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Abstract

This work applies evolutionary computation and machine learning methods to study the

transportation system of Quito from a design optimization perspective. It couples an evolu-

tionary algorithm with a microscopic transport simulator and uses the outcome of the optimi-

zation process to deepen our understanding of the problem and gain knowledge about the

system. The work focuses on the optimization of a large number of traffic lights deployed on

a wide area of the city and studies their impact on travel time, emissions and fuel consump-

tion. An evolutionary algorithm with specialized mutation operators is proposed to search

effectively in large decision spaces, evolving small populations for a short number of genera-

tions. The effects of the operators combined with a varying mutation schedule are studied,

and an analysis of the parameters of the algorithm is also included. In addition, hierarchical

clustering is performed on the best solutions found in several runs of the algorithm. An anal-

ysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis

of emissions, and an analysis of signal coordination provide an overall picture of the sys-

temic effects of the optimization process.

Introduction

Transportation and mobility systems have become large-scale and complex in many cities,

with broad social impacts and strong implications for the economy and the environment.

Urban population is overgrowing around the globe [1] bringing an increase in transportation

and mobility demand that improperly satisfied often causes congestion of the system. This

adds substantial costs due to delays, increases gas emissions, the risk of accidents and affects

health. Thus, efforts to continuously redesign the transportation system and make it sustain-

able to guarantee the mobility of larger populations and the accessibility of cities are required.

These efforts include the increase of infrastructure capacity, land-use planning, improving

public transportation, and the incorporation of soft-computing methods to implement Intelli-

gent Transportation Systems (ITS).

We focus on computational intelligence, machine learning (ML) and data mining meth-

ods coupled to a transport simulator to develop a design optimization framework for the
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transportation system of Quito (Ecuador’s capital), using the outcome of the optimization

process for problem understanding and to gain knowledge to suggest innovations to the real

system.

Quito’s urban population growth has put enormous strains on its transportation system.

There is the need to model the system, better understand the problems associated with trans-

portation and mobility, find sustainable solutions to solve them and improve life in the city.

In this work, our objective is to minimize travel time optimizing settings of 70 signalized

intersections located in the business centre of Quito aiming to reduce traffic congestion, fuel

consumption and emissions. We model activity-based mobility plans of inhabitants with pri-

vate cars and simulate them on Quito’s transport network using the microscopic Multi Agent

Transport Simulator (MatSim) [2]. We concentrate on the optimization of a large number of

traffic lights deployed on a wide area of the city and study their impact on travel time, emis-

sions and fuel consumption. A proper setting of traffic signals can help to alleviate the traffic

congestion with better use of the current infrastructure. Moreover, it is a key component to

study other important problems related to mobility in order to improve the sustainability of

the transport system.

We use evolutionary algorithms (EA) to explore a significant number of alternative signal

settings under various scenarios of mobility. Activity based micro-simulation allows us to

model the mobility demand of each person in the scenario and facilitates a detailed analysis of

the traffic in the city. However, it is computationally expensive. This imposes limits on the

number of fitness evaluations, population size, number of generations, and on the number of

times the stochastic evolutionary algorithm can be run. In addition, the search space is vast

due to the number of signals considered and the several parameters that define a traffic signal.

Hence, an important aim of this work is to develop an evolutionary algorithm to search effec-

tively in large decision spaces under a small budget of iterations (generations), performing a

reliable short-term evolution to find high-quality solutions. To achieve this, we design a set of

specialized mutation operators to search for clusters of coordinated signals with similar cycle

length by propagating cycle length between neighboring signals and setting offsets based on

the distance between them. Due to the topography of the city and its mobility patterns, it is

important to define neighborhoods as two-dimensional and optimize in both directions of

traffic flow (north-south-north and east-west-east). Also, we introduce varying mutation rates

with high selection pressure to accelerate convergence of the algorithm. The appropriate com-

bination of operators, selection, and varying mutation rates allows to search effectively even

with small populations. We use machine learning for parameter analysis of the evolutionary

algorithm to compare our settings with ones suggested by ML methods.

To gain knowledge, we use data mining methods to perform hierarchical clustering in deci-

sion space of the best solutions found by the evolutionary algorithm. We include the analysis

of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of

emissions, and analysis of signal coordination. This gives an overall picture of the systemic

effects of the optimization process.

We verify the effectiveness of the developed algorithm for short-term evolution using a

small population. We also show that the design optimization approach is a useful tool to

advance the understanding of the transport and mobility problems of Quito city, essential for

decision making.

Related work

Several techniques have been proposed for signal timing optimization. These range from sta-

tistical based methods in the 60’s [3, 4] to computational intelligence based methods in the last

Evolutionary design optimization of traffic signals applied to Quito city

PLOS ONE | https://doi.org/10.1371/journal.pone.0188757 December 13, 2017 2 / 37

https://doi.org/10.1371/journal.pone.0188757


years [5] oriented to implement intelligent transportation systems. In the following, we review

the literature where meta-heuristics and biologically inspired algorithms have been combined

with traffic simulators for optimization. The review is brief and tries to give a broad perspec-

tive, but it does not mean that is comprehensive.

The level of traffic simulation has been either macroscopic [6–9], mesoscopic [10], or

microscopic [11–14]. Some works model toy or virtual scenarios mostly for proofs of concept

to verify the hypothesis about mobility and transport issues, and to test optimization methods

[6, 10, 15–20]. Other works model real world problems [7, 8, 11, 12] and have mainly focused

on small areas of interest with relatively few signalized intersections. For example, seven sig-

nalized intersections are optimized in [11] and nine in [7]. In these studies, usually, the phases

of the signals have been modeled in detail, including several phases for some of the signals.

However, typically one common cycle has been considered for all signals and some studies do

not consider offsets between them. In [11] different cycle lengths are implicitly modeled, but

no offsets are considered. Examples of real-world problems with a relatively large number of

signalized intersections are [13, 14], [8] and [21]. In [14] twenty to forty signal controls were

considered in an area of 0.42 Km2, signals were modeled to allow different cycle lengths with

two or more phases, but offsets were not explicitly considered. In [8] seventy-five signalized

intersections with two or more phases and offsets between signals were considered in an area

of 30 Km2. However, a common cycle was used for all signals. In [21] seventy consecutive sig-

nalized intersections located on a 13-mile corridor were optimized. The modeling of the sig-

nals is detailed, including 12 NEMA movements and right turns, basic and Transit Signal

Priority (TSP) timing parameters, with more than two phases in some intersections. However,

it uses a binary coding representation for integers applying one-point crossover and bit flip-

ping mutation. Unfortunatelly, with this representation the magnitude of change depends

more on the position of the bit being mutated than on the mutation probability. Thus, tuning

of the algorithm and robustness to parameters settings become a serious issue. Even more so

when mutation rates are controlled over time, as we do it in our work.

