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Abstract  

This paper outlines some of the challenges and opportunities for whole plant 

and crop physiology to contribute to enhanced and more efficient fruit production in 

the coming years. The rapid advances in molecular biology provide both an 

opportunity (especially to improve understanding of physiological processes in crop 

production) and a challenge (to use this knowledge to advance production in real 

farm situations). Similar or even greater opportunities are being provided by other 

developing technologies, especially the rapidly increasing power and availability of 

powerful computing and communications technology and smartphones which 

provide real opportunities to contribute to improved crop and farm management. In 

addition the rapid development of novel ‘remote’ or ‘proximal’ sensing technologies, 

including the use of Unmanned Aerial Vehicles and on-tractor sensors for crop 

monitoring and stress diagnosis also holds great promise. These and other advances 

are discussed in the context of their potential for improving both crop breeding and 

orchard management, drawing on examples from a wide range of crops. The 

potential of these scientific advances will be put in the context of other factors 

relating to the advance of horticultural knowledge including the availability of 

funding and the training of young scientists. 

 

INTRODUCTION 

In my invitation letter I was asked to look forward over the next twenty to thirty 

years to give a foresight into the future for whole plant physiology of fruit crops. I would 

not presume to be able to predict the future with any accuracy; all soothsayers/prophets 

from Nostradamus to modern weather forecasters (who probably have less excuse) 

inevitably seem to get their predictions wrong. Therefore I shall only attempt to draw 

some parallels with the past, and perhaps to identify some areas where there seems to be 

to be particular scope or need for future development with specific application to the fruit 

industry.  

 

THE PAST 

Before looking forward, it is useful to consider how much has changed in the past 

20 years, or even the past 40 or 60 years. When I started out in research, more than 40 



years ago, we seem to have been asking many of the same questions and indeed 

highlighting many of the same requirements as we are today (e.g. the need to manipulate 

tree growth more effectively; the development of improved pruning and training systems; 

the improvement of irrigation and irrigation scheduling systems; the need to know more 

about roots and their distribution and dynamics; the need to understand and regulate 

carbohydrate partitioning, etc.). Even at that time these topics had all been of major 

concern for many years, with some aspects having been central to the work of fruit 

research stations such as the New York State Agricultural Experiment Station, Geneva, 

NY (established 1880), Long Ashton Research Station (established 1903) and East 

Malling Research Station (established 1913) and since their earliest days. 

Changes in the research equipment and technologies available to us have been 

dramatic over the past 40 years. Although we were starting to understand the roles of 

growth regulators in the 1960s and 70s, and they had been used since the 1930s for plant 

propagation, analytical methods were primitive in comparision with modern 

chromatography and mass spectrometry. Similarly, computing power was almost non-

existent (some were still doing calculations on mechanical calculators, though the first 

electronic calculators were coming available). Any computing was done on main-frame 

computers often based many miles away using tape or cards as inputs and the 

consequential daily turnaround meant that a whole extra day was required if one made 

any tiny error. The Personal Computer was only introduced in the early 1980s; I recollect 

introducing the Apple IIe (with its pitiful 64 kb of RAM) to East Malling in 1983 and 

using it successfully for many years as an effective field data-logger and for data analysis 

using simple spreadsheets. At this stage there were no commercial porometers or 

photosynthesis systems and researchers had to have the skills and ability to construct their 

own, often but not always based on published designs (Parkinson & Legg, 1972; Slatyer 

& Jarvis, 1966). Now all this has changed with readily available commercial instruments 

for the study of stomatal conductance, photosynthesis, light interception, soil moisture, 

hormone content, etc.; though there is the associated disadvantage that young researchers 

are less likely to understand the underlying basis of the measurements with the increasing 

likelihood that they will be unable to recognise erroneous data. Interestingly, the use of 

Unmanned Aerial Vehicles (UAVs) is still at this earlier phase where users have to do 

much of the development work thermselves, both in relation to construction and for 

image handling and map construction; only now are turn-key systems starting to become 

available (e.g. precisionhawk.com; farmaerial.co.uk; www.aeroscout.ch; 

www.cropcam.com).  

