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Abstract 

Four weather generator models, i.e., R-package version of the Generalised Linear Model for 

daily Climate time series (RGLIMCLIM), Stochastic Climate Library (SCL), R-package 

multi-site precipitation generator (RGENERATRPREC), and R-package Multi-site Auto-

regressive Weather GENerator (RMAWGEN), were used to generate multi-sites stochastic 

daily rainfall for a small catchment in Australia. The results show: 1) All four models 

produced reasonable results in terms of annual, monthly and daily rainfall occurrence and 

amount, as well as daily extreme, multi-day extremes and dry/wet spell length. However, 

they also simulated a large range of variability, which not only demonstrates the advantages 

of multiple weather generators rather than a single model, but also is more suitable for 

climate change and variability impact studies; 2) Every model has its own advantages and 

disadvantages due to their different theories and principals. This enhances the benefits of 

using multiple models; 3) The models can be further calibrated/improved to have a “better” 

performance in comparison with observations. However, it was chosen not to do so in this 

case study for two reasons: to obtain a full ranges of climate variability and to acknowledge 

the uncertainties associated with observation data, which are interpolated from limited 

stations and therefore have high pairwise correlations — ranging from 0.693 to 0.989 with a 

median and mean value of 0.873 and 0.877 for daily rainfall. 

Keywords: Australia, RGENERATRPREC, RGLIMCLIM, RMAWGEN, SCL, Stochastic 

weather generator 
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1. INTRODUCTION 

 

Stochastic weather generators are statistical models that can relatively easily simulate 

realistic or plausible random sequences of atmospheric variables such as temperature and 

rainfall (e.g., Wilks and Wilby 1999). The stochastic weather generators attempt to reproduce 

the spatial and temporal dynamics and correlation structures of the variables of interest 

(Ailliot et al 2015). These synthetic sequences provide a set of alternate realisations that can 

be used for risk and reliability assessment in the design and operation of agricultural, water 

resource and environmental systems (Mehrotra et al 2006). 

 

Wilks and Wilby (1999) presents a review of the historical development of stochastic weather 

models, from simple analyses of runs of consecutive rainy and dry days at single sites, 

through to multisite models of daily precipitation. They also describe models that have been 

developed specifically for applications in agriculture, ecology, hydrology and simulations of 

regional climate change. There are literally thousands of papers on the development and 

applications of stochastic weather generators, and some of the recent key reviews of the 

relative merits of the different methods include blah blah blah blah blah. 

 

The aim of this paper is to describe the application of four weather generators to simulate 

multi-site daily rainfall in a 4,000? km2 region in south-eastern Australia. The ability of these 

models to simulate the different rainfall characteristics is presented and the relative merits of 

the models, as well as the advantages of using multiple models, are discussed. 

 

The stochastic rainfall data is generated here to assess the cumulative impact of coal resource 

development in the context of climate variability and climate change. Hydrological modelling 
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with the stochastic rainfall data will assess the influence of natural climate variability on the 

severity and timing of water resource and environmental impact from coal development, and 

the relative contribution and combined impact from coal resource development and climate 

change. 

 

2. DATA AND METHODS 

 

2.1 Study Catchment 

 

The study region is the Gloucester catchment, located about 250 km north of Sydney (see 

Figure 1). The Gloucester subregion is part of the Northern Sydney Basin Bioregion, one of 

the Bioregional Assessment region where the cumulative impact of coal resource 

development is being assessed by the Australian Government (main reference to BA or BA 

method, and the Gloucester report). The region has a temperate climate and mean annual 

rainfall of about 1100 mm, dominated by summer rainfall. 

 

The study region in about 4,000 km2, and is modelled hydrologically as 156 0.05o grid cells. 

However, to reduce computational time and to realistically model the spatial rainfall 

correlations, stochastic daily rainfall is generated for 21 points (see Figure 1), which can then 

be interpolated to provide stochastic rainfall inputs at the 156 grid cells for hydrological 

modelling. 

 

2.2 Rainfall Data 
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Daily rainfall data, from 1923 to 2013, from the Bureau of Meteorology (BoM) of Australia 

0.05o gridded rainfall data product, is used in this study (http://www.csiro.au/awap/). The 

BoM gridded rainfall product is obtained by interpolating rainfall observed at gauging 

stations across Australia. The interpolation method uses a two-step process (Beesley et al 

2009): interpolation of monthly rainfall climatology using a thin plate smoothed spline; and 

interpolation of anomalies of daily rainfall (expressed as a percentage of the climatological 

rainfall) using Barnes’ successive correction method. 

