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ABSTRACT  

Non-steroidal anti-inflammatory drugs (NSAIDs) can damage the gastrointestinal 

tract, causing widespread morbidity and mortality. Although mechanisms of damage 

involve the activities of prostaglandin-endoperoxide synthase 1 (PTGS1 or COX1) 

and PTGS1 (COX2), other factors are involved. We review mechanisms of gastroin-

testinal damage induction by NSAIDs, via COX-mediated and COX-independent 

processes. NSAIDs interact with phospholipids and uncouple mitochondrial oxidative 

phosphorylation, which initiates biochemical changes that impair function of the gas-

trointestinal barrier. The resulting increase in intestinal permeability leads to low-

grade inflammation. NSAID’s inhibition of COX enzymes, along with luminal aggres-

sors, results in erosions and ulcers, with potential complications of bleeding, protein 

loss, stricture formation, and perforation. We propose a model for NSAID-induced 

damage to the gastrointestinal tract that includes these complex, interacting, and in-

ter-dependent factors. This model highlights the obstacles for the development of 

safer NSAIDs. 

 

Key words: GI; prostaglandin; drug-induced intestinal damage; bacteria, bile acids
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More than 30 million people take non-steroidal anti-inflammatory drugs (NSAIDs) 

each day (1). This number has grown significantly with increasing use of over the 

counter and prescription NSAIDs, low-dose aspirin and following reports of their po-

tential anti-neoplastic effects. The efficacy of NSAIDs as anti-inflammatory analge-

sics is not in doubt, but their adverse events are problematic. These relate mainly to 

cardiovascular, renal, hepatic, and the gastrointestinal tissues. The cardiovascular 

adverse events have recently received much attention (2, 3), but the frequency and 

severity of the gastrointestinal damage continues to cause concern.  Accordingly the 

range of gastroduodenal ulcer rates range from 5% to 80% in short-term endoscopy 

studies (4) and from 15% to 40% in long-term users (5). NSAIDs also damage the 

small intestine (6)—as many as 70% of long-term users of NSAIDs have small intes-

tinal inflammation, and 30% have erosions or ulcers (7). The gastric and small bowel 

damage is associated with various management problems and at times life threaten-

ing complications, such as bleeding, strictures and perforations. 

There have been many studies of the pathogenesis of NSAID-induced gastro-

intestinal damage. NSAIDs inhibit prostaglandin-endoperoxide synthase 1 (PTGS1 

or COX1) and COX2, which have been believed to mediate the gastrointestinal 

damage (8-10). NSAID-induced decreases in mucosal levels of prostaglandins (driv-

en by inhibition of COX1) correlate with gastric and small bowel damage (11-13), 

which can be attenuated by administration of exogenous prostaglandins (14-18). 

Since COX2 is not constitutively expressed in the gastrointestinal tract COX2 selec-

tive inhibitors are perceived as safer than conventional NSAIDs (14, 15, 19, 20). 

Proposed mechanisms of damage to the stomach involve prostaglandin mediated 

increased gastric acid secretion, decreased mucus and bicarbonate secretion, de-

creased cell proliferation, and decreased mucosal blood flow (21-24). These are all 

actions that are detrimental to mucosal defense and healing, but the observed 

changes were only modest (21, 23, 25-30) and the damage seemed to lack an initia-

tive action. Furthermore, decreased mucosal prostaglandins have been fund to be 

less important in the pathogenesis of the small bowel damage (11, 31, 32). 

Further studies showed that gastric and small bowel mucosal prostaglandins 

could be decreased by 95%–98% without mucosal damage (33-35), confirmed in 

COX1-knockout mice (35-37). Short-term loss or inhibition of COX2 does not cause 

damage, but small bowel damage is evident in mice and humans exposed to 

NSAIDs for long periods of time (38-41). Dual inhibition of COX1 and COX2 causes 
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gastric and small bowel lesions, albeit somewhat less severe than that the lesions 

caused by conventional acidic NSAIDs (36).  

So, inhibition of COX does not seem to be the only mechanism of NSAID-induced 

gastrointestinal damage. We review the prostaglandin-independent mechanisms of 

NSAIDs and how these interact with the consequence of alterations in prostaglandin 

levels as a consequence of COX inhibition. We provide a model in which COX inhibi-

tion is one of several important factors in the pathogenesis of gastrointestinal dam-

age (see Figure 1). Our model considers the effects of the specific biochemical “topi-

cal” effects of NSAIDs (i.e. the effects that occur by direct contact between the 

NSAIDs in the lumen and mucosal epithelium following oral ingestion and/or biliary 

excretion of the drugs, as opposed to topical skin application) and the consequential 

increase in intestinal permeability and intestinal inflammation. These initiate damage 

and inhibition of COX1 and COX2 aggravate it, along with luminal aggressors, lead-

ing to development of erosions and ulcers (42, 43).  