There have been many successes over the past few decades (as reported in other 

papers from this conference) in areas as diverse as irrigation sensing, scheduling, and 

other aspects of crop management including the introduction of approaches such as 

Regulated Deficit Irrigation (RDI; Chalmers et al., 1981; Fereres & Soriano, 2007; 

Mitchell & Chalmers, 1982) and partial root-zone drying (PRD; see e.g. Sadras, 2009; 

Stoll et al., 2000), the use of light climate manipulation using coloured films or netting 

(Schettini et al., 2011), improved understanding of dormancy and chill requirements 

(Atkinson et al., 2013), the use of hormone/PGR treatments for thinning (Davis et al., 

2004), growth control and improvement of fruit quality (Lawes & Woolley, 2001), while 

there have been substantial advances in other aspects of crop management (e.g. in 

planting and training systems, pruning, ground cover, nutrition, etc.), often dependent on 

advances in technology becoming available to growers. Not all the innovative ideas 

proposed in the 1970s and 1980s have had the impact that had been hoped: for example 



exciting new concepts such as meadow orchards where a form of biennial cropping 

requiring extremely high density planting (e.g. 70,000 trees per hectare), extensive use of 

plant growth regulators and a harvesting system more akin to that for cereal crops were 

being proposed (Luckwill & Child, 1973). Nevertheless, even though such systems may 

never have been widely adopted, several of the concepts introduced provided the stimulus 

for modern high density cropping, columnar apples and fruit wall systems (Erez, 1984; 

Luckwill, 1978). 

 

THE FUTURE 

In some ways it is easier to answer the question: “where is horticulture going?” 

than “where is fruit physiology going?”. Developments in horticulture are very largely 

driven by external drivers such as energy prices, consumer (or more likely Supermarket) 

demands, food fads (often rather little supported by rational science), together with a 

range of other economic or indeed political (e.g. “green”) considerations and by external 

factors such as climate change and its perception. Such drivers tend to be very fickle and 

are notoriously difficult to predict and are likely to be the main force determining future 

developments in fruit growing. The actual advances in physiology, on the other hand, are 

more likely to be driven by advances in technology or understanding developed in other 

fields. Foremost among these I would highlight the rapid advances in in computing, 

communication technology, global positioning (GPS), informatics and “big data”, 

together with parallel advances in remote sensing, robotics and sensor technology, 

leading to the development of what have been called “smarter farming systems” 

(Pedersen et al., 2006). These developments will lead to enhanced opportunities for 

individual plant care, with variable-rate and spot treatment technologies being used, 

rather than conventional agronomy where whole orchards are treated the same. Though 

such precision farming approaches are becoming more and more widely used in broad-

acre agriculture they have yet to be adopted at any scale in fruit cultivation; though I 

expect it to come, and to come soon. Equally important for fruit crops as for other crops 

are the tremendous recent advances that have been made in genetics, molecular biology 

and the “Omics” technologies.  

Notwithstanding all these rapid technological advances all the real developments 

that will benefit the fruit industry will depend crucially on an understanding of crop 

physiological principles; for example as we shall see below, the potential impacts of 

molecular biology will only be achieved when crop physiologists and molecular 

geneticists work together. I will discuss each of these areas in more detail below. 

 

Technology and “smarter farming systems” 

All farming and horticulture is highly dependent on the engineering and other 

technological tools that are available to growers. Here the recent developments in 

computing, robotics and remote sensing, including the widespread availability of global 

positioning systems, information and communications technology coupled with the 

enormous computing power and wireless communication ability that we now have, and 

the development of sensor technologies for providing real time information on distributed 

systems are all going to have increasing impact on the way crops are grown. This 

information technology and its ready accessibility on smartphones and tablets in the field 

and its integration with guidance systems on tractors and data-bases and maps in the 

office provides and unprecedented power for farm managers. This technology is allowing 

farmers to move well beyond the capacity of the earliest expert systems (though they may 



have been around for 30 years, they are yet to make the impact they should). Fruit 

growers are generally rather behind advances in large area field crops in the adoption of 

these technologies which comprise a linked set of systems: sensor systems and data 

acquisition (including soil properties, crop status using remote sensing, and yield 

mapping); data integration, interpretation and mapping making use of weather forecasts, 

crop modelling and economic modelling; through to feedback to precision targeted farm 

management and potentially individual tree treatments. Optimal use of the new 

technologies for crop management will depend on a combination of advanced sensing 

techniques with models of crop development. For example, combination of sensor data 

with crop models and weather data will allow the generation of useful yield predictions. 

