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Abstract 

Measurement of residual stress using neutron or synchrotron diffraction relies on the accurate 

alignment of the sample in relation to the gauge volume of the instrument. Automatic sample 

alignment can be achieved using kinematic models of the positioning system provided the relevant 

kinematic parameters are known, or can be determined, to a suitable accuracy.  

The main problem addressed in this thesis is improving the repeatability and accuracy of the sample 

positioning for the strain scanning, through the use of techniques from robotic calibration theory to 

generate kinematic models of both off-the-shelf and custom-built positioning systems.  The 

approach is illustrated using a positioning system in use on the ENGIN-X instrument at the UK’s ISIS 

pulsed neutron source comprising a traditional XYZΩ table augmented with a triple axis manipulator. 

Accuracies better than 100microns were achieved for this compound system. Although discussed 

here in terms of sample positioning systems these methods are entirely applicable to other moving 

instrument components such as beam shaping jaws and detectors. 

Several factors could lead to inaccurate positioning on a neutron or synchrotron diffractometer. It is 

therefore essential to validate the accuracy of positioning especially during experiments which 

require a high level of accuracy. In this thesis, a stereo camera system is developed to monitor the 

sample and other moving parts of the diffractometer. The camera metrology system is designed to 

measure the positions of retroreflective markers attached to any object that is being monitored. A 

fully automated camera calibration procedure is developed with an emphasis on accuracy. The 

potential accuracy of this system is demonstrated and problems that limit accuracy are discussed. It 

is anticipated that the camera system would be used to correct the positioning system when the 

error is minimal or notify the user of the error when it is significant.  
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1 Introduction 

Residual stresses are those stresses present in an object in the absence of any external load or force. 

Such stresses can be very detrimental to the performance of a material or the life of a component. 

Alternatively, beneficial residual stresses can be introduced deliberately [1]. Residual stresses can be 

introduced by many processes that materials are subjected to during assembly such as welding and 

bending. Neutron and synchrotron diffraction are non-destructive methods of determining residual 

stress from measurements of strain within crystalline or polycrystalline materials. Several dedicated 

instruments are available at synchrotron and neutron facilities worldwide for stress and strain 

scanning; with new instruments being commissioned on a regular basis. Using such methods a beam 

of neutrons or X-rays is directed at the sample and the diffracted particles are collected at a detector 

and used to compute the stresses. Data is collected throughout a small volume of the sample 

material known as the gauge volume, which is defined by the intersection of the incident and 

diffracted beams as shown in Figure 1.1a. One important aspect of making stress measurement 

using synchrotron or neutron diffraction is the accurate placement of the desired measurement 

points (which are inside the sample) into the gauge volume because stresses and strains in a sample 

are usually position and orientation dependent [2]. The main aim of this thesis is to improve the 

repeatability and accuracy of sample positioning as it applies to stress measurement, using robot 

calibration and sample monitoring which were applied to the ENGIN-X instrument described in the 

next Section. Some of the challenges of sample positioning for stress scanning are detailed in Section 

1.2, and the motivation for this work is elaborated in Section 1.3. 

1.1 ENGIN-X – Strain Scanning Neutron Diffractometer 

ENGIN-X, which is situated at the ISIS neutron source near Oxford in the UK, is one of a number of 

instruments worldwide dedicated to measuring stress and strain in engineering components and 

other structures. The ENGIN-X instrument, on which this work is largely centred, was, in fact, the 

world’s first neutron diffraction instrument designed and built specifically for making measurements 

of stress for industry [3].  Access to instruments like ENGIN-X is via a peer-review process, the users 

submit a proposal describing their experiment and the proposal is reviewed, successful applicant are 

awarded a few days of instrument access (or beam time) typically between 2 – 3 days. Due to the 

limited beam time, it is essential to optimise the experiment to ensure that the beam is maximised.  

ENGIN-X consists of both static and mobile components enclosed in an experiment hutch. The 

neutron beam enters the instrument hutch through a set of 3 motorized slits known as Jaws. One of 
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the sets of jaws is fixed at 4m and one at 1.5m upstream of the sample position; the third set can be 

translated along a single axis towards or away from the sample to account for varying sample 

dimensions. The jaws are used to modify the horizontal and vertical size of the neutron beam. A pair 

of collimators are mounted in front of two neutron detectors centred at ±90 degrees to the incident 

neutron beam. These collimators, which comprise radially arranged neutron absorbing fins, ensure 

that only the neutrons diffracted from within the desired gauge volume arrive at the detectors; in 

fact the collimators define the size of gauge volume parallel to the beam. Each detector consists of a 

2D array of scintillator detector elements which emit light on contact with a neutron particle [3]. The 

arrangement of these components is shown in Figure 1.1. A positioning table with X, Y, Z, Ω stages is 

provided to accurately place measurement points within the sample at the centre of the gauge 

volume. The measurement point needs to be placed with high accuracy in terms of position and 

orientation; desired accuracies around tens of microns [4] are not uncommon in stress scanning 

experiments. Sometimes it is necessary to manipulate the orientation of the sample in the beam in a 

more complex manner and a three axis robotic manipulator is available in such instances. For a more 

technical description of ENGIN-X, see [3]. 

The complexity of the shapes and sizes of the samples measured on ENGIN-X and similar 

instruments varies significantly between experiments. Positioning or aligning samples with simple 

geometry can be done using simple optical theodolites but as the complexity of the sample 

geometry increases there is a need for a better way to manipulate the sample. The challenges of 

positioning samples accurately were recognised from early experiments on the ENGIN instrument [5] 

(ENGIN was a fore-runner of ENGIN-X). The method of wall scanning was used whereby the position 

of the sample, in relation to the neutron beam, is established by passing the surface of the sample 

through the beam at various points and by mathematically fitting the resulting intensity curve to 

determine the position of the sample [6]. This was a time consuming and potentially error prone 

process which could unproductively consume a considerable proportion of the time allocated to an 

experiment. For this reason the ENGIN-X design proposal included development of a software 

component with the purpose of making this task easier, more accurate, and quicker. The SScanSS 

software [7] was the outcome of this endeavour. SScanSS was the first application of robotics 

principles to the simulation and control of general beam-line systems.  SScanSS is now regularly used 

for the measurement of samples with a complex geometry in the areas of engineering and 

archaeological research [8]. The SScanSS approach belongs to a group of alignment techniques 

known as model based alignment in which models of the instrument are used to perform the sample 

alignment. An example of a SScanSS simulation can be seen in Figure 1.2. 

 



 

3 
 

 

(a) 

 

(b) 

Figure 1.1: (a) Top view schematic diagram of the ENGIN-X instrument showing the gauge volume 

(b) A three-dimensional virtual model of the ENGIN-X instrument. 

1.2 Challenges of Sample Alignment 

The positioning of samples for stress scanning is a vital part of most experiments but this is not 

without its problems. Here are a few of the challenges that could arise when performing an 

experiment. It should be noted that although the challenges below are discussed within the ENGIN-X 

context, many similar instruments experience the same problems. 

 

 
Incident slits or Jaws 

Sample 

Collimators 

 

Detector 

Bank 1 
Detector 

Bank 2 

Neutron 

Beam 

Gauge 

Volume 



 

4 
 

1. Discrepancy between Simulated and Real motion: The major output from any model based 

alignment software would be a set of motor positions which inform the positioning system 

where to move so as to place the measurement points in the gauge volume. The motor positions 

are computed offline using models of the sample and the instrument, which could have 

inadequate accuracy; therefore it is important to both minimise any sources of error through, 

for example better hardware modelling, but also to be able to determine if the sample or gauge 

volume has, in fact been accurately positioned before measurements commence. 

2. System Failure: Failure of the positioning system could account for misalignment of the sample 

and could lead to wasted beam time if the misalignment is discovered or erroneous results if not 

discovered. For example, during a user cycle at ENGIN-X, it was reported by some users that the 

ENGIN-X positioning table would rotate the sample when not commanded to do so; such types 

of failures could slip by a non-observant user and end up as published results. It is therefore 

necessary to have a method to monitor sample 3D position and in some cases orientation in the 

absence of a user. 

3. Sample-Instrument Collisions: Samples colliding with parts of the neutron instrument has 

always been a concern during sample alignment. With model based alignment, it is possible to 

check for collisions between the sample, positioning systems and the other instrument 

component like the collimator or jaws using the available models of these components. But in 

practice collisions could still be unhandled if models are not accurate enough or they are 

incomplete, for example, when a complex sample needs to be positioned a jig (example shown 

in Figure 1.3) must be assembled that would properly hold the sample. Each jig is different 

depending on the geometry of the sample. Typically the jigs are not included with the sample 

model as shown in Figure 1.2, hence these jigs are a potential source of collisions. This implies 

that collisions have to be checked manually before the experiment can proceed.  
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Figure 1.2: Experiment and corresponding SScanSS simulation, showing sample aligned in two 

different orientations for stress measurements. 

4. Human Error: Simple experiments that do not require model based alignment still require the 

researcher to manually align the sample in the gauge volume, for example using a theodolite. 

Theodolites have been provided in the instrument hutch to check the sample alignment is 

correct but theodolites need to be handled manually. This could be error prone as motor 

position could be misread or wrongly recorded leading to wasted beam time. Also during manual 

alignments, no checks exist to stop the researcher from accidentally running the sample into a 

collimator or any other instrument part which could be a very costly accident. 

Physical 

experiment on a 

welded pipe 

SScanSS 

simulation of 

the welded pipe 

experiment 
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Figure 1.3: Examples of unmodelled Jigs used to hold a welded pipe during experiment. 

 

1.3 Motivation 

The aim of this work is to design, build, and assess a laboratory system for the simulation, control, 

and real time monitoring, of neutron and synchrotron diffraction experiments, as used for 

measuring strain in engineering components and samples. Although synchrotron X-rays and 

neutrons have different scattering characteristics, the control and monitoring of sample position and 

instrument hardware for synchrotron and neutron diffraction experiments are similar; therefore this 

project will focus on experiment control and monitoring in the case of neutron diffraction without 

any loss of generality. The project might be considered in two parts:  

1. The first part explores the possible extension of model based alignment techniques, such that 

the simulation is built on accurate models of real, imperfect hardware rather than the currently 

assumed ideal hardware. This involves the design of a system for characterising and modelling 

real sample positioning systems, and other items of moving instrument hardware of varying 

design. The approach that has been taken for this part of the project is to explore the application 

of methods from the area of robot kinematics and calibration. The underlying requirement, in 

terms of sample positioning, is that the sample be positioned accurately in relation to the 

neutron beam. Framing the problem in terms of modelling and controlling hardware, as implied 

by the use of robotics methods, assumes that the relationship between the hardware and the 

neutron beam is well understood.  

The approach outlined above may be achievable in principle; however a vital question will be 

that of accuracy. The robotic methods to be employed are typically applied to the types of 

industrial robots used on, for example, manufacturing production lines. In such applications 

accuracy is likely to be measured in millimetres. In contrast accuracies of the order of 100 

microns or better will be required if the methods are going to be useful for controlling neutron 
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diffraction instruments. This will require application of techniques, and the associated metrology 

hardware, at the limits of their expected accuracies, and will demand a comprehensive 

assessment and analysis of the achievable accuracy, under a range of relevant experimental 

conditions. 

2. The second part of the project is to enable the progress of experiments to be continually 

monitored and errors to be reported or automatically corrected. This element of the project, 

which requires tracking numerous items of instrument hardware, to high accuracy, in an 

optically complex environment, will build on techniques from the area of computer vision. The 

work done in the project would potentially mitigate the first two challenges in Section 1.2 and 

could address the other challenges with some extensions. The work done in this project is 

motivated by the following benefits. 

