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Summary 

Background: Pseudomonas aeruginosa healthcare outbreaks can be time consuming and 

difficult to investigate. Guidance does not specify which typing technique is most practical to 

base decisions on.  

 

Aim: We explore the usefulness of whole genome sequencing (WGS) in the investigation of a 

Pseudomonas aeruginosa outbreak describing how it compares with pulsed-field gel 

electrophoresis (PFGE) and variable number tandem repeat (VNTR) analysis.  

 

Methods: Six patient isolates and six environmental samples from an Intensive Care Unit 

(ICU) positive for P. aeruginosa over two years underwent VNTR, PFGE and WGS.   

 

Findings: VNTR and PFGE were required to fully determine the potential source of infection 

and rule out others. WGS results unambiguously distinguished linked isolates giving greater 

assurance of the transmission route between wash hand basin (WHB) water and two patients 

supporting control measures employed.  

 

Conclusion: WGS provided detailed information without need for further typing. When allied 

to epidemiological information it can be used to understand outbreak situations rapidly and 

with certainty. Implementation of WGS in real-time would be a major advance in day-to-day 

practice. It could become a standard of care as it becomes more widespread due to its 

reproducibility and reduction in costs.   

 

Summary word count 191 

Keywords: Sequencing, Pseudomonas, Resistance, Outbreak, Water 
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Introduction 

Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitous in moist hospital 

environments [1,2]. It is an opportunistic pathogen in immunocompromised patients causing 

a wide range of infections [2-6]. Hospital water can be a source of outbreaks in neonatal units 

and both adult and paediatric intensive care units colonising and forming biofilms in water 

taps, sinks, toilets, showers and drains [2,7-13].  Routes of transmission include environment-

to-patient either directly from contaminated water or splashes from water outlets, or 

indirectly from contaminated hands or equipment. Transmission from colonised patients to 

the environment and between patients can occur during clinical procedures that create 

aerosols. Infection can be acquired and arise from the patient’s own gut microbiota after 

pseudomonads have been selected out by antibiotics [14]. Multidrug resistance in P. 

aeruginosa species is common, and the mortality rate in invasive infections is up to 29%; 

controlling the spread of this organism is therefore important [15,16]. 

 

Differentiating strains is essential to identify routes of transmission of organisms, to identify 

reservoirs and plot potential chains of transmission. Variable number tandem repeat (VNTR) 

typing, a PCR-based method represents an improvement in speed and reproducibility over 

pulsed-field gel electrophoresis (PFGE) whilst providing a similar level of discrimination 

[1,16].  Turton et al. suggested that isolates similar by VNTR, with no strong epidemiological 

links between them should be confirmed by PFGE [1]. Newer methods of whole genome 

sequencing (WGS) offer the potential to give greater resolution, reproducibility and may be 

faster at identifying strains in an outbreak and deducing the lines of transmission.  WGS has 

been used in the investigation of a variety of bacterial outbreaks, and in some instances for 

the investigation of pseudomonas outbreaks, but to our knowledge we are the first to report 

data comparing the utility of rapid whole genome sequencing (WGS) versus the current 

typing methods VNTR and PFGE [17-27].   
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Materials and Methods 

Four patients were identified as being colonized or infected with a strain of P. aeruginosa 

with an unusual resistance profile in an Intensive Care Unit of a teaching hospital (Ninewells 

Hospital, Dundee) between January 2013 and May 2013. A case finding exercise was carried 

out using the definition ‘a sample positive with P. aeruginosa resistant to imipenem isolated 

from a patient admitted to ICU since 2012’. The case finding exercise yielded a further 5 

patients however, only two patients had isolates that had been stored by the hospital 

laboratory therefore a total 6 patient isolates were available for further testing.  Water (pre- 

and post-flush samples) was sampled from 14 water outlets in ICU for P. aeruginosa on 16th 

May 2013 (Table I).  Monitoring swabs were also taken from 11 water outlet drains on the 

same day (domestic service room wash hand basin [WHB], Bed 7 WHB, Bed 8 WHB, 

kitchen sink, kitchen drinking water tap, domestic service room sink, ventilator room sink, 

ICU entrance WHB, ward area WHB 1, ward area WHB 2, Bed 4 WHB). Caldicott 

Guardian approval was gained in order to protect patient confidentiality and enable 

appropriate information sharing. 