 

2.3 Weather Generator Models 

 

2.3.1 RGLIMCLIM 

Rglimclim is a multivariate, multisite weather generator based on generalised linear models 

(GLMs). It is an update R-package version of the Glimclim (Generalised Linear Model for 

daily Climate time series) software package that has been widely used for univariate weather 

generation in the UK, Australia, China, South Africa and elsewhere (Chandler and Wheater 

2002; Yang et al. 2005; Yan et al. 2006; Frost et al. 2011; Liu et al 2013; Ambrosino et al 

2014), and has also been updated to allow for the simultaneous generation of multiple 

weather variables.  Details on the theory can be found in the developers’ papers (Chandler 

2002: Chandler and Wheater 2002; Yang et al., 2005) and the user’s manual (Chandler, 

2015).  

 

Briefly, precipitation in Rglimclim is modeled in two parts: occurrence and amount. The 

rainfall occurrence is modelled by using logistic regression and rainfall amounts using a 

gamma distribution with a common dispersion parameter. The logistic regression can be 

described as follows (Chandler 2002): 
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where pi  is the rainfall probability for the ith case in the dataset conditional on a covariate 

vector ix with coefficient vector b . The rainfall amount for ith wet month has, conditional 

on a covariate vctor ,
ix and coefficient vectorg , a gamma distribution with mean iµ , where 

              gxµ ,)ln( ii =                                        (2) 

The shape parameter of the gamma distribution (n ) is assumed constant for all observations. 

To describe the climatology of the region, other covariates representing spatial dependence, 

seasonal variation, interactions terms and persistence are also included in the occurrence and 

amount models in GLIMCLIM. 

  

2.3.2 SCL 

The Stochastic Climate Library (SCL) is a library of stochastic models for generating climate 

data. It has eight models for generating rainfall and climate data, i.e, single site rainfall at 

sub-daily, daily, monthly and annual timescales, single site climate (rainfall, evaporation and 

maximum temperature) at daily, monthly and annual timescales, and multi-sites daily rainfall 

(Srikanthan et al. 2007). The models in SCL have been tested using data from many sites 

across Australia. 

 

A multi-site two-part model is used in SCL to generate daily rainfall at multi-sites. The model 

has two parts: rainfall occurrence and the rainfall amounts.  A first-order two-state Markov 

chain is used to determine the occurrence of rainfall. For each site k, the Markov chain has 

the two transition probabilities: !"#$ , the conditional probability of a wet day given that the 

previous day was dry; !""$ , the conditional probability of a wet day given that the previous 

day was wet. The unconditional probability of a wet day for the site k, can be derived as 
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Given a network of N locations, there are N(N - 1)/2 pair wise correlations that should be 

maintained in the generated rainfall occurrences. This is achieved by using correlated 

uniform random numbers (ut) in simulating the occurrence process. The uniform variates ut(k) 

can be derived from standard Gaussian variates wt(k) through the transformation.  Details on 

the theory can be found in the SCL user’s manual (Srikanthan et al. 2007). 

 

2.3.3 RGENERATEPREC 

RGENERATEPREC is an R multi-site rainfall generator (Cordano 2014). It generates 

precipitation occurrence in several sites using logit regression (GLM as RGLIMCLIM) and 

DS Wilk’s approach (Wilk 1998). The daily precipitation occurrence model used in 

RGENERATEPREC is the familiar chain-dependent process, comprised of a first-order, two-

state Markov process governing daily precipitation occurrence, with serially independent 

precipitation amounts on wet days (Wilk 1998). 

 

Nonzero precipitation amounts rt(k) are simulated here using the mixed exponential 

distribution, which has been widely used in the literature. This is a probability mixture of two 

one-parameter exponential distributions, with probability density function (Wilk 1998): 

- . / = 0($)
3(($)

exp ,7 $
3( $

+ ",0($)
39($)

exp	[,7($)
39($)

]  (4) 

=" / ≥ =? $ > 0, 0 < D(/) ≤ 1 

Here α(k) is the mixing probability for location k, which determines the frequencies with 

which the exponential distribution with the larger (β1) or smaller (β2) mean will be used to 

generate the next value in the rt(k) series. 
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The basic idea to extend the single-station stochastic model to multiple locations is then to 

drive this collection of individual station models with vectors of uniform [0,1] variates u1, 

and v1 whose elements (ut(k) and vt(k), respectively) are correlated so that Corr[ut(k), 

ut(ℓ)] ≠ 0 and Corr[vt(k), vt(ℓ)] ≠ 0, but which are mutually and serially independent so that 

Coxx[ut(k), vt(ℓ)] = Coxx[ut(k),ut+l(ℓ)] = Coxx[vt(k), vt+1(ℓ)] = 0.  “Nonzero correlations 

among the elements of u1, and v1 result in interstation correlations between the resulting 

synthetic precipitation series, while the fact that the marginal distributions of the variates 

ut(k) and vt(k) are uniform and independent ensures that each local stochastic process behaves 

in the same way as if it alone were being simulated in the conventional way” (Wilk 1998). 