BIOCHEMICAL EFFECTS OF NSAIDS 

The biochemical actions common to all conventional NSAIDs are their “topical” ef-

fects, and inhibition of COX1 and COX2. These biochemical actions are brought 

about by the physicochemical properties that NSAIDs share (44-46), namely being 

lipid soluble weak acids (see Figure 2). This combination provides them with deter-

gent action (interaction with phospholipids), uncoupling of oxidative phosphorylation, 

and non-covalent inhibition of COX1 and COX2. These biochemical activities depend 

on the same physical and chemical characteristics, so changing these will change all 

the pharmacologic actions. For example, esterification of NSAIDs (47) causes loss of 

their “topical” effects and at the same time their ability to inhibit the COX enzymes.  

Interactions between NSAIDs and phospholipids 

NSAIDs interact with the intestinal mucus layer and the cell surface phospholipid bi-

layer. There are subtle differences in mucus thickness and composition in different 

regions of the gastrointestinal tract (19, 48). The role of mucus is to act as a lubricant 

between the surface epithelium and the luminal contents, restricting access of large 

hydrophilic molecules, digestive enzymes, and bacteria to the surface epithelium. In 

the stomach, mucus also buffers luminal acids. The production and secretion of mu-

cus is determined by interactions between luminal aggressors (acid, pepsin, H pylori 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT   

 

7 

 

in the stomach and bile and bacteria in the small bowel) and the surface epithelium 

mediated by numerous factors such as inflammatory cytokines and prostaglandins.  

Mucus serves as a matrix for phospholipids that maintain gastrointestinal in-

tegrity (49). Like NSAIDs, phospholipids are amphiphilic molecules, with a hydro-

philic polar head group and a hydrophobic tail region. The integrity of the mucus lay-

er can be assessed by various methods (50). NSAIDs decreased the hydrophobicity 

in the gastroduodenal mucosa (51), an effect seen also after parenteral administra-

tion via the biliary excretion of the drug (52). The interaction between NSAIDs and 

phospholipids compromises the hydrophobic lining, which leads to mucosal expo-

sure to luminal aggressors (acid and pepsin in the stomach and bacteria and bile in 

the small intestine).  

The concept of a hydrophobic barrier attributed to phospholipids and the bind-

ing of NSAIDs to dipalmitoylphosphatidylcholine (the dominant phospholipid in the 

gastrointestinal-tract), in vitro and in vivo (49, 53), led to a series of studies investi-

gating the effect of orally co-administrated phospholipids with NSAIDs, and other tox-

ic compounds, with a view to diminishing their toxicity. Combining NSAIDs with the 

phospholipid phosphatidylcholine protects against NSAID-induced gastric (49, 54) 

and small bowel (55) damage in short-term rodent studies. Lichtenberger et al 

demonstrated decreased gastric toxicity of the otherwise damaging combination of 

aspirin and a COX2-selective agent, if the aspirin was co-administered with a phos-

pholipid (56).  

These and other animal studies provided the platform for testing the safety of 

NSAIDs combined with phospholipids in humans. Volunteers were given aspirin or a 

combination of aspirin and phospholipid (650 mg aspirin/day for 3 days). The number 

of gastric erosions (assessed during endoscopy) was significantly lower in volunteers 

given aspirin and phospholipid (mean 2.8 ± 4.3) than aspirin alone (mean 8.8 ± 10.8; 

both drugs reduced mucosal prostaglandin content to the same extent (57). In a 

separate study, healthy volunteers given aspirin (325 mg/day for 7 days) or the same 

amount of aspirin combined with phosphatidylcholine, had a significant decrease in 

gastric ulcers, from 17.6% in volunteers given aspirin to 5.1% in volunteers given as-

pirin with phosphatidylcholine (58). In a 6-week study of patients with osteoarthritis, 

the combination of ibuprofen and phosphatidylcholine was associated with significant 

improvements in Lanza gastroscopy scores, compared to patients given ibuprofen 
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(2400 mg) alone, but only in patients older than 55 years (59). These studies 

demonstrated greater gastric tolerability of combinations of aspirin and phospholipid, 

in the short-term, in humans, in which damage is more likely to be caused by the 

physicochemical properties of NSAIDs than their effect on COX1 or COX2 (4).  

Uncoupling mitochondrial oxidative phosphorylation 

Mitochondria are the main source of ATP in cells. Mitochondrial ATP synthesis takes 

place by integrated biochemical-physiological-physical processes (60) (see Figure 

3). 

Whatever the cause of uncoupling there is a cascade of detrimental down-

stream effects: water flows into the matrix, causing characteristic and pathognomon-

ic swelling of mitochondria. There is release of intra-mitochondrial Ca2+ into cyto-

plasm with depletion of reduced glutathione, depletion of NAD(P)H2, generation of 

superoxide anion (O2–) and release of pro-apoptogenic proteins (61). Free radicals 

accumulate within the mitochondria setting up a vicious cycle as this activates un-

coupling proteins in the inner mitochondrial membrane (62). The uncoupling ulti-

mately leads to depletion of cellular ATP levels, with loss of integrity of the intercellu-

lar junctions in the gastrointestinal tract (leading to increased mucosal permeability) 

(63), and ultimately apoptosis and cell death (64).  