 

Samples and Susceptibility Testing 

All clinical specimens had been collected during routine care and processed at the 

Department of Medical Microbiology Laboratory, Ninewells Hospital, Dundee, UK.  

Environmental samples from each water outlet drain were incubated on MacConkey agar 

aerobically at 37°C and Pseudomonas CN Selective Agar (Oxoid Ltd, United Kingdom) at 

35°C and examined after 24 and 48 hours. Vitek 2 (bioMérieux, Marcy L’Etoile, France) was 

used for organism identification and antibiotic susceptibility testing using minimum 

inhibitory concentrations (MIC) according to the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST). An external contractor sampled all water outlets for P. 

aeruginosa using pre- and post-flush samples. Water samples were processed by a UKAS 

(United Kingdom Accreditation Service) approved laboratory within four hours of collection.  

 

 

 

VNTR and PFGE 
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Environmental and patient isolates were sent to the Antimicrobial Resistance and Healthcare 

Associated Infections Reference Unit (AMRHAI), Public Health England, Colindale for 

typing (VNTR typing at nine loci and PFGE) as described previously [1]. 

 

WGS and Phylogenetic Analysis 

Isolates were stored on beads at -80ºC until processed.  The cultures were re-cultured by the 

Infection Group, School of Medicine, University of St Andrews.  DNA was then extracted 

using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). The quality of the DNA was 

measured as A280 nm/A260 nm ratio on NanoVue (GE Healthcare) and the concentration of 

double stranded DNA assessed using dsDNA BR Kit on a Qubit 2.0 fluorometer (Thermo 

Fisher Scientific).  Amounts of 1 ng of DNA were used for constructing the libraries with 

Nextera® XT kit (Illumina Inc, San Diego, CA, USA). The normalized libraries were 

sequenced using a 2×250 pair-end read of a 500-cycle v2 kit on a MiSeq platform (Illumina 

Inc, San Diego, CA, USA) using a resequencing workflow. The Illumina sequences generated 

were deposited in the European Nucleotide Archive under the study accession number 

ERP023446. Using SMALT (Wellcome Trust Sanger Institute; 

www.sanger.ac.uk/resources/software/smalt/, reads were initially mapped to the chromosome 

of P. aeruginosa PAO1 (accession number AE004091) and single nucleotide polymorphisms 

(SNPs) were identified as previously described [28]. In addition, the chromosomes of a 

representative selection of P. aeruginosa strains: B136-33 (accession number CP004061), 

DK2 (CP003149), LES431 (CP006937), LESB58 (FM209186), M18 (CP002496), MTB-1 

(CP006853), NCGM2.S1 (AP012280), PA1 (CP004054), PA38182 (HG530068), RP73 

(CP006245), SCV20265 (CP006931), UCBPP-PA14 (CP000438), VRFPA04 (CP008739), 

and YL84 (CP007147), were used to provide a wider context for the hospital isolates. For 

each of these additional P. aeruginosa strains, artificial 250bp pair-end reads fastq files were 

generated using a python script. The generated fastq files were mapped along with the 

outbreak isolates to the chromosome of P. aeruginosa PAO1 and SNPs called. 

Recombination was detected in the genomes using Gubbins (http://sanger-

pathogens.github.io/gubbins/) [29].  