 

2.3.4 RMAWGEN  

R Multi-site Auto-regressive Weather GENerator (RMAWGEN) is built to generate daily 

temperature and precipitation time series in several sites by using the theory of vectorial 

autoregressive models (VAR). The VAR model is used because it is able to maintain the 

temporal and spatial correlations among the several series (Cordano and Eccel 2012).  

A set of K random variables can be described by a Vector Auto-Regressive Model 

(VAR(K,p)) as follows (Cordano and Eccel 2012): 

GH = I" ∙ GH," + ⋯+ I' ∙ GH,' + L ∙ MH + NH (5) 

where xt is a K-dimensional vector representing the set of weather variables generated at day t 

by the model, called "endogenous" variables, Ai is a coefficient matrix K×K for i = 1, …, p 

and ut is a K-dimensional stochastic process. xt and ut are usually normalized to have a null 

mean. ut is a Standard White Noise (Luetkepohl, 2007), i.e. a continuous random process 

with zero mean and ut, us independent for each t≠s, consequently it has a time-invariant non-

singular covariance matrix. The VAR models work correctly if the variable xt is normally 
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distributed, which requires a normalization procedure of the meteorological variables 

(Cordano and Eccel 2012).  

 

The structure of the RMAWGEN consists in functions that transform precipitation and 

temperature time series into Gaussian-distributed random variables through deseasonalization 

and Principal Component Analysis (PCA). Then a VAR model is calibrated on transformed 

time series. The time series generated by VAR are then inversely re transformed into 

precipitation and/or temperature series (Cordano 2015). 

 

How do you parameterise the models? 

Then used to generate 100 stochastic replicates. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Rainfall Occurrence 

 

3.1.1 Annual  

The box plots in Figure 2 show the range of the annual rainfall occurrence (number of days 

with rainfall above 1 mm/day) in the observations (1923–2013) at the 21 points, and the 

means from 100 stochastic replicates from the four weather generation models for the 21 

points.  
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Both RGLIMCLIM and RGENERATEPREC produce a similar annual rainfall occurrence as 

observations, but the SCL results slightly underestimate the rainfall occurrence and the 

RMAWGEN slightly overestimate the rainfall occurrence. For example, the mean and 

median annual rainfall occurrence across the 21 grids are 0.339 and 0.335, respectively, from 

observations, and they are 0.341 and 0.337, and 0.339 and 0.334 from RGLIMCLIM and 

RGENERATEPREC respectively. However, they are 0.326 and 0.321 from SCL, about 4% 

underestimation, and 0.367 and 0.332 from RMAWGEN, about 8% overestimation. 

The rainfall occurrence ranges of both RGLIMCLIM and RGENERATEPREC are also close 

to observations: 0.308 – 0.392 from observation, and 0.288 – 0.395 from RGLIMCLIM and 

0.294 – 0.404 from RGENERATEPREC.  

It needs to point out that the SCL model does not have a function to set a threshold, so it 

treats any non-zero rainfall amount as a wet day, while other three models do have a function 

to set the threshold value (1.00 mm/day in our case). Therefore, SCL would significantly 

underestimate the annual rainfall occurrence, because the rainfall data used were interpolated 

from nearby stations. That is to say, if anyone of stations receives rainfall in one day, it will 

result in an amount of rainfall. As a result, 27.0% (22.4–33.9% from cell to cell) of days in 

the last 90 years (1923 – 2012) has a daily rainfall amount of between 0.00 mm and 1.00 mm.  

In order to solve this problem, a 3-step method (Fu et al 2013) was implemented: 1) All the 

days with daily rainfall below 1.00 mm were set to 0; 2) The discontinuous time series of 

daily rainfall with 0 mm and >1.00 mm from Step 1 are inappropriate for daily rainfall 

amount model, so we minus 0.99 mm from all wet days. It makes the continuous daily 

rainfall amount, which is suitable for the SCL modelling; 3) After we obtain the model 

simulation results, a 0.99 mm was added back to all wet days. This method has been proved 
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as an effective method to deal with the threshold issues and to improve the model 

performances.    

 

3.1.2 Monthly 

The box plots in Figure 3 show the range of rainfall occurrence (number of days with rainfall 

above 1 mm/day) in the observations (1923–2013) at the 21 points in each of the 12 months, 

and the means from 100 stochastic replicates from the four weather generation models for the 

21 points. 

 

It seems all models can reproduce the annual cycle (monthly distribution) of rainfall 

occurrence: a wet summer and a dry winter (Figure 3). However, slightly differences do exist: 

Overall, RGENERATEPREC performs the best and the median values of 100 simulations 

exactly match the observed monthly rainfall occurrence, while it is not surprised that majority 

months of SCL/RMAWGEN underestimate/overestimate the rainfall occurrence due to their 

respective annual performances (Figure 2).  