In the above-referenced works, Genetic algorithms (GA) have been the favored optimiza-

tion technique. Another popular optimization technique has been Particle Swarm Optimiza-

tion(PSO) [14, 17, 19, 20]. Although most works have focused on fixed settings of the signals,

there are also important works on dynamic settings, for example [15, 16, 18, 22, 23].

In our work we focus on a real-world network that covers a wide area of 40 Km2 and

include in its main backbone seventy signalized intersections, a relatively large number similar

to [8] and [21]. We consider a different offset and a different cycle length per signal, instead of

a common cycle for all signals. The traffic simulation is agent-based at a microscopic level, and

mobility is modeled based on agents’ activities, which allows us to build and test real world sce-

narios for the city under study. Our study also includes analyses of solutions to understand the

systemic effects of the optimization based on several indicators that measure the sustainability

of transport systems [24].

Method

Components and overview

We follow the design optimization approach illustrated in Fig 1. We first formulate a problem

related to mobility and transport, simulate the mobility in the city using a specialized transport

simulator, use an evolutionary algorithm to find optimal solutions to the formulated problem

evaluating the quality of solutions using the outcome of the simulation, analyze the solutions

produced by the evolutionary algorithm and extract knowledge about the system. The

approach is iterative, where the solutions and obtained knowledge are made available to the
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expert for further analysis. The feedback from the expert could be used to reformulate the

problem to study additional details. Once the expert is satisfied, the knowledge gained could

be suggested to improve the real system.

Problem formulation

In this study we simulate the mobility of a large number of agents and study the impact of traf-

fic light settings on travel time, fuel consumption and emissions. Besides, we analyze optimal

solutions to get patterns of signal settings and verify these patterns according to their geoloca-

tion. The geographical area of study is a large and important part of Quito (Ecuador). It

includes the business district, eight major universities, several hospitals, large malls, two large

parks, and one major soccer stadium, covering approximately 5 x 8 Km2. Most signalized

intersections in the area of study are two-phased and implement a fixed-time control. Only a

few main intersections use left turn signals because most intersections where left turns are

allowed have been gradually redesign to include diverging and merging ramps. Also, there are

exclusive lanes for some bus lines, but there are no signals with special phases to establish bus

transit priority. Recently there are efforts to study the incorporation of some adaptive signals.

Since several sectors of the city are highly congested at certain hours, it is anticipated that

adaptive signals would be only partially effective. Thus, its is important to have fixed-time opti-

mal schemes that can be used as default timing plans to improve traffic conditions in the city.

In Quito city, mobility represents a constant challenge due to the transportation infrastructure

is not adequate to the demand. Quito’s urban population increased from 1 million in 1990 to

1.7 million in 2015, and it is expected to increase other 0.5 million by 2030 [1]. Similarly, in

Ecuador, the rate of vehicles for each 1000 inhabitants changed from 17 to 51 from 1990 to

Fig 1. Method.

https://doi.org/10.1371/journal.pone.0188757.g001
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2010 [25]. The re-design of road network infrastructure implies substantial costs that are

hardly affordable. Hence, a way to reduce traffic congestion is to make better use of the existing

road network, which can be achieved in part by a proper set of traffic signals. Furthermore,

proper setting of traffic signals also helps reducing emissions and can induce traffic patterns to

control speed in sensible areas to increase pedestrian security.

Transport simulator

In this work, we use MATSim, an agent-based transport simulation framework [2]. It performs

a micro-simulation of agents that move on a transport system producing information about

agent routes and movements. MATSim requires as inputs the model of the transport network

infrastructure and the agents’ mobility plans.

The network information is obtained from Geofabrik and OpenStreetMap [26]. The num-

ber of links of the network corresponding to the area of study is 8192. The links’ attributes are

length (m), flow capacity that defines how many cars can pass through the road during a unit

of time, e.g. vehicles/hour, and free speed that represents the maximum flow velocity. For this

work, we take into account all the main and secondary pathways with free speeds equal or

above 30 Km/h. Traffic in all main pathways is bidirectional, and some of them include multi-

ple lanes. Traffic in secondary pathways is mostly unidirectional.

One or more trips define the mobility plan of an agent. MATsim receives the initial mobil-

ity plans for all simulated agents, compute initial routes based on heuristics, and optimize [27]

the departure time and the routes in order to provide a system in equilibrium state [28], where

no traveler can improve his/her utility function by unilaterally changing departure times or

routes. The configuration of initial plans is detailed in section Initial Mobility Plans for MAT-

Sim as part of the Experimental Setup.

Fig 2 shows the integration between the simulator and the evolutionary algorithm (EA).

The EA searches optimal settings for the traffic lights. To evaluate a solution, MATSim

Fig 2. Simulation and EA integration.

https://doi.org/10.1371/journal.pone.0188757.g002
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simulates the mobility of all agents starting from the equilibrium state computed previously

and setting its signals controls with the tentative solution provided by the optimizer. MATSim

simulates traffic lights microscopically using fixed-time controls [29]. The output collected

from that iteration of the simulator is used to calculate travel time and passed back to the opti-

mizer as the fitness of the solution.

Evolutionary algorithm

The optimizer is an evolutionary algorithm that combines elitism with varying mutations. In

the following, we detail the representation, the flow of the algorithm, operators, the varying

mutation schedule, and fitness function.

Traffic signals representation. The principal components of a traffic signal are cycle

length, phase, offset, green and inter-green time. Cycle length is the time in seconds required

for one complete color sequence of the signal. A phase is the set of movements that can take

place simultaneously. An Offset is the time lapse in seconds between the beginning of a corre-

sponding green phase at an intersection and the beginning of a corresponding green phase at

the next intersection. In this work we extend the representation used in [8] to include a cycle

per signal. Also, we use integer instead of binary representation. The variables per signal to

optimize are cycle length, offset, and green times. We choose these three variables because we

aim to find appropriate green times for groups of signals, where signals in the same group

share a similar cycle length and are coordinated with the offset but different groups use differ-

ent cycle lengths. Thus, a solution x with the specification of all n signals considered in the sys-

tem is represented by

x ¼ ðS1; � � � ; Sh; � � � ; SnÞ; ð1Þ

where the h-th traffic signal is defined by the following tuple of integer variables

Sh ¼ ðCh; yh; �h;1; � � � ; �h;rh
Þ: ð2Þ

Here, Ch is cycle length, θh is the offset, and ϕh,1,� � �, ϕh,rh are the green times for the rh phases

of the signal. Fig 3 illustrates the main components of a signal and Fig 4 the representation of a

solution to a system with n signals, each one with rh phases.

The ranges and constraints of these variables are given in Eqs (3)–(9), where Ih,j is the inter-

green time at signal h for phase j and rh is the total number of phases of signal h. Equations Eqs

(3)–(5) represent the range for cycle length Ch, offset θh and green time ϕh,j, respectively. Cmin

is determined by identifying the signal that needs the longest duration just to accommodate

the inter-green times and the minimum green times as shown in Eq (6). Cmax is set to 135 sec-

onds and inter-green per phase to 3 seconds. These values imply that the minimum cycle time

Cmin is 40 seconds in two phase signals.