1.3.1 Improved Accuracy in Experimental Planning 

A major benefit of this work is the improvement of some of the practical aspects of setting up and 

executing diffraction measurements for strain determination. These practical aspects such as sample 

alignment are still considered too prominent in the experimental process; simulation software 

speeds up experimental planning significantly. This work contributes particularly to the accuracy of 

the models used for the experimental planning by ensuring that the virtual positioning system is as 

close as possible to the real world counterparts. The need for automation and simulation are also 

recognised by Wimpory and Boin [9] as a tool to increase throughput and maximize the productive 

use of beam time. They discussed the possibility of introduction of simulation into the instrument 

proposal submission and the use of smart positioning techniques all of which would not be possible 

or accurate enough if the instrument is incorrectly modelled. 

1.3.2 Flexibility 

There has been recently increased interest in exploring the use of industrial robotic arms as sample 

positioning systems [10, 11]. The motivation for the interest in robotic arms is the potential 

improvement in flexibility and the possibility of automation. For example, such systems may enable 

measurements in multiple orientations (see in Figure 1.2) be acquired without manual intervention; 

something which is not possible using traditional XYZΩ tables. The technique developed in this work 

allows the kinematic models of such robotic systems to be determined and included in the 

simulation software. Industrial robotic arms could even allow for sample changing so that many 

more samples which have been pre-scanned and attached to some holder can be placed near the 

instrument and picked up when necessary; this work could potentially allow such a system to be 
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designed. This work could also allow new types of measurement, such as mapping strain 

components in relation to complex internal or external surfaces, which are currently impractical. 

1.3.3 Instrument and Sample Monitoring  

The monitoring element of the project has benefits in two areas; from a practical point of view 

accuracy will be improved and problems such as sample-instrument collisions could be avoided, but 

equally importantly will be the expected benefits to quality assurance. Neutron diffraction methods 

are increasingly being used and relied upon by safety critical industries such as aerospace and 

nuclear power. The continual monitoring and checking of experiments will significantly increase 

confidence in the techniques as a whole.  The data acquired form the monitoring systems could be 

used to create smart or self-learning simulations (for instance by genetic algorithms) that could 

constantly suggest ideas to improve the instrument [9]. 

1.4 Layout of the Dissertation 

A literature review of the relevant work to this dissertation is presented in Chapter 2, which include 

reviews of diffraction as applied to stress scanning, robotic techniques for modelling positioning 

systems and 3D measurement systems. 

Chapter 3 details the principles for modelling of the instrument positioning system or other moving 

hardware. A case study is presented of the ENGIN-X positioning system and the accuracy is tested 

using 3D measuring devices. Chapter 4 presents the development of the sample/instrument 

monitoring system and the evaluation of the accuracy of the system 

Chapter 5 presents practical demonstrations of the techniques developed. A texture experiment is 

presented to demonstrate the flexibility acquired from the technique. A complex stress scanning 

experiment is also presented to demonstrate the capabilities of the full system. Chapter 6 concludes 

the work presented in this thesis and gives possible directions for future work. 
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2 Background 

This chapter begins with a discussion of diffraction and sample alignment then presents a review of 

some of the relevant robotics terminology that will be used in the rest of the thesis. The chapter 

then proceeds to discuss the methodology through which robotic positioning systems could be 

modelled accurately for stress measurements. Subsequently a review of 3D measuring devices is 

presented since various scanning technologies will be employed for sample capture and/or sample 

tracking and in characterising hardware kinematics. It is likely that these technologies will be 

required to work at their limits of accuracy and a good understanding of available technologies and 

their advantages and limitations is required. Afterward laser tracking systems are discussed. Laser 

trackers will be vital for the calibration of positioning systems and correlating other elements of the 

real world laboratory to their virtual models and finally presented is a review of camera modelling 

and calibration which would be essential for the monitoring part of the project. 

2.1 Diffraction 

Neutron and X-ray diffraction are methods that are used for extracting the lattices parameters of a 

crystalline sample. Particles like neutrons and electrons exhibit both particle and wave like 

properties, this dual behaviour is described by the De Broglie equation below where 𝑝 is the 

momentum of the particle, 𝑣 is the particle speed, λ is the wavelength, 𝑚𝑛 is the particle mass and ℎ 

is Plank’s constant. 

 𝑝 = 𝑚𝑛𝑣 =
ℎ

𝜆
 2.1 

When a beam of such particles with wavelength λ illuminates a crystalline sample, the scattering 

angle 2𝜃ℎ𝑘𝑙 of the beam is related to the d-spacing 𝑑ℎ𝑘𝑙 of the diffracting lattice plane. This 

relationship is known as Bragg’s law of diffraction which is given by Equation 2.2 below and 

illustrated in Figure 2.1 

 𝜆 = 2𝑑ℎ𝑘𝑙 sin𝜃ℎ𝑘𝑙 2.2 

Constructive interference occurs when the difference in path length of the diffracted waves from 

adjacent planes is equal to the wavelength of the radiation. The constructive interference is typically 

seen as Bragg peaks in the diffraction spectrum. With knowledge of the wavelength of the radiation 

and the scattering angle, it is possible to compute the inter-planar spacing, i.e. the lattice spacing of 

the material. 

The radiation used for stress measurement could be neutrons or X-rays. The choice of which to use 

would depend on the depth of the measurement and attenuation length of the radiation in the 

material and other instrument specific consideration. Irrespective of the radiation used for the 
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measurement, the method of extracting stain and stress from the lattice parameters remains the 

same.  

 

Figure 2.1: Illustration of Bragg scattering showing the incident beam diffracting off the lattice 

planes of a crystalline sample at 2θ angle. 

2.1.1 Strain and Stress Determination 

Strain is determined by measuring the change in the d-spacing of the crystalline sample. If the strain-

free inter-planar spacing 𝑑0,ℎ𝑘𝑙 of the sample is known, the stain 휀ℎ𝑘𝑙 can be computed using 

Equation 2.3 where the ‘ℎ𝑘𝑙′subscripts are the miller indices by which a particular crystal plane is 

identified.   

 휀ℎ𝑘𝑙 =
𝑑ℎ𝑘𝑙 − 𝑑0,ℎ𝑘𝑙

𝑑0,ℎ𝑘𝑙
=  
∆𝑑ℎ𝑘𝑙

𝑑0,ℎ𝑘𝑙
 2.3 

Strains and stresses are dependent on the position and orientation of the measurement volume in 

the sample [12]. As mentioned in Chapter 1, sample positioning is typically performed using XYZΩ 

tables, with additional hardware such as rotation tables or goniometers being added to meet 

particular requirements.  

The stain 휀𝑖𝑗  at a point in a material can be represented in the tensor notation as 휀𝑖𝑗 =

 (

휀11 휀12 휀13
휀21 휀22 휀23
휀31 휀32 휀33

) where the diagonal elements represent normal strains in the coordinate 

directions and the other elements are shear stains. The diagonal components of the strain tensor are 

known as the principal strain components. Six measurements are typically required to fully 

characterise the strain at a measurement point but knowledge of the principal strain components of 

the sample, allows full characterisation with only three measurements. Each of the three 

measurements is taken with the sample in a different orientation although an instrument could be 

2θ 

Diffracted vector kd Incident vector k
i
 

Diffracting planes 

Scattering vector Q 
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designed to measure several components at once1.  If strains at the three principal directions have 

been measured, the stress 𝜎𝑖𝑗 can be comptuted from the strain using Equation 2.4 where  𝐸 is 

the Young's modulus (modulus of elasticity),  𝑣 is the Poisson's ratio. 

 𝜎𝑖𝑗 =
𝐸

1 + 𝑣
[휀𝑖𝑗 + 

𝑣

1 − 2𝑣
(휀11 + 휀22 + 휀33)] 2.4 

The accuracy of residual stress measurement is dependent on the accuracy of alignment of several 

components of the instrument such as the jaws and the collimators, the accuracy of the peak fitting 

algorithm used to determine the diffraction peak position and, the amount of noise in the detected 

data. The following should be considered when determining the sample alignment accuracy required 

for an experiment: 

 The size of the region on the sample in which stress is to be measured should be considered. The 

positioning should be accurate enough to avoid loss of spatial resolution in the strain maps. 

 Stress measurements made near the surface of a sample require high positioning accuracy.  

 Typically samples with larger strain gradients would require higher positioning accuracy. 

A general rule of thumb within the field of engineering strain scanning is that the sample should be 

positioned to an accuracy that lies within 10% of the size of the gauge volume.  Considering that 

gauge volumes on ENGINX are typically of the order of 1mm-4mm this indicates a positional 

uncertainty of 0.1-0.4mm. In the case of X-ray diffraction a typical gauge volume size could be as 

small as 0.1mm which indicates a positional uncertainty of 0.01mm. However, as indicated above 

certain measurements may require more accurate positioning than suggested by this rule. 

Systematic uncertainties in the measured strain are introduced when there is systematic error in the 

positioning [12]. 

2.2 Sample Alignment 

Aligning an arbitrary sample with respect to the beam is a non-trivial matter and several methods 

have been proposed for sample alignment. Each of these methods have their associated 

shortcomings and benefits. A widely accepted method of aligning samples is a method known as wall 

scanning which can locate the sample using the beam. Another increasingly popular method is the 

model based alignment where some model of the sample (usually a 3D laser scanned model) is used 

to align the physical sample. There are also various methods of manual alignment where some 

measurement device is used to locate the physical sample on the instrument. The next sections 

discuss these methods in detail.  

                                                           
1 The design of ENGIN-X allows two orthogonal components to be measured in one orientation therefore the 
principal components can be measured with the sample rotated to two orientations.  
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2.2.1 Wall Scanning 

In this method, the sample surface is passed through the beam while the scattered intensity is 

recorded [6]. The position of the sample in relation to the beam is then determined from the 

intensity profile (see Figure 2.2). By repeating this process, using scans through different points on 

the sample surface, the sample alignment may be determined.  

The major benefit of this method is that the sample is aligned with respect to the beam and it is the 

beam which is used to make measurement. Wall scanning is the only method with this advantage. 

Wall scanning is implicitly assumed to be the most accurate sample positioning method but this 

accuracy is dependent on a number of factor including: the geometry of the sample and the 

repeatability of the positioning table. For example, if the positioning table is repeatable to 100 

microns the calculated sample position though found with higher accuracy can only be repeated to 

about 100 microns. It is popularly argued that wall scans could handle situations where the beam 

shifts but this would only be so if the beam shifted before alignment, if the beam shifted during the 

experiment then the wall scan would be as bad as every other method. 

 

Figure 2.2: Typical wall scan for a relatively thin sample (4mm) [4]. 

 

This process of wall scanning can take significant time, particularly with a sample of complex 

geometry, thereby considerably reducing the time available for making scientifically useful 

measurements. The method can be affected by large grains (crystals with diameter greater than 50 

microns), multiple scattering (when the radiation is diffracted multiple times before reaching the 
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detector), texture (crystals arranged in a non-random orientation) etc. in the sample. The effect of 

grain size on the result of a wall scan is illustrated in Figure 2.3. The typical assumptions made for a 

wall scans are that the sample geometry is known (e.g. flat plate, cylinder) and the composition of 

the material is uniform. These assumptions could fail for a large number of industrial samples. 

 

Figure 2.3: Illustration of the results of a wall scan on a sample with uniform grain size (Left) and a 

sample with large grains (Right). The position of the gauge volume in the sample is shown in red. 