It needs to point out that the models can be further improved to have a “better” fit with 

observations in term of annual cycle. For example, However, RGLIMCLIM has a parameter 

to control every single month rainfall occurrence (monthly effects, Code 11–22, Table 1, 

Chandler 2015). It then can simulate exact rainfall occurrence for every single month. 

However, we chose not to do so in this study because monthly shift is one aspect of climate 

change and variability and our objective is to obtain a wide range scenarios of climate change 

and variability and to explore its impacts on water resources.  For example, Potter et al (2010) 

have identified that decreased autumn (southern hemisphere) rainfall in recent years relative 
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to other seasons is one of the reasons resulting in the larger than expected runoff decrease in 

the Murray–Darling Basin. 

RGCLIM and RGENPREC perform best. 

SCL okay, slight underestimation (you already accounted for occurrence = rainfall > 1mm?). 

RMAWGEN overestimate. 

Are there reasons for this? – relate to model structure and/or parameterisation. 

All four models capture the relative rainfall occurrence in the different months over the year. 

[But occurrence is not of key importance here, days < 1 mm do not generate runoff, of more 

importance is days > 5mm or consecutive totals over multi-days]. 

 

3.2 Annual Rainfall Amounts and Variability 

The annual mean, standard deviation (SD), the coefficient of variation (CV), and the ratio of 

maximum and minimum annual rainfall provide a summary of whether a model can 

reproduce long term hydro-climatic characteristics, e.g. water availability and drought.  

The overall long-term mean annual rainfall are generally simulated with acceptable results, 

although RGLIMCLIM overestimates it by 22.5% and RGENERATEPREC underestimate it 

by -16.4% (Figure 4). It is interesting to note that SCL produced the best results not only in 

term of relative errors (1.8%) but also spatial patterns (r=0.986), while RGLIMCLIM 

produced the poorest results. It may partly be because SCL fixes the pairwise correlation 

among all grid cells from observations, while RGLIMCLIM uses the correlation-based 

dependence structures, which allow the dependence to vary with distance. In general, it is 
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better to fit a correlation model than to use the empirical correlations themselves. This issue 

will be further explored in Section 3.5 of spatial distributions. 

Figure 5 shows that the ratio of maximum and minimum annual rainfall, standard deviations 

and the coefficient of variations of annual rainfall from the four model simulations. Among 

the four models, SCL seems the best one to simulate the variability of annual rainfall, while 

RGENERATEPREC is the worst, and RGLIMCLIM and RWAMGEN fall in between. For 

example, the ratios of the maximum and minimum annual rainfall from 1923 to 2012 from 

the observation is about 3.4 averaging over the 21 grid cells (with a range of 2.8–3.6). That is 

to say the maximum annual rainfall is about 3.4 times of the minimum annual rainfall during 

the last 90 years, while the mean and median values of 100 simulations across the 21 grids 

are 3.2 and 3.1, respectively. In contrast, the mean and median values are 2.4 and 2.4, 2.3 and 

2.3, and 2.7 and 2.7, for RGLIMCLIM, RGENERATEPREC and RWAMGEN, respectively. 

In term of standard deviations of annual rainfall, the observed standard deviations of annual 

rainfall is about 257.5 mm averaging across the 21 grid cells (range of 224.4–294.7mm, 

median 260.8mm), while the mean and median values of SCL 100 simulations across the 21 

cells are 257.6 and 256.6 mm. RGENERATEPREC significantly underestimate the standard 

deviations of annual rainfall with mean and median values of 156.2 and 155.8mm, which are 

-30.4% and -47.1% in comparison with observations. Since the coefficient of variation (CV) 

is the ratio of standard deviations and mean of annual rainfall, it is not surprised that its 

simulation results fall in between these two (Figure 5). 

Annual rainfall 

SCL performs best (at all sites, therefore spatial correlations also) (can also show pair-wise 

correlation, but probably not, too may plots already). 

RMAWGEN, ‘error’s in sites’ but no overall bias. 
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RGLIMCLIM overestimates annual rainfall, RGENRATEPREC underestimates annual 

rainfall. This is a problem. Why is this happening here but not with SCL? Can constrain to 

annual rainfall, then nest this in monthly rainfall, etc…  [I suspect SCL is doing this, hence 

reproducing the annual and monthly totals]. 

SCL also best reproduces the inter-annual variability. 

The three other methods underestimate the variability, therefore potentially underestimating 

multi-year dry sequences 

 

3.3 Monthly Rainfall 

For hydrological applications, it is essential that simulations can reproduce the monthly 

distribution and intra-annual variability of rainfall.		The results show that all the four models 

can catch the annual cycle (monthly distribution) of rainfall amount: a wet summer and a dry 

winter (Figure 6). Therefore, it is not surprised that the annual cycle of rainfall occurrence 

(Figure 3) is well simulated. 