 

The core genome regions of the PAO1 and UCBPP-PA14 chromosome were defined by 

human curation using pairwise Blast comparisons with each other, and other P. aeruginosa 

strains [30]. The Artemis Comparison Tool (ACT) was used to visualize the comparisons 

[31]. SNPs falling inside Mobile Genetic Elements (MGEs regions) were excluded from the 
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core genome, as well as those falling in regions predicted by Gubbins to have occurred by 

recombination. Phylogenetic trees were constructed separately using RAxML v7.0.4 for all 

sites in the core genomes containing SNPs, using a General Time Reversible (GTR model) 

with a gamma correction for among site rate variation. [32,33].  For a higher resolution 

phylogeny, ICU isolates that clustered on a branch with UCBPP-PA14 (CP000438), were 

mapped to this sequence as described above.  

 

 

Results 

Epidemiology   

The ICU ward had been free from outbreaks in 2013. It was an eight-bed unit of a Teaching 

Hospital with approximately 950 acute beds (Ninewells Hospital, Dundee). The infection 

prevention and control team (IPCT) were initially concerned that between January 2013 and 

May 2013 there were four patients colonised/infected with a strain of P. aeruginosa with the 

same resistance profile. All patient isolates were sensitive to gentamicin, ciprofloxacin, 

piperacillin-tazobactam, ceftazidime and resistant to imipenem; most patients had received 

carbapenem treatment at some point during their admission. Patients had a mixture of 

diagnoses on admission. 

 

Fluids such as bed bath water and endotracheal aspirate (ETA) were disposed of in the hand 

wash stations. The IPCT visited the ward and gave advice in line with national guidance for 

the appropriate disposal of these potentially contaminated fluids. Procedures for the 

decontamination of two small pieces of equipment, the ventilator flow sensor and 

temperature probes, were also reviewed. These items were decontaminated by immersion in a 

sink filled with hot soapy water. This method was discontinued and sporicidal wipes utilised 

after ascertaining their suitability with the manufacturer. The decontamination sink in the 

back room was found to have crusting on taps; these taps were replaced. This was the sink 

that probes were decontaminated in. WHBs were supplied by Pillar mixer taps with integral 

thermostats (Supplementary Figure 1). The flow from the tap ran close to the sink drains, 

causing splashing. Taps with flow straighteners were at risk of contamination by biofilm.  To 

become more compliant with NHS building regulations these were removed and sink basins 

were replaced to remove overflow drains. The ice machine was supplied by cold water via a 

flexible hose. This was identified as an area where bacteria could proliferate; the hose was 
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therefore replaced by a WRAS-approved hose.  Localised cleaning of all affected outlets was 

carried out.  An increased flushing regimen was introduced to remove any biofilm that was 

present within the affected outlets. Recommended flushing regimen was twice per day for 2 

minutes at a time. Remediation works were successful as there was no growth of 

pseudomonas on repeat testing of outlets and water following these changes.  

 

Antibiotic Susceptibility Testing 

All isolates were confirmed to be P. aeruginosa and five isolates had an indistinguishable 

antibiotic susecptibility pattern (Patient A abdominal drain fluid, Patient B ETA, Patient D 

ETA, Patient E ETA, and Bed 8 WHB). 

 

Environmental Investigation 

Water (pre- and post-flush samples) was sampled from 14 water outlets in ICU for P. 

aeruginosa (Table I). Four areas were found to be positive: ice machine (pre and post), 

domestic service room WHB (pre and post), bed 7 WHB (pre and post), and bed 8 WHB 

(pre).  The initial results suggested that the pseudomonas contamination was most likely local 

to the outlets as the post samples had yielded much lower growth results and negative results 

compared with the pre flush samples. Monitoring swabs were also taken from 11 water outlet 

drains and three were positive (bed 7 WHB water outlet drain, bed 4 WHB water outlet drain 

and ICU entrance WHB water outlet drain).  