 

2.2.2 Manual Alignment 

Manual alignment methods are used exclusively for simple samples. Such methods rely on the 

premise that an accurate and reliable physical means exist by which the centre of the gauge volume 

in space can be found. For example, a theodolite could find the centre of rotation of the theta stage 

and then the gauge volume is adjusted to lie in the same position. The adjustment of the gauge 

volume is carried out through pin scanning i.e. wall scanning a pin parallel to the beam and then 

adjusting the position of the collimators and then scanning perpendicular to the beam and adjusting 

the jaws. The theodolite would then serve as a physical means of locating the gauge volume if its 

position is kept stable. Manual alignment methods vary from one instrument to another but the 

common idea is to use a measuring device e.g. theodolites, cameras, lasers etc. to align certain parts 

of the sample and then used the aligned parts to compute the appropriate offsets for the 

measurement points. Certain assumptions are typically made about the shape of the sample when 

computing the measurement points such as assuming a perfectly flat surface or straight edge.  
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The measuring device used, for example, on ENGIN-X, is a theodolite. The theodolite is mounted at 

45° to the beam axis of the instrument. The crosshairs of the theodolite have been pre-set to point 

to the centre of the gauge volume. As an example, aligning a cylindrical sample could be carried out 

using the following steps: 

 Rotate the positioning table so that the axis of the X stage is perpendicular to the theodolite. 

 Find the offsets that bring the each of the sample’s edges to the centre of the gauge volume.  

 Using those offsets, compute the location of the measurement point on the x axis.  

 Repeat the previous steps for the Y stage to determine the (𝑥, 𝑦) location of the measurement 

point.  

 Finally the 𝑧 component of the measurement point is determined by translated the Z stage until 

the measurement point is perfectly aligned in the crosshairs. 

Manual alignment could be tedious and time consuming when multiple samples or a large number 

of measurement points are involved but has the advantage of simplicity as a result it is commonly 

used to aligned stain-free samples which have been cut into near perfect shapes and typically have a 

small number of measurement points. 

2.2.3 Model based Alignment 

These methods are also based on the premise that a physical means exists by which the centre of 

the gauge volume in space can be found. Using this physical means, a coordinate system for the 

instrument is created with the origin centred at the gauge volume and the x-axis would typically be 

aligned to direction of the beam. The concept of an instrument coordinate frame is essential to 

model based alignment. A typical model based alignment might consist of the following step: 

 Construct a two or three dimensional sample model using, for example, laser scanning, 

computer aided design (CAD), probed surfaces or tomographic imaging.  

 Identify the required measurement points in the sample model.  

 If the models were made prior to when the sample was mounted on the instrument, the position 

and orientation of the sample with respect to the instrument must be determined.  This could be 

done using special mounts that align into the instrument coordinate system and mounting the 

sample on them before constructing the sample model by, for example, scanning. Alternatively, 

fiducial markers could be added to the sample before scanning and the sample position on the 

instrument determined by measuring the position of these markers once the sample is mounted.   

 Once the position of the sample model coincides with that of the real sample, it possible to 

calculate the positioner offset that bring each measurement point to the origin of the 
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instrument coordinate frame. The complexity and accuracy of such calculation would depend on 

the positioning system. 

Several researchers have proposed model based alignment techniques. Ratel et al [4] proposed 

doing sample alignment with a modular sample holder, coordinate measurement machine (CMM) 

and a XYZΩ positioning table. Their sample was mounted on the positioner and digitized with the 

CMM. Digitizing the sample on the positioner avoids the use of fiducial markers.  Measurement 

points were specified using the model acquired from the CMM and the coordinate frame of the 

CMM was set as the inverse of the axes of the positioning table, enabling motor positions to be 

generated by simply inverting the coordinates of the measurement point. The solution proposed by 

Ratel requires samples to be mounted on sample holders which are then used to align the 

coordinate systems on the instrument and the CMM. The use of such sample holders may not be 

convenient in the case of large or geometrically complex samples. The method also assumes that a 

standard XYZΩ positioning table will be used for sample alignment, which prohibits the use of more 

flexible positioning options. Altenkirch et al [10] proposed the use of a Stäubli RX90L robotic arm for 

sample positioning. They rely on the control unit supplied by the manufacturer for robot control but 

tested the accuracy of the robot using ISO standard testing procedures and found it to be sufficient. 

They scanned the sample along with the attached sample holder. The scanned samples were used to 

generate scripts that placed the specified measurement points in the gauge volume of the 

instrument. Their solution relies on the Stäubli control unit and therefore is not easily extendable to 

other neutron diffractometers using different positioning systems. A Stäubli RX160 six axis robot was 

previously installed on the STRESS-SPEC instrument at FRM II, but was deemed to be accurate 

enough only for texture measurements. This robot has recently been used for stress measurement 

[13] using a ring of six retro-reflective targets mounted on the robot. Measurements of at least three 

targets, with a laser tracker, are used to improve positioning accuracy. Ensuring that three reflectors 

are visible each time is acknowledged as an issue with this approach, which also relies on the 

manufacturer’s control unit for controlling the robot. James et al [7] developed the Strain Scanning 

Simulation Software (SScanSS) which is currently used on ENGIN-X and at several other neutron 

facilities. SScanSS is based on a virtual laboratory and incorporates three dimensional models of the 

sample. SScanSS uses techniques from robot kinematics [14, 8] to model the positioning systems of 

the instruments as kinematic models. The use of kinematic models allows an arbitrary positioner or 

combination of positioners to be utilised on an instrument. 

The attraction of model based alignment is the ability to quickly align samples with complex 

geometry. Alignment is based on sample geometry only so there are no problems caused by sample 

composition. Samples can be scanned in advanced thereby minimizing delay and maximizing the 
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beam usage. The disadvantage of this method is that the alignment is not done with respect to the 

beam so it is vulnerable to beam shifts. It could be determined if a beam shift has occurred by 

monitoring the position of the beam defining components like the jaws or collimator.  Another 

disadvantage is that the alignment is only as good as the models of the sample and instrument. 

Discrepancy between instrument model and real instrument would lead to errors in alignment.  

An important factor that has contributed to the rise of model-based alignment is the observation 

that many of the positioning systems used by neutron diffractometers can be classified as serial 

robots [14]. This has allowed a single software, such as SScanSS to be deployed at several facilities, 

thereby providing a common user interface. This observation is essential for the work done in this 

thesis therefore the next section introduces some robotic principles and how they can be used to 

model such positioning systems. 

2.3 Robotics Terminology 

A robotic positioning system (or manipulator) is composed of a set of links connected together by 

joints. The joints can either be very simple, such as revolute (rotational) or prismatic (sliding) joints, 

or they can be more complex, such as spherical or universal joints. The main purpose of a 

manipulator is to place a given tool (in the case of a neutron diffractometer, the tool is the sample) 

known as the end effector, at a desired position and/or orientation in a working environment. The 

reachable position of the end effector is limited by the following factors: number of joints, types of 

joints, link lengths, joint limits, and joint arrangement. The set of all reachable points in space is 

called the manipulator’s workspace. There are three important properties of a manipulator in terms 

of the positioning of its end effector; these are accuracy, repeatability, and resolution. Accuracy is 

the difference between the manipulator’s intended position and its actual position. For example, a 

combination of internal and external sensors might be used by the manipulator to determine its 

position, but these will only work with finite accuracy. Repeatability describes how much the 

position of the end effector deviates when it returns to a previously visited position. Resolution is 

the smallest change that can be measured by the manipulator’s sensors, or caused by the actuators, 

whichever is larger. The achievable accuracy of a manipulator is limited by the repeatability while 

the achievable repeatability of the manipulator is limited by the resolution. 

2.3.1 Serial and Parallel manipulators 

Robotic manipulators can be classified into different groups based on the topological arrangement 

of the links that make up the manipulator. When the links are arranged in a closed loop chain the 

robot is called a parallel manipulator, a closed loop chain is obtained when a joint has three or more 
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links connected to it [15], see Figure 2.4a. A manipulator whose links are arranged in an open loop 

chain, having only two links attached to a joint (or one in the case of the base link and end effector) 

is known as a serial manipulator (Figure 2.4b). A manipulator with both closed loop and open loop 

chains is called a hybrid manipulator. It should be noted that although not typical of serial 

manipulators in appearance the standard XYZΩ, sample positioning systems in use on most 

engineering diffractometers can be accurately classed as serial manipulators.  

There are advantages and disadvantages with both sorts of robot.  Parallel robots are theoretically 

more accurate than serial robot [16] but in practice accuracy would depend on good robot design. 

Parallel robots could provide more accuracy for large or heavy samples due to their better stiffness 

but typically less accuracies are required for larger samples so it should be determined if such 

accuracies are necessary. Serial robots, like industrial robotic arms, provide more dexterity than 

their parallel counterparts. For example, they could allow the measurement of the principal 

components of stress without manual intervention. Parallel robots typically have smaller workspaces 

than serial robots with similar size ratio due to the existence of singularities (configurations in which 

the manipulator is uncontrollable due to loss of one or more degrees of freedom) in the parallel 

robots. A summary of the advantages and difference of parallel and serial manipulators is presented 

in Table 2.1.  

                     

(a)                                                                                (b) 

Figure 2.4: Examples of parallel and serial manipulators (a) Stewart-Gough Platform or Hexapod [17] 

(b) Epson C4 Revolute manipulator [18]. 

As pointed out above, most positioning systems used by neutron diffractometers can be classified as 

serial robots; however one exemption is the SALSA engineering diffractometer located at the 
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Institute Laue–Langevin (ILL). This instrument uses a type of parallel robot known as a Stewart-

Gough platform for sample positioning [19]), however this approach is very much in the minority, 

and for this reason the focus of this thesis is on serial robots. 

2.3.2 Robot Kinematics 

The motion (positon, velocity, and acceleration) of a manipulator can be studied under two branches 

of mechanics called kinematics and dynamics. Kinematics is the study of the motion of a body or a 

set of bodies (in this case links) without considering the forces causing the motion. Dynamics is the 

study of the motion of bodies, including the forces causing the motion and other properties of the 

bodies like mass and inertia. Most model-based alignment techniques proposed in the literature 

focus on kinematic modelling, due to its simplicity and the fact that it abstracts away information 

such as sample mass and positioner velocity. The assumption is made that the design of sample 

positioning systems, i.e. the stiffness of components and the general slow movement speeds, is such 

that dynamical issues are unimportant. Therefore this thesis is concerned largely with kinematic 

descriptions and will investigate dynamics when deemed necessary.  

 Serial Parallel [15] 

Advantages  Simpler Mechanism 

 Large Workspace 

 Less floor space required when 

compared  to the parallel 

 Higher accuracy 

 Higher load ratio due to higher 

stiffness 

Disadvantages  Lower accuracy 

 Errors are amplified along the chain 

 More complex  

 Limited workspace due to 

singularities 

Table 2.1: Advantages and disadvantages of the serial and parallel manipulators 

Forward Kinematics of Serial Manipulators 

The forward kinematics of a manipulator is the computation of the position and orientation of the 

end effector given the joint variables. Assuming each joint has only a single degree of freedom the 

action of that joint can be described by a single real number which is called the joint variable; the 

joint variables are the joint angles in the case of a revolute joint or the link offset in the case of a 

prismatic joint. The forward kinematics of a serial manipulator is given by equation below 



 

19 
 

 𝑋 = 𝑓(𝑞) 2.5 

where q is the configuration of the manipulator i.e. a vector of joint variables and 𝑋 is the 

transformation that expresses the position and orientation of the end effector. A notation is 

required to describe the manipulator with respect to the joint variables; this notation will determine 

the mapping function in the equation above and also the representation of 𝑋. Although a number of 

notations have been proposed in the literature [20, 21], a commonly used notation [22, 23] is the 

Denavit-Hartenberg notation. For a serial manipulator having 𝑛 joints and 𝑛 + 1 links (see Figure 

2.5), the joints are labelled from 1 to 𝑛 and links from 0 to 𝑛, so that joint 𝑖 is connected to links 𝑖 −

1 and 𝑖. Each link has a coordinate frame assigned to it with the 𝑧 axis in the direction of the axis of 

motion; this motion could be rotational in the case of a revolute joint or translational in the case of a 

prismatic joint. The 𝑥 axis is placed along the common normal between the 𝑧 axes of link 𝑖 and 𝑖 − 1. 