Well before the understanding that NSAIDs inhibited the COX enzyme(s) it 

was evident that NSAIDs were uncouplers of mitochondrial oxidative phosphorylation 

(65, 66). Adams et al screened possible anti-inflammatory agents based on their un-

coupling properties and several (such as ibuprofen, naproxen and indomethacin) 

have been marketed on that basis. However, the idea of the uncoupling action of 

NSAIDs as a mechanism for their therapeutic actions became obsolete when the 

prostaglandin hypothesis gained momentum.  

A few reports describe uncoupling of mitochondrial oxidative phosphorylation 

in the gastric mucosa following aspirin (67, 68). Using the technique of selective sub-

cellular marker enzyme analyses of small bowel mucosa following administration of 

NSAIDs in animals (69) showed a significant change in the brush border marker en-

zyme, compatible with the interaction of NSAIDs with phospholipids, and the mito-

chondrial marker enzymes.  Electron microscopic changes of uncoupling were 

demonstrated in vivo after administration of NSAIDs to rats (69). The in vitro uncou-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT   

 

9 

 

pling of conventional acidic (carboxylic or enolic acids) NSAIDs relates to their pKa 

values (see Table 1) (70). Drugs that are purported to be safer such as paracetamol 

(non acidic analgesic), nabumetone (a non-acidic NSAID pro-drug (71), and esteri-

fied non-acidic pro-NSAIDs (see Figure 2), such as nitro-butyril flubiprofen are not 

uncouplers in vitro (69).  

Micromolar to millimolar concentrations of NSAIDs have the ability to uncou-

ple mitochondrial oxidative phosphorylation in vitro (42, 69, 72-76), due to ion trap-

ping during absorption (see Figure 4). COX2-selective agents also uncouple oxida-

tive phosphorylation in vitro and in cell systems, but with lower potency than that of 

acidic NSAIDs (76, 77). The uncoupling by NSAIDs was demonstrated by electron 

microscopy in the small bowel of mice given conventional acidic NSAIDs (42, 69, 73-

75, 78, 79) and similar changes are also found in gastric biopsies from patients (67, 

68, 80-83). No studies have assessed the possible prevention of uncoupling brought 

about by NSAIDs. 

INHIBITION OF COX1 AND 2 AND ROLE OF PROSTAGLANDINS 

The 3-dimensional structure of the COX enzymes reveals the active site of both COX 

isoforms to be at the end of a hydrophobic channel. NSAIDs inhibit the enzyme by 

blocking the entrance of arachidonic acid to this channel and thereby denying sub-

strate access to the active site (84, 85). The COX1 and 2 channels differ. Conven-

tional NSAIDs have access to both channels and form an ionic bond via their car-

boxyl or enolic group (86). The COX1 channel is smaller than the channel in COX2 

and does not accommodate COX2-selective agents, but a side pocket in the COX2 

enzyme has a polar binding site (87) for the aryl sulfonamide and sulfone moieties of 

the COX2-selective agents.  

The most damaging consequence of decreased prostaglandin production with 

COX inhibition could be the effects on the microcirculation. Regulation and mainte-

nance of the intestinal microcirculation is complex involving several interacting bio-

chemical mechanisms. The most relevant mediators are prostaglandins, leukotri-

enes, nitric oxide, and hydrogen sulphide. NSAID-induced prevention of physiologi-

cal compensatory increases in blood flow (leading to tissue hypoxia) following injury 

is well described. The effects of nitric oxide and hydrogen sulphide are remarkably 

similar to that of prostaglandins, namely increased microvascular blood flow, in-
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creased mucus secretion, and a modest decrease of gastric acid secretion (88, 89). 

Targeting these processes with nitric oxide donors such as nitro-glycerine, nitroprus-

side, nitric-oxide-NSAIDs, and hydrogen sulphite NSAIDs can reduce the gastroin-

testinal damage due to NSAIDs in laboratory animals (27, 90-93). Presumably these 

effects counteract the reduced microvascular blood flow (94) consequent to NSAID-

induced decreased prostaglandins (95). Proof-of-concept endoscopic studies of 

healthy volunteers showed that nitric oxide donors and NSAIDs reduced gastroduo-

denal damage, compared with NSAIDs (96, 97), but the results of a longer-term clin-

ical trial did not show statistically significant differences (98). 

Another vascular effect of NSAIDs involves NSAID-induced expression of 

neutrophil adhesion molecules within the endothelium (common to most intestinal 

inflammatory conditions) (27, 29, 93, 99). Neutrophil accumulation could mechanical-

ly compromise microvascular blood flow. Nitric oxide and hydrogen sulphite are, like 

prostaglandins, inhibitors of leucocyte adhesion to the vascular endothelium (100).  

However, vascular effects are probably not the primary or initiating event in 

NSAID-induced gastrointestinal damage. The effects on the vasculature cannot ac-

count for the selective localization of the macroscopic damage (101-104) within the 

gastrointestinal tract nor the mesenteric rather than the anti-mesenteric location of 

small bowel ulcers. The damage also differs macroscopically and microscopically 

from ischemic damage. The suggestion that neutrophil adhesion to the vessel wall (a 

COX2-mediated effect) is a primary event in the damage is difficult to reconcile with 

the fact that COX2 is not constitutively expressed in the gastrointestinal tract. Fur-

thermore, neutrophil adhesion to the intestinal vessel wall does not automatically in-

dicate damage as neutrophils require a chemoattractant for activation-degranulation 

and hence damage (105, 106). 