Fig 3. Traffic light components.

https://doi.org/10.1371/journal.pone.0188757.g003
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The minimum green time should allow drivers to react to the start of the green interval and

meet driver expectancy. We follow the Traffic Signal Timing Manual (TSTM) [30] guidelines

taking into consideration the driver expectancy [31] and pedestrian crossing time. TSTM sug-

gests a minimum green time to satisfy driver expectancy between 7 to 15 seconds for major

arterials with speed limit of 64 Km/h or less. In our scenario the free speed in most major arte-

rials is around that value. As we mentioned in Problem Formulation section, the business dis-

trict has several facilities and services with a high pedestrian volume in some areas. Thus,

considering both, the driver expectancy and walk interval duration for pedestrian crossing, we

decided to set the minimum green time to 17 seconds for all signalized intersections as shown

in Eq (7).

Regarding the maximum green time, TSTM suggests between 40 to 60 seconds for the kind

of arterials considered in our scenario. In our work, we search simultaneously cycle length,

green times and offsets. As mentioned above the range allowed for cycle length is between 40

and 135 seconds. The maximum cycle length (135) allows us to set maximum green times (as

suggest by TSTM) to both phases.

Eq (8) ensures that the sum of the green times in a signal together with inter-green do not

exceed the cycle length set for the signal. Eq (9) establishes the maximum green time for the

signal phase based on the cycle time, inter-green and minimum green time.

Cmin � Ch � Cmax ð3Þ

0 � yh � Ch � 1 ð4Þ

�h;jmin
� �h;j � �h;jmax

ð5Þ

Cmin ¼ max
h¼1;2...;n

Xrh

j¼1

�h;jmin
þ
Xrh

j¼1

Ih;j

 !( )

ð6Þ

�h;jmin
¼ 17 sec 8h; j ð7Þ

Ch ¼
Xrh

j¼1

�h;j þ
Xrh

j¼1

Ih;j 8h ð8Þ

�h;jmax
¼ Ch �

Xrh

j¼1

Ih;j �
Xrh

k¼1;k6¼j

�h;kmin
ð9Þ

Fig 4. Solution representation.

https://doi.org/10.1371/journal.pone.0188757.g004
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Evolutionary algorithm flow. A block diagram that illustrates the flow of the algorithm is

shown in Fig 5. In the following, we describe the main steps of the algorithm based on this

figure.

The initial population μ is formed by 20 deterministically created solutions. All signals in a

solution are set to the same cycle length, green times are set evenly for all phases dividing cycle

length minus inter-greens by the number of phases, and offsets are set to zero. In this work, we

consider signals with two phases. Solutions in μ are assigned different cycle lengths, from 40 to

135 seconds in steps of 5. No repetitions are allowed. We do this to guarantee maximum diver-

sity for each signal across the population so that, evolution could explore a broad region of var-

iable space.

Each solution is evaluated running MATSim with the traffic signals settings it encodes.

Parents are selected for reproduction using binary tournaments among randomly sampled

solutions. The offspring population λ is created applying crossover to the selected parents with

probability Pc followed by mutation. Mutation updates the probability PðtÞm , selects a mutation

operator and apply it with the updated PðtÞm per signal. There are two mutation operators, one

for cycle time and offset and another for green time. The operators’ probabilities are PCtO and

PGt = 1 − PCtO, respectively. During the evolution we relax the initial assumption of common

cycle length for all signals in a solution. The proposed mutation operators for cycle time and

offset searches for groups of signals with same cycle length by propagating the cycle of a signal

to its neighbors and induce their coordination by setting their offset based on the distance

between neighboring signals. The operators’ probabilities allows to balance the search for cycle

lengths and green times.

After crossover and mutation, the offspring is evaluated running MATSim as indicated

above. Selection of solutions for the next generation applies elitism, taking into consideration

the current population μ(t) and the offspring population λ(t). Namely, the population μ(t+1) is

formed by the best in the combined population of the top nElite from μt and the λt offspring,

i.e. nElite(μ(t)) + λ(t)! μ(t+1). Also, we introduce varying mutation rates for PðtÞm . The algorithm

evolves solutions repeating parent selection, crossover and mutation, offspring evaluation, and

survival selection until a pre-determined number of generations T has been reached. The

appropriate combination of operators, high selection pressure via elitism, and varying muta-

tion rates accelerate convergence of the algorithm and allows to search effectively even with

small populations.

Operators of variation. In this work, we use either one or two point crossover to inter-

changes signals between parents. The crossing points are selected randomly with equal proba-

bility in the range [1,n − 1], where n is the number of signals.

The algorithm selects between two operators to mutate signals. One is the Green time muta-
tor (GtM) and the other one is Neighborhood cycle propagation with distance-based offset muta-
tor (NCtOPM).

The GtM operator decreases the green time of one phase and adds it to another phase using

step size stepGt. The phase i to decrease its green time is randomly chosen among those where

the decrement does not violate the constraint for minimum green time ϕh,imin
. Similarly, the

phase j 6¼ i to increase its green time is also randomly chosen.

The NCtOPM operator aims to improve traffic flow along the two main axis of circulation,

South-North-South (SNS) and West-East-West (WEW), favoring traffic signal coordination

by simultaneously modifying the parameters of a signal Sh and its neighbors Nh. The operator

stochastically selects the axis of circulation, either NSN or WEW. Then, it chooses one direc-

tion of the axis, for example, NS for axis NSN, and propagates the cycle length (Ch) of the

Evolutionary design optimization of traffic signals applied to Quito city

PLOS ONE | https://doi.org/10.1371/journal.pone.0188757 December 13, 2017 8 / 37

https://doi.org/10.1371/journal.pone.0188757


reference signal (Sh) to its neighbors in that direction. In addition, it sets the offsets of the

neighboring signals based on the time required to cover the distance d from Sh to the neighbor

traveling at free speed. The operator does the same with the other direction of the axis, i.e. SN.

The propagation of cycle and offset to the neighborhood is illustrated in Fig 6. Since the cycle

Fig 5. Evolutionary algorithm flow chart.

https://doi.org/10.1371/journal.pone.0188757.g005
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length of the signals may change, green times are also adjusted so that the ratios of green time

per phase to cycle are the same before and after propagation.

Varying mutation schedule. Varying mutation operators combined with high selection

pressure have been proved effective to accelerate the convergence of evolutionary algorithms

[32, 33]. The proposed algorithm introduces elitism inducing a high selection pressure. Also, it

includes a time-dependent schedule that deterministically varies mutation rate PðtÞm in the

range ½Pð0Þm ; P
ðTÞ
m �. P

ðtÞ
m varies in a hyperbolic shape [32] and is expressed by

Pm
ðtÞ ¼

1

Pm
ð0Þ
þ

1

PmðTÞ
� 1

Pmð0Þ

T � 1
t

 !� 1

ð10Þ

where T is the maximum number of generations, t 2 {0, 1, . . ., T − 1} is the current generation,

Pm
ð0Þ and Pm

ðTÞ are the desired mutation probabilities per signal at time 0 and T, respectively.