However, there are difference among the models: 1) SCL performs the best in terms of 

rainfall amount as well as rainfall percentage (monthly rainfall over annual rainfall in 

percentage term); 2) Both RGENERATEPREC and RMAWGEN performed much better in 

rainfall percentage rather than rainfall amounts. It is because their annual rainfall is 

underestimated/overestimated by about -16.4%/+5.7% (Figure 4), but their annual cycle are 

almost perfectly simulated; 3) RGLIMCLIM’s simulations are relatively poor among the four 

models used, but they are still well simulated. For example, the mean and median values of 

correlation coefficients between simulated and observed monthly rainfalls (i.e., a sample size 

of 12) of 100 simulations are 0.960 and 0.961 respectively. The minimum correlation 

coefficient of 100 simulations is 0.892 (Figure 6). As it is stated in the previous section, the 
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RGLIMCLIM has a parameter to control every single month rainfall occurrence, and it then 

could simulate exact rainfall occurrence for every single month. However, we chose not to do 

so in this study because monthly shift is one aspect of climate change and variability and our 

objective is to obtain a wide range scenarios of climate change and variability and to explore 

its hydrological impacts.  

Besides rainfall occurrence, the rainfall amount models are also a source of uncertainties. 

Ideally, rainfall amount parameters should vary from season to season (Frost et al. 2011; Liu 

et al 2013) to catch the different relationship and physical rainfall processes between rainfall 

amount and rainfall occurrence. However, it is out scope of current study. 

Overall, the annual cycle (monthly distribution) of rainfall amount is well simulated by four 

models used in this study, and the ranges of 100 simulations from each model also present a 

reasonable wide range of variability (boxplot of every month of Figure 6). These ranges are 

useful for climate change and variability impact studies. 

 

All methods can reproduce the monthly distribution through the year. Expect this?, Because 

they are ‘parameterised monthly? 

Can also see the underestimation in the monthly (and annual) rainfall in RGLIMCLIM and 

overestimation in RGENRATEPREC. 

 

3.4 Daily statistics 

Daily rainfall characteristics, such as daily rainfall distribution, extremes (e.g. daily 

maximum, 99th and 95th percentiles), dry/wet spell length and spatial correlations are critical 

for hydrological modelling.  
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3.4.1 Probability Density 

The probability density is explored by two methods in this study: quantile-quantile (q-q) plot 

and cumulative density functions. The q-q plot is a graphical technique for determining if two 

data sets (i.e., observed and modelled daily rainfall) come from populations with a common 

distribution. A 45-degree reference line is also plotted. If the two sets come from a population 

with the same distribution, the points should fall approximately along this reference line. The 

greater the departure from this reference line, the greater the evidence for the conclusion that 

the two data sets have come from populations with different distributions, i.e., the model 

results have larger differences with observations. The results indicate (Figure 7) that the 

RGLIMCLIM produced the best fit with observations except just one extreme outliers, while 

the RGENERATEPREC significantly underestimated the extreme daily rainfall, especially 

99% percentile or larger — the three vertical lines are 90th, 95th and 99th percentiles. For 

example, when the observed daily rainfall reached 150 mm/day, their corresponding 

percentage simulated daily rainfall were only about 100 mm/day. On the other side, SCL 

slightly overestimated the extreme daily rainfall of 99% percentile or larger and RMAWGEN 

seems significantly overestimated the extreme daily rainfall of 99% percentile or larger. For 

example, when the observed daily rainfall reached 150 mm/day, their corresponding 

percentage simulated daily rainfall were about 200 mm/day. 

Given the large amount of the data points (for each model simulations result, 

21grids*100simulations* 90years (1923–2012)*365/366days = 68844300), the q-q plot might 

be focus on too extreme values. For example, 90% of daily rainfall are smaller than 8.7 

mm/day, i.e., below the first vertical lines (Figure 7). 

The cumulative density functions, or just distribution function, evaluated at x, is the 

probability that a real-valued random variable. The empirical distribution function estimates 
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the cumulative distribution function underlying of the points in the sample and converges 

with probability 1 according to the Glivenko–Cantelli theorem. Therefore, it avoids the 

disadvantages of q-q plot to focus on extreme values, and it is a different point of view to 

visual inspection of modelled results in comparison with observation. The results (Figure 8) 

shows overall all four models produce good results, but the RGLIMCLIM overestimated the 

daily rainfall amount for the 80–97 percentiles, which cannot be seen by a its q-q plot. It is 

why its q-q plot shows the best fit (Figure 7), but its annual rainfall is about 22.5% 

overestimations. It also shows the RGENERATEPREC underestimates the daily rainfall for 

the 95–99 percentiles, while SCL underestimated daily rainfall for 70-90 percentiles but 

slightly overestimated for 95-99 percentiles. RMAWGEN seems to have a perfect match with 

observations, which probably is the main reason why its annual rainfall is best simulated – 

although its extreme daily rainfall was significantly overestimated (Figure 7). 

