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Background: Prescribed burning in peatlands is controversial due to concerns over damage to their ecological functioning,
particularly regarding their key genus Sphagnum. However, empirical evidence is scarce.
Aims: The aim of the article is to quantify Sphagnum recovery following prescribed burns.
Methods: We completed nine fires at a raised bog in Scotland, achieving a range of fire severities by simulating drought in some
plots. We measured Sphagnum cover and chlorophyll fluorescence Fv/Fm ratio (an estimate of photosynthetic capacity) up to
36 months post-fire.
Results: Cover of dominant Sphagnum capillifolium was similar in unburnt and burnt plots, likely due to its high moisture
content which prevented combustion. Burning decreased S. capillifolium Fv/Fm 5 months after fire from 0.67 in unburnt
plots to 0.44 in low fire severity plots and 0.24 in higher fire severity (drought) plots. After 22 months, Fv/Fm in burnt plots
showed a healthy photosynthetic capacity of 0.76 and no differences between severity treatments. Other Sphagnum species
showed similar post-fire recovery though their low overall abundance precluded formal statistical analysis.
Conclusions: S. capillifolium is resilient to low–moderate fire severities and the same may be true for a number of other
species. This suggests that carefully applied managed burning can be compatible with the conservation of peatland
ecosystem function.

Keywords: chlorophyll fluorescence; drought; fire; fire severity; peatland; prescribed fire; raised bog; Sphagnum capillifolium;
vegetation response; wildfire

Introduction

Peatlands deliver important ecosystem services such as the
provision of fresh water and regulation of its quality and
supporting services such as carbon sequestration, soil (peat)
formation, nutrient cycling and primary production (Joosten
and Clarke 2002; Millennium Ecosystem Assessment 2005).
Peatlands also provide habitat for specialist species, the main-
tenance of which ensures that humans can continue to directly
benefit from these ecosystems (Rydin and Jeglum 2013). For
instance, Sphagnum species play a central ecological role in
many northern (>45°N) peatlands; they are adapted to, and
also mediate, the characteristic waterlogged and acidic condi-
tions that promote peat accumulation (Hayward and Clymo
1982; Van Breemen 1995; Verhoeven and Liefveld 1997;
Turetsky 2003). The formation of peat has resulted in a large
global carbon store of ca. 600 Pg C (Page et al. 2011; Yu
2012). This is equivalent to around a third of the total soil
carbon, estimated at 1500 Pg in the upper 1 m and 2400 Pg in
the upper 2 m (Stockmann et al. 2013; Scharlemann et al.
2014).

Fire is a key disturbance inmany peatlands in northern and
boreal ecosystems (Turetsky et al. 2004). Wildfire activity is
projected to increase due to changes in temperature and rain-
fall patterns arising from climate change (Krawchuk et al.
2009; De Groot et al. 2013), possibly leading to more severe

disturbances in peatland ecosystems. In some regions such as
the British Isles, open peat bogs (sensu Rydin and Jeglum
2013), including blanket and raised bogs, are also subjected to
managed burning to promote suitable habitat for livestock,
game and wildlife and to manage the risk and severity of
wildfires (Fernandes and Botelho 2003; Harris et al. 2011;
Allen et al. 2016). Managed burning is a controversial practice
on peat bogs (Davies et al. 2016a,b). This is at least partly due
to limited experimental evidence of its ecological conse-
quences and a lack of research on the ability of Sphagnum
species to recover following managed burns. We do however
have a number of studies which suggest that certain Sphagnum
species are resilient to the effects of fire. For instance, previous
field research on the North York Moors (northern England)
reported greater Sphagnum abundance in plots with a 10-year
managed burning rotation compared to plots that had remained
unburnt for 47 years (Lee et al. 2013), whilst other studies of
managed burning have shown greater abundance in more
recently burnt areas (3–7 years) compared to areas unburnt
for 25 years (Burch 2009). In peatlands in Alberta (Canada),
Sphagnum abundance was highest at medium time spans post-
wildfire (20–80 years) compared to shorter (10 years) or
longer time spans (>80 years) (Benscoter and Vitt 2008).
Taken together, these studies suggest that whilst burning
may temporarily set back Sphagnum populations, changes to
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environmental conditions post-fire, such as increased substrate
and light availability, can favour Sphagnum regeneration
(Heijmans et al. 2002). Unfortunately, the direct impacts of
high temperatures during managed burning on Sphagnum are
little understood. To our knowledge, only a single study
(Taylor et al. 2017) has been published and this reported that
the degree of recovery of Sphagnum capillifolium (Ehrh.)
Hedw (assessed by chlorophyll fluorescence, CO2 exchange
and physical damage) was related to the temperature treat-
ment, post-treatment environmental conditions and pre-treat-
ment stem moisture content. The slowest recovery was found
when samples were heated to 400°C for 30 s (Taylor et al.
2017). Nevertheless, all temperature treatments showed signs
of recovery. The study of Taylor et al. was conducted under
semi-controlled conditions and thus longer term evidence in
the field remains lacking.