Fitness function. The fitness of a solution is the average travel time of all agents computed

from MATSim’s simulation, setting traffic lights with the values encoded in the solution.

MATSim outputs, for all agents, the time it takes to travel each link of an agent’s route. The fit-

ness function is expressed by

min
PV

i¼1

PL
l¼1

til
V

; ð11Þ

where til is the travel time on link l for vehicle i, V is the number of vehicles being simulated,

and L is the number of links in the network.

Experimental setup

Evolutionary algorithm

We run the algorithm ten times per experiment, use each time a different random seed but

always start from the same initial population. We configure three experiments named E3,

E4, and E4DVM to test different strategies with mutation operators. The experiments are

described with more detail in section Effects of Operators.

The number of generations is set to 50, population size is 20, and the number of elite indi-

viduals is nElite = 10. Unless stated otherwise, crossover rate is set to Pc = 1.0 and the range

for varying mutation per signal PðtÞm is [20/n, 4/n], where n = 70 is the number of signals. To

Fig 6. Cycle and offset propagation.

https://doi.org/10.1371/journal.pone.0188757.g006
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compare with varying mutation probability per signal, we also apply the mutation operators

with constant probability Pm = 4/n per signal. Probabilities PCtO and PGt of the mutation opera-

tors GtM and NCtOPM are detailed in Table 1 together with the mutation probabilities per sig-

nal for the three experiments.

Step size for the green time mutation operator GtM is stepGt = 3. In the case of the neigh-

borhood mutation operator NCtOPM, we define in advance two neighborhoods for each signal

Sh, one for the axis of circulation SNS and another one for the axis WEW. The neighborhoods

are based on the actual geographical location of the signals. Also, we pre-calculate the distance

and the average free speed to its neighbors along each axis. In this work, the radius of the

neighborhood is set to one, i.e. the neighborhood includes the next and previous signal to the

reference signal. The neighborhood operator selects for mutation the axis NSN and WEW

with probabilities 0.85 and 0.15, respectively, in agreement with the most common traffic flow

and mobility patterns in the city.

Initial mobility plans for MATSim

To simulate the movement of the agents, we need to provide MATSim with their initial mobil-

ity plans. In the following, we explain in detail how these plans are modeled. In this work, a

mobility plan of an agent consists of two trips. In the first trip, the agent leaves home towards

the location of its activity [34] and in the second trip, the agent returns home from its activity.

Thus, each trip is defined by the coordinates of origin and destination of the trip and the activ-

ity specified by the type, starting time and duration of the activity. The type of vehicle used is

also associated with the journey.

We digitalized the administrative city borders defining a geographical area per district

using QGIS Geographic Information System [35]. We sample home locations for the agents

from these districts in proportion to the actual population. We consider three types of activity:

work, study, and others for activities such as leisure, business, shopping, and so on. The propor-

tions of agents for these activities are 32%, 33% and 36% respectively, according to mobility

survey data [36]. Location coordinates of activities are determined based on actual information

about the city. In the case of activity work, data about the distribution of workplaces by district

in Quito is provided in [37]. Fig 7 shows in colors the distribution of the home coordinates of

the agents, Fig 8 shows the coordinates of the main activities, and Table 2 the population of the

districts considered in our simulation.

We follow that distribution to assign the coordinates of workplaces probabilistically. For

the type of activity study, we select probabilistically among the universities located in the area

of study and assign its coordinates. The number of agents assigned to each university is pro-

portional to the university’s population. In this activity, we neither consider elementary nor

high school students. For the type of activity other, we use an origin-destination probability

matrix to assign the coordinate, where the probability to go to a destination is proportional to

the population of the destination district and inverse to the distance.

Table 1. Probability of mutation operators PCtO and PGt and mutation probability Pm and PðtÞm per signal.

Exp Op.Prob

PCtO, PGt

Mutation Probability

per Signal

Observations

E3 0.7,0.3 Pm = 4/70 Constant

E4 0.3,0.7 Pm = 4/70 Constant

E4DVM 0.3,0.7 PðtÞm ¼ ½P
ð0Þ
m ¼ 20=70;PðTÞm ¼ 4=70� Varying

https://doi.org/10.1371/journal.pone.0188757.t001
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Starting times and durations of activities are assigned randomly sampling from ranges

defined for each type of activity.

In this work, we design three different mobility scenarios as illustrated in Fig 9. In the first

one (S124h), the trips start from 06:00h and there are several small peaks during the whole day

Fig 7. Distribution of home coordinates.

https://doi.org/10.1371/journal.pone.0188757.g007
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where 500 vehicles or less are in route. In the second one (S2M), the agents move during

morning hours (06:00h-09:00h) from home to their activity destinations, with a high peak

between 07h30 and 08h30 where more than 4000 vehicles are in route. In the last one (S2A),

the same agents of S2M move back home. In S2A the trips are spread over a longer period

Fig 8. Distribution of main activities coordinates.

https://doi.org/10.1371/journal.pone.0188757.g008
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from 15h00 to 20h00 with a peak around 19h00, where approximately 1500 vehicles are in

route. These mobility plans of S2M and S2A are conceived to study the system under saturated

scenarios during morning and afternoon peak hours.

Fig 10 shows the saturation flow rates, i.e. number of passenger car units (PCU) per hour,

of lane groups of the network links. One-lane links are shown in gray and red, two-lane links

in blue, green, violet, and orange, and three-lane links in brown. Thus, the saturation flow per

lane are between 600 and 1500 PCU per hour, which is less than the base saturation flow of

1900 assumed by the The Highway Capacity Manual [39].

The three scenarios simulate the mobility of 20.000 agents. Thus, the less saturated scenario

is S124h, and the most saturated one is S2M. This number of agents represents approximately

the 30% of the estimated number of vehicles according to the inhabitants in the zone of study

[36]. We assign a type of vehicle to each agent as explained in section Emissions and Fuel Con-

sumption. MATSim requires around 8 hours to reach the equilibrium state of 20.000 agents

and around 2.5 minutes per individual to compute its fitness.

The average number of vehicles is around 3,660 vehicles/hour in the morning rush hours

from 7:00 to 9:00 am and 3,655 vehicles/hour in the afternoon hours from 15:00 to 20:00

according to traffic count data taken in 8 intersections located in the area of study. As indi-

cated above, our scenario S2M simulates a saturated situation that approaches the counters

observed in the morning rush hour. The other two scenarios model less saturated situations to

test signal settings under different conditions.

Simulation results and discussion

Effects of operators

In this section, we study the effects of the operators of variation. First, we fix one point cross-

over and look at mutation operators applied with constant or varying mutation probability.