The trend will be for these complex systems to be incorporated into novel farm 

information management systems (Sorensen et al., 2010) with increasing numbers of 

commercial systems coming available. 

A likely key component of these smarter farming systems will include a range of 

autonomous robots that will autonomously and routinely sense crop status and apply 

appropriate management responses such as weed removal, localised spraying against 

disease, and so on (Pedersen et al., 2006). 

 

Remote sensing 

Advances in non-contact sensing of crop status and function are developing 

rapidly and are becoming rapidly incorporated into precision farming technologies. 

Opportunities range from the use of satellites through the use of sensors on airborne, 

balloon and unmanned aerial vehicle (UAV) platforms through to fixed or mobile ‘in-

field’ sensors for what is known as ‘proximal’ sensing. Satellites are increasingly 

powerful with improving spatial resolution and rapidly falling costs with the advent of 

constellations of SmallSats and even NanoSats. Currently around 12-14 new civilian 

missions are launched each year (Belward & Skøien, 2014). Unfortunately, although 

satellites are crucial both for regional studies, such as for weather forecasting and for 

estimates of regional water use, and for ‘inventory’ functions such as mapping of crop 

extent, their use by fruit growers is not likely to grow as rapidly as is the use of proximal 

and UAV sensing platforms because the latter technologies are not limited by cloud cover 

and can provide the much improved spatial (and temporal) resolution that will be required 

for crop management. Although the use of balloons can provide relatively cheap means of 

suspending sensors over an orchard, their deployment is severely limited by high winds, 

so they cannot be recommended for general use. Even higher resolution and precision can 

be achieved by mounting sensors on in-field platforms such as tractors or even by using 

fixed sensor networks with data uploaded to a central server (possibly in the ‘cloud’) by 

telemetry. The increasing sophistication of UAVs and their ready availability at 

surprisingly low cost (generally less than $10,000 including all the control gear) means 

that UAVs are likely to soon become the platform of choice for many applications. 

Software is now readily available that allows one to mosaic a whole series of images from 

a micro-UAV to generate an ‘image ‘ of the whole field or orchard; it is even possible to 

generate stereographically a high precision digital elevation model that can be used to 

estimate canopy height and extent using cheap RGB cameras. The advantages and 

disadvantages of different platforms for remote sensing are outlined in Table 1.  

Although UAVs offer tremendous potential for precision agriculture and general 

farm management, it is worth pointing out that most currently available rotary wing 

UAVs (quadrocopters, hexacopters, etc.) have very limited payloads (often <1 kg), 



limited endurance (often restricted to about 15 min flying time) and range (usually less 

than about 500 m to remain within good view of the pilot). Such systems would probably 

only be able to map up to 10 ha per hour with multiple battery changes. This range 

limitation may be less of a problem to fruit growers than for broad-acre agriculture and 

can be partially overcome by the use of larger (but more expensive) fixed wing UAVs. 

Although many commercial systems are currently available, they are largely set up solely 

for mapping purposes using simple RGB cameras; where one seeks more sophisticated 

measurements of use for advanced crop management (such as thermal) further 

development or modification is normally required. 

Considerations in the choice of sensor platform include: cost of data acquisition 

and subsequent analysis; timeliness and frequency of image availability (satellites such as 

Landsat only overfly any one spot every 16 days – even then clouds may obscure the 

image); spatial resolution (for some purposes pixels need to be the same size as individual 

leaves – i.e. a few cm – while larger pixels will contain mixed pixels from which it may 

be difficult to extract information about the leaf component) (Jones & Sirault, 2014); 

flexibility of data acquisition in relation to farm requirements is also critical. 