There is considerable concern that environmental
changes throughout the distribution range of peatlands
could increase soil carbon losses leading to increased
greenhouse gas emissions to the atmosphere, altered radia-
tive forcing and exacerbated climate change (Heimann and
Reichstein 2008; Dorrepaal et al. 2009). The unique bio-
diversity of peatlands and their restricted global distribu-
tion (ca. 3% of land cover; Yu et al. 2010), make them
particularly important for global conservation (European
Commission 1992). As such, and given the key role of
peatland ecosystems for global carbon cycling, it is impor-
tant to understand their responses to major natural and
anthropogenic disturbances so they can be effectively con-
served and sustainably managed. There is therefore an
urgent need for further investigations of the response of
Sphagnum to fire to provide an evidence base to ensure
that debates about managed burning are informed rather
than opined (Davies et al. 2016a) and that management
practices are sustainable. Moreover, a sound understanding
of Sphagnum’s response to variation in fire severity can
help evaluate potential impacts of the projected alteration
to fire regimes throughout peatlands’ range on globally
substantial carbon stores. Here, we aimed to study the
effect of prescribed burning on Sphagnum cover and
photosynthetic capacity at a raised bog. Our general aim
was to quantify Sphagnum recovery following burns at a
range of fire severities and for up to 3 years post-fire.
Specifically, our objectives were to determine whether

(1) managed burning led to sustained reductions in
Sphagnum cover,

(2) loss of Sphagnum photosynthetic capacity arising
from thermal shock was recovered and

(3) post-fire Sphagnum recovery was related to fire
severity.

Materials and methods

The experiment was carried out at Braehead Moss, a
raised bog in southern Scotland (latitude 55.740°N,
longitude 3.658°W, elevation 270 m). Declared site of

special scientific interest in 1997 (Scottish Natural
Heritage 2012), Braehead Moss is known to have been
subjected to low levels of grazing, peat cutting and
some limited drainage. Maximum peat depth is >9 m
at the centre of the bog (Scottish Natural Heritage,
personal communication; 21 September 2016). Data
from Drumalbin weather station (1981–2010; 13 km
south of the site) indicate mean annual precipitation to
be 900 mm, a mean summer temperature of 13.2°C and
a mean winter temperature of 2.8°C (Met Office 2012).
The experiment was completed in the drier southern part
of the bog, where vegetation, dominated by continuous
stands of mature Calluna vulgaris (L.) Hull (hereafter
Calluna) with Eriophorum vaginatum (L.) also present,
reflects past disturbance and altered hydrology. The
bryophyte layer is dominated by the pleurocarpous
moss Hypnum jutlandicum Holmen & E. Warncke.
However, Sphagnum mosses are common, with S. capil-
lifolium being the most abundant species.

We completed nine ca. 20 m × 25 m experimental
fires, burnt as headfires between October 2013 and
November 2014. We achieved a range of fire severities
by lowering the moisture content of 2 m × 2 m plots using
rain-out shelters (Yahdjian and Sala 2002). The shelters
were left in the field for 2–4 months before removing them
immediately before the fires. In each fire, we established
two treated plots (‘drought’, higher fire severity plots) and
two untreated plots (‘no-drought’, lower fire severity
plots). Additionally, we delimited two unburnt plots out-
side each fire. Before burning, we took three surface (top
2 cm) moss and litter samples from random locations in
each plot to measure fuel moisture content (FMC). Results
of drought-induced changes in vegetation moisture content
and subsequent fire severity are described in full in Grau-
Andrés et al. (2017). Briefly, the drought treatment sig-
nificantly decreased pre-fire FMC of the moss and litter
layer from 365 ± 248% (mean ± standard deviation) to 112
± 101% (dry base). Lower FMC significantly increased
fire severity as estimated by moss and litter consumption
(0.1 ± 0.3 cm in no-drought; 1.4 ± 1.1 cm in drought plots)
and soil heating (e.g. total heat at the soil surface was 40 ±
62 °C-min in no-drought and 146 ± 146 °C-min in drought
plots).