If the 𝑧 axes of link 𝑖 and 𝑖 − 1 are intersecting, then the 𝑥 axis is in the direction normal to the plane 

formed by the 𝑧 axes. The 𝑦 axis is selected using the right hand rule. The coordinate frame for link 𝑖 

is usually centred at joint 𝑖 + 1 or the centre of the end effector (in case of the last frame). The DH 

notation defines 4 parameters that are sufficient to describe the relationship between adjacent 

joints provided that the 𝑥𝑖 axis is perpendicular to and also intersects with the  𝑧𝑖−1 axis [24]. The DH 

parameters are defined below: 

 The Joint angle 𝜃𝑖, is the rotation around the axis 𝑧𝑖  of joint 𝑖 + 1. It is variable if the joint is a 

revolute joint, otherwise it is constant.   

 The Link twist 𝛼𝑖, is the rotation about the common normal between 𝑧𝑖−1 and 𝑧𝑖. 

 The Link length 𝑟𝑖, is the distance along the common normal between 𝑧𝑖−1 and 𝑧𝑖. 

 The displacement along the 𝑧𝑖  axis is called the Link offset denoted as 𝑑𝑖. This distance is 

variable; if the joint 𝑖 is a prismatic joint otherwise it is constant.  

Using the DH parameters, a transformation matrix that relates the coordinate frame of link 𝑖 to the 

coordinate frame of link 𝑖 − 1 is derived as. 

 𝐴 
𝑖−1

𝑖  =  𝑅𝑜𝑡𝑧(𝜃𝑖). 𝑇𝑟𝑎𝑛𝑠𝑧(𝑑𝑖). 𝑅𝑜𝑡𝑥(𝛼𝑖). 𝑇𝑟𝑎𝑛𝑠𝑥(𝑟𝑖)  2.6 

 

 = [

cos 𝜃𝑖 −sin 𝜃𝑖 cos 𝛼𝑖 sin𝜃𝑖 sin 𝛼𝑖 𝑟𝑖 cos 𝜃𝑖
sin𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 −cos𝜃𝑖 sin 𝛼𝑖 𝑟𝑖 sin𝜃𝑖
0 sin𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

] 2.7 

The homogenous matrix 𝐴𝑛  
𝑛−1 (which combines the translation vector and rotation matrix into a 

single matrix [23]) would represent the transformation from the end effector link 𝑛 to the link 𝑛 − 1. 

So to arrive at the transformation from the end effector frame (frame 𝑛) to the base frame (frame 

0), all the transformation matrices are multiplied as shown below. 
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 𝑋 =  𝑇 
0
𝑛  =  𝐴 

0
1 𝐴 
1
2… 𝐴 

𝑛−1
𝑛 2.8 

A number of variants to the Denavit-Hartenberg notation (hereafter called the DH notation) have 

been proposed [25]. One of the popular variants is also known as Craig's convention [20], this 

convention uses similar parameters to the standard DH notation; it differs in the way coordinate 

frames are assigned which results in a slightly different transformation matrix.  

 𝐴 
𝑖−1

𝑖  =  𝑅𝑜𝑡𝑥(𝛼𝑖). 𝑇𝑟𝑎𝑛𝑠𝑥(𝑟𝑖). 𝑅𝑜𝑡𝑧(𝜃𝑖). 𝑇𝑟𝑎𝑛𝑠𝑧(𝑑𝑖) 2.9 

 

 = [

cos 𝜃𝑖 −sin𝜃𝑖 0 𝑟𝑖−1
sin𝜃𝑖 cos𝛼𝑖−1 cos 𝜃𝑖 cos𝛼𝑖−1 −sin𝛼𝑖−1 −𝑑𝑖 sin 𝛼𝑖−1
sin 𝜃𝑖 sin𝛼𝑖−1 cos𝜃𝑖 sin 𝛼𝑖−1 cos 𝛼𝑖−1 𝑑𝑖 cos 𝛼𝑖−1

0 0 0 1

] 2.10 

This notation does not seem to provide a computational advantage over the standard version but 

has some notational advantages over the original according to the comparison in [25].  

There are disadvantages associated with the DH notation. A 3D transformation has six degrees of 

freedom therefore six parameters are required to fully specify an arbitrary transformation; hence 

the DH notation cannot represent any arbitrary manipulator because it uses only four parameters. 

Also choosing arbitrary zero configurations (when all of the joint variables are zero) is not possible in 

the DH notation without the addition of constant joint offsets because the DH notation constrains 

the manner in which the coordinate frames of the links are assigned. This is undesirable because the 

default zero configuration could place the manipulator in an unnatural or unsafe posture. These 

disadvantages make it worth considering notations that avoid these challenges; one such notation is 

the Quaternion Modelling Convention. This notation uses a quaternion/vector pair as an alternative 

to the use of homogenous matrix. In [21], Funda et al show that this notation has certain advantages 

over the homogenous matrix based conventions in terms of computational efficiency and storage 

reduction - reducing numbers stored from 16 numbers (in a homogenous matrix) to 7 numbers (4 in 

a quaternion and 3 in a vector). This notation uses a single reference coordinate frame, which is 

typically assigned at the base of the manipulator. The other joints are represented with respect to 

this frame. A quaternion consists of a scalar and a vector as shown below. 

 𝑞 =  (cos (
𝜃

2
) ,    sin (

𝜃

2
) 〈𝑘𝑥 , 𝑘𝑦, 𝑘𝑧〉) 2.11 

The quaternion/vector pair for joint 𝑖 is defined as 𝑄𝑖 = [𝑞𝑖,  𝑝𝑖] where 𝑝𝑖  is a position vector 

〈𝑝𝑥 , 𝑝𝑦, 𝑝𝑧〉 showing the position of joint 𝑖 + 1 relative to joint 𝑖 and 𝑞𝑖 is the quaternion 

representing the direction and angle of rotation of joint 𝑖. In this representation, the forward 

kinematics is derived by multiplying all the quaternion/vector pairs for all the joints. 
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 𝑄𝑛 = 𝑄1𝑄2……𝑄𝑛−1 2.12 

 The multiplication of a quaternion/vector pairs is defined in Equation 2.13  

 𝑄𝑖−1𝑄𝑖 = [𝑞𝑖−1, 𝑝𝑖−1][𝑞𝑖, 𝑝𝑖] = [𝑞𝑖−1 ∗ 𝑞𝑖,   𝑞𝑖−1 ∗ 𝑝𝑖 ∗ 𝑞𝑖−1
−1 + 𝑝𝑖−1] 2.13 

The asterisk symbols * represent quaternion multiplication. 𝑄𝑛 gives the position and orientation of 

the end effector in terms of the reference frame. A list of other notations that have been proposed 

can be seen in [26]. 

 

Figure 2.5: A simple two link system showing the standard DH parameters 

Inverse Kinematics of Serial Manipulators 

The inverse kinematics of a serial manipulator can be expressed as the reverse of the forward 

kinematic function. Given the desired end effector transformation 𝑋, the inverse kinematic function 

would be the function that returns the set of joint variables 𝑞 required to achieve 𝑋. 

 𝑞 = 𝑓−1(𝑋) 2.14 

The solution to the inverse kinematic problem may not be unique; it is possible to have from one to 

an infinite number of arm configurations that coincide with the desired end effector position and 

orientation. It is also possible that a solution might not exist (if the desired position or orientation is 

unreachable). The inverse kinematics of a serial manipulator can be determined by analytical and/or 

numerical means. 

Analytical Solution: The analytical solution is a closed-form solution and is the faster and more 

desirable method for applications that require quick computation of the inverse kinematics [27]. 

Joint angle constraints, number of joints, joint arrangement and other factors affect the number of 
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possible inverse kinematics solutions. The upper bounds on the number of inverse kinematic 

solutions for different types of manipulators are given in [27]. One manipulator type for which an 

analytical solution can be determined is a XYZΩ positioning table. The X, Y, Z stages of the 

positioning table would only change the position of the sample but not the orientation, this 

information allows the inverse kinematic problem to be separated into two problems: the inverse 

position and inverse orientation problems; this is known as kinematic decoupling [24]. If 

homogenous matrices are used to represent the transformation of the end effector; it will be in the 

form of Equation 2.15, where 𝑅 is the rotation matrix and 𝑡 is the translation vector. 

 𝐻 =  [
𝑅 𝑡
0 1

] 2.15 

The translation vector is contributed to by all joints in a positioning table whereas the rotation 

matrix is only contributed to by the rotation stage. This allows the joint angle for the rotation stage 

to be solved first, and then the angle can be used to solve inverse kinematics of the remainder of the 

manipulator.  

Numerical Solutions: These are approximations and they tend to be slower than the analytical 

solutions and will usually return only one of the possible solutions to the inverse problem. They 

attempt to move the end effector closer to the target point using iterative algorithms. Although 

analytical solutions are preferable to the numerical ones; the former is derived from the geometry of 

the robot therefore cannot be applied to another robot of a different geometry. This implies that 

analytical solutions cannot provide a general inverse kinematic solution for all types of robots which 

could be a problem when several manipulators are modelled. Also it becomes very difficult to get a 

closed form solution for manipulators with greater than 6 degrees of freedom, so a numerical 

solution or a mixed analytical and numerical scheme is usually used [28]. In [29], numerical methods 

that have been applied to the inverse kinematic problem were surveyed. These methods include the 

Jacobian Inverse methods (Jacobian Inverse, Pseudo-Inverse, Transpose), Newton methods, 

Heuristics (Cyclic Coordinate Descent, Triangulation) and others; the disadvantages and advantages 

of a number of these techniques were discussed. 

As mentioned in Chapter 1, accurate knowledge of kinematic model parameters is necessary for high 

accuracy sample alignment, but these parameters are typically either unknown or inaccurately 

known. In the field of robotics, calibration techniques are used to determine the kinematic 

parameters of robotic manipulators.  

2.3.3 Calibrating the Robotic Positioning System 

Robot Calibration is the process of improving the accuracy of a robot by modifying its control 

software [30]. It is an attempt to determine a functional relationship between the joint sensors and 
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the actual pose of the manipulator, and hence to alter the robot positioning software to reflect this 

relationship [31]. The pose of a manipulator is defined as the orientation and position of the robot’s 

end effector or tool. This is usually written as a vector of six parameters (3 translational and 3 

orientation parameters) with orientation represented using Euler angles. Calibration could require 

the full pose of the robot (all six parameters) or a partial pose (less than six parameters).  

 𝑋 = [𝑥 𝑦 𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧  ]𝑇 2.16 

The main assumption in robot calibration is that the robot has good repeatability but low accuracy. 

This implies that whenever the robot is moved to a pose A, that the robot would actually be in a 

different pose B (low accuracy); but that every time the robot is moved to A, it always goes to B or 

within a reasonable distance to B (good repeatability). This assumption which is said to be true for 

industrial robots [30] means that improving the manipulator accuracy is analogous to finding the 

function that maps the pose B to the pose A. This function could then be used to correct the robot 

pose back to A. 

 

Figure 2.6: Illustration of Repeatability and Accuracy [30]. Column (a) shows a system with good 

accuracy and good repeatability, column (b) shows a system with poor accuracy and good 

repeatability, and column (c) shows a system with good accuracy and poor repeatability.   

To further illustrate the concept of accuracy and repeatability as they relate to manipulators; 

consider a manipulator that is commanded to move to a random position and then moved to a 

target point. The actual position is then measured and this is repeated multiple times with a 
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different random starting point each time. Figure 2.6 above illustrates three possible results from 

those measurements; it is possible that the measurements are  

 close together and close to the target point, 

 close together but far from the target point, and  

 far from each other but close to the target point  

These possibilities are illustrated in the upper row of Figure 2.6. The bottom row shows the same 

data as the upper row using a bell curve which shows the mean and standard deviation of the 

measured tool positions. The horizontal difference between the centre of the bell curve and the 

target point line can be interpreted as the accuracy of the manipulator where a smaller difference 

implies a higher accuracy while the spread of the bell curve gives the repeatability. The flatter the 

curve (or the larger the standard deviation), the lower the repeatability. With the aforementioned 

information, it can be seen that the first column (𝑎)  illustrates a manipulator with high repeatability 

and high accuracy. The second column (𝑏) illustrates a manipulator with high repeatability and low 

accuracy. The last column (𝑐) illustrates a manipulator with low repeatability and high accuracy. Real 

world robots would typically behave like manipulator 𝑏.  

