were carried out in 2D, in later studies Jarvis confirmed that 2D

simulations capture the majority of physical interactions occurring during reflection

compared to the 3D case [38,105]. This is a valuable finding, since 3D simulations

are computationally very expensive. This chapter is concerned with carrying out

statistical simulations of the evolution of the backwall surface shape and therefore

focuses on 2D simulations to keep simulation times feasible.

The results that were produced by Jarvis et al. are not directly applicable to extract

the errors in thickness and wall loss where there is a continuously changing surface

such as in corrosion/erosion. This is because the randomly generated successive

backwall surface geometries were independent. When monitoring the process of

corrosion with permanently installed sensors and when measurements are carried out

frequently, the geometry is expected to change only gradually between measurements.

The effect of gradual geometry change on the accuracy of mean wall thickness loss

trend estimation has not yet been evaluated, and this is therefore discussed in this

chapter.

It is important to note the complexity of the gradual wall thickness loss problem.

In this thesis two types of wall thickness loss are distinguished: localised (tending

towards pitting-type) thickness loss and statistically uniform thickness loss. Examples

of these cases are shown in Figure 7.1. This figure shows the two alternative wall

thickness loss mechanisms by superposing various stages of gradual shape change.

In both of these mechanisms some amount of mean wall thickness is lost, and both

may be affected by a degree of roughness or backwall surface shape change. The

key difference between these cases is that with a localised (pitting-type) thickness

loss phenomenon, not all of the backwall surface is affected and there are local

areas, pits, at which metal is preferentially lost. The limiting scenario of this is an
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Figure 7.1: Two alternative wall thickness loss mechanisms. On both graphs the
initial and final backwall shape is shown with solid black lines whereas steps of wall
loss between these stages are shown with dashed black lines. a) shows a pitting-type
localised thickness loss mechanism. b) shows a statistically uniform thickness loss
mechanism. Both processes start with a moderately rough backwall.

isolated pit drilling through the whole wall thickness. The changes in the backwall

are spatially correlated and therefore this phenomenon will also be referred to as

spatially correlated thickness loss. In order to assess the integrity of such a structure

one would then be interested in finding the location of the pit and monitoring its

deepest point, i.e. monitoring the extent of the defect. In contrast, for a statistically

uniform thickness loss phenomenon all areas of the backwall surface have the same

probability of getting thinner and thickness loss is spatially uncorrelated. Here, it is

the mean wall thickness loss that is of importance, as it is the most suitable parameter

to describe the pipe wall thickness and pipe strength. Nonetheless, backwall surface

geometry changes affect the estimated mean wall thickness loss.

This chapter aims to estimate the accuracy of ultrasonically monitored wall thickness

loss rates under varying backwall morphology conditions. First, a backwall geometry

model to generate sequences of backwalls with various amounts of gradual shape

change is introduced. Following this, the approach of simulating ultrasonic signals

for the generated backwall geometries is explained. Standard arrival time estimation

methods (Peak-to-Peak, First Arrival and Cross-Correlation) are then introduced.

Since previous studies by Jarvis et al. [11, 38, 105] have shown that standard arrival

time estimation methods are sensitive to the effects of backwall roughness, a new

improved arrival time estimation method - Adaptive Cross-Correlation (AXC) - is

introduced. Both the standard and the newly proposed AXC methods are then

used to process the simulated signals. The accuracy and precision of the wall loss

rates as estimated by the different algorithms is then compared. This is followed by
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concluding remarks.

7.2 Background of Study

7.2.1 Backwall geometry evolution simulation

It is well established that a number of corrosion and erosion processes may cause non-

uniform wall thickness loss in pipes [1, 2, 5, 106,107]. Since the impedance mismatch

is very large between a typical steel pipewall and the contained medium (regardless if

it is gas or fluid), it is a very good approximation to consider that the interaction of

the ultrasonic wave and the backwall surface is a function of the backwall geometry

only. A backwall generator model is therefore proposed based on the geometrical

parameters of the surface only. This uncouples the ultrasonic simulations from the

underlying corrosion/erosion process shaping the backwall, and instead allows to

focus on the investigation of backwall parameters that affect the ultrasonic signal

the most. It is beyond the scope of this thesis to develop a comprehensive model

that links the corrosion parameters (temperature, pressure, chemical composition,

flow rates, etc.) to a particular backwall shape. However, the statistical parameters

of the modelled surfaces were based on profilometer scans from retired pipework to

make sure that they were close to real life examples of corrosion [108]. For example

a measurement of a retired sample that had been exposed to high temperature

sulfidation corrosion yielded a surface RMS value in the range of 0.1-0.4 mm and

correlation length in the range of 1-10 mm.

The model of backwall evolution that was created, initially describes a random

Gaussian distributed backwall surface with a correlation length of CLi and a profile

height of RRMS = ri similarly to [11]. This initial backwall sample is expressed as

an array of points BW1(x). The mean value of BW1(x) is equivalent to the initial

mean wall thickness and is chosen to be T1 = 10 mm. Subsequent backwall samples

BW2..50(x) are generated by adding a perturbation term to the previous backwall

geometry. This perturbation term Pn(x) is also generated as a random Gaussian

distributed backwall surface. Pn(x) is characterised by the following parameters:

CLp = CLi and RRMS = rp < ri. The mean value of Pn(x) is zero, meaning that
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the perturbation term does not cause mean wall thickness loss.

The initially generated BW1(x) backwall surface is perturbed 49 times P1−49(x)

resulting in altogether 50 backwall surfaces BW1..50(x). These 50 related backwall

surface geometries BW1..50(x) are referred to as a backwall sequence. Each pertur-

bation step of this backwall generator model therefore is calculated the following

way:

BWn+1(x) = (BWn(x)− Tn + Pn(x)) · s+ Tn+1 (7.1)

Tn+1 = Tn −∆T (7.2)

where BWn+1(x) is the (n + 1)th backwall geometry, BWn(x) is the nth backwall

geometry, Tn is the mean wall thickness of the nth backwall, ∆T is the mean wall

thickness lost at each perturbation step and s is the RRMS scaling factor. The RRMS

scaling factor s was introduced in order to control the RRMS profile height of the

generated surfaces. In the initial simulations it is used to ensure that the sequence of

50 backwalls are of the same RRMS, as without the scaling, perturbing the geometry

multiple times would result in unintended RRMS increase. In order to keep RRMS

constant, the following value is used for s:

s =
ri√
r2
i + r2

p

=
1√

1 +
(
rp
ri

)2
(7.3)

This equation was derived based on normalising the sum of two independent variances.

In addition to keeping the RRMS constant, the RRMS scaling factor can also be used

to gradually scale backwall geometries to either increase or decrease their profile

height. As opposed to the behaviour of P1..49(x), where the perturbation term is

randomly generated at each step, this allows us to introduce a form of spatially

correlated perturbation into the model, since continuously scaling the backwall will

be spatially correlated between steps. For the rest of this thesis the term “correlated

backwall change” refers to a perturbation of the backwall that is not spatially random

and to some extent dependent on the existing backwall shape; e.g. thinner parts will

preferentially thin and thicker parts will preferentially stay thick (this is essentially

what happens in pitting).
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In this backwall generation model ∆T represents the mean wall thickness loss per step,

this is therefore the parameter the ultrasonic sensor is aiming to detect. ∆T however

is not an independent variable. In a real scenario a backwall surface is unlikely to

grow at any location, therefore when a backwall is perturbed, that perturbation

must be linked to some amount of mean wall loss. In this model ∆T was chosen

to be equal to rp. Since rp is the standard deviation of the random perturbation

profile, this may still result in temporary thickness increase at a given step, but will

result in average net thickness loss over all points for the full backwall sequence.

This approach therefore maximises perturbation for a given amount of wall loss in

order to investigate the maximum amount of uncertainty in ultrasonic thickness loss

measurements as a function of mean wall thickness loss.

This model can then be used to generate backwall sequences, so that they can be

used for ultrasonic signal simulations. The DPSM method introduced in Chapter

2 was used to simulate signals for the permanently installed ultrasonic waveguide

sensor. 100 active point sources were used to model the transmitter transducer.