To measure moss consumption, we assessed changes
in moss layer depth using five metal “duff spikes” (Davies
et al. 2010) per plot. A visual estimation of the cover of
individual Sphagnum species (to the nearest 1%, using a
1 m × 1 m quadrat placed centrally in each plot) was
estimated on September 2015. Depending on the plot/
burn date, plots were sampled at 306–705 (mean = 514)
days after the fire had been completed. Depending on
availability, 4–15 (mean = 9.4) Sphagnum specimens
were randomly sampled from each treatment on four sam-
pling dates: 23 May 2014, 9 June 2014, 8 December 2015
and 10 October 2016. As fires were burnt sequentially
over the duration of the experiment, two, four, nine and
nine experimental fires at each date, respectively, were
available for sampling. The Sphagnum samples were
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identified to species level and dark-adapted in air-tight
containers for 2–4 h before measuring chlorophyll fluor-
escence parameters of their capitula using a Handy PEA
chlorophyll fluorimeter (Hansatech Instruments Ltd.). We
used the maximum quantum yield of the photosystem II
(Fv/Fm), an indicator of photosynthetic capacity and plant
stress (Krause and Weis 1991), to assess post-fire recovery.
The Fv/Fm ratio is a good indicator of the physiological
state of the leaf photosynthetic system (Maxwell and
Johnson 2000) and has been successfully used in
Sphagnum (Hájek and Beckett 2008; Manninen et al.
2011; Taylor et al. 2017).

We used R 3.3.2 for all plotting and statistical analysis (R
Core Team 2016). The effect of treatment (unburnt, no-
drought and drought) on Sphagnum cover was analysed
using a linear mixed-effects model with treatment as a fixed
effect and fire as a random effect (function “lme” in package
nlme; Pinheiro et al. 2015). A constant variance function
accounted for the heterogeneity of variance associated with
the treatment factor. S. capillifolium was the most abundant
and widely distributed species and the only one where sta-
tistical analysis of photosynthetic capacity (as Fv/Fm) was
made. The small sample size of other Sphagnum species
meant that comparisons were made graphically. Changes in
photosynthetic capacity of S. capillifolium in relation to fire
severity treatment and time since fire were investigated using
a linear mixed-effects model with an interaction between
treatment and sampling date as fixed effects and fire as a
random effect. Sampling date was used as a proxy for recov-
ery time as it also integrated information on seasonal and
environmental effects that can influence Fv/Fm (Granath et al.
2009; Taylor et al. 2017), and dependence between time
since fire and sampling date meant both variables could not
be modelled together. A constant variance function for sam-
pling date was used. Comparisons between treatment levels

within each sampling date were analysed using multiple
comparisons procedures (function “glht” in package mult-
comp; Hothorn et al. 2008).

Results

Pre-fire surface moisture content of Sphagnum mosses was
similar in no-drought plots (709 ± 310%) and drought plots
(610 ± 174%). No significant consumption of Sphagnumwas
observed in either burn treatment. Sphagnum cover, domi-
nated by S. capillifolium (average cover across all treatments
was 5.2%, range 0–34%), was similar in unburnt and burnt
plots assessed 10–24 months after the fire (Figure 1).

Burning, and particularly higher severity burning, lowered
the photosynthetic capacity of S. capillifolium shortly after the
fire (Figure 2). Fv/Fm of S. capillifolium 1–8 months post-fire
was significantly higher in unburnt plots (0.65 ± 0.09 in May
2014 and 0.68 ± 0.11 in June 2014) than in no-drought
(0.37 ± 0.23 and 0.50 ± 0.16, respectively) and drought plots
(0.09 ± 0.08 and 0.38 ± 0.17, respectively).