One significant difference between the cumulative density functions plot and q-q plot is that 

maximum daily rainfall from the cumulative density functions plot is only up to 100mm/day 

(Figure 8), which is less than half of q-q plot (Figure 7). It is because the 100mm/day is 

equivalent to 99.935% percentile of observed daily rainfall. The corresponding percentiles of 

100mm/day from four models are 99.919%, 99.891%, 99.991% and 99.875% for 

RGLIMCLIM, SCL, RGENERATEGEN and RMAWGEN, respectively. 

 

3.4.2 Extreme Daily Rainfall 

Figure 9 shows the extreme daily rainfall, including maximum daily rainfall and 99th and 95th 

percentiles of daily rainfall, simulated by four models. Overall, they are replicated reasonable 

results in comparison with observations. However, differences do exist between models and 

statistics: 1) The RGLIMCLIM performs the best in simulating the daily maximum rainfall, 
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But its 99th and 95th percentile daily rainfalls were overestimated about 16.2% and 29.4% 

averaging 100 simulations and 21 grid cells. This is consistent with CDF plot (Figure 8) 

where the daily rainfall within 80–97 percentiles are overestimated; 2) SCI overestimated the 

daily maximum rainfall and 99th percentile daily rainfall, for about 16.0% and 16.9%, but it is 

the best model to simulate 95th percentile daily rainfall. In addition, it has the second largest 

variations among 100 simulations behind RMAWGEN (Figure 9); 3) The 

RGENERATEGEN underestimated the daily extreme daily rainfall, especially for daily 

maximum rainfall and 99th percentile daily rainfall. Its underestimation magnitudes of daily 

maximum rainfall are the largest among the four models: -28.3% for the daily maximum 

rainfall average 100 simulations and 21 grid cells. However, its 95th percentile of daily 

rainfall is well simulated (Figure 8); 4) The mean values of extreme daily rainfall from 100 

simulations produced by RMAWGEN seem close to the observation, especially for 99th and 

95th percentile daily rainfalls. Their relative errors are 6.1% and -1.2%, respectively. But it 

has the largest variations among 100 simulations. 

In general, multi-day extreme rainfall are simulated as well as daily statistics (Figure 10), 

except RGENERATEPREC model.  That is to say the simulation results still are at an 

acceptable level except RGENERATEPREC. A few interesting observations can be noted: 1) 

The 3-day extreme rainfall (maximum 3-day rainfall and 99th and 95th percentiles of 3-day 

rainfall) are generally underestimated even with the models of overestimation of daily 

extremes (Figure 9). It is understandable as a stochastic model usually cannot simulate 

consecutive extreme daily rainfall, but it can happen in realty; 2) The RMAWGEN model 

produced the best results:  The relative errors of mean values of 100 simulations are -1.8%, -

0.5% and 0.4% for 3-day maximum rainfall, 3-day 99th and 95th percentile daily rainfalls, 

respectively. These values are the smallest magnitudes among four models in every statistics. 

However, as the daily extremes, it also has the largest variations among 100 simulations 
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(Figure 10); 2) As the same for the daily extremes, the RGENERATEPREC is the worst 

model to simulate the 3-day extreme rainfalls, but with a larger magnitudes of relative errors: 

-35.3% for the 3-day maximum rainfall average 100 simulations and 21 grid cells, -30.3% for 

the 3-day 99th percentile rainfall, and -15.8% for the 3-day 95th percentile rainfall. These are 

worse than the daily extremes of -28.2%, -23.5% and -12.3%. Therefore, these simulation 

result might be acceptable for the researches of the impacts of climate change and variability 

on water resources, but cannot be used for the extreme rainfall and flooding relevant studies; 

3) The simulation results of RGLIMCLIM and SCL fall in between with an underestimation 

of 3-day maximum rainfall (-12.3 – -13.3%) and 3-day 99th percentile rainfall (-2.6 – -6.2%), 

but an overestimation of 3-day 95th percentile rainfall, 19.6% for RGLIMCLIM and 7.3% for 

SCL. 

3.4.3 Wet spell and dry spell 

The wet spell and dry spell have important hydrological implications: the consecutive rainfall 

generally result in flood as earlier rainfalls saturate soil moisture and later rainfalls convert 

into runoff and streamflow, and the consecutive non-rain days are usually associated with 

drought events.   