Fig 11 shows the mean travel time over the generations for mobility scenario S124h. In

addition, variance of the best solutions at the last generation is shown in detail in Fig 12 and

Table 3 includes numerical values of standard deviation and inter-quartile range.

Experiments E3 and E4 apply the NCtOPM and GtM operators with constant mutation

probability Pm = 4/n per signal. E3 applies more often NCtOPM to propagate cycle and offset

than GtM to mutate green time. Conversely, E4 applies more often GtM than NCtOPM, as

shown by the operator probabilities PCtO and PGt in Table 1. Note from Figs 11 and 12 that

mutating more often green times (E4, PGt = 0.7) eliminates outliers and the algorithm con-

verges to travel times lower than propagating more often cycle and offset (E3, PCtO = 0.7).

Also, from Fig 11 note that E3 converges slower than E4. This suggests that configurations

with a relatively larger rate for the GtM operator to explore green times combined with lower

Table 2. Population per District (Census 2010 [38]).

code INEC District Inhabitants

170101 Belisario Quevedo 45.370

170112 Iñaquito 44.149

170113 Itchimbia 31.616

170114 Jipijapa 34.677

170123 Mariscal Sucre 12.976

170127 Rumipamba 31.300

170130 San Juan 54.027

Total 254.115

https://doi.org/10.1371/journal.pone.0188757.t002
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rates for the NCtOPM operator to propagate cycle length and offsets lead to faster and better

convergence.

To study whether larger mutation rates per signal could be useful, in experiment E4DVM

we keep the configuration for mutation operators of E4 but instead of using constant mutation

rate Pm = 4/n we vary mutation rate in the range PðtÞm ¼ ½20=n; 4=n�. From Fig 11 it is remark-

able the fast convergence of the algorithm that applies varying mutations. Note also from

Table 3 that travel time, standard deviation and interquartile range reduce further compared to

E4. We also performed Mann-Whitney-Wilcoxon non-parametric tests, verifying significant

statistical differences between E3 and E4 and E3 and E4DVM. Between E4 and E4DVM there

Fig 9. Mobility scenarios S124h, S2M and S2A.

https://doi.org/10.1371/journal.pone.0188757.g009
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is no significant difference in generation 50. This is because both algorithm configurations con-

verge to the same good quality results given an enough number of generations. However,

Mann-Whitney-Wilcoxon tests verify that there is a significant difference between generation

25 and 50 for E4 but not for E4DVM, showing that E4DVM converges faster. Fig 13 shows the

Fig 10. Saturation flows.

https://doi.org/10.1371/journal.pone.0188757.g010
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Fig 11. Mean travel time over generations in experiments E3,E4 and E4DVM.

https://doi.org/10.1371/journal.pone.0188757.g011

Fig 12. Mean travel time of best solutions in experiments E3,E4 and E4DVM.

https://doi.org/10.1371/journal.pone.0188757.g012
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expected number of mutated signals per solution by GtM and NCtOPM when constant and

varying mutation are applied.

To verify the search ability and convergence of the algorithm under saturated situations, we

run E4 and E4DVM configurations on denser scenarios with larger traffic volume in shorter

periods of time compared to S124h.

Fig 14 shows mean travel time over the generations on scenarios S2M (top) and S2A

(down), respectively. From these figures it can be seen that E4DVM convergence faster

towards lower travel times than E4. Additionally, it should be noted that the difference in

travel time between E4DVM and E4 increases as the scenario becomes denser.

In addition to the design of appropriate mutation operators and their schedule, we also

study the effects of crossover. In the above experiments we use one-point crossover with rate

Pc = 1. We also conduct experiments setting crossover rate to Pc = 0 in order to switch off the

crossover and replace one-point with two-point crossover keeping the same rate Pc = 1.

Fig 15 shows mean travel time over generations on the densest scenario S2M by E4DVM

with and without crossover. Here, it should be noted that the algorithm using either one- or

Table 3. Mean travel time, standar deviation and interquartile range of best solutions in experiment

E3,E4 and E4DVM.

Exp. Travel Time

avg std iqr

E3 776.44 30.64 34.04

E4 749.34 20.36 26.53

E4DVM 746.50 17.43 21.20

https://doi.org/10.1371/journal.pone.0188757.t003

Fig 13. Expected number of mutated signals with constant and varying mutation schedules (E4,E4DVM).

https://doi.org/10.1371/journal.pone.0188757.g013
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Fig 14. Mean travel time over generations, scenarios S2M and S2A (E4, E4DVM).

https://doi.org/10.1371/journal.pone.0188757.g014

Fig 15. Effect of crossover operator on mean travel time.

https://doi.org/10.1371/journal.pone.0188757.g015
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two-point crossover converges to lower travel time than the algorithm that switch off the cross-

over. It is known that one-point crossover could be more disruptive than the two-point cross-

over, particularly when the landscape of the problem is rugged [40, 41]. However, note that in

this scenario there is no significant difference between one-point and two-point crossover. In

the future, it could be worth studying crossover operators specially tuned for this problem.

The no-crossover configuration is particularly interesting and deserves further discussion.

Remember that the same value of cycle length is assigned to all signals of a solution in the ini-

tial population. Also, that different values of cycle length are assigned to different solutions.

Thus, no-crossover means that signals with different cycle length never get mixed to form a

new solution. In addition, the propagation of cycle length between neighboring signals in the

same solution by the NCtOPM operator has no effect, precisely because all signals have the

same cycle length. In other words, the no-crossover configuration searches only green times

by the GtM operator and propagates offsets based on the distance between signals by the

NCtOPM operator. This is equivalent to searching an optimal cycle length for all signals

instead of one per signal. As can be seen from the figure, better solutions in terms of travel

time can be found when we search an optimal cycle length per signal. Other works mostly

focus on one common cycle for all signals [6, 8, 10].

The algorithm discussed here is the result of investigating several strategies and configura-

tions of the operators. A first basic approach applies step mutation operators for the cycle and

offset, in addition to the step mutation operator for green time discussed here, with an opera-

tor probability for each one of them [42, 43]. A second approach propagates the cycle length

and keeps step mutation operators for green time and offset. The introduction of the neighbor-

hood reduces variance and improves convergence speed of the algorithm over the basic

approach, however, the search in offsets is not effective with a small number of generations. A

third approach, included in this paper, propagates both cycle length and offset in one operator

NCtOPM and keeps step mutation for green time. The inclusion of offset propagation allows

an effective search and improves results further. Besides, we also conduct experiments apply-

ing step cycle mutation previous to propagate the cycles and offsets in NCtOPM. However,

travel time over the generations and final results are almost the same as those obtained when

cycle length is propagated without the mutation. These results suggest that the diversity of

cycle lengths present in the initial population is appropriate and additional variation of cycles

seem not to be required in the scenarios we study here. A detailed discussion and comparison

of these approaches using constant mutation probability per signal can be found in [44]. As

discussed above, another important component of the algorithm is varying mutation. Initial

results comparing constant mutation per signal with the varying mutation have been reported

in [45].