Consequences of the biochemical effects of NSAIDs 

Studies on COX-knockout mice have increased our understanding of the conse-

quences of COX1 and COX2 deficiency. Absence or selective inhibition of COX1 (by 

the non-acidic COX1 inhibitor, SC-560) reduced levels of prostaglandins by 95% or 

more, which was not associated with increased intestinal permeability, inflammation, 

or ulcers (35, 36). Neither was short-term, selective deletion or inhibition of COX2 

(36, 39). These findings should be considered alongside studies that assess the 
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consequences of the “topical” effects and dissociated these from the consequences 

of COX inhibition. These studies were done by comparing key pathophysiological 

events in the damage, namely the “topical” effect (in vitro and in vivo uncoupling), 

prostaglandin levels, intestinal permeability, and inflammation following the use of 

selective drugs. This provides convincing evidence that the “topical” effects (phos-

pholipid-NSAID interaction and uncoupling) initiate gastrointestinal damage, but only 

with COX1 inhibition (in association with luminal aggressive factors), does this lead 

to mucosal erosions and ulcers. The compounds and their effects can be catego-

rized as follows (see Table 2): 

• Selective uncouplers (dinitrophenol [DNP] or R-flurbiprofen) can increase 

intestinal permeability associated with mild inflammation, but do not signifi-

cantly alter mucosal prostaglandin levels, and do not cause mucosal ulcer-

ation. 

• Uncouplers (conventional acidic NSAIDs) that inhibit COX enzymes are as-

sociated with increased intestinal permeability, inflammation, and ulcers.  

• COX2-selective agents such as celecoxib do not uncouple oxidative phos-

phorylation (nimesulide with a Pka of 6.4, despite showing uncoupling activ-

ity, behaves like celecoxib—possibly because the uncoupling effect in vivo 

affects only a few mitochondria). These agents are not associated with in-

creased intestinal permeability, inflammation or ulcers. 

Collectively these studies, together with studies of knockout mice, have provided 

compelling evidence that uncoupling of mitochondrial oxidative phosphorylation 

(along with the NAID-phospholipid interaction) increases intestinal permeability and 

low-grade inflammation. Decreased mucosal prostaglandin production and the mu-

cosal aggressors lead to more severe inflammatory and ulcerative damage, perhaps 

via effects on the microcirculation.  

The findings from COX2-knockout mice are more difficult to explain. These 

mice have normal mucosal levels of prostaglandin, but half have normal intestinal 

permeability and no inflammation or intestinal ulcers, and the other half develop 

small intestinal inflammation and ulcers or die because of ulcer perforation. Similar 

findings were seen with long-term administration of a selective COX2 inhibitor to 

wild-type mice. COX2 inhibition also leads to enteropathy in humans (41). 
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TISSUE REACTION AND ROLE OF LUMINAL AGGRESSORS 

The tissue reaction is characterized by inflammation and the presence of erosions 

and ulcers and this appears to be driven by COX inhibition and the luminal aggres-

sive factors. The luminal aggressors differ between the stomach (acid, pepsin, and H 

pylori) and small bowel (bile and commensal bacteria). The importance of gastric lu-

minal aggressors is widely appreciated, but the same does not hold true for small 

bowel aggressors. Our review focuses on effects in the small bowel. 

Role of acid and H pylori in NSAID-induced gastropathy 

The importance of gastric acid in the damage of NSAID-induced gastro-duodenal 

damage in humans is amply demonstrated clinically in the reduced incidence of 

damage (short and long-term) and serious ulcer outcomes when NSAIDs are co-

administered with proton pump inhibitors (107, 108) or high dose histamine receptor-

2 inhibitors (109). In the context of the current pathogenic model the macroscopic 

damage in the stomach is principally due to back diffusion of acid due to the im-

paired barrier function (brought about by the “topical” effects) induced by NSAIDs 

and amplified by the prostaglandin dependent effects induced by NSAIDs. The fre-

quent finding of chemical gastritis (reactive gastritis) in antral biopsies in patients on 

NSAIDs (110), who do not have H pylori infection, can be considered as the conse-

quence of the “topical” effect of these drugs. In this context, the mucosal inflammato-

ry reaction is weak compared to that seen in patients infected by H pylori. 

 The effects of H pylori infection in the pathogenesis of NSAID-associated gas-

tric ulcers is controversial. H pylori does not seem to mediate development of short-

term NSAID-induced gastric damage in humans (4), although it may affect gastric 

adaptation to short-term administration of aspirin (111). Gastric damage induced by 

long-term NSAIDs or aspirin occurs in addition to the gastritis induced by H pylori in-

fection, which occurs early in life. H pylori induces gastric mucosal lesions by inter-

acting with the immune response (112). The intrinsic virulence factors of each specif-

ic H pylori strain may induce a weak or a strong host immune cytokine-mediated in-

flammatory response, which is genetically determined. Patients infected by H pylori  

may develop pangastritis or antral predominant gastritis, which affect acid secretion 

levels. Pangasritis is usually associated with normal or reduced gastric acid secre-
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tion whereas antral predominant gastritis is associatd with increased acid secretion 

due to a decrease in somatostantin and increased gastrin secretion (113, 114). 