In order to get some idea of the potential capacity of such technologies to 

revolutionise fruit culture it is necessary to consider the range of sensors that are available 

and their potential application to different aspects of crop management or crop 

improvement. Available sensor technologies are outlined in Table 2. Optical sensors 

(including RGB cameras and multi- or hyperspectral sensors) depend on reflection from 

the vegetation and especially on the characteristic low reflectance of leaves and canopies 

in the visible or red (R) and high reflectance in the near infrared (NIR). This behaviour is 

quite different from that of alternative targets such as soil where reflectance changes 

rather slowly with wavelength, and provides the basis for many of the ‘vegetation indices’ 

that have been proposed (see e.g. Jones & Vaughan, 2010). The best known example of a 

vegetation index is the normalised difference vegetation index (NDVI = (NIR – R)/(NIR 

+ R)). This provides a useful measure of canopy greenness or vegetation cover when 

applied to satellite data. By making use of the characteristic reflection spectra of various 

metabolites and biochemicals in leaves, indices composed of other wavelength 

combinations, particularly when narrow-band hyperspectral sensors are available, are 

increasingly being developed for diagnosis and monitoring of changes in plant or tissue 

water status or biochemical content (Blackburn, 2007; Jones & Vaughan, 2010). It is even 

possible to monitor processes such as photosynthesis using hyperspectral indices such as 

the photochemical reflectance index (PRI) which is based on the detection of the 

epoxidation state of xanthophyll pigments in chloroplasts as a measure of photosynthesis 

(Gamon et al., 1992), by the use of solar induced chlorophyll fluorescence measurements 

(Meroni et al., 2009) or by using laser induced fluorescence transients (LIFT; Kolber et 

al., 2005). Although many of these techniques work well in controlled environments 

where one may be viewing only single leaves, when applied in tree canopies in the field it 

is necessary to take account of the varying illumination from leaf to leaf, possibly by 

means of radiation transfer models such as SAIL (Jacquemoud, 1993). This will be a 

continuing challenge in future developments of proximal remote sensing for crop 

management.  

Similar considerations affect the use of thermal sensors in the field, as leaf 

temperature is a function of local environmental conditions, including especially 

irradiance, with sunlit leaves tending to be much warmer than shaded leaves. 

Nevertheless, where suitable methods are adopted to correct for environmental variation, 



such as the use of physical or virtual reference surfaces (Guilioni et al., 2008; Jones, 

1999), it is possible to get good estimates of stomatal conductance or evaporation rate as 

proxy indicators of plant water stress. Combining thermal estimates of transpiration rate 

with estimates of photosynthesis from chlorophyll fluorescence or the hyperspectral PRI 

could in principle even allow estimation of water use efficiency in the field, though thus 

far this approach has only been successfully applied in the laboratory (McAusland et al., 

2013). 

Proximal sensors mounted on tractors or other in-field platforms can provide 

valuable information on crop canopy structure and even estimates of crop yield. Stereo 

photography allows reconstruction of detailed 3D canopy structure, while increasingly the 

availability of mobile Lidar scanners as well as Time-of-flight cameras and even 

ultrasonic sensors has greatly enhanced the repertoire of tools available for real-time 

generation of canopy structure maps to guide crop management (Jones & Vaughan, 2010). 

Although remote sensing provides an extremely powerful tool for crop managers, 

it is necessary to note that a number of precautions must be taken when applying such 

technologies. Perhaps the most obvious is the mixed pixel problem where it can be 

difficult to extract the critical information from pixels containing both leaf and 

background soil; a number of techniques are available to improve the extraction of 

relevant information, such as canopy temperature, but none are perfect (Jones & Sirault, 

2014). It is also true that too small a pixel can be as bad, or worse than, too large a pixel, 

as variability increases as pixels get smaller and the exponential increase in data volume 

can lead to problems in data management so that inevitably some data reduction will be 

required to allow effective data processing. Another common problem with remote 

sensing of crop characteristics or function can be the difficulty of obtaining accurate 

predictions from the proxy measures obtained remotely. For example, Jones (2014b) 

showed that even when one has a good correlation (r2 >0.9) between a proxy measure 

such as NDVI and a physiological character such as canopy nitrogen content (N), 

prediction of N from NDVI can be subject to substantial errors.  