These point sources were distributed with a separation of 10 µm and were offset from

the transducer/sample interface by 5 µm. The backwall surface was represented by

1200 passive point sources with a separation of 50 µm offset from the surface by 25

µm altogether spanning the width of the 60 mm backwall surface. These parameters

correspond to those proposed by Jarvis [105]. The receiver transducer was simulated

by a single receiver point at the centre of the coupled transducer. A sketch of the

complete setup is shown in Figure 7.2 along with the simulated signal for that setup.
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Figure 7.2: a) shows the geometry of the DPSM model of a generated backwall
sample. Blue circles are the active point sources simulating the transmitter transducer.
Red circles are passive point sources simulating the backwall geometry. In the DPSM
simulations 60 mm wide patches are simulated, but a smaller section is shown on this
figure for better visibility. Continuous black lines are drawn where a zero pressure
boundary condition has been applied. Dashed lines are purely for visual purposes only
and therefore no boundary condition was applied on them. b) shows the simulated
signal based on the model in red. The signal for a flat backwall of equivalent mean
wall thickness is shown in black. The Hilbert envelope for both signals are shown
with respective colours using dashed lines. The first wavepackets in both signals
(Surface Wavepacket) are undistorted and therefore overlap on the figure. The second
wavepacket (Backwall Echo Wavepacket) of the rough backwall sample is distorted
due to backwall roughness.

7.2.2 Arrival time extraction

Once the ultrasonic signal is simulated for a given backwall geometry, the arrival

times of all wavepackets in that signal can be determined. As explained in Chapter

3 there are a number of signal processing methods commonly used for this purpose.
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In this study the Peak-to-Peak (P2P), Cross-correlation (XC) and First Arrival

(FA) have been implemented. These methods are commonly used because they are

simple to implement and relatively robust. Their behaviour has been investigated

under relevant conditions to this thesis by Jarvis et al. [11]. The study by Jarvis

et al. proposed to compare the performance of the P2P, XC and FA algorithms on

randomly generated independent rough backwall surfaces. Its conclusion was that

even under moderately rough surface conditions (RRMS ∼ 0.1λ ∼ 0.15 mm) the

variability of the ultrasonically estimated mean wall thickness values was as large as

a millimetre. Although this study did not investigate the effects of gradual surface

geometry change, its results suggest that common methods are likely to be sensitive

to the ultrasonic distortion effect of rough surfaces.

Since standard methods are expected to be sensitive to signal distortion, they are not

expected to perform adequately for gradually changing rough backwall surfaces. A

new method - Adaptive Cross-Correlation (AXC) - is therefore proposed here. AXC

was developed specifically for the purpose of accurately estimating the mean wall

thickness loss rate of gradually changing backwall surfaces. This method is based

on the standard cross-correlation algorithm, however it uses an alternative reference

signal with which to cross-correlate. This is because the synthesised toneburst used

in standard cross-correlation is not a good model for distorted backwall echo signals.

Instead, AXC uses the following protocol to determine the arrival times of all 50

waveforms (w1..50) in a backwall sequence simulation:

tSW1
1← xcorr(w1, S

tb) (7.4)

tBW1
2← xcorr(w1, S

tb) (7.5)

SBWn−1 = wn−1(tBWn−1 : tBWn−1 + tBWlength) with n = 2..50 (7.6)

tSWn
1← xcorr(wn, S

tb) with n = 2..50 (7.7)

tBWn
2← xcorr(wn, S

BW
n−1) with n = 2..50 (7.8)

where xcorr(a, b) is the cross-correlation of functions a and b,
1← denotes the extrac-

tion of the time of the highest peak in the first wavepacket of a signal,
2← denotes the

extraction of the time of the highest peak in the second wavepacket of a signal, wn is

the nth waveform, w(ta : tb) denotes windowing a waveform between times ta and tb,

and SBWn is the windowed backwall wavepacket for the nth measurement. In summary
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therefore AXC relies on the cross-correlation function to determine arrival times. The

surface wavepacket and backwall echo wavepacket arrival times of the first waveform

are determined similarly to standard cross-correlation. Standard cross-correlation

is used also for all subsequent surface wavepackets. For all subsequent backwall

echo wavepackets the backwall sample from the preceding waveform is used for

cross-correlation. This allows AXC to adjust the reference signal for the backwall

echo wavepacket as the geometry of the backwall changes, and the backwall echo

wavepacket gets continuously distorted. Consequently, AXC is expected to provide

more accurate mean wall thickness loss rate measurements.

Once the arrival times have been extracted using any of the signal processing methods,

the thickness can be calculated. Since the geometry of the sensor setup is constant,

the thickness can be calculated using the same equation as introduced in Chapter 2:

T =
1

2

√
c · (tSW − tBW ) · (c · (tSW − tBW )− 2 · d) (7.9)

In order to evaluate this equation, the remaining two variables - propagation velocity

(c) and separation between transducers (d) - also have to be defined. In the DPSM

simulation the propagation velocity of the ultrasonic wave is constant at 3250m
s

. For

the separation of transducers (d), the assumed value of .7 mm is used.

7.2.3 Simulation procedure

The aim of this chapter is to simulate a large number of gradually changing backwall

sequences, and simulate ultrasonic signals that are reflected from these backwalls,

so that they can then be evaluated using the presented signal processing methods.

Comparing the mean wall thickness loss trends that are returned by the different

signal processing methods allows us to compare their performance at tracking the

mean wall loss for the simulated backwall morphology conditions. This section

describes how the backwall generator model is set up to achieve this and how

the results of the four signal processing methods are graphically summarised and

compared.

The parameters of the backwall generator model that need to be set are CL, ri, rp
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and s. First CL is considered. For Gaussian distributed surface profiles CL behaves

essentially as a low-pass spatial frequency filter [105]. However as the correlation

length is lowered and higher spatial frequency components are introduced, the density

of point sources in the DPSM model has to be increased as well, in order to be

able to accurately represent the behaviour of that surface. Lowering the correlation

length therefore increases computational time, which is significant because of the

high number of backwall simulations to be carried out. As Jarvis et al. [11] reported

however, correlation length has a much lower impact on the signal than the RRMS

profile height. Also, once the correlation length becomes much smaller than the

interrogating wavelength, the wave reflection becomes similar to that of a flat surface

again but of the extremities of the the rough surfaces (thinnest parts). In our model

CL was chosen to be 1 mm ∼ 0.6λ for all simulations, as the biggest changes in

the signal are expected in the signal for this correlation length, therefore leading to

conservative conclusions.

All of the remaining parameters for these simulations are shown in Table 7.1. As table

7.1 shows, the remaining parameters are broken down into two separate simulation

sets. The first set of simulations is intended to create backwall surfaces with no RRMS

scaling (no change in RMS throughout the sequence of 50 backwall surfaces) for a

range of initial RRMS surfaces. 3 RRMS values were chosen as ri = 100; 200; 300 µm

to be used, these are believed to be representative of values that can be experienced

in real life plants. Perturbation values were chosen to be rp = 0; 5; 15; 30 µm. In

these simulations s was calculated according to Equation 7.3, so that the RRMS

does not change throughout a backwall sequence. This dataset therefore simulates

spatially random wall thickness loss phenomena.

The second set of simulations is set up to create backwall surfaces with continuous

RRMS scaling (changing RMS value throughout the sequence of 50 backwall surfaces).

In this set of simulations rp = 5, 15, 30 µm cases are simulated. Selected ri values

are: 100 and 300 µm. Here the scaling coefficient was chosen so that it results in an

RRMS increase from 100 µm to 300 µm (where ri = 100 µm) and an RRMS decrease

from 300 µm to 100 µm (where ri = 300 µm). The numerical values for s to achieve

the intended amount of RRMS change are a function of both ri and rp as well, they

are therefore summarised in Table 7.1. This dataset therefore simulates spatially
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No RRMS scaling With RRMS scaling
ri = 100 µm ri = 200 µm ri = 300 µm ri = 100 µm ri = 300 µm

rp = 0 µm s = 1 s = 1 s = 1 N/A N/A
rp = 5 µm s = 0.998 s = 1 s = 1 s = −16.81 s = 165.5
rp = 15 µm s = 0.99 s = 0.999 s = 1 s = −1.543 s = 21.99
rp = 30 µm s = 0.958 s = 0.99 s = 0.995 s = −0.164 s = 9.757

Table 7.1: Simulated parameter sets for the backwall generator model. Parameter
sets denoted as N/A have not been simulated.

correlated perturbation in addition to the same amount of random perturbation as

in the previous dataset.

For each parameter set 200 backwall sequences were simulated, with 50 backwall

samples each. Ultrasonic signals were simulated for all of the backwalls, which were

then evaluated with each of the discussed signal processing methods. This resulted

in 50 thicknesses per backwall sequence. Backwall sequences are therefore linked to a

sequence of thickness estimates as produced by the signal processing techniques. For

each backwall sequence and its corresponding thicknesses a thickness trend could

be extracted using a linear least squares line fit. These trend lines were denoted

m1..200, i.e. one for each backwall sequence. The linear fits were then normalised

with respect to the real underlying mean wall thickness loss by: e1..200 = mr−m1..200

mr

where e1..200 were the normalised trend errors, while mr was the real underlying mean

wall thickness loss.