The accuracy that can be achieved from a calibrated manipulator depends on the manipulator’s 

repeatability. Because repeatability error is normally distributed, the manipulator might achieve 

good accuracy in some instances but not in others. For this reason, a large number of measurements 

should be made to determine the repeatability of the manipulator before calibration, so that the 

limitation on the expected accuracy of calibrated manipulator is understood. A manipulator’s 

repeatability is likely to vary depending on where in the workspace the measurement was made, the 

speed at which the tool is moving, the load on the end effector and the number of directions used 

for the repeatability test [32, 33]. Robot manufacturers typically specify a single value for 

repeatability which may therefore be misleading as the repeatability varies in the workspace. It 

would be best to attempt to determine the average and worst case repeatability of the manipulator 

[32]. 

Many factors may contribute to the low accuracy of a robotic manipulator, including construction 

inaccuracies, gear backlash, compliance (when joints or links flex under load), friction, and joint 

clearance (when joints wobble in-place). Some factors are irregular and not easily modelled which 

makes finding a mapping function that corrects for all factors a very difficult problem.  

Roth et al [31] defined three levels of robot calibration; the levels are, in order of increasing 

complexity; 
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 Joint level (Level-1) calibration: At this stage, the aim is to determine the relationship between 

joint sensor signal and the actual motion. Level-1 calibration is typically done during construction 

of the robot and might be repeated if a joint is being replaced. 

 Kinematic (Level-2) calibration: This is also known as geometric calibration. The assumption of 

Level-2 calibration is that differences exist between nominal kinematic parameters and actual 

kinematic parameters. Nominal kinematic parameters are the original parameters specified by 

the robot engineers, insufficient construction tolerances would lead to differences between the 

nominal and actual robot and consequently increase in the absolute position error. The goal of 

level-2 calibration is to improve accuracy of the kinematic model of the manipulator as well as 

the relationship between joint sensors and joint motion therefore level-2 calibration also 

comprises the level-1 calibration [31].  

 Non kinematic (Level-3) calibration: This also known as non-geometric calibration. Non 

kinematic calibration is necessary if the robot is being controlled using a dynamic model rather 

than a kinematic model and also if the Level-2 calibration is deemed insufficient for the task [31]. 

Level-3 calibration aims to correct for factors such as friction, joint compliance or flexing, gear 

backlash. Modelling of these factors is non-trivial, requiring complex models [31].   

2.4 Steps of Robotic Calibration 

Calibration at any level would typically consist of four steps [31] 

1. Modelling 

2. Measurement 

3. Identification of modelling parameters 

4. Implementation 

In this thesis, these steps are discussed for kinematic calibration only. The first step, modelling, is 

where a notation is chosen to represent the manipulator.   In the second step, measurements of the 

manipulator’s end effector position and orientation are taken. The third step is the determination of 

the actual, as opposed to the nominal kinematic parameters and in the final step; the identified 

kinematic parameters are implemented into the manipulator control software or the instrument's 

simulation software. In the next sections, each of these steps is discussed in more detail. 
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2.4.1 Modelling 

Everett et al [34] proposed three criteria that should be met by any kinematic notation selected for 

calibration. The criteria are 

 Completeness: The notation must have a sufficient number of parameters to represent the 

motion of the manipulator. In addition to being able to represent the uncalibrated manipulator, 

the notation should be able to represent any possible variation that could occur in the kinematic 

structure of the manipulator [35]. The number of independent parameters 𝑁 that a complete 

model should have is given by the equation below 

 𝑁 =  4𝑅 + 2𝑃 + 6 2.17 

Where R is the number of revolute joints and P is the number of prismatic joints in the 

manipulator. Revolute joints require a total of four constraints; two constraints to specify the 

orientation of the axis of rotation and another two constraints to position the joint on the axis of 

rotation. Prismatic joints require only two constraints which specify the axis of translation. Six 

constraints are needed to represent the tool coordinate frame arbitrarily with respect to the last 

joint frame. 

 Proportionality: implies that small changes in the kinematic model should lead to small changes 

in the robot structure. Proportionality is essential because many researchers pose the calibration 

problem as an error minimization problem; hence the problem is ill conditioned if small changes 

in input lead to large changes in output. 

 Equivalence: This is the ability to convert one model to another. Any two complete models 

should be equivalent, since both models have the same number of independent variables. 

Equivalence implies that one complete model cannot produce more accurate results than 

another complete model. 

The DH notation [36], which is the most common kinematic representation when calibrating 

manipulators, fails the proportionality and completeness criteria. Hayati and Mirmirani [37] have 

shown that using the DH notation discontinuities (situations where small changes in DH parameters 

would lead to large changes in robot structure) exist at consecutive parallel or near parallel joint 

axes, if the joints are misaligned. Perfectly parallel consecutive joints as shown in Figure 2.7 would 

have the following DH parameters 𝛼 = 0, 𝑑 = 0, 𝜃 = 0, 𝑟 = 𝐿. 
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Figure 2.7: Schematic diagram showing the DH parameters of two perfectly parallel joints. 

But when the axes are misaligned by a rotation about the y-axis, as shown in Figure 2.8, the z-axis of 

both joints would intersect at a distance 𝑓 and the DH parameters become 𝛼 = −𝛽, 𝑑 = −𝑓, 𝜃 =

−90°, 𝑟 = 0. A small rotation in the y-axis leads to large changes in the DH parameters of the 

parallel joints, this simply shows that the DH notation is not proportional. This led Hayati and 

Mirmirani [37] to propose a modification to the DH notion, which replaced the joint offset 

parameter 𝑑𝑖 of parallel joints with an angle parameter 𝛽𝑖. Hayati’s modification rectifies the 

proportionality issue but not the completeness. Mooring et al [30] include constant joint offsets to 

each joint variable of the DH parameters hence making the model complete. Joint offsets are also 

used by Newman et al [38]. Hayati’s modified DH notation has been used several times in the 

literature. Quaternion-vector pairs (see Section 2.3.2) [39], s-model [40], zero-reference model [30] 

have also been used as models in calibration literature. Some researchers used the four DH 

parameters and the Hayati angle making five parameters altogether [41, 42]. It should be noted that 

not all models proposed in literature achieve the three criteria previously stated and that although 

they publish their calibration results; these models would fail if they cannot represent the deviations 

in the actual manipulators. Everret and Hsu [35] show that the s-model proposed in [40] fails the 

completeness criteria.   
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Figure 2.8: Schematic showing the DH parameters of two intended parallel axes, having one joint 

misaligned by 𝛽° around the Y-Axis. 

 

2.4.2 Measurement 

The measurement stage could vary depending on the method selected for kinematic parameter 

identification. The aim of the measurement stage is to acquire the actual end effector pose. The 

ultimate result from this stage would be a set of robot configurations and the measured poses. As 

previously stated it is possible to collect the full pose of the robot or a subset of the pose. The 

orientation part of the pose of the robot can be determined by measuring at least three non-

collinear points on the end effector; the distances between the points should be known. Most 

measuring devices are incapable of covering the full workspace of the robot because they require 

line of sight to the target which might require the researcher to constrain the robot to a part of its 

workspace. A short survey of measurement strategies is provided below: 

Chen and Chao [43] used three theodolites to triangulate the centre of a ball tip probe attached to 

the end link of the robot. The theodolites were operated manually but the data was read by a 

computer. Judd and Knasinski [44] used two theodolites to calibrate an Automatix AID-900 
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manipulator. They mentioned that the most time-consuming part of the experiment was the 

theodolite data collection. Driels and Pathre [45] developed an automatic theodolite for robot 

calibration which required no operator intervention. They used a camera, rotation stages, and 

computer vision algorithms to determine the line of sight to a spherical illuminated target. Švaco et 

al [46] used a stereo vision rig attached to the end effector of a KUKA Kr 6 R900 industrial robot. 

They used the stereo vision system to locate the centre points of calibration spheres placed at 

known positions and orientations, and then record the joint variables. 

Mooring et al [30] used a coordinate measurement machine (CMM) to determine the end effector 

pose of a Puma 560. They attached a five tooling ball fixture shown in Figure 2.9 to the end effector 

of the robot, and then moved the tool into a desired pose in the CMM’s workspace. The desired 

pose is specified so that at least three balls on the tool are accessible to the CMM. The CMM is used 

to determine the centre of the balls by measuring a number of points on the surface of each ball. 

The end effector pose is computed using the measured centre points. This method is also time-

consuming as the CMM was moved manually to the robot tool and the researcher must indicate 

what ball is to be measured beforehand, for every single pose.  

Newman et al [38], use a laser tracker for their measurements. They manually rotate the target 

during the measurement so as to acquire the full angular range of the joint, but mention that 

manual reorientation could add further measurement error. Santolaria et al [41] also use a laser 

tracker but attempt to reduce measurement error by using an active target (this is a motorized 

target that automatically reorients itself to hold the laser tracker beam). 

 

Figure 2.9: Five tooling ball fixture used by [30] to extract the full robot pose 
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A tri-axial accelerometer was used by Canepa et al [47] to measure the 3-axis acceleration of the end 

effector. Accelerometers have the advantage that they are less expensive that other 3D measuring 

devices like the CMM and not limited by line of sight issues but accelerometers tend to be affected 

by environmental noise and they output the acceleration of the end effector so the position data still 

needs to be estimated. Stone et al [40] used an ultrasonic range sensor to calibrate a Puma 560 

robot.  

Passive measurement schemes make use of a fixture to close the loop between the end effector and 

the base of the robot. The joint encoder readings from the new closed loop robot will provide 

enough information for calibration [48, 49]. The major challenge with this method is the cost and 

skill required to design the highly calibrated fixtures. 

The selection of a measurement scheme for calibration is typically a trade-off between cost and 

desired accuracy [30], typically the more expensive measurement devices provide the higher 

accuracy. The structure of the robot being calibrated and also the ease of automating the taking of 

the measurements should also be considered when choosing a measurement scheme as automation 

may allow more measurements and hence better statistics.  

2.4.3 Kinematic Parameter Identification  

The goal of parameter identification is to estimate the model parameters of a robot 𝐴 using 

measurements taken from robot 𝐴 where robot 𝐴 is the actual robot whose kinematic parameters 

deviate from those of the nominal robot, which would be denoted as robot 𝐵, for reasons previously 

explained. There are several approaches for estimating the model parameters of robot 𝐴, some 

approaches rely on the availability of the model parameters for robot 𝐵 in addition to 

measurements from robot 𝐴 while others directly estimate the parameters of robot 𝐴 using 

measurements only. The approaches used to acquire the kinematic parameters of robot 𝐴 can be 

classified into parametric and geometric methods. 

Parametric Methods 

These methods frame parameter identification as a minimization problem. Given a number of 

measurements within the workspace of a manipulator, these methods attempt to find the model 

parameters that reduce the error between the measured poses of robot 𝐴 and the computed 

(predicted) poses of robot 𝐵. As with many minimization problems, convergence is not guaranteed 

and good accuracy depends on the initial guess of the kinematic parameters. The nominal kinematic 

parameters are typically used as the initial guess. In the measurement stage, sufficient 

measurements must be taken from the workspace of the actual robot or a desired subset of the 
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workspace. The poses to be measured should be selected so that there is significant variation in all 

the readings for each joint [43]. The selection of robot poses and the number of poses required for 

calibration is known as the observation strategy. Driels and Pathre [50], showed, using simulation, 

that the measurement noise and uncertainties will be transferred into the identified kinematic 

parameters, but that selection of an optimal observation strategy can minimize this effect. The 

selection of an optimal observation strategy is typically posed as a constrained optimization, or a 

search problem, with the objective of finding the set of poses that maximize an observation index. 