 

Molecular biology and ‘Omics technologies 

Not entirely separate from the technological and big-data considerations discussed 

above are the capabilities provided, especially to plant breeders, but also to crop 

managers, of the new genetic tools. Molecular biology is revolutionising the way we can 

do things, but unfortunately too many recent graduates who might call themselves plant 

physiologists may have rather little understanding of the physiology of how plants 

function in the field and the natural compensatory mechanisms that can occur. There is 

still often a too-naive belief in the simplicity of inserting single ‘magic’ genes to achieve 

improvements in yield or stress tolerance. The problem is well illustrated by a recent 

meta-analysis of over 500 reports of attempts to improve drought tolerance by gene 

manipulation (Blum, 2014). Although more than 100 separate genes have been used in 

attempts to improve drought tolerance, they have often been selected in inappropriate 

experiments in artificial environments (see Table 1) that take no account of the real 

interactions and compensations between genes that occur in the field. The result has been 

that extremely few putative drought tolerant GM lines have thus far been released to 

farmers or growers even in cereal crops which are far ahead of fruit crops.  

Any physiologist would recognise that drought tolerance in terms of crop yield 

under limited water supply involves a complex interaction (Jones, 2014a) between one or 

more of the following component mechanisms:   



(a) conservation of water (through stomatal closure, cuticular modifications, 

changes in leaf area, etc.)   

(b) improved water uptake (though altered rooting patterns)   

(c) maintenance of cell function at lower ψtissue (e.g. by osmotic adjustment )   

(d) changes in harvest index/partitioning   

(e) improved survival  

Thus the conventional molecular geneticist’s tools of selecting genes with differing 

expression under artificial conditions such as desiccation of tissue on a bench, or total 

withholding of water until death are unlikely to identify the real key genes controlling 

yield under drought. A few years ago I reported (Jones, 2007) on a rather simple survey 

of molecular papers at that time that related to drought tolerance and showed that 

especially in the more molecular plant journals (Plant Cell, Plant Physiology, Plant 

Journal and Plant Molecular Biology) over 55% of papers had no measure of plant water 

status by which to evaluate any physiological responses. Furthermore, in most of these 

cases the drought treatments used were far removed from natural drought progression in 

the field. In order to see if anything has improved in the past eight years I conducted an 

even briefer sample survey, taking the first 20 papers from a search (on 10 March 2014) 

of the Plant Physiology website (http://www.plantphysiol.org/search) that came up in 

response to a search for “drought” in the title. After eliminating the two non-molecular 

papers on plant water relations, the remaining molecular papers included only 4 (22%) 

that had any measure of plant water status and only 66% measured physiological 

responses such as stomatal aperture or photosynthesis (Table 3). On the other hand, the 

situation regarding severity of treatment has somewhat improved over the intervening 

eight years with only about 33% of the papers only using extreme drought treatments with 

the remainder including some attempt at more moderate water deficit treatments (Table 3). 

Nevertheless, only one paper (Harb et al., 2010) took any explicit account of the potential 

effects of differing plant size or stomatal conductance on the rate of drought development 

to ensure that all genotypes had achieved comparable soil or tissue water stress, others 

generally assumed that drought severity was simply a function of time (or soil moisture 

content); assumptions that can lead to very misleading results.  

I would argue that the most rapid progress with molecular studies on drought 

tolerance can only be achieved when the researchers actually measure plant water status 

and compare plants under similar tissue water status. As has been cogently argued by 

Blum (2014) progress in breeding for drought tolerance will only speed up when the 

approaches used take more recognition of how plants adapt and respond under natural 

conditions. At least there is evidence that molecular biologists are now starting to 

recognise that drought tolerance is complex and that genetic engineering solutions will 

need to recognise this, with one paper stating that  “We propose that one significant 

challenge will be to unravel the complex mechanisms of drought resistance in crops 

through more intensive and integrative studies . . . .” (Hu & Xiong, 2014). 