Therefore, the type of gastritis associated with H pylori may explain the contradictory 

results obtained in different clinical studies (113, 114). H pylori exacerbates aspirin-

induced gastric damage associated with normal or increased gastric acid secretion 

but reduces the damage in patients who became hyposecretors (115). A meta-

analysis concluded that NSAIDs and H pylori infection were independent but additive 

risk factors for development of peptic ulcer, when taken long term, and separately in 

the ulcer complication of bleeding (116).  

Role of bile in NSAID-induced enteropathy 

Bile contributes to intestinal and gastric damage caused by NSAIDs (23, 117), but 

the biochemical mechanisms have not been established. The severity of NSAID-

enteropathy correlates to the amount of the drug excreted in bile and with the extent 

of enterohepatic circulation (117, 118). Bile duct ligation almost completely abolishes 

the small intestinal macroscopic damage following NSAIDs (119, 120).  

Bile and the NSAIDs excreted in bile play have complex roles in the patho-

genesis of NSAID-induced small intestinal damage. Conventional NSAIDs cause 

small intestinal lesions in rats regardless of whether they are given orally or paren-

terally, but drugs such as aspirin and 6-MNA (the active component of the non-acidic 

pro-NSAID nabumetone), which are not excreted in bile, do not, when given paren-

terally (121). This indicates that the combination of NSAIDs and bile are more toxic 

than either alone. When certain bile acids (taurocholic acid, taurodeoxycholic acid 

and glycocholic acid) were co-administered with indomethacin, the incidence and 

severity of gastric and small bowel damage was significantly increased in rats (122, 

123).  

Bile collected from rats given indomethacin that was then infused into small 

intestinal loops of untreated rats (124) reduced the hydrophobicity of the mucosa and 

caused ileal bleeding. These effects were abolished when phosphatidylicholine was 

added to the bile (from the indomethacin treated rats) prior to instillation into the 

small bowel. Furthermore certain bile acids caused identical damage and this was 

again reversed by addition of equimolar phosphatidylcholine. It was suggested that 

NSAIDs that enter the bile might damage the mucosa, not by a direct action, but by 
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competing for the available protective phosphatidylicholine molecules. Increased 

amounts of unbound bile acids could therefore increase the indomethacin-induced 

(macroscopic) damage. Dial et al similarly showed that bile was cytotoxic following 

indomethacin administration but this effect was reversed when phosphatidylcholine 

was added to the bile-indomethacin mixture (125) again emphasising the NSAID-

phospholipid interaction. Furthermore, although primary and secondary bile acids 

have differential potential to cause damage to intestinal epithelial cßells, they also 

act as effector molecules that activate nuclear and G-protein-coupled receptors; col-

lectively known as bile acid-activated receptors, these help maintain intestinal integri-

ty (126). 

Bile therefore appears to have an important role in the pathogenesis of small 

bowel damage. It has been shown to maintain and disrupt intestinal integrity. The 

choice of the bile acids used in a study is important because bile acids differ in their 

gastrointestinal tolerability (122, 127). For example, taurochendeoxycholic acid in-

creases intestinal inflammation caused by indomethacin, whereas ursodeoxycholic 

acid reduces the damage (128, 129) and chenodeoxycholic acid may be neutral 

(130) 

The effects of diclofenac on bile excretion have been investigated in consid-

erable detail. Diclofenac is metabolized by the liver and the major biliary metabolite, 

diclofenac acyl glucuronide, is excreted by a specific hepatocanalicular conjugate 

export pump. Rats deficient in this transporter have normal bile composition and 

flow, but do not excrete diclofenac or its conjugate into bile (131). These rats had 

significantly less small bowel damage when given diclofenac orally or parenterally. 

Furthermore, bile containing diclofenac glucuronide increased small bowel damage 

in normal rats, and transferase-deficient rats over and above diclofenac and bile 

mixed together. Moreover, increasing the activity of glucuronosyltranferase, which 

increases glucuronidaton of diclofenac, increased small bowel damage. This indi-

cates that biotransformation of diclofenac (acyl glucuronide or its oxidative metabo-

lites) accounts for a significant part of its small bowel toxicity. Of note is the fact that 

most carboxylic acid-NSAIDs are metabolised to acyl-glucoronides in a similar fash-

ion. Although these conjugates are reactive in their own right, they are also deconju-

gated by bacterial beta-glucuronidase yielding aglycone, which is believed to be 

even more toxic (132). In an attempt to assess the importance of bacterial beta-
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glucoronidase (133), researchers gave mice diclofenac (intraperitoneally), with or 

without pre-administration of a specific inhibitor of bacterial beta-glucoronidase. The 

inhibitor reduced the number of small bowel erosions and ulcers significantly. Similar 

results were obtained when indomethacin and ketoprofen were used (134).  