Algorithm’s parameters analysis

In the previous section, we have shown that varying mutation from high to low rates per signal

combined with a strong elitist selection leads to faster and better convergence. Here we use

Sequential Model-based Algorithm Configuration (SMAC) [46] to derive other combinations

of parameters settings related to the operators of variation in E4DVM that can lead to good

performance. Namely, we analyze optimal combinations of crossover rate Pc, the initial Pð0Þm

and final mutation probability PðTÞm per signal of the deterministic varying mutation schedule,

and the probability of cycle and offset propagation operator PCtO. 1 − PCtO determines the

probability of the green time mutation operator. Mostly, deterministic varying mutation

schedules are used to reduce mutation rates, i.e. Pm
ð0Þ > Pm

ðTÞ. In our case, we also use it to

investigate the effect of increasing mutation rate by allowing Pm
ð0Þ < Pm

ðTÞ.
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Table 4 shows the parameter settings Conf1 and Conf2 found by two runs of SMAC using

travel time as the observed performance. The settings used by E4DVM are also included for

comparison. The settings found by SMAC are different to those used in E4DVM, however,

convergence behavior of the algorithm with these configurations and E4DVM are very similar

[45]. To better interpret the values of these parameters, Table 5 shows the expected number of

mutated signals per solution at time t = 0 and t = T by the two mutation operators in the con-

figurations suggested by SMAC and E4DVM.

From Tables 4 and 5 note that the three strategies Conf1, Conf2 and E4DVM mutate green

time more often than cycle time, as can be seen by the higher expected numbers of green time

mutations compared to the expected numbers of cycle time mutations. Conf2 is a strategy

opposite to Conf1 and E4DVM, in the sense that Conf2 increases the expected number of

mutations with time whereas Conf1 and E4DVM decrease them. Note that although Conf1

reduces mutations with time similar to E4DVM, the expected number of mutations is signifi-

cantly larger in the former. See that in Conf1 at t = 0, and t = T the number of expected cycle

mutations are two and seven times more than E4DVM, respectively. Similarly, the expected

number of green time mutations at t = 0 and t = T are three and twelve times more in Conf1

than in E4DVM.

Though Conf1 and Conf2 mutate more than E4DVM, these strategies apply crossover with

rate 0.6 and 0.5, respectively. This means that in the configurations found by SMAC, 40 and

50 percent of the offspring are created applying mutation alone (no crossover), whereas in

E4DVM the crossover rate is 1.0 and therefore crossover always precedes mutation. It has

been shown that the likelihood of interferences between operators increases when mutation

with a high rate per variable follows crossover [33]. This is because a good recombination

could be compromised by deleterious mutations or an inefficient recombination could hurt

the propagation of beneficial mutations. Thus, smaller rates of crossover combined with higher

varying mutations as suggested by SMAC is in accordance with parameter settings that reduce

interference between operators. As mentioned above, these three strategies produce similar

convergence behavior and lead to a similar low travel time. A more detailed discussion about

parameters settings can be found in [45].

Vehicle movement distribution

In section Initial Mobility Plans for MATSim, Fig 9 shows the overall vehicle movement distri-

bution over time classifying by departures, arrivals and cars en route. In this section, we focus

Table 4. SMAC solutions: EA parameters.

Pc Pð0Þm PðTÞm PCtO tt avg.

Conf1 0.60 0.93 0.63 0.19 564.10

Conf2 0.50 0.28 0.61 0.29 554.52

E4DVM 1.00 0.29 0.06 0.3 555.90

https://doi.org/10.1371/journal.pone.0188757.t004

Table 5. Expected number of mutated signals by SMAC configuration and E4DVM.

NCtOPM GtM

t = 0 t = T t = 0 t = T

Conf1 12.4 8.4 52.7 35.7

Conf2 5.7 12.4 13.9 30.3

E4DVM 6.1 1.3 14.2 2.9

https://doi.org/10.1371/journal.pone.0188757.t005
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on the peak hour from 07:30 AM to 08:30 AM to illustrate the vehicle movement distribution

in the whole network, in a corridor where 15 signals are located, and with more detail in 3 con-

secutive signals. The data corresponds to an optimized solution of experiment E4DVM with

cycle length of 60 seconds (c60E4DVM).

Fig 16 shows the number of cars per link in the whole network. Links are colored according

to the number of cars as shown in the pallete. The numbers close to the black dots identify sig-

nalized intersection. Note that in general a larger flow can be observed in the central region

than in the perimeter. Also, note that at this hour the largest flow can be seen in the corridor

where signals S1 to S6 are located. Fig 17 focuses on the links that belong to the corridor where

signals S1 to S15 are located. Here, rows correspond to 15 minutes interval, columns specify

links, and colors indicate the number of cars as shown in the pallete.

Similarly, Fig 18 shows the number of cars (nPCU) that crossed a signalized intersection

over the time at which green time starts. Results are shown for consecutive signalized intersec-

tions S3, S4 and S5 with south-north flow. These intersections are located in a zone close to sat-

uration as shown in Fig 16. The storage capacity and max flow capacity per green time of the

link where the signal is located are shown as reference in horizontal dotted and dashed lines,

respectively. Note that the number of cars counted when they leave the signalized intersections

increases from 7:30 to 7:45 and approaches the max flow capacity per green time around 7:50

to 8:00, which is in accordance with Fig 7 in the manuscript.

Analysis of solutions

In this section, we analyze optimal signal settings found by the algorithm.

Decision space and cluster analysis

Fig 19 shows the cycle length of the best solutions at the last generation for all runs. Results are

shown for experiment E4DVM on the most saturated scenario, S2M. A row corresponds to

the settings of all signals in a particular solution and column identifies a signal. The value of

cycle length is shown with color as indicated by the color legend. The labels for each row report

the travel time of the corresponding solution.

From this figure, note that groups of signals with the same cycle can be seen in the best solu-

tions found by the algorithm in all runs. This is because the NCtOPM operator propagates the

cycle length value of the reference signal to its neighborhood. However, not all signals have the

same cycle. This is an important difference with several approaches that assume one common

cycle for all signals [8] based on simple rules for traffic engineering applicable when the num-

ber of signals are few and are closely located [47]. Fig 20 shows the values of offsets of the best

solutions at the last generation for all runs, similar to Fig 19. Note that there is variability of off-

set values in each solution due to the operator that adjusts the offset based on the distance

between neighbor and the reference signal.

An objective of the neighborhood mutation operator NCtOPM was to induce coordination

between signals. Figs 19 and 20 suggest that there are some patterns in the settings of cycle

length and offsets.

To distinguish these patterns and extract some design knowledge from them, we cluster sig-

nals based on their similarity. Namely, we apply Ward’s agglomerative procedure [48, 49] to

create a hierarchy of clusters, using the Euclidean distance between cycle length (or offset) as a

measure of similarity. Fig 21 shows the hierarchical clustering of cycle lengths represented as

an inverse tree diagram, where the dissimilarity between clusters is proportional to the height

at which the branches split. That is, the higher the similarity between signals the lower the
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split. Below the inverse tree diagram, we show the solutions with the columns reordered

according to the clustering.