The performance of signal processing methods were then compared based on the

width of their thickness trend error distributions. In order to represent this visually

for a large number of parameter sets, trend error distributions are shown as boxplots,

where the boxes represent the data between the 25th and 75th percentile, whereas the

whiskers represent data between the 5th and 95th percentiles. A visual representation

of this is shown in Figure 7.3.
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Figure 7.3: Boxplot representation of probability-density-function (PDF) of wall
thickness loss trends.

7.3 Results

7.3.1 Backwall evolution without RMS change (only spa-

tially random perturbation)

The results of the mean wall thickness loss trend error distribution plots for AXC,

XC, P2P and FA methods under constant RRMS conditions are shown in Figure 7.4.

It should be noted that the axes on all graphs span between ±100%, where 100%

error means no wall thickness loss detected, 0% means that the wall thickness loss

was measured accurately, and −100% means the wall thickness detected is twice as

large compared to the underlying mean wall thickness loss.

It is particularly interesting to note the graph in the second column of the first row

of Figure 7.4. Here, the box representing AXC is narrow and is close to 0%, revealing

that wall thickness loss measured using AXC is accurate. The thick section of the

box representing XC is also relatively narrow and also centred around 0%, however

the thinner section of the same box spans significantly wider. This reveals that

in most cases the wall thickness loss measurements using XC are accurate, while

some of them are inaccurate. Overall the effects of both ri and rp are as expected

across the various graphs, increasing RRMS and perturbation widens the error bars

of any signal processing method. This aligns with the conclusions of previous reports
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suggesting that in general ultrasonic thickness measurements are sensitive to changes

of backwall morphology [11,38].

In addition, it is apparent from Figure 7.4 that on each and every plot the width of

trend error distributions for AXC is narrowest. This is as expected, since the AXC

algorithm was designed to perform better when monitoring gradually changing rough

backwall surfaces. This is most noticeable on the right column of results in Figure

7.4, where ri = 300 µm. Here the trend error distribution width of all standard

methods (XC, P2P and FA) span between ±100%, while the trend error distribution
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Figure 7.4: Distribution of normalised trend error e1..200 for each backwall
generator parameter set shown for each signal processing method. The green boxes
represent the results for Adaptive Cross-Correlation (AXC), the red boxes are
for Cross-Correlation (XC), the blue boxes are for Peak-to-Peak (P2P) and the
black boxes are for First Arrival (FA) methods. Axes on all plots are identical for
comparability. The numbers shown above each plot are the numbers of trends that
have been evaluted.
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width of AXC is close to an order of magnitude narrower spanning between +25%

and −10%. This means that AXC has a slight bias to overestimate the thickness (or

underestimate thickness loss rate), but this is negligible compared to the error of

other methods.

In addition to benchmarking the accuracy of AXC, it is also essential to investigate

its limitations. AXC is based on cross-correlation, and so the behaviour of XC is

considered first. XC is sensitive to backwall roughness as shown by Figure 7.4. This

breakdown in accuracy is caused by the distortion of the backwall echo wavepackets

when the backwall surface is rough. When the backwall surface is rough and the

signal is distorted, the synthesised toneburst used by XC does not correlate well with

the received signal. Since XC relies on determining the biggest peak in the signal,

in these cases a peak that is not representative of the mean wall thickness may be

the biggest. Consequently, the wrong peak is often found for the purposes of the

thickness measurement. This failure mode of XC was called peak jumping and will

be referred to as such for the rest of the thesis.

AXC avoids this problem by using the backwall echo wavepacket from the previous

measurement with which to cross-correlate, as it is much more likely to correlate well

with the received signal. However, when the backwall surface changes significantly

between measurements (which could occur in practice if ultrasonic signals are not

acquired frequently), excessive signal distortion may occur. In this case the current

signal will not correlate well with the previous backwall echo sample and AXC will

be affected by peak jumping. For this reason AXC is expected to perform similarly

to XC when applied to uncorrelated realisations of backwall surface geometries as

evaluated by Jarvis et al. [11].

Although peak jumping may introduce large errors, it is simple to detect, since

the error it causes is an integer multiple of ∼ λ/2. It is also easily avoided by

frequent measurements, as in a short time the backwall geometry is unlikely to

change excessively. In addition, when measurements are carried out frequently, the

thickness is not likely to change significantly and therefore the large error caused

by peak jumping is even more straightforward to detect. Permanently installed

monitoring is therefore well suited for AXC as it allows for frequent data acquisition.
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The results shown in Figure 7.4 only show trends where AXC peak jumping does

not occur. The number of trends out of the 200 simulated sequences that match

this criterion is shown above each of the plots on the figure. It is apparent from the

figure that although the distribution of trend errors is not affected significantly by

increasing perturbation, the number of peak jumps is affected. This observation is in

agreement with the concept that excessive change in backwall geometry causes peak

jumps. This finding therefore confirms that frequent measurements are recommended

when using AXC in order to ensure reliable and accurate thickness loss trends.
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Figure 7.5: Distribution of normalised trend error e1..200 for each backwall
generator parameter set shown for each signal processing method with RRMS scaling.
The green boxes represent the results for Adaptive Cross-Correlation (AXC), the red
boxes are for Cross-Correlation (XC), the blue boxes are for Peak-to-Peak (P2P) and
the black boxes are for First Arrival (FA) methods. Axes on all plots are identical
for comparability within the Figure, however they are 5 times larger compared to
Figure 7.4. The numbers shown above each plot are the numbers of trends that have
been evaluted.
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7.3.2 Backwall evolution with RMS change (and spatially

correlated perturbation)

The mean wall thickness trend error distribution plots with RRMS scaling applied

are shown in Figure 7.5. It should be noted that the axes of the plots in Figure 7.5

are 5 times larger than those of Figure 7.4. This larger range was chosen as the

trend error distributions are substantially larger when RRMS scaling is applied to

the geometry. In order to better understand the reason for this, the behaviour of

RRMS scaling in the backwall sequence generator model is considered.

The RRMS scaling was defined in the model as a factor that scaled the backwall

geometry at every step. It therefore acts as a correlated perturbation term, since

the change introduced by RRMS scaling will be correlated between steps of the

backwall sequence model and thinner parts of the component will become thinner

and thicker parts will stay thicker relative to the mean thickness of the component.

It is important to point out that this correlated perturbation caused by RRMS scaling

also introduces distortion in the ultrasonic signal in addition to that introduced

by random perturbation. In the backwall sequence generator model, mean wall

thickness loss however is linked to random perturbation alone, and it is not linked in

any way to RRMS scaling and hence correlated perturbation. Because of this, when

random perturbation is small, the mean wall loss will still be small even if correlated

perturbation is large. The error introduced by large correlated perturbation will

however be large relative to the small mean wall loss. This can be observed on the

top row of Figure 7.5, where the random perturbation rp term is small but trend

error distributions are large.

A real life example of a similar phenomenon is pitting. With pitting-type degradation

mechanisms the backwall of the sample loses wall thickness in a non-uniform fashion

as individual pits grow. The continuous growth of a pit is a type of spatially correlated

perturbation, which may occur without significant mean wall thickness loss. Over

time substantial changes in backwall geometry may occur, without much mean wall

thickness loss, but still introducing large amounts of distortion in the ultrasonic

signal.

Considering the results in Figure 7.5 quantitatively reveals that the trend error
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distributions for all standard methods (XC, P2P, FA) extend well beyond the ±100%

mark for all simulated scenarios. The worst case scenario is the top row of the figure,

where correlated perturbation is most significant. AXC still performs better than

any other signal processing method in all scenarios, however its performance is not

as accurate as when uncorrelated backwall changes occur. The widths of normalized

trend error distribution of AXC are as high as 200%, where error is quantified as the

width of trend error distributions between the 5th and 95th percentiles. In comparison,

the width of trend error distributions for all other methods (XC, P2P and FA) are

of the order of 1000%. It is worth noting however, that when random perturbation

is applied in higher proportion compared to correlated perturbation (bottom two

rows of Figure 7.5, the error of all four methods (AXC, XC, P2P and FA) decrease

significantly.

Another interesting feature of the displayed plots is that under increasing RRMS

conditions (left column of plots in Figure 7.5) XC, P2P and FA methods tend to

overestimate the thickness. Under decreasing RRMS conditions however (right column

of plots in Figure 7.5) the same methods consistently underestimate thickness. This

is thought to be the consequence of the interaction of the scattered wavefield from

the backwall and the coherent backwall echo wavepacket: with increasing RRMS the

relative amplitude of the scattered wavefield increases - effectively delaying energy

within the received wavepacket. An example of this distortion effect is shown in

Figure 7.2.b. With decreasing RRMS the opposite effect is observed, as expected.