The interaction between biliary excretion of NSAIDs and intestinal bacterial 

deconjugation (which may be enhanced by concomitant treatment with proton pump 

inhibitors (135)) possibly provides an explanation for the mid and distal small bowel 

location of NSAID-enteropathy. However, it is important to remember that there are 

significant differences between species in the extent of enteric hepatic circulation of 

carboxylic NSAIDs (relatively low in humans) (136), although all seem to be associ-

ated with NSAID-enteropathy to a similar extent in humans (137). In particular there 

is very little, if any, biliary excretion of ibuprofen or its metabolites in humans (138), 

but this NSAID is still associated with enteropathy.  

The practical implications from the experiments in animals (119, 120, 139) are 

that co-administration of a bile-binding resin, such as cholestyramine, with NSAIDs 

might reduce or prevent some of the small bowel damage. Co-administration of a 

specific inhibitor of bacterial beta-glucoronidase with NSAIDs might also prevent 

damage, but this has not yet been tested in clinical trials.  

Role of bacteria in NSAID-induced enteropathy 

It is difficult to dissociate the effect of intestinal bacteria on the metabolism of NSAID-

conjugates and formation of secondary bile acids to their more direct role to cause or 

increase inflammation in NSAID-enteropathy. Nevertheless, germ-free rats and rats 

given antimicrobial agents do not develop small bowel ulcers when they are given 

indomethacin (140). Indomethacin-induced enteropathy in mice is associated with 

numerous alterations in the number and type of bacteria (135, 140, 141) The precise 

and specific bacterial alterations (true increases, relative shifts, etc.) and effects are 

well documented, but probably not relevant to humans, because their microbiomes 

differ substantially. 

The mechanisms of interactions between the effects of NSAIDs on the micro-

biome and human cells could be mediated by lipopolysaccharide, a bacterial protein 

that binds to and activates toll-like receptor 4 (TLR4). TLR4 signalling activates nu-

clear factor-κB, resulting in neutrophil recruitment (142, 143). Neutrophils are im-
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portant effector cells in the macroscopic damage due to NSAIDs, demonstrated by 

the findings that neutropenic mice do not develop macroscopic lesions in response 

to NSAIDs (144). These findings might offer therapeutic possibilities, such as inhibit-

ing TLR4 or interfering with neutrophil functions.  

The effects of intestinal bacteria on induction of enteropathy by NSAIDs has 

been studied in humans. A capsule enteroscopy study in volunteers showed that co-

administration of the poorly absorbed anti-microbial rifaximin with NSAIDs prevented 

development of erosions and ulcers (145). Patients with established NSAID enterop-

athy, metronidazole reduced inflammation and bleeding but did not affect intestinal 

permeability (146).  

An alternative approach is to reduce or prevent NSAID-induced small bowel 

damage with probiotics, although results from studies of probiotics have been incon-

sistent. In a clinical trial, the probiotic VSL-3 prevented the small bowel damage due 

to indomethacin (50 mg/day), assessed by fecal levels of calprotectin (147). In pa-

tients taking aspirin and a proton pump inhibitor who had iron-deficiency anaemia, 

the probiotic Lactobacillus casei significantly reduced mucosal damage, based on 

capsule endoscopy analysis, compared with controls (148). However, many addi-

tional studies must be performed before specific probiotics can be recommended for 

prevention or treatment of NSAID-enteropathy in humans.  

Future Directions 

Prevention and treatment of the adverse events of NSAIDs on the gastrointestinal 

tract requires knowledge of mechanisms of pathogenesis of the lesions. The com-

plexities of the pathways to this damage have been evident for a long time, but have 

not received much attention, presumably because the effects of inhibiting COX en-

zymes offer simple and logical explanation for the damage. This hypothesis led to 

development of the COX2-selective agents with increased gastrointestinal safety. 

However, studies of knockout mice (especially COX1- and COX2-knockout mice) 

and development of drugs with highly specific actions increased our understanding 

of the effects of NSAIDs. We now recognize that inhibition of COX1 or COX2 does 

not solely account for the gastrointestinal damage induced by NSAIDs. NSAIDs have 

“topical” effects that damage intestinal cells by disrupting membrane and mucus 

phospholipids and uncoupling of mitochondrial oxidative phosphorylation.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT   

 

17 

 

NSAIDs increase intestinal permeability in patients (149), leading to low-grade 

intestinal inflammation. Disruption of the intestinal barrier is associated with many 

human small bowel diseases that are distinctively different to the damage seen with 

NSAIDs (43). NSAIDs also have microvascular effects that aggravate inflammation 

and lead to macroscopic damage, such as erosions and ulcers in the stomach and 

the small bowel. It should be noted that these observations relate to the pathogene-

sis of damage, but not necessarily the clinical adverse effects. Clinically serious gas-

tric and small bowel ulcer events of perforation and bleeding involve separate clinical 

and co-morbidity factors (150).  

Our model emphasizes the multi-stage complexities of the pathogenesis and 

the numerous interactive and ongoing synergistic factors that intensify or modulate 

the damage. For example, the increased intestinal permeability that is brought about 

by the “topical” effects of NSAIDs is intensified because of the inflammatory re-

sponse (to luminal aggressors) and the microvascular effects of COX inhibition, etc. 