Post-fire photosynthetic capacity in S. capillifolium had
recovered to healthy levels (Fv/Fm > 0.75), after less than
2 years. Although Fv/Fm in burnt plots remained signifi-
cantly lower than in unburnt plots during the last two sam-
pling dates, ca. 22 and 31 months after the fires, differences
were small: unburnt plots averaged 0.79 ± 0.02 and burnt
0.76 ± 0.03. In contrast to the two earlier sampling dates,
differences in photosynthetic capacity between higher and
lower severity burnt plots were not statistically significant in
the last two sampling dates. Graphical analysis of Fv/Fm in
Sphagnum species belonging to section Sphagnum showed
similar patterns to that of S. capillifolium, with low values in
burnt plots ca. 7 months after fire and small differences
between treatments ca. 20 months post-fire (Figure 3).
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Figure 1. Sphagnum cover on September 2015, when time since fire ranged 306–705 days (mean = 514) for the different burns. Values
are shown for all species identified as well as total Sphagnum cover (‘total’) in each treatment: unburnt, low severity burnt (‘no-drought’)
and high severity burnt (‘drought’). Average Sphagnum cover was 6.3% (SD = 8.7%) across all plots. Height of the box is the
interquartile range, the horizontal bar is the median, whiskers extend to 1.5 times the first or third quartile, circles are outliers. The
same letters above the boxplots of total Sphagnum cover indicate that differences between treatments were not statistically significant
(α = 0.05). Statistical testing details are provided in Table S1.
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Discussion

Burning did not lead to sustained reductions in short-term (10–
24 months post-fire) Sphagnum cover (Figure 1). This was
likely due to the negligible Sphagnum combustion and lack of
extensive heating below the Sphagnum surface (Grau-Andrés
et al. In Press). This resilience to burning and heating is driven
by the large water-holding capacity of Sphagnum (Hayward

and Clymo 1982). Pre-fire surface FMC was >600%, above
the moisture content threshold for sustained combustion of the
bryophyte layer in moorlands, estimated at ca. 70% (Davies
and Legg 2011; Santana and Marrs 2014). Although differ-
ences in Sphagnum cover between burnt and unburnt plots
were not significant, the slight but consistently higher cover
values following burning suggest that Sphagnum abundance
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could increase in the longer term as a result of the removal of
the Calluna canopy and increases in competitive ability rela-
tive to pleurocarpous mosses (Benscoter and Vitt 2008; Lee
et al. 2013). This hypothesis is supported by studies on a
blanket bog in northern England which have previously
found higher Sphagnum abundance at smaller times since
fire (Burch 2009), and at short (10-year) vs. longer (20-year)
burning rotations or unburnt (47 years) conditions (Lee et al.
2013).

Fire-induced heating greatly reduced S. capillifolium
photosynthetic capacity as measured at ca. 5 months after
burning (Figure 2). While the higher fire severity measured
in drought plots did not cause increased Sphagnum con-
sumption, fire-induced heating at the soil surface, and pre-
sumably at the moss surface too, was greater (Grau-Andrés
et al. In Press). The lower photosynthetic capacity in
drought plots may have resulted from the higher magnitude
of the fire-induced thermal shock causing greater damage to
chlorophyllous cells (e.g. via protein denaturation, lipid
mobility) and possibly to hyaline cells thus lowering water
retention capacity (Levitt 1980; Rydin and Jeglum 2013).
Previous work in laboratory conditions showed similar
patterns in S. capillifolium Fv/Fm response to temperatures
consistent with managed fires: a substantial decrease from
ca. 0.59 to ca. 0.1 shortly after burning and rapid subse-
quent recovery to ca. 0.37 after 100 days (Taylor et al.
2017). Taylor et al. (2017) also reported slower recovery
in the capacity of Sphagnum to retain moisture in samples
subjected to higher temperatures, an important control on
photosynthetic capacity (Van Gaalen et al. 2007). Recovery
of structural and photosynthetic tissues could thus occur at
different rates and stages; further work on physiological
responses to fire in Sphagnum may clarify mechanisms
and rates of recovery. Other disturbances such as desicca-
tion, nitrate deposition and salinity have been found to lead
to Fv/Fm decreases of similar magnitude in Sphagnum
species (0.75–0.85 to 0.05–0.5; Hájek and Beckett 2008;
Bates et al. 2009; Manninen et al. 2011).