For a more complete picture, the difference between the applicability of results

with and without RRMS scaling is pointed out here. It should be noted that the

applicability of results presented in Section 7.3.1, where no RRMS scaling was applied,

is clearly defined as random perturbation itself is well defined. One should be more

careful however when considering quantitative results with correlated perturbation

present. This study is not intended to be representative of all real backwall pertur-

bation processes, as the backwall morphology evolution of various corrosion/erosion

processes may be highly specific. As an extreme example, very narrow, but deep pits

evolving on the backwall surface may be considered. These are a form of correlated

perturbation with close to zero mean wall loss. However, because of the changing

backwall shape, the ultrasonic signal will be affected. This by the definition of the
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error (or definition of the error reported in this study) would result in very large

trend errors, since some thickness change will be detected with very little underlying

mean wall loss. This is because the concept of mean wall thickness loss alone is

not a good model for defect characterisation. It is expected however that adequate

defect detection may be possible using the ultrasonic monitoring principle used in

this thesis with a more appropriate approach, such as permanently installed arrays,

and therefore may be interesting future work.

In addition to the problem of identifying the limits of correlated perturbation, the

model used in this chapter has another limitation. Correlated perturbation in

the model is simulated as scaling the backwall shape vertically. Consequently, no

horizontal changes are introduced. A real pit would however be expected to grow

both in the vertical and horizontal dimensions. Because of this, it is expected the

vertical scaling only may not be realistic to simulate pits. However, at this point it is

important to recall that it is the purpose of this chapter to provide an insight into the

effect that different backwall change scenarios have on the ultrasonic measurement.

Whereas more in depth analysis of correlated perturbation may be valuable, but

would likely have to be specific to a degradation mechanism, and is therefore outside

the scope of this thesis. It should also be noted that this study was carried out for

a particular transducer geometry that is used in practice for thickness monitoring.

Results would be slightly different for other transducer geometries, but most likely

they will show the same trends as the scattering phenomenon and interaction with

the rough backwall remains similar (e.g.: the study by Benstock and Cegla [108] has

shown that variation of thickness measurements with round transducers is of similar

order to that described by Jarvis [38]). Simply the size of the surface over which the

wave field interacts with the surfaces will be different. Furthermore, it is expected

that the relative performance differences between various signal processing methods

are similar.

7.4 Summary

In this chapter the effect of continuously changing rough backwall surfaces on the

accuracy and precision of ultrasonically monitored thicknesses was investigated.
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This was achieved by means of a backwall sequence generator model that simulates

gradual perturbation of backwall geometries. This model was then used to generate

backwall sequences with a range of parameters, including various RRMS heights

and perturbation quantities. Instances of both spatially random and spatially

correlated perturbation were generated. Ultrasonic signals were then simulated for

all generated backwall geometries, which was evaluated using 3 standard signal

processing methods: Cross-Correlation (XC), Peak-to-Peak (P2P) and First Arrival

(FA). In addition, a new signal processing method, Adaptive Cross-Correlation (AXC)

was proposed, which was developed specifically to provide accurate trend predictions

for gradually perturbed backwall geometries. These 4 methods were used to calculate

the thicknesses corresponding to the backwall sequences based on the simulated

ultrasonic signals. Following this, the accuracy of estimated mean wall thickness

loss trends were compared under the simulated conditions, allowing to compare the

evaluated methods.

It was found that the accuracy of trend predictions varies significantly with signal

processing methods. When the backwall geometry was perturbed randomly, the error

of XC, P2P and FA methods were as high as 0%± 100%, where error is quantified as

the width of trend error distributions between the 5th and 95th percentiles. For the

same ultrasonic signals the worst error of AXC was 7.5%± 18%, close to an order of

magnitude less than other methods. A slight underestimation of the AXC estimated

wall thickness loss rate was also observed, but this was small compared to the error

of other methods and the width of the distribution. Based on the presented data

one can therefore conclude that when monitoring uniform corrosion mechanisms that

result in 1 mm/year of loss then with AXC one would expect the actual result to be

of the order of 0.75− 1.1 mm/year whereas the estimates of other algorithms would

record rates between 0 and 2 mm/year.

With RRMS scaling applied, which acts as a form of correlated perturbation, the error

of all signal processing methods increased compared to the random perturbation case.

AXC still performed best under these conditions - its 5th to 95th percentile trend

error width was 200% compared to about 1000% of other methods. Therefore for

corrosion mechanisms that result in correlated backwall changes (pitting-type) for a

wall loss rate of 1 mm/year in the worst case 0 − 2 mm/year would be measured
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with AXC while other methods would result in −4 to +6 mm/year.

It was noted that correlated perturbation in extreme cases ( e.g.: narrow, but deep

pits) may result in very little mean wall thickness loss, while still causing distortion

of the ultrasonic signal. In such cases mean wall thickness loss is not expected to be

the key parameter of the pipe wall to be estimated, and instead other parameters,

such as the minimum wall thickness (i.e.: deepest pit) would be of interest. Therefore

further investigations of correlated perturbation with the specific aim to develop

signal processing to detection and monitor more isolated defects are required.
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Chapter 8

Thickness Loss Measurements on

Evolving Rough Surfaces Using

Multiple Transducers

8.1 Introduction

The previous chapter of this thesis has concluded that standard signal processing

techniques for ultrasonic wall thickness loss measurements (XC, P2P, FA) are affected

by significant errors when the internal wall surface is rough. It has also been shown

that the errors have a strong dependence on backwall surface morphology conditions.

A new signal processing method - Adaptive Cross-Correlation (AXC) - was presented

as a method of decreasing errors by as much as an order of magnitude under all

investigated conditions. However, the proposed AXC method was also shown to be

susceptible to the effects of roughness, although to a lesser extent than standard

methods (XC, P2P, FA). It was shown that under certain conditions (i.e.: with large

amounts of correlated perturbation) errors may rise to relatively high levels. So far all

the errors associated with the different signal processing algorithms were quantified

based on comparison to the mean loss of the known and simulated geometry. It was

not yet attempted to determine an estimate of the measurement error/range based

on the measured data itself.
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In this chapter methods to gain more information about the continuously progressing

thickness loss phenomenon are discussed with the aim to both further improve the

accuracy of the wall thickness loss measurements, and also to determine an indication

of the accuracy of the wall loss estimate based on the measured data itself. Given

that the accuracy of trend estimates varies considerably as a function of backwall

geometry conditions, this would greatly increase confidence in the determined mean

wall loss measurements in the field.

Here methods to gain accuracy are explored by collecting more data related to one

particular thickness estimate. This is in contrast to the previous section, which

relied on a single waveform for a given thickness estimate. A number of approaches

to capture more data about a single backwall are considered. Methods to collect

new information with as little change to readily available hardware as possible are

described first, followed by alternatives requiring some degree of modifications. This

order was chosen as fewer changes to hardware are easier to implement.

By default, a 5-cycle 2 MHz toneburst is used as excitation for the permanently

installed waveguide sensor. The most straightforward approach to capture new

information using the sensor assembly is to assess the viability of transmitting signals

at different frequencies. Such a technique could be implemented by sending the two

signals sequentially, and evaluating the two measurements in pairs. Introducing new

frequency components compared to the originally proposed 5-cycle 2 MHz toneburst

is difficult however, regardless of how that is achieved (e.g.: adjusting the centre

frequency of the toneburst or adjusting the number of cycles). This is because

low frequency components (approximately 1 MHz and lower) get distorted by the

dispersive waveguides [25], whereas high frequency components are very susceptible

to roughness (strongly attenuated) [109]. Initial processing did not reveal any gains

so the concept of adjusting the sent toneburst was abandoned early on. Another

approach to gather more data about a thickness loss mechanism is to use multiple

transducer arrangements in order to take advantage of the spatial differences in the

backwall morphology. In this chapter two possible approaches are investigated.

The first transducer arrangement that is explored in this chapter uses multiple angle

illumination. Here, a sensor unit consists of 8 transducers in 4 pairs, that are used in

pitch-catch mode. These 4 pairs of transducers nominally illuminate the same patch
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of the backwall, but at different angles of illumination. The waves from the different

angles of illumination reflect differently from the backwall surface, which should

change the susceptibility to roughness of the measurement. (Obliquely incident waves

are less affected by rough surfaces, consider e.g. sunlight reflection from the surface

of the sea at low angles of incidence). Overall, the average of measured wall loss

rates should be a more accurate prediction of the real mean wall thickness loss rate.

In addition, the distribution of wall thickness loss rate estimates could be used to

estimate the accuracy of the measured rate.

The second approach that was evaluated is grouping (or clustering) multiple inde-

pendent backwall sequences that are generated with the same statistical parameters.

A real life implementation of this sensor configuration would be multiple sensors

coupled onto a pipe at close proximity, where the mean wall thickness loss can be

assumed to be similar. In this application the sensors are expected to measure the

same mean wall thickness rate, while the actual surface changes under each sensor

are somewhat different. The mean of the measured wall loss rates and the spread

can then be used to estimate the errors associated with the measurement, similarly

to the multi-angle sensor configuration.