Conventional NSAIDs cause maximum intestinal damage whereas the various com-

binations of the biochemical actions observed experimentally, such as selective inhi-

bition or absence of COX1 and 2 (without the “topical” effect), “topical” effect com-

bined with COX1 absence or inhibition (without COX2 involvement), “topical” effect 

combined with COX2 absence or inhibition (without COX1 involvement) can increase 

tolerability, but do not fully prevent intestinal damage.  

In patients, strategies to alter or minimize a single biochemical effect of 

NSAIDs, such by co-administration of a phospholipid, esterification of NSAIDs (with 

or without the addition of nitric oxide or hydrogen sulfite moieties), or use of selective 

COX2 inhibitors (which spare COX1 and reduces the “topical” effect) does not re-

move their toxicity. Altering the physical and chemical properties of NSAIDs to alter 

their efficacy or tolerability is impractical, because the same physicochemical proper-

ties of NSAIDs mediate their “topical” effects and effects on COX enzymes. Strate-

gies to interfere with their non-biochemical actions, such as the luminal aggressors, 

could be a more realistic approach for reducing NSAID-induced small bowel damage 

in patients. By analogy inhibition of gastric acid secretion prevents and heals NSAID-

associated ulcers.  

The current model is largely based on findings from rodents, which have 

many differences from humans in physiology, biochemistry, immunology etc., and 
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not least the gastrointestinal tract microbiome. Furthermore, in these studies, 

NSAIDs were administered to the animals at doses that are an order of magnitude 

higher than doses taken by patients, and the compounds used to solubilize NSAIDs 

given to animals are toxic. Extrapolation of data from animal studies to humans 

therefore requires great care. However, some aspects of the damage show remark-

able similarities, such as the increase in intestinal permeability seen with NSAIDs, 

the localization of NSAID enteropathy to the mid to distal small bowel, similar re-

sponses to some therapeutic interventions, etc. Animal experiments are a conven-

ient way to explore pathogenic processes, but findings must be confirmed in human 

studies.  

Many view the clinical importance of NSAID-induced gastropathy to the exclu-

sion of NSAID-induced enteropathy and, moreover, there have been very few at-

tempts to minimize the incidence or clinical impact of NSAID-induced enteropathy. 

This may be because of selective funding for research into the treatment of NSAID-

induced gastropathy, but also because NSAID enteropathy has been perceived as 

being asymptomatic and benign. However, most patients with NSAID-induced enter-

opathy bleed from the small bowel (146, 151), which frequently leads to an iron defi-

ciency anemia (152), occasional hypoalbuminemia, diaphragm disease (6), and even 

death from intestinal perforation with peritonitis (153). Increasing understanding of 

the mechanisms of NSAID-induced damage to the small bowel, should stimulate fur-

ther research and reduce these clinical effects.  
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Table 1. Relationship Between pKa and Uncoupling of Mitochondrial Oxi-

dative Phosphorylation 

Drug pKa Percentage max-

imum uncoupling 

Mean±SEM con-

centration re-

quired for maxi-

mum uncoupling 

(microM/mg pro-

tein) 

Nitrosalicylic acid 

Salicylic acid 

Acetylsalicylic acid 

Diclofenac 

Naproxen 

Flurbiprofen 

Indomethacin 

6-MNA 

Ibuprofen 

Ketoprofen 

2.3 

2.94 

3.5 

4.0 

4.15 

4.22 

4.5 

5.0 

5.2 

5.94 

205 

200 

200 

200 

210 

265 

230 

180 

250 

220 

2.70 ± 1.21 

2.10 ± 1.23 

1.6 ± 1.19 

0.43 ±0.22 

0.61 ± 0.16 

0.51 ± 0.19 

0.15 ± 0.12 

0.46 ± 0.27 

0.28 ± 0.18 

0.38 ± 0.12 
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Piroxicam 

Azapropazone 

6.3 

6.3 

215 

210 

0.20 ± 0.11 

0.02 ± 0.02 

Notes: Data derived from in vitro experiments with conventional NSAIDs. 

The maximum degree of respiration stimulation was similar among the NSAIDs 

tested, but the concentration needed for maximum stimulation differed. The 

more acidic the NSAID the higher concentration required for maximum uncou-

pling (Spearman’s correlation coefficient [r] = 0.87, P<.001; n = 12). 
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Table 2. Results of Studies of Uncoupling and Other Factors That Contribute to Small Bowel Damage From 

NSAIDs 

Reference Drug Uncoupling Mucosal  

Level of 

PGE2 

Intestinal 

vitro vivo  Permeability Inflammation Ulcers 

(75) Flurbiprofen + +  +  + 

 NO-flurbiprofen 0 +  +  + 

        

(73) DNP + + +10% + + 0 

 R-flurbiprofen + + –12% + + 0 

 R + S flurbiprofen  + + –92% + + + 

 S- flurbiprofen + + –89% + + + 

        

(78) Indomethacin + + a Reduction of 

71%–96% 

+ + + 
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 Nimesulide + + b 0–75% 0 0 0 

        

(154) DNP + + +12% + + 0 

 Indomethacin + + –89% + + + 

 Aspirin + 0 –88% 0 0 0 

 Aspirin + DNP + + –81% + + + 

        