Future progress in fruit physiology research will depend on effective collaboration 

between molecular biologists and physiologists. Molecular biology provides a set of 

fantastic tools; these are not just the ability to insert genes to change some particular crop 

characteristic, but probably even more importantly the ability to use transgenic plants and 

reverse genetics as tools to improve our understanding of physiological responses and the 

underlying mechanisms. Molecular biology should therefore not be regarded as a ‘bogey 

man’ and our efforts need to be concentrated on helping molecular scientists design better 

and more discriminatory molecular experiments, avoiding the pitfalls inherent in doing 



simple molecular screens in atypical environments as discussed above.   

 

Some other opportunities 

There are a wide range of other scientific opportunities that have unrealised 

potential to impact on fruit production in the coming years. These will include further 

advances in many of the areas in which there have already been substantial improvements 

in the past couple of decades, including for example further improvements in irrigation, 

nutrition and soil management as well as in the use of plant growth regulators. There is 

also much unrealised potential in topics that have been known for many years but which 

have not yet found wide application:  I will just highlight one here. This is the use of 

microbial assistant species including growth-promoting soil rhizobacteria (Belimov et al., 

2008) and fungi (Windham et al., 1986). Recent increases in understanding of the 

mechanisms by which such organisms can promote growth suggest that their wider 

application and the development or selection of improved genotypes could potentially 

have significant impact in the future fruit crop production. 

 

OTHER ASPECTS IMPACTING ON HORTICULTURAL RESEARCH 

As I outlined above, the future of horticultural research and development depends 

critically on external socio-economic factors. One such is that significant advances in 

horticultural science of fruit crops will depend critically both on adequate funding for 

research and on the availability of well trained scientists to do the research and on 

appropriately trained growers and agronomy specialists to ensure that these advances are 

developed in a ways that can be adopted by the industry.  

 

Research Funding 

The availability of research funding is determined both by government policy and 

by grower sentiment is a key factor that determines both the general fields of research 

conducted and increasingly the detail. Historically the more basic and fundamental 

science has been funded by government or government agencies, while the more practical 

application largely depends on funding from growers. Unfortunately, to my mind, there 

has been too much of a shift away from funding for ‘blue skies’ or even basic research 

towards short-term problem solving and technology transfer, especially that driven by the 

withdrawal of government funding and its increasing replacement by a need for grower 

funding. Although this is a world-wide trend the degree does vary substantially between 

countries. Not surprisingly growers are primarily concerned with short-term solutions to 

current problems and less willing to underpin the longer term projects that are likely to 

lead to the major advances.  

The research funding climate has changed substantially over the past 40 years, 

first in the UK, and then in many countries worldwide, following publication of the 

Rothschild report in 1971 (Rothschild, 1971), which reversed the earlier Haldane 

principle (the idea that decisions on research funding should be made by researchers 

rather than politicians – named after the report of the Haldane committee (Haldane, 

1918)) and where funders aimed to support the best scientists. A similar principle in 

Germany under laid the Kaiser Wilhelm Society (from its establishment by Adolph von 

Harnack in 1911) though to its successor the Max Planck Society which continues the 

tradition of its predecessor institution with the structural principle of the person-centered 

research organization (http://www.mpg.de/183251/portrait). Following Rothschild, there 

has been much greater concern worldwide for an increasing proportion of government 



research funding to be directed at solving specific practical problems, and as an economic 

tool to drive economic growth (e.g. by getting industry involved to take on the basic ideas 

and develop them into new products and wealth). Admittedly the UK has often been seen 

as a good example of a research system producing the new ideas, but where others have 

made the money from them. 

This shift has occurred in spite of the fairly wide recognition that many advances 

have been made entirely serendipitously (e.g. the world-wide-web, Teflon, monoclonal 

antibodies, etc.), while in fruit cultivation many plant growth regulators were not 

developed with fruit as a target. Interestingly, earlier, when Rothschild was head of the 

Agricultural Research Council (ARC) in Britain he gave a speech at the 50th anniversary 

of LARS in 1955 (Rothschild, 1953) where he was particularly proud of the fact that the 

ARC had aimed to fund the best scientists without constraining their work quoting as 

examples Fisher, Yeates, Darlington, etc.,: this is in direct contrast to his later proposals. 