Bootstrapping is used to test the stability of the assignment of variables to clusters. This also

gives us a statistically based criterion to determine where to cut the inverted tree and which

Fig 16. DMQ scenario flow from 07:30AM to 08:30AM.

https://doi.org/10.1371/journal.pone.0188757.g016
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Fig 17. Signals corridor S1-S15.

https://doi.org/10.1371/journal.pone.0188757.g017

Fig 18. Signals corridor S1-S3 flow from 07:30AM to 08:30AM.

https://doi.org/10.1371/journal.pone.0188757.g018
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clusters to keep [50]. Clusters that are strongly supported by the data are shown in red in the

tree diagram. Signals belonging to the selected clusters are coded by color and overlaid on the

urban map, as shown in Fig 22. We can see that most clusters of the signals are aligned with

the axis SNS of the principal roads of the transport network. Also, large chunks of the clusters

Fig 19. Cycle length of the best solutions for experiment E4DVM scenario S2M. Annotated heatmap: solutions by row

(associated travel time in the row label), variables by column (one per signal), values by color (see color legend).

https://doi.org/10.1371/journal.pone.0188757.g019

Fig 20. Offset times of the best solutions for experiment E4DVM scenario S2M.

https://doi.org/10.1371/journal.pone.0188757.g020
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are spatially contiguous. Thus, the cluster geolocalization identifies micro-zones with similar

characteristics in the city, which can be further analyzed in order to incorporate additional

mobility criteria such as safety, emissions and fuel consumption, multi-modality, etc. Similarly,

Fig 23 shows the geolocalization of the selected clusters of signals obtained from the best solu-

tion of the less saturated experiments E4DVM on S124h. Note that for scenarios under satu-

rated conditions (Fig 22) the number of clusters is higher.

Emissions and fuel consumption

In this section, we analyze the effects of optimizing traffic light settings on fuel consumption

and gas emissions. We use MATSim emission extension [51] that computes the gas emissions

per link per agent, at the time an agent enters a link of the transport network. It calculates

warm and cold-start exhaust emissions for cars by connecting MATSim simulation output to

the detailed database Handbook on Emission Factors for Road Transport (HBEFA) [52]. We

have selected seven categories of vehicles based on model year, fuel type and weight. Table 6

shows the distribution of vehicle categories chosen for the scenarios, which is in accordance

with census transportation data [38] for Quito city. We assign a category of vehicle to each

agent randomly following this distribution.

MATSim computes warm emissions deriving the kinematic characteristics from the simu-

lation and combines this information with vehicle characteristics to extract emission factors

from the database of the Handbook on Emission Factors for Road Transport (HBEFA). To

derive the kinematic characteristics, the emission model considers ‘free flow’ and ‘stop&go’ as

traffic states per road segment. To calculate cold-start emissions, MATSim derives parking

duration and accumulated traveled distance from the simulation. For parking duration,

HBEFA database differentiates emission factors in one hour time steps from 1h to 12h. After

Fig 21. Hierarchical clustering of cycle length of the best solutions for experiment E4DVM scenario S2M.

https://doi.org/10.1371/journal.pone.0188757.g021
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12 hours the vehicle is fully cooled down. There are also different cold emission factors for

short trips (less than 1Km) and longer trips (greater than 1Km) [53].

Table 7 shows travel time (TT) and fuel consumption (FC) together with HC, CO, NOx,

and CO2 emissions produced by all agents on S124h. First, we show as reference results corre-

sponding to the equilibrium state without traffic signals and the solution with smallest travel

time at generation 0 when traffic signals are included. Note that at generation 0 all signals are

set with the same cycle length, as explained before. Next, we show results for solutions with

traffic signals that minimize travel time at generation 50 in experiments E4 and E4DVM.

Comparing with generation 0, results at generation 50 illustrate that in addition to minimizing

Fig 22. Geolocation of signal clusters, experiment E4DVM scenario S2M.

https://doi.org/10.1371/journal.pone.0188757.g022
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Fig 23. Geolocation of signal clusters, experiment E4DVM scenario S124h.

https://doi.org/10.1371/journal.pone.0188757.g023

Table 6. Car distribution (fuel = gasoline and weight≦ 2Tons).

Year-Category % Year-Category %

2000-2002—Euro2 24.40 2008-2010—Euro5 13.70

2002-2004—Euro3 7.80 2010-2012—Euro6 23.80

2004-2006—Euro4 12.20 2012-2014—Euro6 5.20

2006-2008—Euro4 13.00

https://doi.org/10.1371/journal.pone.0188757.t006
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travel time, fuel consumption and the various kinds of emissions can also be reduced signifi-

cantly if traffic lights are optimized. Further, the experiments E4 and E4DVM represents an

incrementally better optimization process for TT, as discussed above. Note that FC and emis-

sions also reduce incrementally in these experiments. Thus, a better optimization process for

TT, given by the neighborhood operators and deterministic varying mutation, is also highly

correlated to a better optimization for FC and emissions.

Similarly, Table 8 shows results for experiments E4 and E4DVM with one point (XP1) and

two point crossover (XP2) on the most saturated scenario S2M. Note from this table that signif-

icant reductions in FC and emissions can also be obtained in this kind of saturated scenarios.

Spatial analysis for CO2 emissions

In the following, we analyze carbon dioxide emissions (CO2) on a spatially disaggregated level

for scenario S2M. MATSim output emissions are aggregated per link for all agents. For geolo-

cation on the urban area of the scenario, CO2 emissions are spatially smoothed using the

inverse distance weighted interpolation method [54]. For that, we used as sampling points the

centroid of each link and its corresponding accumulated measure of emissions.

Our spacial analysis of the emissions is not an indication of how the emissions are being

dispersed in the atmosphere, instead, we illustrate the origin and intensity of the emissions to

compare an optimized traffic signal plan against a not optimized one.