 

VNTR and PFGE Analysis 

VNTR analysis of the isolates from the ICU identified that 6 of the isolates belonged to a 

cluster of related profiles, which included Patients B and D and the four environmental 

isolates from Bed 8 WHB water, Bed 4 WHB water outlet drain, Bed 7 WHB water outlet 

drain and kitchen ice machine water (Table II). All of these isolates had VNTR profiles that 

were similar to the PA14 strain, one of the most abundant clonal complexes in the P. 

aeruginosa population, which can be readily isolated from aquatic sources causing infections 

in humans.34 The close relationship of these isolates in the PA14 cluster suggested that these 

isolates may be part of an outbreak. In contrast the isolates from patients A, C, E and F had 

distinct VNTR profiles, both from one another and the PA14 cluster, and also from the 

remaining environmental samples suggesting that these were unlinked and therefore could be 

ruled out of the outbreak.  
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PFGE was used to distinguish the PA14 cluster isolates. Analysis of the banding pattern 

divided the isolates into three distinct subtypes designated NINE04PA-1 (Bed 8 WHB water, 

Patient D ETA, Patient B ETA), NINE04PA-1'  (Bed 4 and 7 WHB water outlet drain) and 

NINE04PA-1” (Kitchen ice machine water). There were clear and definite band differences 

between the ice machine isolate and the patient isolates. 

 

Genome Sequencing and Phylogenetic Reconstruction 

WGS and phylogenetic analysis were performed in order to resolve the fine-scale relationship 

between outbreak isolates and explore epidemiological links between the isolates (Figure 1). 

In order to provide a wider genetic context and a snapshot of diversity within the species, 15 

additional P. aeruginosa genome sequences from EMBL nucleotide database were included 

in the analysis. For this overview of the P. aeruginosa population, the WGS reads of the 

isolates were mapped to chromosome of the reference strain PA01 [25].  In total, 182,476 

SNP sites were identified amongst all analyzed isolates and revealed a diverse population 

structure, throughout which were distributed the ICU isolates. The cluster of isolates 

identified by VNTR as belonging to PA14 clone formed a distinct clade in the phylogenetic 

tree that included the reference isolate UCBPP-PA14, which belonged to PA14 clone. The 

next closest isolates to the PA14 cluster were those belonging to patient C ETA and patient F 

ETA and differed from the cluster by ~49,000 SNPs and ~50,000 SNPs, respectively.  

 

In order to provide greater resolution for the relationship of the PA14 cluster isolates, the 

WGS reads were remapped to the reference chromosome of UCBPP-PA14 [26]. This isolate 

was genetically closer to the outbreak isolates than PAO1, and therefore remapping to this 

isolates chromosome would provide increased genomic coverage and consequently greater 

resolution. Initial phylogenetic analysis of the SNP data mapped to UCBPP-PA14  

differentiated the isolates into two separate clusters and a further outlier that was each 

distinguished by over 1000 SNPs: one cluster containing Patient D ETA, Patient B ETA and 

Bed 8 WHB water, which was distinguished from the second cluster containing Bed 4 WHB 

water outlet drain isolate and Bed 7 WHB water outlet drain isolate by 4515 SNPs, which in 

turn was distinguished from the kitchen ice machine water isolate by 1852 SNPs. Analysis of 

the distribution of SNPs in the chromosome identified regions of high SNP density, indicative 

of this variation arising by homologous recombination. Utilizing Gubbins to detect potential 

regions of recombination identified five regions that distinguished the PA14 clone ICU 
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population. Excluding the SNPs in these regions from the phylogenetic reconstruction 

reduced the apparent genetic diversity of the PA14 group, but still maintained the distinction 

of the two clusters and the outlier. In the Patient D ETA, Patient B ETA and Bed 8 WHB 

water cluster the Patient B ETA and Bed 8 WHB water isolates were indistinguishable, and 

differed from the Patient D ETA isolate by four SNPs. The minimal genetic distance between 

these isolates strongly supports transmission between the Bed 8 WHB water and patients D 

and B and is within the range of SNP distances observed in a study that investigated P. 

aeruginosa transmission in a hospital setting [26]. These patients were not in the ICU 

department at the same time.  An overview of conventional typing and genomic analysis and 

the timeline for the delivery of these results is illustrated in Figure 2.   