There are continuing calls to reinvigorate the current funding models to encourage better 

support for young scientists and to improve funding stability while freeing up scientists to 

spend a greater proportion of their time on research than is currently possible (Alberts et 

al., 2014). 

 

Training 
The quality and availability of good and appropriate training both for young 

scientists and for farmers and extension workers is crucial for future development of the 

fruit industry. Unfortunately there is an increasing problem with the level and content of 

training in many current plant science courses. There is a shift towards a greater emphasis 

on molecular studies almost to the exclusion of more physiological components of the 

subject, with many researchers trained in the top universities now having only superficial 

understanding of the complexity of plant functioning. This is illustrated by the common 

rather naive expectation among many (see Blum, 2014) that simple single gene solutions 

exist to breeding improved crops with enhanced drought tolerance as we discussed above. 

Similarly there is a real need to instil an understanding that results in controlled 

environments and even less those in vitro do not generally represent those expected in the 

field, while in many cases even pot size plays a crucial role on determining the results 

obtained (Poorter et al., 2012). This shift in plant science courses towards molecular 

studies may be related to the perception that agronomy and whole-plant studies are often 

considered to be second-class studies, partly because work in these fields tends to be 

published in less-cited journals than does the more molecular research. Associated with 

this is the perception that agronomy is low on the list of preferred careers and in many 

places it is difficult to attract the best students.  

A second problem that results from limited training in conventional plant 

physiology is that often students, and indeed the teachers, are not well versed in the older 

physiological literature published before the internet age. This is partly because much of 

the older literature is not as readily available on the internet as are publications since 

c.1997. At least in the UK, many libraries and universities do not subscribe to archival 

databases that cover the older literature, though encouragingly, in Australia both the 

organisations with which I am associated (CSIRO and the University of Western 

Australia) do subscribe to these older archives. I consider that it is crucial for researchers 

to learn from history and to read older papers before designing and starting new projects 

to ensure that we benefit from the lessons learned and avoid much wasted effort and 

repetition of mistakes that have been made before.  



 

CONCLUSIONS 

There is every reason to expect that the pace of developments in fruit crop 

physiology will increase in the coming years, primarily as a result of developments in 

areas such as information technology and remote sensing, but also as a result of 

developments in molecular biology that will enhance the rate of increase of our 

understanding of the endogenous mechanisms involved in the control of plant growth. 

The impact of molecular biology will, however, only be optimal if there is a true 

collaboration between molecular biologists and physiologists; methods must be found to 

ensure that effective collaborations are encouraged. I would expect the most rapid 

advances only if we can encourage more scientists with vision who are willing to ‘go out 

on a limb’ with speculative, or even wacky, ideas of the same scale as Luckwill’s 

meadow orchard. But this will only occur if funders allow a significant proportion of 

speculative science in their portfolio. 

It will also be important to ensure that horticulture does not lag any further behind 

other plant sciences. There are several steps that will be needed to ensure the future of 

horticultural research, among which I would argue that there is a need for us to improve 

the rigour in horticultural journals. Currently there are too many papers published that 

lack the presentation of broader unifying concepts and simply represent large amounts of 

undigested data, and often lack rigorous experimental design. It will also be necessary to 

improve systems for archiving and access to all raw experimental data to allow effective 

meta analysis and to ensure that unnecessary repetition of experiments is avoided. All 

authors should be required to archive their raw data on appropriate online databases. 

It will also be necessary in the future to convince the public that crop 

improvements including genetic manipulation are of positive benefit to the consumer. In 

1972, at the time of the proposal of meadow orchards, John Craven, then a young reporter 

on the BBC's Points West programme, asked the Long Ashton Research Station director, 

John Hudson: "Do you think this messing about with nature could be harmful?" 

"Oh no, not at all," answered Hudson. "We're not messing about with nature, 

we're improving on nature."  