In this chapter both the multi-angle and sensor-cluster approach are investigated

in detail. After the introduction of both sensor configurations, their performance is

evaluated, compared and discussed. Finally, the conclusions of the two investigations

are summarised and future work is outlined.

8.2 Geometry and measurement principles of pro-

posed sensor configurations

8.2.1 Monitoring of rough surfaces using multiple angles

The advantage of an array of sensors installed at a particular location is that

multiple measurements at the same spot on the wall can be made but at different

incident angles. The sensor configuration that was considered is shown in Figure

8.1. This sensor configuration is based on 4 transducer pairs, each of them centred

162



8. Thickness Loss Measurements on Evolving Rough Surfaces Using
Multiple Transducers

at x = 0 mm with separations of d = 2; 5; 10 and 20 mm. For these pairs therefore

the angle of illumination compared to the normal of the mean of the backwall is

θ = 5.7◦; 14◦; 26.6◦ and 45◦. All waveguide pairs are used in pitch-catch mode and

therefore they nominally illuminate the same patch of the backwall, with only the

angle of illumination being different for each pair. The advantage of this approach is

that the actual mean wall thickness loss rates for all measurements are identical.

Increasing the angle of incidence is the only control mechanism to decrease the

dependence (in a statistical sense) of measurements, but adjusting it is only possible

within finite bounds. This is because increasing the angle of incidence is only

possible by increasing separation of the transmitter and receiver, which therefore also

implies increasing the distance of wave propagation both for the surface wavepacket

and backwall echo wavepacket. Once the separation reaches a threshold, the two

wavepackets overlap and thickness estimation becomes significantly less accurate.

This limit for the separation can be calculated as follows:

d = (4·f 2·T 2 − Ω2·c2)/(2·Ω·f ·c) (8.1)

where f is the centre frequency of the toneburst, Ω is the number of cycles in the
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Figure 8.1: 4 different transducer pairs that have been investigated, with each
pair denoted with the same colour. Those denoted with a T act as transmitters,
whereas those denoted with an R are used as receivers. Since all 4 transducer pairs
are centered around x = 0 mm, their specular reflection is nominally in the same
location.
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toneburst, T is thickness of the sample and c is the propagation velocity of the

ultrasonic wave. For the parameters of this study at T = 10 mm according to

Equation 8.1 the maximum separation is dmax = 20.5 mm. Therefore the widest

separation of 20 mm shown in Figure 8.1 is the maximum realistic value for the

thickness that was investigated.

8.2.2 Monitoring of rough surfaces with sensor clusters

For a wall thickness loss rate measurement on rough and evolving surfaces using

a single sensor, the error distribution of wall thickness loss rate estimates has

already been determined in the previous chapter. When a second sensor is added

to measure the same wall thickness loss rate with a roughness evolution of identical

statistical parameters, it is favourable to average the two estimates provided that the

measurements of the two sensors are independent. This simple principle is applied

in this section to multiple measurements of statistically uniform wall thickness loss

scenarios.

The concept of independent measurements is implemented in this section by grouping

(or clustering) multiple backwall sequence simulations that were generated in the same

way (i.e.: randomly generated using identical ri, rp, CL, s parameters, but different

instances thereof). Since the backwall sequence simulations are initiated in all cases

by randomly generating the initial surface and then randomly perturbing it, they

are inherently independent. The only link between backwall sequence simulations

are the statistical parameters that were used to generate them (ri, rp, CL, s). These

were then used as the basis for grouping them.

Although the primary purpose of the investigation is to gain an insight into whether

grouping measurements would result in the average or median trend being more

accurate, it is also important to consider practical implications. In practice, multiple

sensors can be clustered at close proximity, where the mean wall thickness loss rate

of the pipe can be assumed to be the same. The waveguide sensor assembly can be

used without any need for modifications.

When using sensor clusters, the decision of how close the sensors should be coupled
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onto the pipe should be considered. If the sensors are coupled too far apart from

one-another, the assumption of identical mean wall thickness loss rate might break

down. If the sensors are coupled too closely, the illuminated backwall surface

area of the sensors may overlap, compromising the assumption of independent

measurements. Therefore the question of how far apart sensors have to be spaced to

ensure independent ultrasonic measurements is important.

The correlation length of the surface is the most important property that governs how

far measurements will need to be spaced apart to result in independent measurements.

Correlation length is defined as the spatial offset at which the autocorrelation of the

backwall geometry falls below e−1 ≈ 0.37 [11]. As a consequence of this definition,

higher spatial offsets result in lower values of autocorrelation. A spatial offset

of 3 correlation lengths results in an autocorrelation value of e−3 ≈ 0.05. It is

assumed here that backwall shapes 3 or more correlation lengths apart are therefore

independent as their correlation is sufficiently low. In addition, it has been shown by

Cegla et al. [109] that the waveguide sensor is not sensitive to correlation lengths

higher than 4− 5λ ≈ 6− 8 mm. Hence, it is expected that ultrasonic measurement

errors behave independently with a sensor separation of three times the maximum

correlation length: 3 · (6− 8 mm) ≈ 20 mm.

8.3 Data processing protocol

The previous section has introduced two approaches (multi-angle and clustered sensor

configuration) for monitoring rough surfaces. In both sensor configurations, trans-

ducer pairs are used for pitch-catch measurements with signal processing identical to

that in Chapter 7. Although the signal processing approach itself has not changed,

it is summarised here for clarity. First, a waveform is simulated for a given backwall

geometry. This waveform is filtered and a time-of-flight algorithm is applied. In this

section all previously presented algorithms (AXC, XC, P2P and FA) are evaluated.

The extracted arrival times are then used to calculate the thickness of the sample.

The resulting thickness measurements for multi-angle and clustered sensor config-

urations are then evaluated in the same way. The thickness measurements of m
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transducer pairs are referred to as T 1..m
1..50 , where m is the number of sensors for

sensor-clusters, or m = 4 for multi-angle sensor configurations. Figure 8.2.a. shows

an example of the thickness plots for 5 transducer pairs for a backwall sequence

calculated using AXC. The mean wall thickness change per segment is then calcu-

lated for each of those backwall sequences referred to as TC1..m
1..49, and is shown in

Figure 8.2.b. As introduced in the previous chapter, AXC is occasionally affected

by peak-jumping, a failure mechanism that results in large errors between two suc-

cessive thickness measurements. Since in this section multiple mean wall thickness

loss rate measurements are available, these errors can be identified and removed.

This is implemented in an algorithm that is named trend-segment-averaging (TSA).

Trend-segment-averaging ignores any thickness changes from one sample to the next

with an absolute value of more than 0.4 mm. This is half of the error introduced

by a single peak-jump, which is expected to be an integer multiple of half of the

wavelength λ/2 ∼ 0.8 mm. Following this, the algorithm calculates the median value

of the remaining trend segments. In case all trends show a thickness rate with an

absolute value of more than 0.4 mm for a given segment, then the mean of all rates

are calculated. This means that if all measurements are affected by peak jumping

for a given segment then the jump cannot be avoided but this is highly unlikely.
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Figure 8.2: Calculated thicknesses using AXC for 5 sensors simulated as
independent backwall sequences with ri = 300 µm, rp = 30 µm and no RRMS scaling.
4 thickness trends are not affected by peak-jumping and are shown in blue. One of
the thickness trends is affected by peak-jumping and is shown in red. The calculated
thickness trend using trend-segment-averaging for these sensors is shown in black.
Figure b shows the thickness change per step for the same sensors. Here the same
colours represent the same thickness trends.
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The calculated mean wall thickness trend is then referred to as TCTSA
1..49 . In order to

calculate the thicknesses based on the calculated rates, the first thickness is defined

as the median of thicknesses measured by all sensors: T TSA1 = median (T 1..m
1 ). The

remaining thicknesses are then defined as T TSAn+1 = T TSAn + TCTSA
n where n = 1..49.

The process of trend-segment-averaging is therefore expected to significantly decrease

the incidence of peak-jumping and is also expected to provide more accurate mean

wall thickness loss rate estimates than a single transducer pair would. These more

accurate trends for a multi-transducer sensor configurations are then treated and

evaluated in the same way as in the previous chapter. This process is summarised

here briefly. A linear fit is calculated for the measured thickness loss trends using the

method of least squares. For a given parameter set, altogether 200 multi-transducer

sensor configurations are evaluated, which results in 200 linear fits. The width of

the linear fit distributions are then normalised based on the real underlying mean

wall thickness loss, and this is visualised using boxplots. Plots produced in this

fashion can be directly compared to those in the previous section, since the method

of evaluation is identical.