 

Discussion 

The IPCT had urgent questions to answer: is there an outbreak, is there a common source, 

who is involved, how did the outbreak arise?  In this study, we were able to evaluate the 

relative utility of typing methods to answer these questions.  As one moves from routine 

methods of antibiogram, through VNTR, PFGE to WGS, the understanding of the nature of 

this outbreak becomes apparent.  There is a progressive winnowing of possibly involved 

patients and infection sources. The antibiogram showed a linkage between the Bed 8 WHB 

water and patients B and D but also included patients A and E.   VNTR correctly identified 

the two patients who were part of the outbreak but also identified several false positive 

environmental links. This left the IPCT considering various routes of transmission for 

instance patient care using ice machine water. PFGE was required for complete clarification.  

The clinical benefit of using WGS in this situation is that it rapidly provides absolute clarity 

in distinguishing the isolates in one step, negating the need for IPCT to spend unnecessary 

time contemplating other scenarios of how the transmission came about without certainty.  In 

this situation, this information was combined with epidemiology.  These patients were not in 

the unit at the same time, suggesting that the water supply had acted as a reservoir and source 

of on-going infection.   

 

Recognised interventions to prevent transmission from water to patients were effective in 

preventing further transmission. These included removal of taps with flow straighteners, 

replacement of sink basins with overflow drains, introduction of increased flushing regimen 

and monitoring of water temperature to become fully compliant with national guidance. The 
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IPCT also reviewed procedures for the decontamination of the ventilator flow sensor and 

temperature probes, in addition to making recommendations for the disposal of potentially 

contaminated fluids to prevent transmission of organisms from patients to sink drains and 

distal ends of taps. ICU staff supported changes to their decontamination practices and 

training on new cleaning protocol for sinks was also given. Following this, areas were 

resampled and it was confirmed that remediation works were successful. 

 

We have shown that WGS is a potent tool to direct effective intervention in outbreak 

situations, in comparison to and providing additional information to that generated by 

molecular typing methods. We found that WGS can provide results within 7 days; however it 

should be noted that current start-up costs for this technology remain high.  For WGS to be 

introduced into routine clinical microbiology laboratories investment in infrastructure 

including bioinformatics and expertise for the interpretation, management and storage of data 

is required. Standard operating procedures, validation of methods and quality control 

measures are in place for VNTR and PFGE testing and will be required for WGS to take 

place in clinical laboratories. Our results are limited by the fact that some isolates were not 

stored and not all were successfully recultured. We processed only one colony from each 

sample and this may limit assessment of the diversity of pseudomonas in patient and 

environment samples.  

 

WGS would be of particular use when there are no obvious epidemiological links between 

the patients enabling IPCTs to have timely results using one method. WGS alone provided 

the necessary resolution to identify the transmission pathway, demonstrating unequivocally 

the spread between single water supply to patients, and eliminating other potential 

transmission events and sources. Thought should be given as to how to make these powerful 

data available routinely in a timely manner, and in a format that is easily interpretable and 

clinically relevant. Establishing tools such as sequencing machines locally can reduce the 

turnaround time.  It is essential that clinicians develop a new approach to investigate hospital 

outbreaks and escalate to WGS at an early stage to allow accurate and rapid description of the 

causes. It is only by using WGS in real-time that it will be used as a powerful tool to improve 

patient outcomes. 
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Figure 1. Phylogenomic analysis of Pseudomonas aeruginosa isolates.  

 

 

 

 

 

Legend 

Maximum likelihood phylogenetic tree built with core SNPs identified by mapping to the 

PAO1 reference genome is presented on the left of the figure. The box on the right contains a 

maximum likelihood phylogeny of the ICU isolates belonging to the PA14 clone, where reads 

were mapped to the PA14 reference genome of UCBPP-PA14R. The tree was built with core 

SNPs, excluding SNPs identified in regions that had arisen by recombination (the number of 

SNPs associated with recombination is given in red text above the branches on which they 

were identified). Scale bars illustrating the relative SNPs distances of the phylogenetic trees 

are displayed. 