Table 7. Emissions of best solutions on scenario S124h.

g = 0 g = 50

Eq.St. Ch = 130 E4 E4DVM

TT 591.28 1302.06 694.17 700.19

FC 14275.90 15201.26 14961.03 14864.17

CO2 26960.42 29150.52 28434.11 28348.46

PM 0.28 0.29 0.29 0.29

NOx 32.41 33.38 33.06 33.01

NO2 1.08 1.14 1.12 1.12

SO2 0.13 0.14 0.14 0.14

CO 772.98 774.13 773.96 773.91

FC in Liters—Emission in Kg.—TT in s.

https://doi.org/10.1371/journal.pone.0188757.t007

Table 8. Emissions of best solutions on scenario S2M.

g = 0 g = 50

Eq.St. Ch = 85 E4 E4DVM(XP1) E4DVM(XP2)

TT 386.63 650.62 530.96 517.98 524.11

FC 6356.91 6883.16 6771.98 6746.11 6746.52

CO2 14903.61 16553.44 16204.88 16123.79 16125.08

PM 0.15 0.16 0.16 0.16 0.16

NOx 15.75 16.55 16.40 16.36 16.36

NO2 0.55 0.59 0.58 0.58 0.58

SO2 0.07 0.08 0.08 0.08 0.08

CO 482.93 484.14 484.09 484.01 483.99

FC in Liters—Emission in Kg.—TT in s.

https://doi.org/10.1371/journal.pone.0188757.t008
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Fig 24 shows the difference in CO2 emissions between the best solution in the initial popula-

tion, where all signals have the same cycle Ch = 85, and the best solution at the last generation

of experiment E4DVM. We use the single-value cycle length (Ch = 85) as reference for compar-

ison to show the improvement that can be achieved from same-cycle solutions at the initial

Fig 24. Change in CO2 emissions.

https://doi.org/10.1371/journal.pone.0188757.g024
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population and to highlight the relevance of having different cycle lengths for different clusters

of signals at the end of evolution.

We use a red-blue palette to show emission differences, where levels of red represent incre-

ments and levels of blue represent reductions of emissions. White is used to show no difference

in emissions between the two cases. Note the dark blue regions, which show that emissions

mostly reduce across the area of study when signals settings are optimized. However, note that

in some regions there is a relative increase in emissions. This figure gives an overall view of the

effects of optimization in CO2 emissions. It provides useful information for city planners and

can be used to feedback the evolutionary algorithm to favor low emissions in certain regions of

interest.

Coordination analysis

An important aspect of signal coordination is improving the traffic flows and reduce conges-

tion. A continuous traffic flow during several intersections in one main direction is usually

referred as a green wave. In this section, we analyze the optimized signal settings to determine

if their coordination induce green waves or not.

Let us denote li−1 and li two links with consecutive signals Si−1 and Si located at the end of

each one of them, as illustrated in Fig 25. The time at which an agent exits link li and crosses

signal Si is txi . The starting and ending time of the green time phase when the agent crosses sig-

nal Si are tsG and teG, respectively.

The earlier expected arrival time to signal Si after crossing signal Si−1 is txi� 1
þ tfsi , where tfsi is

the time that takes to cover the distance of link li traveling at free speed, i.e. the maximum

speed at which an agent can circulate at a given link.

In this work, an agent is said to cross two consecutive signalized intersections in an uninter-

rupted flow if the earlier expected arrival time to signal Si and the actual exit time from link li
(cross signal Si) are within the green phase window of signal Si, i.e.

tsG � txi� 1
þ tfsi � teG ^ tsG � txi � teG ð12Þ

Fig 26 represent the phenotype expression of some consecutive signals of the best

individual of experiment E4DVM on the saturated scenario S2M. Fig 26(a) shows in

different rows the offset and three cycles (green, inter-green, red) of consecutive geolocated

signalized intersections s39–s42 and s58 that belong to cluster 6 as shown in Fig 22. Simi-

larly, Fig 26(b) shows consecutive geolocated signalized intersections s66–s70 that belong

to cluster 9. A visual inspection of these signals settings suggests that green waves could

emerge from them. To verify this, we count the number of agents that cross these signals.

Tables 9 and 10 show the percentage of agents that cross two or more consecutive

green signals. In addition, it shows in detail the number of agents that cross 2, 3, 4 and 5

consecutive signals. Results are shown for the best solution in the initial population, where

cycle length of all signals is Ch = 85, and the best solutions of experiments E4 and E4DVM.

Note that in cluster 6 there is not much difference in percentage between the initial solution

and the optimized ones, although for E4DVM some agents can cross up to 4 consecutive

signals. On the other hand in cluster 9 there is a significant increase in percentage in the

optimized solutions and some agents can cross up to 4 or 5 consecutive signals. Looking

at Fig 24 note that in the region where cluster 6 is located there is no reduction in CO2 emis-

sions. However in the area where cluster 9 is located there is a significant reduction in

emissions.
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Conclusions and future work

This work presented a design optimization framework for the transportation system of Quito.

An evolutionary algorithm to search efficiently using small populations in few generations was

proposed. The algorithm was coupled to the multi-agent transport simulator MATSim to

study the optimization of a large number of traffic signal controls located on a wide area of the

city. Three mobility scenarios of 20,000 agents modeled based on activities were used to verify

the effectiveness of the evolutionary algorithm. It was shown that green times should be

mutated with higher probability than cycle and offsets, the propagation of cycle length to

neighboring signals with offsets set based on distance leads to better coordination of signals,

and the use of varying mutation increases convergence speed. The combination of these strate-

gies efficiently and effectively explore the large search space of traffic signal parameters. The

effect of crossover was also verified, showing that better convergence can be achieved when the

crossover is activated, although no significant difference between one and two point crossover

was observed. The proposed algorithm combines a strong selection pressure given by elitism

with crossover followed by varying mutation, where an appropriate balance between

Fig 25. Variables to detect green phase crossing.

https://doi.org/10.1371/journal.pone.0188757.g025
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exploration and exploitation can be achieve in several ways. An analysis of the parameters of

the algorithm using sequential model based algorithm configuration (SMAC) confirmed our

finding that mutation of green times should be emphasized over cycle length and offset propa-

gation. It also showed that other configurations with varying mutations relatively higher than

Fig 26. Best individual (lowest travel time) cluster No.6 (a) and cluster No. 9 (b) for south-north direction, experiment

E4DVM, scenario S2M.

https://doi.org/10.1371/journal.pone.0188757.g026

Table 9. Green waves cluster 6, total agents = 253.

gw Ch85 E4 E4DVM

% 0.49 0.42 0.47

2 137 123 73

3 20 – 43

4 – – 14

https://doi.org/10.1371/journal.pone.0188757.t009

Table 10. Green waves cluster 9, total agents = 1400.

gw Ch85 E4 E4DVM

% 0.39 0.45 0.68

2 554 377 556

3 60 230 245

4 – 18 127

5 – 1 61

https://doi.org/10.1371/journal.pone.0188757.t010
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the suggested in our configuration but using smaller rates of crossover lead to similarly good

results.

Also, hierarchical clustering was performed on the best solutions found in several runs of

the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consump-

tion, spatial analysis of emissions, and an analysis of signal coordination provided an overall

picture of the systemic effects of the optimization process. It also showed that the proposed

approach is helpful to deepen our understanding of the problem and gain knowledge about

the system.

There is ongoing work on multi-objective formulations of the traffic signals problem,

where criteria for sustainable transport systems are considered as objectives to be optimized.

In the future, we would like to include the multi-modality of the transport network and

study ways to improve the sustainability of Quito’s transport and mobility system. Addition-

ally, we would like to include signals with more than two phases. Also, it will be important to

combine adaptive signals with default pre-fixed timing plans that are optimal under certain

conditions or scenarios.
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