If measurements from multiple transducers are available, it is possible to evaluate the

distribution of the individual trends, and use this as an estimate of the accuracy of the

mean wall thickness loss measurement. The ability to estimate that accuracy based

on the measurement itself would greatly increase confidence in the measurement and

will tell the user when to trust a measurement and when to have less confidence

in it. The accuracy estimation method proposed here is initiated by calculating

the best trend estimate using the trend-segment-averaging method described above.

Peak-jumps are ignored here as well as any wall loss trend segment with an absolute

value of more than 0.4 mm. Following this, the standard deviation is estimated the

following way:

TCi
error = median

(
TCi

1..49 − TCTSA
1..49

)
with i = 1..m (8.2)

GSTD = std
(
TC1..m

error

)
(8.3)

where TCi
error is the error of thickness change per segment for each sensor and GSTD

is the estimated standard deviation for the sensor cluster. GSTD can therefore be

used as an estimate of the standard deviation for the mean wall thickness loss rate.
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8.4 Results

The primary aim of this section is to evaluate the extent to which accuracy can

be improved using multi-angle or clustered sensor configurations under gradually

changing backwall morphology conditions. The secondary objective is to investigate

if accuracy can be estimated based on the measurements. The process to achieve

this is similar to that of the previous section and is summarised here.

8.4.1 Method of comparison

For the clustered sensor configuration, the previous backwall sequences and the

previous signals are grouped randomly. 200 clusters are created per parameter set.

Here a cluster size of 12 sensors is investigated. All parameter sets with perturbation

(summarised in Table 7.1) are included in this section. The cases where the backwall

surface was not perturbed are omitted as their error was very low even when using

only one sensor and therefore are not relevant for this study.

For both sensor configurations, all 4 signal processing methods (AXC, XC, P2P, FA)

are then applied in combination with trend-segment-averaging to create a mean wall

thickness loss trend per cluster of sensors. The distribution of the created trends are

then shown on boxplots, similarly to the previous chapter.

8.4.2 Accuracy of multi-angle sensor configuration

Figure 8.3 shows the normalised mean wall thickness loss trend error results computed

with the multi-angle sensor configuration by trend-segment-averaging measurements

from all 4 angles. Comparing results from Figure 8.3 to the results with single

sensors (Figures 7.4 and 7.5 in the previous chapter) reveals that the most significant

difference between the figures is the number of peak-jumps. Using the multi-angle

sensor configuration resulted in only 8 peak-jumps for AXC out of the 3000 simulated

backwall sequences, an incidence of just 0.3%.

An interesting aspect of these results is that the performance of XC appears to be
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Figure 8.3: Mean wall thickness loss trend error distribution results for all 4
investigated angles with trend-segment-averaging. The green boxes show results for
Adaptive Cross-Correlation (AXC), the red boxes represent Cross-Correlation (XC),
the blue boxes are for Peak-to-Peak (P2P) and the black boxes are for First Arrival
(FA) methods. All plots are shown with the ±100% axes for comparability with
other results. Correlated perturbation results (first two columns from the right) are
also shown with ±100% axes, which are directly comparable to the results using 12
independent sensors shown in Figure 8.4.

almost the same as AXC. This is because the trend-segment-averaging approach works

very efficiently in identifying peak-jumps, which greatly improves the performance

of XC. The P2P and FA algorithms however do not exhibit a similar peak-jumping

behaviour, and their performance is not affected by peak-jump filtering.

8.4.3 Accuracy of clustered sensor configuration

Figure 8.4 shows the results computed with sensor-clusters of 12 sensors. Comparing

these results with those of Figure 7.4 and Figure 7.5 in the previous chapter it is

apparent that the peak-jumps have been eliminated completely in all simulated pa-

rameter sets. The width of trend error distributions have decreased as well. In theory,

the standard deviation of the results when averaging independent measurements is

expected to decrease by the square-root of the number of averages [51]. This rate of
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Figure 8.4: Mean wall thickness loss trend error distribution results for 12 sensor
clusters. The green boxes show results for Adaptive Cross-Correlation (AXC), the
red boxes represent Cross-Correlation (XC), the blue boxes are for Peak-to-Peak
(P2P) and the black boxes are for First Arrival (FA) methods. All plots are shown
with ±100% axes for comparability with other results. Correlated perturbation
results (first two columns from the right) are also shown with ±100% axes, which
are not directly comparable to those in the previous chapter.

accuracy improvement is confirmed when comparing Figure 8.4 with Figures 7.4 and

7.5 in the previous chapter. For example, with 5 µm perturbation and a backwall

RMS of 100 µm the normalised trend error width decreased from ±20% (when using

a single sensor) to ±6% when using a cluster of 12 sensors. The error therefore

decreased by 1 − 6
20

= 70%, which is similar to what is expected from averaging 12

measurements: 1− 1√
12
≈ 71%. In addition, the accuracy of XC has improved here

as well and nearly matches that of AXC, similarly to the results of the multi-angle

sensor configuration.
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8.4.4 Error estimation using multi-angle sensor configura-

tion

The results for the estimated standard deviations (GSTD) using the data from all

4 angles of the multi-angle sensor configuration are shown in Figure 8.5. From the

figure it can be seen that estimation of standard deviation for wall thickness loss

rates is very limited for any signal processing method using the multi-angle sensor

configuration. The explanation for this is the same as for the lack of improvement in

accuracy: the measurements using the various angles are simply too dependent, and

therefore any benefit is limited.
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Figure 8.5: Estimated standard deviation of calculated mean wall thickness
trend distribution results for results from all 4 angles of the multi-angle sensor
configuration. The green boxes show results for Adaptive Cross-Correlation (AXC),
the red boxes represent Cross-Correlation (XC), the blue boxes are for Peak-to-Peak
(P2P) and the black boxes are for First Arrival (FA) methods. All plots are shown
with identical axes for comparabilty with other results.
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8.4.5 Error estimation using the clustered sensor configura-

tion

Figure 8.6 shows the results of estimated trend standard deviation (GSTD) using

sensor-clusters for a cluster size of 12 sensors. It is clear that the AXC and XC

methods are the most accurate in this investigation as well, as a consequence of

filtering out peak-jumps. It is apparent that using data from multiple sensors clearly

allows for qualitative differentiation of the worst cases of backwall shape change (top

right plot) compared to those with less significant change (left 3 columns of subplots)

using either AXC or XC. When using 12 sensors in a cluster, qualitative estimation

of the accuracy is also feasible. Based on Figure 8.6 the estimated standard deviation

(GSTD) of trends based on AXC are below 18% in all of the plots from the left 3

columns. Comparing this to the results in Figure 7.4 (measurements using a single

transducer pair in the previous chapter), the estimated GSTD values are accurate.

All other parameter sets behave similarly, estimated standard deviations (GSTD)
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Figure 8.6: Estimated standard deviation (GSTD) of calculated mean wall thick-
ness trend distribution results for 12 sensor clusters. The green boxes show results
for Adaptive Cross-Correlation (AXC), the red boxes represent Cross-Correlation
(XC), the blue boxes are for Peak-to-Peak (P2P) and the black boxes are for First
Arrival (FA) methods. All plots are shown with identical axes for comparabiltiy with
other results.
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shown in Figure 8.6 are reasonably accurate compared to those expected from Figure

7.5.

8.5 Discussion

The results clearly show that in some scenarios using a multiple transducer sensor

configuration can be beneficial. The degree to which improvements can be achieved

depends on the sensor configuration. It was shown that the benefit of using a multi-

angle sensor configuration is limited. One of the main difficulties in implementation is

that the largest illumination angle and therefore the maximum transducer separation

is a function of the pipe thickness. Results showed that the benefits of using a

multi-angle sensor configuration are limited to the mitigation of the peak-jumping

phenomenon, which may only be of practical use when very severe backwall geometry

changes are expected. However, frequent sampling is also expected to result in a

decrease of peak-jumps and therefore the multi-angle sensor configuration may be of

limited use in a real application.

Simulations of grouping independent backwall sequences, representing an ideal

clustered sensor configuration, show more promise. It is feasible to eliminate peak-

jumping completely and improvements in estimated mean wall thickness loss rate

accuracy can also be achieved when using multiple transducers. Trend accuracy

estimation has also been shown to be possible in simulations. Therefore it is concluded

that the approach of using multiple independent measurements is effective.

It should be noted that in practice this sensor configuration may have limitations

compared to what was shown in the simulations: a possible problem in a real

application is that the mean wall thickness loss rate under each of the sensors in

a cluster will be different. This has not been investigated in simulations, as all

clusters were formed by backwall sequences with the same underlying mean wall

thickness loss rate. In case the wall thickness is lost at a different rate under various

sensors, it is expected that the estimated standard deviation (GSTD) of the cluster

would be relatively large, depending on the severity of differences in wall loss rate.