Approximately 2 years following fire, S. capillifolium Fv/
Fm in burnt plots was lower than in unburnt but within the
range of healthy plants, considered to be around 0.75 (range:
0.55–0.85) in bryophytes (Van Gaalen et al. 2007; Hájek and
Beckett 2008; Bates et al. 2009; Manninen et al. 2011; Taylor
et al. 2017) and so differences in physiological functioning
were likely negligible. Given the relatively rapid recovery of
S. capillifolium Fv/Fm following fire-induced heating, at least
during the first 100 days (Taylor et al. 2017), and its resi-
lience to other disturbances such as drought (Hájek and
Vicherová 2014) and high exposure to light (Maraschall
and Proctor 2004), we hypothesise that sustained differences
between burnt and unburnt plants are a result of microcli-
matic changes brought about by fire. These may have
included increased water stress due to increased evaporative
demand following the removal of the Calluna canopy and
increased solar irradiation (Hájek et al. 2009; Laing et al.
2014; Leonard et al. 2017). The higher variability in photo-
synthetic capacity in the burnt plots in the immediate post-
fire period is likely to be due to the substantial heterogeneity

in fire severity at small spatial scales (Fernandes et al. 2000;
Bova and Dickinson 2008). Despite having little data for
Sphagnum species belonging to section Sphagnum, the low
photosynthetic capacity in burnt plots ca. 7 months after fire,
but values comparable to unburnt plots ca. 20 months later,
suggest response to burning was similar to that seen for S.
capillifolium. The Sphagnum species examined here from
section Sphagna, particularly the dominant species S. magel-
lanicum, tend to grow closer to the water table than S.
capillifolium, a hummock species, which may have impor-
tant implications for controlling disturbance severity
(Benscoter and Wieder 2003) and for recovery of photo-
synthesis after disturbance (Hájek and Beckett 2008; Hájek
and Vicherová 2014; Bengtsson et al. 2016). Therefore, the
next step would be to research the variation in responses to
fire along gradients of severity, examining different func-
tional traits and microhabitats of Sphagnum species.

Management implications

Our results show a limited impact of managed burning on S.
capillifolium abundance and functioning, particularly when
pre-fire moisture content of the ground fuels is high and thus
fire severity is low.Managed burning has potential benefits for
maintaining Sphagnum abundance by improving light condi-
tions through removal of dense Calluna canopies (although
the associated greater evaporative loss may be detrimental)
and reducing both the abundance and competitive advantage
of pleurocaropous mosses (Heijmans et al. 2002; Benscoter
and Vitt 2008; Lee et al. 2013). In bogs with high Sphagnum
cover, low severity fires, where surface moisture content (top
2 cm) of themoss and litter layer is>200–300% (Grau-Andrés
et al. In Press), could help maintain high Sphagnum abun-
dance. At low fire severities, consumption of the bryophyte
layer is minimal, and Calluna regeneration, especially in old
stands where resprouting capacity is low (Hobbs and
Gimingham 1984), may be slow given the limited establish-
ment of Calluna seedlings on moss substrates (Davies et al.
2010). Furthermore, burning in spring rather than in autumn
could result in faster post-fire Sphagnum recovery due to
warmer temperatures and improved light quality (Taylor
et al. 2017). In degraded, drying bogs where Sphagnum is
displaced by pleurocarpous mosses, higher severity fires could
be trialled to increase consumption of pleurocarpous mosses
while impact on Sphagnum hummocks remains low due to
their high water-holding capacity, thus facilitating Sphagnum
expansion. Such conditions can be achieved by burning when
the surfacemoisture content of the pleurocarpousmoss layer is
<150% (Grau-Andrés et al. In Press).

Conclusions

There has been significant controversy over the use of
managed burning on peatlands (Davies et al. 2016a) due
to perceived negative impacts on ecological functioning,
particularly with regard to Sphagnum. Our results con-
tradict this perception and show a limited and short-lived
effect of managed fire on S. capillifolium abundance and
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photosynthetic capacity. Moreover, our limited data on
S. magellanicum, S. papillosum and S. palustre indicate
that other Sphagnum species can also achieve rapid post-
fire recovery. These findings, together with previous
work on British and boreal peatlands, show that some
Sphagnum species are resilient to disturbance by fire,
particularly at low–moderate fire severities. Our results
suggest that carefully applied managed burning is not at
odds with the restoration and conservation of peatland
ecosystem function. This does not preclude the fact that
some Sphagnum species may be sensitive to fire and that
regular managed burning could drive changes in
composition.
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