Several observation indices have been proposed that serve as a measure of goodness of a pose set 

[51].  

In [52], parametric methods are broken up into open and closed loop methods. Open loop methods 

are methods that require an external measuring system to measure the pose of the manipulator 

whereas in closed loop methods, the manipulator is formed into a mobile closed loop chain. As 

discussed in Section 2.4.2, using the closed loop method the joint angle readings are sufficient to 

perform the calibration of the manipulator [49]. Although the closed loop methods do not require an 

external measuring device if the robot is unable to form a closed loop with itself due to insufficient 

degrees of freedom or the base being out of reach, a fixture must be added to complete the loop 

before joint readings can be taken, see Figure 2.10. Hollerbach and Wampler [52] explain that in 

open loop methods, the measuring system could be considered as a joint that closes the loop 

between the end effector and the base therefore the open loop methods could be considered as 

closed loop methods. In both open and closed loop methods, the parameters can be determined 

using a variety of numerical methods. In [30], Least squares, Kalman filters and other numerical 

methods are discussed with regard to how they can be applied to the parameter identification 

problem.  
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Figure 2.10: Closed loop calibration of an excavator. [52]  

The assumption made in both open and closed loop parametric methods is that the nominal 

kinematic parameters are available and that they are close to the actual parameters [49].  

Geometric methods: Circle Point Analysis 

The other category of parameter identification techniques identified above are the geometric 

methods (or screw axis measurement methods). In these methods, the actual joint axes in the 

manipulator are identified and the kinematic parameters are analytically determined. The geometric 

methods include the Jacobian measurement method (discussed in the next section) and circle point 

analysis (CPA). These methods require no nominal model and can be used even when the positioning 

errors are relatively large. In CPA, all joints are kept stationary except one; points are measured from 

the path created by the motion of the single actuated joint. A revolute joint would create a circular 

path while a prismatic joint will plot a linear path. The CPA algorithm depends on the following being 

true of the manipulator:  

 Rotating a revolute joint 𝑖 will cause any attached rigid body to move in a circular path.  

 The points 𝑝𝑖𝑗  measured along the circular path would lie on a plane 𝑡𝑖, where 𝑗 = 1,2,3,… , 𝑛 for 

𝑛 different positions. 

 The axis of rotation 𝑎𝑖  is perpendicular to the plane 𝑡𝑖.  

 The axis of rotation passes through the centre of the circular path formed by the joint motion.  

The axis of rotation and the centre of rotation for each of the revolute joints form the identified joint 

axes for those joints. In the case of a prismatic joint, the measured points would have their principal 
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axis as the axis of translation and the mean of the points could be used as the centre of the joint. 

Other kinematic parameters can be extracted from the identified axes and joint centres. 

In the measurement stage, it is essential that other joints are not moving so that they do not 

contribute noise to the measurements. It might be necessary to use joint stops or brakes, if the 

motion from the other joints is significant. The manipulator would typically be placed in the zero or 

initial position although the manipulator could be placed in any position that simplifies the 

measurements. After each measurement, the measured joint should be returned to its default 

position, before the next joint’s path is measured. For a manipulator with 𝑁 joints the 

measurements could be carried out as follows: The measurements could begin at joint 1, with joints 

2, 3, …𝑁  kept at their default positions. The motion path for joint 𝑖 is measured by placing a target 

point on link 𝑖 + 1 or on a tool attached firmly to the link or at the end effector. After measurement 

at joint 𝑖 is done, the joint should be restored to the default position then proceed to joint 𝑖 + 1. This 

should be repeated until the last joint has been reached. It is also possible to begin at joint 𝑁 and 

move to joint 𝑁 − 1, then 𝑁 − 2 until joint 1 is reached.  

When measuring at joint 𝑖, the joint is moved sequentially to 𝑛 different positions; these positions 

should be uniformly spaced to reduce the regression errors of the fitted model [30]. The joint 

positions can be calculated using Equation 2.18. 

  𝑞𝑖𝑗 = 𝑞𝑖,𝑚𝑖𝑛 + (𝑗 − 1)∆𝑞,   𝑗 = 1, 2, … , 𝑛 2.18 

where 𝑞𝑖,𝑚𝑖𝑛 is the smallest joint position and ∆𝑞 is a constant joint offset. The offset ∆𝑞 should be 

computed such that 𝑞𝑖,𝑗 goes from 𝑞𝑖,𝑚𝑖𝑛 to 𝑞𝑗,𝑚𝑎𝑥 , also taking into consideration the minimum 

resolution of every joint. A separate offset maybe required for prismatic and revolute joints. 

It should be noted that CPA only determines the joint axes so extra measurements may be required 

to get the base transformation (transformation from the first joint to the base) and the 

transformation from the last joint to the tool. In a case where the 3D measurement systems is 

unable to cover the full path of any circular joint, it is recommended that at least half of the circle be 

measured [30]. After the measurement stage has been completed, the joint axes can be identified 

using the CPA algorithm. The CPA algorithm is as follows: 

For each joint 𝒊 do the following: 

If the joint is revolute 

Calculate the best-fit plane to the measured data using the method of least squares.  

Project the measured points onto the determined plane. 

Determine the normal to the best-fit plane.  

Fit a circular arc to the measured data points and determine its centre. 

If joint is prismatic 
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Fit a line to the measured data points 

Find the centre of the joint. This is usually done by taking the mean of the points 

Algorithm 2.1: Circle point analysis 

After executing the CPA algorithm above, the output would be a set of best fit lines in the point-axis 

form. For revolute joints, the point is the centre of the rotation. For prismatic joints the point is the 

mean of the measured points. The next step is to extract the kinematic parameters from the 

identified joint axes. Several approaches have been proposed in the literature to extract kinematic 

parameter using the identified joint axes [40, 53].  

Geometric methods: Jacobian Measurement Method 

A moving body would have a linear velocity 𝑣 and an angular velocity 𝜔. For some applications, it is 

vital to determine the velocity for the joint actuators that would give a desired end effector linear 

and angular velocity. This is done using the manipulator Jacobian which is a 6 × 𝑛 matrix that 

linearly relates the joint velocities to the end effector velocities.  

The Jacobian consists of two parts (Equation 2.19), the upper part  𝐽𝑣𝑖 relates the velocity of joint 𝑖 

to the linear velocity of the end effector and the lower part  𝐽𝜔𝑖  relates the velocity of joint 𝑖 to the 

angular velocity of the end effector. Both  𝐽𝑣𝑖 and 𝐽𝜔𝑖  are 3 dimensional vectors that can be 

computed for each joint using Equation 2.20 and Equation 2.21 where  𝑧𝑖−1 is the z axis of the 

𝑖 − 1𝑡ℎ coordinate frame,  𝑂𝑖−1 is the origin of the 𝑖 − 1𝑡ℎ coordinate frame,  and 𝑂𝑛 is the origin of 

the 𝑛𝑡ℎ coordinate frame. For derivation of the manipulator Jacobian the reader is directed to [24]. 

The Jacobian measurement method was first proposed in [54]. The method relies on the estimation 

of the manipulator Jacobian via measurements. From the equations above, it can be seen that the 

Jacobian matrix contains the 𝑧-axes of all coordinate frames in the manipulator. Estimating the 

Jacobian is akin to measuring the 𝑧-axes of the joints in the manipulator and therefore similar 

methods used in CPA could be employed to determine the kinematic parameters. The Jacobian 

measurement method allows for flexibility in the measurement stage because the Jacobian matrix 

can be estimated using its relationship with joint velocities and end effector velocities or using the 

 𝐽 = [
𝐽𝑣1 , … , 𝐽𝑣𝑛
𝐽𝜔1 , … , 𝐽𝜔𝑛

] 2.19 

  𝐽𝑣𝑖 = {
 𝑧𝑖−1 × (𝑂𝑛 − 𝑂𝑖−1)              for revolute joint 𝑖

     𝑧𝑖−1                                           for prismatic joint 𝑖 
 2.20 

  𝐽𝜔𝑖 = {
 𝑧𝑖−1                                    for revolute joint 𝑖

      0                                        for prismatic joint 𝑖 
 2.21 
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joint torque to end effector force relationship. So the measurement stage could take one of these 

two approaches. 

1. Force and Torque approach: In this approach, the manipulator needs a joint torque sensor for 

each joint and a 6-dof force/torque (also called wrench) sensor in the end effector. The effector 

is attached rigidly in the workspace in the selected measurement pose. A joint torque 𝜏𝑖 is 

applied via joint 𝑖 and resulting end effector wrench 𝑤𝑖 is measured. Equation 2.22 shows the 

relationship between the end effector wrench and the torques of each joint. 

In the equation above, g is a vector of constant joint torques that is present in the 

measurements due to gravity, sensor biases, and friction/hysteresis. These constant joint 

torques are unknown but can be eliminated in the following ways:  

 Select reference torques for each joint 𝜏𝑖
𝑜, then measure the reference wrench 𝜔𝑖

𝑜. Equation 

2.23 arises from the subtraction of the actual measurement torques and wrenches from the 

reference where  ∆𝜏 =   𝜏𝑖 −  𝜏𝑖
𝑜 and ∆𝑤 =   𝜔𝑖 −  𝜔𝑖

𝑜 . It is assumed that 𝑔 is always 

constant irrespective of the reference [54]. 

 Hollerbach et al [55], proposed that for each joint a positive torque 𝜏𝑖, and a negative torque 

−𝜏𝑖 should be applied and the corresponding wrenches measured. Subtracting the torques 

and the wrenches would lead to Equation 2.24 and eliminate the constant torque. 

Torques are measured one joint at a time for all the 𝑛 joints in the manipulator. In Equation 

2.22, 𝜏𝑖  is a 𝑛 × 1 column vector with all the entries set to zero except that value at 𝑖. The 

wrench 𝑤𝑖 is a 6 × 1 column vector. Let 𝑻 = (𝜏1, … , 𝜏𝑛) and 𝑾 = (𝑤1, … , 𝑤𝑛), 𝑻 would be a 

𝑛 ×  𝑛 matrix while 𝑾 is a 6 × 𝑛 matrix. The Jacobian can then be extracted using Equation 

2.25. If 𝑾 is not invertible, the pseudoinverse should be used. Special consideration must also 

be given to redundant2 manipulators ( [55]. 

 

                                                           
2 A redundant manipulator is any manipulator with more degrees of freedom than is necessary for the task, for 
example, when performing a 3 DOF task such as positioning an object on a plane, a manipulator with 4 DOF or 
more is considered redundant. 

 𝜏𝑖 = 𝐽
𝑇𝑤𝑖 + 𝑔  2.22 

 ∆𝜏𝑖 = 𝐽
𝑇∆𝑤 2.23 

 2𝜏𝑖 = 𝐽
𝑇∆𝑤𝑖 2.24 

 𝐽 = (𝑻𝑾−1)𝑇  2.25 
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2. Velocity based approach: For this approach, sensors are required to simultaneously measure 

the end effector angular 𝜔 and linear velocity 𝑣 and the joint velocities. Using the relationship in 

the equation below to estimate the manipulator Jacobian. 

The vector of effector velocities is also known as a twist. Similar to the previous approach, let 

𝑻 = (𝑡1, … , 𝑡𝑛) and �̇� = (�̇�1, … , �̇�𝑛), 𝑻 would be a 6 ×  𝑛 matrix while �̇� is a 𝑛 × 𝑛 matrix. 

Hollerbach et al [55] present the results of the force/torque Jacobian measurement method used to 

calibrate a Sarcos dexterous arm and compare the result with parametric and CPA methods. The 

Jacobian measurement method performed better than the CPA method although they mention that 

they used a very cheap measurement device for the CPA measurements.  