It would be interesting future work to quantitatively estimate the deviations that
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can be introduced in such scenarios. It may be possible to use amplitude changes

and waveform distortion as an indicator to help evaluate whether backwall shape

changes are taking place or if the underlying mean corrosion rate is genuinely different

corresponding to various sensors. Sensor sub-clustering may be another plausible

approach, which could help identify outliers within the cluster. These concepts have

not been investigated in this thesis, but they are thought to be potentially interesting

future work.

Although the ability to estimate the standard deviation of the measurements is

practical, it is still desirable to maximise accuracy. Therefore it is essential to ensure

that the mean wall thickness loss rates below sensors are the same. It is expected

that in a real application mean wall loss rates are more likely to be similar when

sensors are coupled close to one-another, regardless of corrosion phenomena. As

explained earlier however, coupling sensors too close to each other could violate the

assumption of independent measurements. It has been discussed that ultrasonic

measurements using waveguide sensors coupled with a separation of 20 mm or more

result in independent measurements. In practice sensors cannot physically be coupled

closer to one another than 20 mm because of the width of their coupling clamp,

hence in practice their measurements are expected to be independent and so the

positioning of sensors can be arbitrarily chosen.

Other methods may be potentially useful for transducers other than the waveguides,

such as changing the centre frequency of the sent toneburst between measurements.

No other alternatives were investigated here however, since the transducer used in the

study is not suitable for such approaches. In addition, independent measurements

from a multi-sensor cluster constitute the maximum achievable accuracy for a given

number of measurements.

8.6 Summary

In this chapter the potential gain in accuracy for estimating a single mean wall

thickness loss rate using multiple transducers has been investigated in simulations.

In addition, the feasibility of estimating the standard deviation of the mean wall
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thickness loss rate based on the measurements from multiple transducers was also

investigated. Both of these expected improvements have been evaluated for two

proposed sensor configurations.

The first sensor configuration used 4 pairs of transducers in pitch-catch mode

illuminating the same patch of the backwall at different angles. One of the biggest

improvements this method demonstrated was a significant reduction in number of

peak-jumps compared to the use of data from a single transmitter receiver pair only.

With the multi-angle sensor configuration only small accuracy improvement was

shown to be achievable using AXC compared to the standard sensor configuration.

The second proposed sensor configuration relied on a cluster of multiple sensors

coupled to a sample at close proximity, where the mean wall thickness loss rate is

identical. In simulations, the sensors in the cluster were represented by independent

backwall sequence simulations generated using statistically identical parameters

(ri; rp;CL, s). It was found that using a cluster size of 12 sensors, the accuracy of

all signal processing methods increased compared to single sensors in the previous

chapter, most notably Adaptive Cross-Correlation (AXC) and Cross-Correlation.

The accuracy of AXC increased by 69%, which is proportional to the square root of

number of sensors in the cluster (1− 1√
12
∼ 71%). In addition, the peak-jumps of AXC

have been eliminated entirely. Standard deviation estimation (GSTD) using results

from 12 sensors has been shown to be accurate enough for qualitative estimates (i.e.:

small or large error). Clustering fewer than 12 sensors has been shown to promise

similar benefits, however the accuracy of standard deviation estimation (GSTD)

decreases if fewer sensors are used. In addition, practical difficulties with a real

implementation of sensor clustering were discussed: when sensors are clustered on a

real pipe, the underlying mean wall thickness loss for each of those sensors may be

different. It was preliminarily concluded that such an scenario would likely increase

the standard deviation estimate (GSTD), and hence would be detectable. It was also

concluded that sensors should be coupled onto the pipe as closely as possible. As a

guideline, it was concluded that coupling sensors as close as 20 mm would result in

independent measurement error and therefore results would be expected to behave

as reported in this study.

As future work it may also be interesting to investigate combining the multi-sensor
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approach and the multi-angle approach in a waveguide array. The array sensor config-

uration could provide reasonably independent measurements with reasonably similar

corrosion rates, although both assumptions may be compromised to some extent.

However, the consideration of how localised certain corrosion/erosion phenomena

are is expected to be specific to the particular corrosion mechanisms, which may be

a good starting point for further analysis.

176



Chapter 9

Conclusions

9.1 Thesis Review

In this thesis maximising the precision of permanently installed ultrasonic time of

flight sensors was investigated. Various sources of variability affecting the measure-

ment precision were evaluated and a measurement protocol was suggested to minimise

variability. The repeatability that can be achieved with the described measurement

protocol was verified in simulations and in laboratory corrosion experiments as well

as various other experiments. One of the most significant and complex problems

affecting the precision, inner wall surface roughness, was also investigated and a

signal processing method was proposed to improve the accuracy of estimated wall

thickness loss rates by an order of magnitude compared to standard methods.

The background and theory on ultrasonic wave propagation that supports this re-

search was introduced in Chapter 2. It was explained that permanently installed

ultrasonic sensors in particular have the potential to carry out time of flight mea-

surements such as thickness measurements with very high repeatability. In addition,

they are also well suited to carry out such measurements at short regular intervals.

Increased measurement precision and decreased measurement intervals allow for

greatly increased accuracy in measured component wall thickness loss rates. Because

of the substantial gain in rate estimation accuracy, permanently installed monitoring

was established as a central concept in the thesis. It was also explained that most
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investigations in this thesis are aimed to be generic, however in order to be able to

compare techniques that are presented in the thesis quantitatively, an example perma-

nently installed sensor was needed. A waveguide-based permanently installed sensor

was introduced, that was then used throughout the thesis to benchmark presented

methods that aim to maximise the precision of time of flight measurements.

With the generic concept of permanently installed time of flight measurements

established, potential sources of uncertainty were evaluated in Chapters 3 and 4. First,

parameters of the signal acquisition hardware were looked at (e.g.: sampling frequency,

quantisation resolution and amplitude range). Signal processing, including filtering,

averaging, arrival time estimation methods were then investigated. In addition,

experimental error sources that affect most measurements were also discussed. This

included evaluating coherent noise, coupling stability and temperature effects.

With all aspects of the signal acquisition and processing evaluated, a signal processing

protocol was established. The precision that can be achieved with this protocol

was experimentally verified using a corrosion rig in Chapter 5. Both corrosion

forced by applied current and unforced corrosion were monitored by online ultrasonic

measurements using the waveguide sensor. Here, the accuracy of ultrasonically

measured wall thickness loss rates were compared to electrochemically predicted

corrosion rates. Electrolytes that were tested were distilled water, NaCl, Na2SO3,

citric acid and HCl.

Beyond corrosion experiments, the feasibility of material degradation monitoring was

assessed in Chapter 6 via measurements of ultrasonic propagation velocity. First,

propagation velocity changes caused by a non-uniform temperature distribution

were created. Ultrasonic measurements were carried out during the heating of the

monitored component and the measured data was used to reconstruct the propagation

velocity map, which was then converted into the temperature map. In addition,

the feasibility of monitoring hydrogen attack, a degradation mechanism expected to

cause a shift in ultrasonic propagation velocity similar to the effect of temperature,

was also evaluated. For this, a hydrogen attack rig was built that was capable of

inducing the degradation mechanism while being monitored using the waveguide

sensor.
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Although the precision that can be achieved in experiments using a permanently

installed ultrasonic sensor was demonstrated, it was noted in Chapter 7 that surface

geometry changes of the inner wall surface (i.e. backwall roughness) may introduce

large errors in measurements. Chapter 7 therefore investigated the effects of gradual

changes in inner surface geometry of the monitored component on ultrasonic measure-

ments. Gradual changes in surface geometry were investigated as it is expected that

permanently installed sensors carry out measurements at a single location at high

frequency, and therefore it is expected that the surface geometry changes gradually

between measurements. Here the performance of common arrival time estimation

methods were compared for a range of gradually changing simulated backwall surface

geometries. A new arrival time estimation method, Adaptive Cross-Correlation

(AXC) was also introduced with the aim to improve the accuracy of estimated wall

thickness loss rates compared to traditional methods.

The feasibility of monitoring a single wall thickness loss rate for a gradually changing

rough backwall using multiple transducers was then looked at in Chapter 8 with

the hope of improving the accuracy of the measured wall thickness loss rates. Two

setups were evaluated. The first setup used multiple transducers illuminating the

same patch of the backwall from multiple angles, whereas the second setup relied on

independent transducer pairs below which the underlying wall thickness loss can be

assumed to be identical.