This response holds as well today, even in the era of genetic modification, as it did 

then. 
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Tables 

 

 

 

Table 1. The advantages and disadvantages of different remote sensing platforms   

 

Platform Features 

Satellite Cloud-limited (ex. radar); low spatial resolution (trade-off with 

frequency/cost); good for weather/mapping; poor for crop 

management 

Airborne (piloted) Below cloud; higher resolution; flexible deployment 

UAV v. high resolution; very flexible deployment; low cost; generally 

excellent potential; but low payload and short range 

Balloon Rarely useable because of wind 

Tractor-mounted Readily incorporated into on-farm management; v. high 

resolution 

Fixed sensor network Limited coverage; need to correct for perspective if mounted on 

single sites; capital cost. 

 

 

 

 

 

Table 2. Remote sensing sensor technologies and their potential applications to fruit 

production. 

 

Abbreviations: chl – chlorophyll; LAI – leaf area index; N – nitrogen; NIR – near infrared 

  

Sensor  What measured Application 

RGB cameras Visible reflectance Canopy size, cover, LAI 

Spectral reflectance Visible/NIR reflectance Cover, pigments, chl, N, etc. 

Thermal infrared Temperature Evaporation, stomata, stress 

Microwave (Radar) Water; canopy structure Water content 

Lidar Canopy structure Canopy structure, height 

‘Time-of-flight’ cameras Canopy structure Canopy structure 

Ultrasonic sensors Canopy structure Canopy height 

Fluorescence Emitted visible/NIR Photosynthesis, pigments 



Table 3. The 18 molecular papers retrieved by a search (10 Mar 2014) on “drought” on 

the website of Plant Physiology (after excluding two water relations papers). 

 

Abbreviations: M – moderate; S – severe; ABA – abscisic acid; chl - chlorophyll; PS – photosynthesis; 

RWC – relative water content; SMC soil moisture content;  water potential 
 

 

Reference Drought imposition Water status measurement 

Bu et al., (2014) M – S (drying on bench and 

withholding water) 

None (stomatal aperture; 

water loss rate of leaves) 

Chen et al., (2012) S (withholding water 10d) None (water loss by leaves; 

ABA) 

Du et al., (2010) M – S (survival) by 

withholding water 

ii. M Field 

RWC (water loss; gas-

exchange; chl fluorescence 

Harb et al., (2010)  M (30% field capacity - 

gravimetric) 

None (gas-exchange; ABA; 

SMC) 

Jeong et al., (2010) i. S (survival) 

ii. S (air dried tissue) 

iii. M in field (yield 

components) 

None (measured survival; 

chl fluorescence; SMC; 

yield in field) 

Kakumanu et al., (2012) M (withholding water 21.5% 

SMC) 

RWC (gas exchange; chl 

fluorescence; SMC) 

Klinkenberg et al., (2014) Unclear (humidity?) None 

Lakshmanan et al., 2013 Unclear (?osmotic) None 

Ning et al., (2011) i. S (dried on filter paper) 

ii. S (no water for >6 d) 

(survival) 

None 

Phung et al., (2011) M – S (witholding water) stem (bomb); RWC (chl 

fluorescence) 

Prasch & Sonnewald, 

(2013) 

M – watered to 30% field 

capacity (soil probe) 
leaf (psychrometer) 

Riboni et al., (2013) M – watered to 30% RSWC 

(gravimetric) 

None 

Savchenko et al., (2014) S? (no water for 10d) None (stomata aperture; PS) 

Seiler et al., (2014) S (10% SMC – soil probe) None (gas analysis) 

Tang et al., (2012) S? (withholding water) None (leaf water loss rate) 

Van Houtte et al., (2013) M? (watered to 22% SMC) None (SMC; stomatal 

aperture; thermal imagery) 

Yu et al., (2013) i. M? (pot withholding water) 

ii. M (field trial) 

None (cut leaf water loss 

rate; ABA; gas exchange) 

Zhou et al., (2013) M? (witholding water) None (water loss rates; 

stomatal aperture) 

Summary  Tissue water status: 4 

Physiological responses: 12 