 

 

 

 

Figure 2. Overview of conventional typing and genomic analysis  
 

 

 

 

 

Supplementary Figure 1. Example photograph of the type of sink that was used on the unit 
at the time 
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Table I. Results of microbiological detection for Pseudomonas aeruginosa in water (pre and post 

flush samples) samples from water outlets in the Intensive Care Unit. 

 

Source Pseudomonas count (cfu/ml) 

pre-flush samples 

Pseudomonas count (cfu/ml) 

post-flush samples 

Ice Machine >100 >100 

Domestic Service Room WHB  37 1 

Bed 7 WHB >100 28 

Bed 8 WHB 41 0 

Kitchen Sink 0 0 

Kitchen Drinking Water Tap 0 0 

Kitchen Hydroboil 0 0 

Domestic Service Room Sink 0 0 

Ventilator Room Sink 0 0 

ICU Entrance WHB  0 0 

Chilled Drinking Water 

Dispenser 

0 0 

Ward Area WHB 1 0 0 

Ward Area WHB 2 0 0 

Bed 4 WHB  0 0 

 

Key: WHB wash hand basin  
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Table II. VNTR profiles of Pseudomonas aeruginosa isolates from the Intensive Care Unit 

Source Date of Sampling VNTR 

Bed 4 WHB Water Outlet Drain 16/05/2013 12,2,1,5,5,2,4,5,11 

Bed 7 WHB Water Outlet Drain 16/05/2013 12,2,1,5,5,2,4,5,11 

Bed 8 WHB Water  16/05/2013 12,2,1,5,5,2,4,5,12 

Domestic Service Room WHB Water 16/05/2013 12,3,6,3,1,4,14,5,10 

ICU Entrance WHB Water Outlet Drain 16/05/2013 12,3,-,3,1,4,14,5,10 

Ice Machine Water 16/05/2013 12,2,1,5,5,2,4,5,14 

Patient A Abdominal Drain Fluid  11/03/2012 12,6,7,5,3,4,8,1,11 

Patient B ETA 21/09/2012 12,2,1,5,5,2,4,5,12 

Patient C ETA 04/01/2013 11,2,6, ,3,6,6,6,12 

Patient D ETA 15/04/2013 12,2,1,5,5,2,4,5,12 

Patient E ETA 11/05/2013 12,4,-,-,3,1,6,4,13 

Patient F ETA 05/05/2013 12,2,-,3,2,2,-,5,6 

Key: WHB wash hand basin  
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Environmental samples

Bed 4: Bed 4 WHB Water Outlet Drain 

Bed 7: Bed 7 WHB Water Outlet Drain

Bed 8: Bed 8 WHB Water

DSR: Domestic Service Room WHB Water

ICU Entrance: ICU Entrance WHB Water 

Outlet Drain

Ice Machine: Water

Patient samples

A: Patient A Abdominal Drain Fluid

B: Patient B ETA 

C: Patient C ETA

D: Patient D ETA

E:  Patient E ETA

F:  Patient F ETA

 Strains deemed “in” by typing

 Strains deemed “out” by typing 

Antibiogram (48 hours) VNTR (2 days)  PFGE (7 days)  WGS (7 days or less)

Bed 8
A
B
D
E

Bed 8
Bed 4
Bed 7
Ice Machine
B
D

Bed 8
B
D

Bed 8
B
D

Bed 4
Bed 7
DSR
ICU Entrance
Ice Machine
F
C

DSR
ICU Entrance
A
C
E
F

Bed 4
Bed 7

Bed 4
Bed 7

Ice Machine Ice Machine
E
A
ICU Entrance

DSR
C
F