The Jacobian measurement method is similar to CPA in that it only requires that a single joint be 

moved at a time. There are not many reports of the use of the Jacobian measurement method in the 

literature. This is probably due to the difficultly of accurately measuring the required joint torques or 

end effector velocities. In the literature, the method is applied on rotational joints only but could 

easily be apply to prismatic joints.  

2.4.4 Implementation 

The implementation stage (also known as compensation) is where the kinematic parameters 

determined via calibration are integrated into the manipulator’s control software. The result of the 

preceding stage of calibration is the correction of the forward kinematics of the manipulator so that 

for each joint configuration the correct pose is returned. However robots are not usually controlled 

using forward kinematics alone, but using the inverse kinematics, therefore it is necessary to correct 

the inverse kinematics of the calibrated robot. Robots are designed so that the inverse kinematics 

can be easily solved. One design that simplifies the inverse kinematic problem is the inclusion of a 

spherical wrist; this allows the designer to separate the position and orientation inverse kinematic 

problems of a 6-DOF manipulator. Calibration could invalidate the original design and hence require 

that a new inverse kinematic solution be found. Several methods have been proposed that attempt 

to use the analytical solution of the uncalibrated manipulator to find the solution to the calibrated 

one [30, 31]. In addition to determining the correct inverse kinematics, if the manipulator is mobile 

with respect to its working environment, it may also be necessary to determine the position of the 

 𝐽𝜃�̇� = [
𝑣𝑖
𝜔𝑖
] = 𝑡𝑖 2.26 

 𝐽 =  𝑻�̇� −1 2.27 
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base of the manipulator in relation to this environment; this calculation can also be included in the 

implementation stage. 

Accurate measurement devices are essential to ensuring that virtual instrument models correspond 

to their physical counterparts. Therefore the next section of this chapter provides a review of 3D 

measurement or scanning techniques which will be useful, for this project.  

2.5 3D Measuring Devices 

A 3D scanner is a device that collects the 3D coordinates of a given region of an object or the whole 

object [56]. The region concerned could be a point, surface, or volume. A 3D scanner collects 

position data and in some instances colour information. 3D scanners will typically output a point or a 

set of points known as a point cloud. For some scanners the output is a set of slices (a slice is an 

image whose pixels represents the scan of a certain thickness or volume [57]).  

Data output from a scanner can often be further processed; for example, it is possible to extract 

features from images and point clouds can be connected to form meshes, texture and colour may 

also be added. Some of these procedures may be done using on-board software in the scanner or in 

separate CAD software. It is important to clarify a few scanner related terms before proceeding:  

 Accuracy: This is the difference between the scanned objects and the actual object. It can be 

computed by comparing known geometric features from the actual object like radius, height, or 

thickness with the same features from the scanned model.   

 Scan density: This is the number of scanned points collected per unit area. The scan density is 

akin to the sampling rate in audio, i.e. the higher the sampling rate the closer the digital audio is 

to the original continuous signal. Likewise higher scan densities will lead to 3D models that are 

closer to the original objects assuming there is sufficient accuracy.      

 Resolution: When discussing 3D scanners, the term “resolution” - may be used in a number of 

different ways. In some instances resolution is defined in a way similar to scan density, i.e. as the 

number of points per unit area, while in other cases it is defined as the smallest increment that 

the scanner can resolve or, in other words, the smallest possible distance between scanned 

points [58]. In this latter case the resolution of a scanner determines the minimum size of the 

features that can be reproduced by the scanner, for example, scanning a flat rectangular surface 

with a length of 0.2mm and width of 0.3mm would require that scanned points be less than 

0.2mm apart so as to measure three or more points within the surface.  

It should be noted that scanning an object is the same as measuring the position of points on that 

object, the exact position of the points on the object may or may not be known; therefore the words 

scanning and measuring could be used interchangeably.  
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2.5.1 Classification of 3D Measuring Devices 

There are several criteria, under which 3D scanners can be classified; Várady, et al, [59] presents a 

hierarchical classification of scanning methods. Pavlidis, et al [60] categorize scanners based on the 

size of the object being scanned. Blais [61] gives a review of 20 years of range scanning technology. 

Sniderman [62] presents a classification based on the scan density of the scanners. In this thesis, 

scanners are discussed under the following criteria:  

 usage proximity 

 active/passive behaviour 

 medium of interaction 

 scan output 

 principle of operation  

Classification by Usage Proximity 

The most common criterion used to classify scanners is the allowable distance between the scanner 

and the object been scanned. A scanner could therefore be categorized as contact or non-contact. 

The non-contact scanners can be further divided into short, mid and long range scanners. Contact 

scanners are scanners that need to be touching the desired point on the object’s surface before 

returning the position coordinate of the point. A popular example of a contact scanner is a 

coordinate measuring machine (CMM). A CMM is typically a Cartesian robot (similar to a positioning 

table) but more recently articulated robot arms have also been used to create more portable CMMs 

(see Figure 2.11). Typically a CMM has a touch probe that determines when the CMM is touching an 

object, the position coordinate of the touched point can be acquired by reading the joint variables of 

the CMM and computing the forward kinematics of the robot.  It can also be argued that a scanner 

such as a laser tracker (a laser tracker is a device that uses a laser to track the position of a target in 

free space) can also be classified as a contact scanner because the user of the tracker must place a 

target on the object being measured making it impossible to measure the coordinates of points that 

cannot be reached by the user (Laser Trackers will be discussed more fully in Section 2.5.2). 

Non-contact scanners typically emit some type of energy that interacts with the object to be 

measured so that they can then extract the position information from the reflected energy. The 

range of a non-contact scanner can be affected by a number of factors which will be specific to the 

characteristics of the energy being emitted and detected. 
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Figure 2.11: Traditional Gantry CMM [63] (Left). Articulated robot arm CMM [64] (Right) 

One problem with contact scanners is that the size of the touch probe determines the size of the 

feature that can be measured; also the degrees of freedom of the CMM will limit its ability to reach 

around the object and if you cannot reach the point to be measured you cannot scan it. Except in the 

instance of a computer controlled CMM, it is also strenuous to do a full scan of an object as the user 

must move the probe all over the object manually. 

Classification into Active or Passive  

3D scanners can be classified into active and passive scanners. An active scanner is one that emits 

some energy which interacts with the object being scanned, whereas a passive scanner does not 

emit any energy and instead relies on ambient forms of energy, such as ambient light. Both the 

active and the passive scanner types require a detector to detect energy coming from the object. An 

example of an active scanner is a laser scanner. All laser scanners fall into the active scanner 

category because they emit laser light which is reflected from the object being measured. An 

example of a passive scanner is an optical camera. A camera basically absorbs ambient light from a 

scene using a sensor, from which it forms a 2D image of the scene. Various algorithms and 

techniques have been developed within the research fields of computer vision and photogrammetry 

which enable 3D information to be extracted from 2D images [65]. 

Active scanners are more susceptible to interference and variations in environmental conditions, but 

tend to be more reliable when in optimal working conditions. Passive scanners have the advantage 

that they don’t need an extra energy source as they do not emit any energy therefore making 

passive scanners an excellent choice for a mobile scanner [66]. Passive scanners typically have lower 

range and resolution than their active counterparts [60]. 
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Classification by Medium of Interaction 

A scanner’s medium of interaction is the type of energy it emits/detects. This energy, prior to 

detection, must have interacted with the object being measured and therefore will contain 

information that can be used to generate a 3D model. The most common medium is electromagnetic 

radiation which includes X-ray, visible light, and laser light. Scanners that rely on electromagnetic 

radiation as media include laser scanners, camera-based scanners, and also CT scanners which use X-

rays. These scanners have to deal with the possibility of interference from the sun or other radiation 

sources around. 

Another possible medium is a magnetic field and an example of a scanner that uses a magnetic field 

as its medium of interaction is a Magnetic Resonance Imaging (MRI) scanner. MRI utilises the 

principle of magnetic resonance to generate an image of the internal structure of an object. This 

technique is commonly used in the medical field but has also been used in geology for 3D analysis of 

porous media structure and internal flow [67]. A magnetic scanner is limited because it cannot scan 

materials that are attracted or repelled by the magnetic field, although this would depend on the 

strength of the magnetic field been used by the scanner.  

Sound waves have also been used as a medium for collecting 3D measurement data. In SONAR, they 

are used for scanning underwater objects [68] and to acquire 3D measurements for robot navigation 

[69]. They are also used in Ultrasonography, which is used extensively in the medical field to 

generate 3D views of the inside of the human body [70]. A very serious challenge to sound based 

scanners is the presence of environmental interference which could cancel out the emitted sound. 

It is possible to combine the result of scans from multiple media to get more robust measurements. 

This is a common method in the robotics community where it is referred to as sensor fusion.  

Another technique is where one type of energy is emitted and another type detected. For example 

in Thermo-acoustic tomography [71] where an electromagnetic signal is directed at a biological 

object with the intention of generating a thermo-acoustic response in the object which would lead 

to the emission of an ultrasound signal. 

Classification by Principle of Operation 

Scanners can also be grouped based on the techniques through which the 3D coordinates are 

computed. Depending on the medium of interaction used by the scanner any number of these 

techniques could be used to compute the 3D structure of an object. In [61, 56], an extensive 

discussion of scanners based on this criterion is presented. The techniques are as follows:   

 Triangulation: Triangulation is the process of determining the position of an unknown object 

given its relationship (angle or distance) to objects whose position is known. Triangulation 
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scanners would typically observe a point(s) from multiple views (cameras or detectors) and 

utilize the known position and orientation of the observers to determine the position of the 

target point in space. Some laser triangulation scanners physically separate the laser source 

from the detector by a known distance and compute the location of the target point by solving 

the triangle formed by the laser source, the detector, and the point. Some laser triangulation 

scanners utilise two or more detectors to determine the position of the laser point. A dual 

camera laser scanner is illustrated in Figure 2.12. Triangulation is also the major principle behind 

stereoscopic and photogrammetric techniques. Stereoscopic techniques are computer vision 

techniques that use two or more cameras to extract 3D information from the world. When an 

object is viewed from two cameras (left and right) separated by a known distance, the left and 

right images would contain some similar points from the object. For each point in the left image 

the corresponding point in the right image is found. This is known as the correspondence 

problem, this problem is very difficult because points located in homogenous intensity regions 

would match with many other points in the same region. One way to solve the correspondence 

problem is to find and match unique features only. Once a correspondence is made the points 

can be triangulated to determine the distance.  

 

Figure 2.12: Laser triangulation using dual cameras. Two cameras (CCD and Lens of the cameras are 

shown) separated by a known distance (Base) are used to measure the position of a laser point 

projected on an object. Redrawn from [56] 

Most scanners based on the shape-from-x methods (where X could be motion, shading, or video) 

use the principle of triangulation; they simply capture images of the object from multiple views 

and attempt to match a point or region from one image to the same points in the other images. 

The known or computed position of the cameras is then used to compute the position of that 

point or region. While some shape-from-x techniques utilize multiple cameras, others use one 
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camera and move the camera along a defined motion path or rotate the object; others shape-

from-x techniques rely on a property of the camera (e.g. focus) or a property of the environment 

(e.g. lighting) to extract depth information [65]. 

 Tomography: Tomography refers to the cross-sectional imaging of an object from either 

transmission or reflection data collected by illuminating the object from many different 

directions [72]. In Computed Tomography (CT) [73, 57], X-rays are passed through an object 

from various directions in a plane or slice. When the rays leave the object they are detected and 

the attenuation of the X-rays from the different directions are used to form a set of projection 

images. Using tomographic reconstruction algorithms, the projections are combined into a single 

image. By acquiring a number of slices the technique is able to return the 3D structure of the 

object scanned. CT which was originally developed for use in the medical field has also found its 

way into industry. The benefit of tomography scanners is that they result in a 3D image of the 

object that includes internal features. One drawback is that the system must generate 

sufficiently strong energy that would pass through the object and still be detectable; the 

resulting effect of this is that the size of the objects and types of materials that can be scanned is 

limited [57]. Other forms of tomography [72] include Emission Computed Tomography, 

Ultrasonic Computed Tomography, and MRI. 