In general, both RGLIMCLIM and RGENERATEPREC generate similar results as 

observations in term of lengths of wet spell and dry spell. For example, for the 99th percentile 

lengths of wet spell, the mean and median lengths among 21 grid cells are 11.0 and 11.0 

days, while the RGLIMCLIM and RGRNERATEPREC simulate 10.6 and 11.0 days, and 

10.7 and 11.0, respectively. On the other hand, for the 99th percentile lengths of dry spell, the 

mean and median lengths among 21 grid cells are 25.2 and 25.0 days, while the 

RGLIMCLIM and RGRNERATEPREC simulated 23.5 and 24.0 days, and 22.9 and 23.0, 

respectively. 
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SCL significantly overestimates the dry spell lengths, especially for the maximum and 99th 

percentile of dry spell length (Figure 11). The mean and median values of the observed 

maximum and 99th percentile of dry spell lengths are 58.1 and 57.0 days, and 25.2 and 25.0 

days, respectively, while their respective values for SCL are 95.6 and 95.0 days, and 36.8 and 

36.9 days. These are about 65% and 47% overestimations for the maximum and 99th 

percentile of dry spell lengths, respectively. 

The RMAWGEN significantly underestimated lengths of wet spell, especially for 99th and 

95th percentiles, as well as median lengths of wet-spell (Figure 11). For example, for the 99th 

and 95th percentile lengths of wet spell, the mean and median lengths of wet spell among 21 

grid cells are 11.0 and 11.0 days, and 6.8 and 7.0 days, respectively. But the RMAWGEN 

simulated the corresponding values are 8.9 and 9 days, 5.7 and 6 days, respectively, about 15-

20% underestimations (Figure 11).  

It is not surprised that model results generally have a wide range than observations. It is 

because the boxplot of observation only comprises 21 grid values, while that of model results 

have 2100 values — 21 grid cells * 100 simulations. For the same reason, boxplots of model 

results usually have “outliers” (Figure 11).  

3.5 Spatial distribution (Occurrence and amount) 

Figures 12–14 show that the pairwise correlation coefficients of rainfall occurrence (Figure 

12), daily rainfall amount (Figure 13) and annual rainfall (Figure 14) from observations and 

four model results. Overall, the models produced reasonable results with underestimations. 

Part of reason is that the area of study catchment is relatively small and the grid rainfall were 

interpolated from limited numbers of meteorological stations, which make the rainfall among 

grid cells highly correlated. For example, the pairwise correlation coefficients of daily rainfall 
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among these 21 grid cells (sample size n=21×20/2=210) range from 0.693 to 0.989 with a 

mean value of 0.873 and a median value of 0.877. 

It is not surprised that rainfall occurrence (Figure 12) was better simulated than rainfall 

amount (Figures 13–14), as three (RGLIMCLIM, SCL and RGENERATEPREC) out of four 

models used fitted a rainfall occurrence model at first step, and then a separate rainfall 

amount is followed.  

It is also not surprised that annual rainfall correlation is generally better simulated than daily 

rainfall (Figures 13–14), as annual rainfall sums the daily rainfall in a specific year. For 

example, the mean and medians of 21000 pairwise correlation coefficients (210 pairwise for 

21 grid cells with 100 simulations) are 0.399 and 0.400 from RGENERATEPREC for daily 

rainfall (Figure 13), and improved into 0.586 and 0.592 for annual rainfall (Figure 14). But 

their difference are relatively small for RGLIMCLIM and SCL. For example, the mean and 

medians of 21000 pairwise correlation coefficients are 0.579 and 0.579 from RGLIMCLIM 

for daily rainfall, and 0.626 and 0.630 for annual rainfall. The corresponding values for SCL 

are 0.660 and 0.667 (daily rainfall), and 0.668 and 0.693 (annual rainfall), respectively.  

It is interesting to note that the RGRNERATEPREC perform the best to simulate the rainfall 

occurrence and its pairwise correlation coefficients are almost perfect matched with 

observations (Figure 12). However its pairwise correlation coefficients of rainfall amount is 

the worst among the four models. It implies that the rainfall amount of RGENERATEPREC 

may not be suitable for the study catchment. Our early study (Fu et al 2010) shows that the 

root transform might be a better model for rainfall amount for the Australia and it has 

potential to improve the performance of RGENERATEPREC, but it is out of scope of the 

current study.      
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It is also interesting to note that the RGLIMCLIM seems to produce an overall high-pairwise 

correlation coefficients of rainfall occurrence (mean and median values of 0.692 and 0.692, 

the closest to observations of 0.732 and 0.717), but does not correspond to each individual 

value (Figure 12). It is because a correlation-based dependence structures is used, instead of 

holding empirical pairwise correlation coefficients, which are used by other three models. 