9.2 Main Findings

The main findings of this thesis are as follows:

� A signal acquisition and processing protocol that was experimentally demon-

strated to be capable of measuring wall thickness with a precision of 20 nm

was established

� A new arrival time estimation method (AXC) was developed and shown to

improve the precision of wall thickness loss rate estimation by an order of

magnitude compared to standard methods on rough and evolving backwall

surfaces
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� Further improvement in wall thickness loss rate estimation of rough backwall

surfaces was demonstrated using a multi-sensor setup

Evaluating signal generation, acquisition and processing revealed that it is possible

to measure wall thicknesses of components at nanometre precision using permanently

installed ultrasonic sensors with temperature compensation and raw signal to noise

ratios of the order of 52 dB by applying the signal processing protocol that is described

in this thesis. It was also shown that the precision of wall thickness estimates in

experiments is typically limited by the temperature compensation that is applied.

When temperature changes are small (< 0.1 oC) a standard deviation of 14 nm was

measured in wall thickness estimates using the established signal processing protocol.

Further experimental results showed that realistic temperature changes of the order

of 5 oC limit precision of wall thickness estimates to 1 µm. In addition, larger changes

in temperature (of the order of 400 oC) are expected to cause errors of up to 20 µm

during heating transients.

Inner wall surface roughness was shown to potentially introduce even larger errors

than temperature, but is not expected to affect all monitored specimens. It was

demonstrated that standard processing methods estimate mean wall thickness loss

rates with an accuracy of the order of ±100% even with moderate amount of spatially

random surface shape changes. When spatially correlated inner wall surface shape

changes occur, error bars have been shown to be even higher and may reach ±500%.

This showed not only that standard methods may be inaccurate when monitoring

rough inner surfaces, but also that an increase in mean wall thickness may be

measured in some cases, while the real underlying wall thickness decreases. A

new arrival time estimation method, Adaptive Cross-Correlation (AXC) was then

introduced and was shown to improve mean wall thickness loss rate estimation

accuracy by almost an order of magnitude. The accuracy of AXC was shown to

be 7.5 ± 18% when inner surface shape changes are spatially random and ±100%

when surface changes are spatially correlated. Attention was drawn to the fact that

the mean wall thickness describes the wall thickness loss of spatially random loss

mechanisms well, whereas mean wall thickness loss is not a good representation of

spatially correlated phenomena such as pitting.
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Even further increase in achievable wall thickness loss rate accuracy was shown

using a multi-sensor setup, where accuracy was shown to increase to ±30% (worst

case scenario) with AXC using a 12 sensors cluster when monitoring spatially

correlated surface changes. This constitutes an improvement of 70% compared to the

performance of a single sensor setup. Furthermore, it was shown that the accuracy of

the calculated wall loss rate can be estimated based on the measurement itself using

the multi-sensor cluster. This is thought to be a key improvement, as the accuracy

of wall loss estimates vary significantly depending on the type of the inner wall

surface shape change (i.e. spatially random or spatially correlated). The accuracy

estimation using the multi-sensor setup therefore helps increase confidence in the

ultrasonic wall thickness loss measurements, as the accuracy of the measurements

can be estimated and it is not necessary to make assumptions about how spatially

correlated the underlying surface changes are for a measurement.

In summary, it was demonstrated that very high precision can be achieved in

experiments and that such precision is expected to be achievable using sensors with

signal to noise ratio of the order of 40 dB and above. It was also shown that even

with severe changes to inner wall surface roughness a wall loss estimate accuracy

of ±30% can be achieved using a multi-sensor setup with AXC. Furthermore, it

was demonstrated that the accuracy can be estimated based on the measurement

itself, which is expected to greatly increase confidence in ultrasonic wall loss estimate

measurements. Techniques presented in this thesis therefore allow for the accurate

monitoring of components in a wider range of conditions and for more forms of

degradations compared to what had been possible before. In addition, the techniques

presented are expected to be readily applicable for implementation in field.

9.3 Proposed Future Work

Although it was shown that techniques presented in this thesis are capable of accu-

rately monitoring components with gradually changing inner wall surface roughness

even if those shape changes are spatially correlated, it was also explained that the

estimation of mean wall thickness loss is not expected to be a good model for mon-

itoring very localised defects, such as narrow pits or cracks. In the future, defect
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monitoring techniques should therefore be developed that can be used in parallel

with techniques for monitoring general mean wall thickness loss described here. Such

techniques would need to identify when a defect (e.g. a pit or a crack) is more

dominant than the underlying mean wall thickness loss hence allowing for a more

complete assessment of component health status.

Another area of potential improvement is the accuracy of temperature compensation.

Excluding inner wall surface roughness, temperature was found to be the largest

contributor of error for typical measurements, hence improving the accuracy of

temperature compensation is expected to translate directly into more accurate wall

thickness loss measurements. By better modelling the distribution of temperatures

within the component wall may allow for decreasing the errors that were measured in

this thesis. In addition, it is thought that investigating the possibility of insulating

the temperature measurement device (i.e thermocouple) from ambient air-flow may

lead to improved temperature measurements and hence more effective temperature

compensation.

Lastly, it would be interesting to improve the hydrogen attack rig that was described in

this thesis. Measurements described here were stopped prematurely as the ultrasonic

sensor signal quality degraded as a result of contact patch corrosion. This is because

the ultrasonic sensor was not adequately protected from the corrosive environment

that was necessary for laboratory induced hydrogen attack. By better protecting

the sensor, it may be possible to continue the experiment for longer periods of time,

hence increasing the amount of induced degradation while preserving the quality of

ultrasonic measurements.
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Appendix

A.1 Derivation of slope error in Equation 2.16

Equation 2.15 has established that the variability of a thickness slope can be

estimated assuming that the variability of individual thickness measurements are

identical. The equation is repeated here:

σslope =
σ√∑

(ti − t̄)2
(A.1)

This can be simplified by assuming that N number of measurements are carried out

at equal ∆t intervals in a period of t̂ = N ·∆t time. Given that:

ti = (i− 1) ·∆t (A.2)

and

t̄ =
(N − 1) ·∆t

2
(A.3)

it is possible to expand
∑

(ti − t̄)2 from Equation A.1:

∑
(ti − t̄)2 = ∆t2

∑(
(i− 1)− N − 1

2

)2

= ∆t2
∑(

i2 − (N + 1) · i+
(N + 1)2

4

)
(A.4)
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Using standard expressions for sums, this simplifies to:

∑
(ti − t̄)2 = ∆t2

(
2N3 + 3N2 +N

6
− N(N + 1)2

2
+
N(N + 1)2

4

)
(A.5)

Which then reduces to:

∑
(ti − t̄)2 =

∆t2

12
(N3 −N) (A.6)

This can then be substituted back to Equation A.1 to produce what is Equation

2.16:

σslope =
σ
√

12

∆t
√
N3 −N

(A.7)

A.2 Polynomial fits for ultrasonic propagation ve-

locity - temperature calibration curves

Material
Velocity at 20 oC

[m/s]

Slope = P(1)

[m/s/oC]

Offset = P(0)

[m/s]

Temperature at

which max error

[oC]

Max Error

[m/s]

S275 3265.28 -0.62778 3277.84 38.30 10.35

304 SS 3173.69 -0.78157 3189.32 39.91 2.04

316 SS 3157.47 -0.80513 3173.57 26.58 5.05

CR12 3274.24 -0.61008 3286.44 430.58 9.09

CR5 3309.09 -0.59486 3320.99 430.37 9.26

CR9 3360.95 -0.63146 3373.58 428.02 12.64

Table A.1: Temperature compensation constants for 6 different alloys using a
linear fit, where c = P (1) · T + P (0) where c is the ultrasonic propagation velocity,
T is the temperature and P (1)andP (0) are the parameters of the fit.
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Material
Velocity at 20 oC

[m/s]
P(2) P(1) P(0)

Temperature at

which max error

[oC]

Max Error

[m/s]

S275 3251.17 -0.00049 -0.413460266 3259.64 402.34 3.75

304 SS 3173.23 -0.00001 -0.775028987 3188.73 39.91 1.70

316 SS 3154.04 -0.00012 -0.75249286 3169.14 429.58 2.54

CR12 3257.43 -0.00042 -0.402123254 3265.64 431.25 0.61

CR5 3292.84 -0.00042 -0.390783686 3300.82 433.24 0.95

CR9 3347.35 -0.00046 -0.422219199 3355.98 26.54 1.75

Table A.2: Temperature compensation constants for 6 different alloys using
a quadratic fit, where c = P (2) · T 2 + P (1) · T + P (0) where c is the ultrasonic
propagation velocity, T is the temperature and P (2), P (1)andP (0) are the parameters
of the fit.
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Figure A.1: Estimated maximum transient error (METEST) values for a 20
mm thick pipe. The maximum temperature difference in the simulation is ∆Θ = 380
oC and heating rate is 22.8 oC/min
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Figure A.2: Estimated maximum transient error (METEST) values for a 20
mm thick pipe. The maximum temperature difference in the simulation is ∆Θ = 380
oC and heating rate is 2280 oC/min
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