(79) Indomethacin + + –90% + +  

 Celecoxib 0 0 0% 0 0 0 

        

(36) COX1-/-   –97% 0 0 0 

 COX1+/+ + SC560   –97% 0 0 0 

 COX2-/- (50%) 

(50%) 

  96% 

94% 

0 

+ 

0 

+ 

0 

+ 

DNP, dintirophenol; SC560, selective non-acidic inhibitor of COX1; Cox1+/+, full-length Cox1 gene in mice; Cox1–/–, 

homozygous disruption of Cox1 gene in mice; Cox2–/–, homozygous disruption of Cox2 gene in mice. Approximately 

15% of Cox2–/– mice die from small bowel perforation; 50% of mice had normal intestinal permeability and no intestinal 

inflammation and 50% had small bowel ulcers. 

Uncoupling: 0, no uncoupling; +a, 60%–70% of the mitochondria have uncoupling determined by electron microscopy;  
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+b, 10%–30% of the mitochondria have uncoupling determined by electron microscopy 

Mucosal levels PGE2: percentages indicate increase (+) or decrease (–) from control level 

Permeability (measured by 51CrEDTA) and inflammation (fecal level of calprotectin): 0, unchanged; +, increased 

Number of small bowel ulcers: 0, none; +, present 
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FIGURE LEGENDS 

 

Figure 1. Mechanisms of Gastrointestinal Damage by NSAIDs 

In our model, the interaction between NSAIDs and phospholipids and uncoupling of oxidative phosphorylation damage 

intestinal cells and increase gastrointestinal permeability. Inhibition of COX reduces microvascular blood flow, and lu-

minal aggressive factors modify and amplify this reaction, leading to inflammation, erosions, and ulcers. Principal luminal 

aggressors are acid and pepsin in the stomach and acid, bile, and bacteria in the small bowel.  

 

Figure 2. Structures of Conventional NSAIDs and Derivatives 

Conventional NSAIDs are usually lipid-soluble molecules (often benzene derivatives) with an acidic carboxylic group. The 

analgesic paracetamol has no anti-inflammatory activity and does not cause gastrointestinal damage because it lacks the 

acidic moiety. Derivatives of flurbiprofen, such as nitric oxide flurbiprofen and flurbiprofen dimer (thought to cause less 

intestinal damage than flurbiprofen) are non-acidic because of the esterification of the carboxylic moiety. 

Nabumetone, a pro-NSAID that causes minimal gastrointestinal damage, becomes anti-inflammatory only after conver-

sion in the liver into the active component MNA, which is acidic. 

 

Figure 3. Mechanism of Uncoupling Actions of NSAIDs 

High-energy intermediates feed into the respiratory chain; as energy is released, it is used to pump out hydrogen ions 

into the inter-mitochondrial membrane space. Normally these hydrogen ions re-enter via a channel (ionopore) that is as-

sociated with ATP synthase and this promotes production of ATP. NSAIDs, however, partition into the inner mitochondri-
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al membrane and create similar ionopores that allow hydrogen ions to enter the inner mitochondrial matrix, thereby by-

passing the ATP synthase. The uncoupling (that is, uncoupling the hydrogen gradient from the ATPase activities) by 

NSAIDs leads to cell dysfunction from decreased levels of ATP, calcium release into the cytosol, etc. 

 

Figure 4. Ion Trapping Hypothesis for NSAIDs  

The intracellular concentration of an NSAID in the stomach depends on the interaction between the pKa of the NSAID 

and luminal pH as well as the rate of exit from the cell, which also depends on the pKa of the drug. Furthermore, lipid sol-

ubility, size, and metabolism of the NSAIDs and protein binding have roles in absorption-trapping. The more acidic the 

NSAID, the more it depends on a low gastric pH (an uncharged NSAID partitions through the surface cell membrane 

more effectively that a charged one) for entry into the epithelial cells; once inside, it is again charged (cytosol has a pH of 

7.4) and it accumulates to reach a greater concentration than NSAIDs with pKas that are closer to neutral. Uncoupling 

potency appears to be directly proportional to the pKa of the NSAID. For example, after an oral dose of aspirin (pKa of 

3.5) the drug does not enter the gastric mucosal cells when the gastric lumen is neutral (pH 7.0) because it is fully ion-

ised. However, at a gastric pH of 2, for example, it is uncharged and easily partitions into the cells. Inside the cell, it is ful-

ly ionized because of the intercellular pH (7.4). It can therefore not pass into the circulation, and intracellular concentra-

tions increase to the micromolar range required for uncoupling. A less-acidic NSAID with a pKa of 6.4 is less dependant 

on the luminal pKa for its entry into the gastric cells. However, because it is only partially ionized at the intracellular pH of 

7.4, it is absorbed into the circulation and the intracellular concentrations may only be modestly high in comparison with 

aspirin. Neutralizing the gastric pH with drugs like proton pump inhibitors prevents short-term gastric damage of acidic 
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NSAIDs more effectively than with less acidic NSAIDs. Because of the enormous surface area of the small intestine, the 

charge of the NSAID has only a minor role in its absorption, but ion trapping is still evident.  
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