The RGLIMCLIM does have an option to hold the pairwise correlation coefficients, but it is 

generally better to fit a correlation model than to use the empirical correlations themselves for 

two reasons (Chandler, personal communication): 1) the empirical correlations are not 

guaranteed to be mutually compatible because they are calculated pairwise; and 2) it cannot 

be used to simulate at an ungauged location if empirical correlations are unknown. In 

addition, we want to explore a wide range of climate variability. 	

 

4. CONCLUSIONS 

I suggest we shorten Section 3, and call the section “Results”. 

Then, have a Section 4 Discussion and Section 5 Conclusion, or just Section 4 Discussion 

and Conclusion. I prefer the former, better but more difficult to write, but can be okay with 

just a very short Conclusion then. 

We need to summarise the four models – how they perform; why, relating to the method, 

setup and parameterisation; and implications on the hydrological modelling for this context. 

See attached table I made up (speculatively). 

Then discussion of this. 

I challenge the statement of ‘multiple models have advantages over a single weather 

generator’. 
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Yes, because they allow us to represent the range of uncertainty and plausibility, but only if 

they are not clearly inadequate. 

 

Four weather generators models (RGLIMCLIM, SCL, RGENERATEPREC and 

RMAWGEM) were used in this study to generate multi-sites daily rainfall for a small 

catchment in Australia. The results showed they all produced reasonable results in term of 

annual, monthly and daily rainfall occurrence and amount, as well as daily extreme, multi-

day extremes and dry/wet spell length. However, they also simulated a large range of 

variability, which not only demonstrates the advantages of multiple weather generators rather 

than a single model, but also is more suitable for climate change and variability impact 

studies. These simulation results will be used for climate change and variability impacts on 

hydrological and water resources in the study catchment, and for comparisons with impacts 

of coal seam gas and coal mining on water resources. 

Since weather generators are based on different theory and principals, so every model has its 

own advantages and disadvantages. For example, the RGRNERATEPREC performed the 

best to simulate the spatial correlation of rainfall occurrence and its pairwise correlation 

coefficients are almost perfect matched with observations (Figure 12). However its pairwise 

correlation coefficients of rainfall amount is the worst among the four models (Figures 13 and 

14); The RGLIMCLIM is the best model to simulate daily rainfall, especially for extreme 

daily rainfall over 99th percentile (Figure 7), but it annual rainfall is overestimated (Figure 4); 

SCL can accurately simulate daily, monthly and annual rainfall amounts as well as annual 

variability and extreme daily rainfall (Figure 4-10), but its dry-spell length was significantly 

overestimated (Figure 11).   This again enhances our conclusion that multiple models do have 

advantages over a single weather generator. 
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It needs to point out that models can be further calibrated/improved to have a “better” 

performance in comparison with observation. For example, the RGLIMCLIM does have a 

parameter to control every single month rainfall occurrence, and it then could simulate exact 

rainfall occurrence for every single month to have a perfect match with observations. 

However, we choose not to do so in this study for two reasons: 1) to get a full ranges of 

variability. For example, monthly rainfall shifts from GCMs have been identified (Fu et al 

2013) and it does have hydrological implications, and extreme rainfall is expected to enhance 

in the climate scenarios; 2) there are uncertainties associated with observation data, which are 

interpolated from limited stations to produce a high pairwise correlations and many tiny 

rainfall – 27.0% (22.4–33.9% from cell to cell) of days in the last 90 years (1923 – 2012) has 

a daily rainfall amount of between 0 and 1.0 mm. 
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Figure 1 Location of study area and rainfall sites 
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Figure 2 Rainfall occurrence (>=1.0mm/day) from observations and model results 
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Figure 3 Rainfall occurrence by month from four models (red solid dots are observed values) 
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Figure 4 Observed and simulated annual rainfall (mm/day) 
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Figure 5 Variability of annual rainfall (red dash-line is the mean values of 21 grid cells and 
the blue dash-line is the median of 21 grid cells) 
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Figure 6 Monthly distributions of rainfall and its percentage of annual rainfall 
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Figure 7 Q-Q plot of observed and simulated daily rainfall (Three vertical lines are 90%, 95% 
and 99% percentiles of daily rainfall) 
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Figure 8 The empirical cumulative density function of daily rainfall (Observation are plot in 
black and model results are plotted in red) 
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Figure 9 Simulations of extreme daily rainfall (maximum daily, 99th and 95th percentiles) from four models in comparison with observations 
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Figure 10 Simulations of extreme 3-day rainfall (maximum daily, 99th and 95th percentiles) from four models in comparison with observations 
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Figure 11 The maximum, 99th and 95th percentiles, and median of wet spell and dry spell 
from observations and four model simulations 
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Figure 12 Pairwise correlation coefficients of rainfall occurrence from observations and 
model results 
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Figure 13 Pairwise correlation coefficients of daily rainfall amount from observations and 
model results 
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Figure 14 Pairwise correlation coefficients of annual rainfall from observations and model 
results 
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