 Time of flight: This is the simplest method of computing distance using the known speed of the 

medium of interaction; the time it takes the emitted energy to get to the target point and back is 

measured and the distance is computed. Although a very simple technique, lots of challenges 

can limit the use of this technique. The medium of interaction could be so fast that the timer 

circuitry is not able to give a reasonable time. The speed of various types of energy is affected by 

environmental conditions like temperature, and humidity. Time of flight is used in many lasers 

and sound based systems.     

 Interferometry or Pattern Projection: This type of scanner operates by projecting a pattern on 

the object been scanned. A detector, usually a camera, is used to capture the resulting pattern 

from which the deformation of the projected pattern is determined. The projected pattern could 

be generated using laser interference, visible light, or infrared light. Pattern projection systems 

are affected by specular reflection, translucency and transparency in the object been scanned 

[74] and by any other surface type that makes it difficult to interpret the projected patterns. It 

excels in its ability to handle smooth surfaces which would pose a problem for many passive 

scanners. This technique could also be considered as a stereo-vision (triangulation) technique 

with one camera replaced by a projector. The correspondence (matching of points) problem is 

simplified by the introduction of codes into the projected pattern (see Figure 2.13)  
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 Phase comparison: The phase between the outgoing and incoming signals’ waveform is 

compared to determine the difference. The position of the target is computed using the phase 

difference, the known speed and the frequency of the signal. Since this technique relies on the 

speed of the signal, it would also be affected by environmental conditions, as are the time of 

flight scanners.  

  

Figure 2.13: Coded structured light projected on a hand holding an object [75] 

Classification by Scan Output 

Another scheme is to classify scanners based on the output from the scan. The scanner could output 

a point, a surface, or a volumetric model. Point Scanners are able to return the position of a point on 

an object. Laser trackers and CMMs are examples of point scanners. Surface scanners are those that 

return the positions of a number of points on the surface of the object. Laser based scanners 

typically acquire a point (some a line) but the speed of the laser allows the system to acquire 

multiple points in a few seconds or minutes depending on the object size or equipment. Image-

based scanners acquire the image of a surface and then extract the feature points that form the 

surface. Volumetric scanners such as  MRI, CT, and micro CT scanners return a 3D model of the 

object including its internal structure, typically they output a sequence of cross-sectional slices that 

can be pieced together to form a volumetric model. Table 3.1, below summarises these various 

categorisations for some common scanning technologies.  

It has been stated  in the literature [56, 66, 60] that no single scanner exists that can handle all tasks 

in every application domain, and that the scanner needs to  be selected to suit the task at hand. The 

accuracies of the different scanners are not easily comparable due to the large number of 

application domains, for example, a highly accurate MRI system used in the medical field could 

produce less accurate results, if applied to rock analysis. Boehler, et al [76] advocate that the 

consumer test the scanner to ensure that they are sufficiently accurate for their task. They also 
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designed tests to examine the range accuracy, angular accuracy, and resolution of Laser scanners 

and also examined the scanners’ robustness to edge effects and surface reflectivity. Their results 

showed that even within the restricted class of lasers scanners, the accuracies and robustness to 

edge effect and surface reflectivity varied from one manufacturer to another. The next section now 

focuses on one of the scanning technologies of most immediate relevance to this project. 

Technology Proximity 
Active or 

Passive 
Medium How it works Output 

Coordinate 

Measuring 

Machine 

Contact Passive Touch 

Reading joint variables from 

encoders and compute 

position of touch probe 

Point 

Laser tracker Contact Active Laser 
Time of flight/Phase 

comparison/Interferometry 
Point 

Laser scanner 

Triangulation 
Non-Contact Active Laser Triangulation  surface 

Stereo-vision Non-Contact Passive Visible Light 
Triangulation of a single point 

or feature in multiple images 
Surface 

Photogrammetry Non-Contact Passive Visible Light 
Triangulation of a single point 

or feature in multiple images 
surface 

CT Non-Contact Active 

X-ray, 

electron, 

neutron,  

Visible Light 

Tomographic reconstruction 

using particle attenuation 

Slices/ 

Volume 

MRI Non-Contact Active 

Magnetism 

& radio 

waves 

Tomographic reconstruction 

using  magnetic spin of atoms 

Slices/ 

Volume 

Ultrasonography Non-Contact Active Sound 

Uses  time of flight of sound 

wave to determine 3D 

structure 

Slices/ 

Volume 

Table 2.2: Summary of the classification of scanners. 
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2.5.2 The Laser Tracker 

Laser tracking systems can follow and determine the 3D position of a retro-reflective target. A retro-

reflective target is an object that reflects the laser back in the same direction from which it came i.e. 

back to the laser tracker, from which it follows that laser trackers require a direct line of sight to the 

target.  The target has a limited angle of acceptance; that is the angle of the incidence from which 

the laser would be reflected back to the tracker. Acceptance angles are typically around 30° to 120° 

depending on the system. The limited angle of acceptance means that there may often be a need to 

rotate the target when making measurements. Standard laser tracker retroreflectors, as shown in 

Figure 2.14 are typically made of three reflective surfaces arranged in a mutually perpendicular 

configuration, with the vertex of these intersecting surfaces very accurately centred. Further 

information on retroreflectors can be found in [77]. 

  

Figure 2.14: A spherically mounted retroreflective (SMR) target with gold-plated reflective surface. 

The laser tracker is a spherical coordinate measurement instrument, this implies that, the laser 

tracker measures two angles (known as the azimuth and zenith angles) and a distance, as illustrated 

in Figure 2.15. The angular measurements are made using very accurate motor encoders in the 

tracker head and the distance to the target is measured using the laser beam. There are two 

dominant methods for computing the distance [78] as discussed below: 

Incremental distance measurement (IDM): In this technique, an interferometer and a 

frequency-stabilised, helium-neon laser are used to monitor the change in distance from a baseline 

position. The laser beam is split in to two separate beams; one beam is sent towards the target and 

the other is kept within the tracker. The first beam is reflected off the target back into the tracker 

where the phase difference between both beams will generate an interference pattern. As the 

target moves closer or farther from the tracker by a fraction of the wavelength of the laser, a change 
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occurs in the interference pattern, see Figure 2.16. Counting the number of changes or fringe counts 

allows the tracker to determine the distance travelled by the target [79]. 

IDM does not provide a direct method of measuring the absolute distance travelled by the beam of 

light but rather measures the relative distance travelled. Another limitation of IDM is that the 

tracker loses count when the beam is broken so to ensure correct measurement the user must move 

the target back to the baseline position and then restart the measurement. 

 

Figure 2.15: Illustration of the operation of a laser tracker. Two motors follow the target in the 

vertical (zenith) and horizontal (azimuth) direction and a laser beam is used to measure distance to 

the target. Cartesian coordinates are calculated using the zenith angle, azimuth angle, and distance. 

Absolute distance measurement (ADM):  ADM is a more direct measurement of the actual 

distance the beam has travelled in the atmosphere. ADM trackers use either time of flight or phase 

comparison to determine the actual distance travelled by the beam, as discussed in Section 2.5.1. 

When ADM was first used in trackers, those trackers were slow and less accurate than the IDM 

trackers [79] but advancements have seen ADM trackers catch up with the IDM in terms of accuracy. 

ADM trackers have a longer integration time (the time required to determine the target’s position) 

than the IDM technique because in IDM, as soon as the user stops moving the target, the count is 

already available but in ADM when the user stops some time is required to acquire a stable reading. 

To acquire the convenience of ADM (not restarting when the beam is broken) and the speed of IDM; 

researchers have come up with various methods to merge  these techniques some of which are 

already being applied on commercial laser trackers [80]. These techniques are known as Absolute 

Interferometry (AIFM) [81]. 

Laser trackers as explained above lie on the border between contact and non-contact scanners and 

therefore inherit some of the merits of the contact and non-contact scanners but also suffer from 

some of the demerits of both groups.  

Zenith Range 

Azimuth Range 

Laser Beam 

Spherical retro-

reflector 
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Figure 2.16: Illustration of a Michaelson interferometer showing the fringe patterns in the detector, 

caused by interference between the path length difference of the reflected and non-reflected light. 

As the target moves this difference in path length will change causing corresponding changes in the 

interference pattern. 

2.6 Camera Systems 

In this section, the fundamental theory underpinning camera based metrology is presented as 

camera based scanning technologies will be crucial for the solutions proposed in this thesis. The next 

sections discuss camera models and how they can be applied to 3D metrology. 

2.6.1 Camera Model 

The pinhole model is a simple and well understood camera model [82]. The pinhole model assumes 

that all optical rays pass through a single point known as the optical centre. Other models like the 

two plane model [83] exist in which the optical ray is not constrained to pass through a single point. 

The pinhole is the most used camera model in practical application and academic research which 

makes it attractive for this work as its high accuracy potential has already been demonstrated [84]. 

Given an arbitrary coordinate frame known as the world frame (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤), the pinhole model 

represents the perspective projection3 of a world point into a 2D image point as illustrated in Figure 

2.17. This perspective projection is described mathematically in the equation below 

                                                           
3 Perspective projection is a type of 3D to 2D projection model in which 3D points are projected onto the 
image plane by dividing them by their Z component. 

 

 

Fringe 

patterns 

Detector 

Laser Source 

Mirror 

Target 

Half-silvered 

Mirror 



 

48 
 

where  𝑷 is the 3 𝑥 4  projective transformation matrix, 𝑀 is the world point in homogenous 

coordinates4, 𝑚 is the image point  in homogenous coordinates, and 𝜗 is a non-zero scale factor. The 

projective transformation matrix can be decomposed into two matrices 𝑲 and [𝑹 | 𝒕] such that 𝑷 =

𝑲[𝑹 | 𝒕].  𝑲 is a 3 by 3 upper triangular matrix known as the intrinsic camera matrix which performs 

a mapping from the camera coordinate frame to the pixel coordinates. 𝑲 consists of five parameters 

as shown below: 

where 𝑓 is the focal length of the camera, 𝑠 is a scaling factor used to account for non-square pixels, 

(𝑢0, 𝑣0) is the image centre, also known as the principal point and 𝛾 is the skew between the sensor 

axis and the camera axis,  in modern cameras the skew is typically zero. 

[𝑹 | 𝒕] is known as the extrinsic camera matrix and consists of a rotation matrix and translation 

vector. [𝑹 | 𝒕] transforms a world point from the world coordinate frame to the camera coordinate 

frame. Since a rotation matrix can be represented as three parameters, the extrinsic parameters 

comprise six degrees of freedom. The projection of a point can be seen as two stage process, in the 

first stage the world point (𝑋, 𝑌, 𝑍) is transformed into points in camera coordinate (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐) 

using the extrinsic parameters. Then those points are transformed into image coordinates point 

(𝜗𝑢, 𝜗𝑣, 𝜗) using the intrinsic parameters. The 2D location (𝑢, 𝑣) of the 3D point 𝑀 in the camera 

image is then determined by dividing the image point by the scale factor 𝜗. It is sometimes 

convenient to normalise the points in the camera coordinate frame before converting into image 

coordinates before performing the division; (𝑥, 𝑦, 1) = (
𝑋𝑐

𝑍𝑐
,
𝑌𝑐

𝑍𝑐
,
𝑍𝑐

𝑍𝑐
). Normalised camera coordinates 

are useful when computing lens distortion as discussed in the following section.  

                                                           
4 In homogeneous coordinates, an extra dimension is appended to the vector e.g. (𝑥 𝑤⁄ ,

𝑦
𝑤⁄ ) 

becomes (𝑥, 𝑦, 𝑤). This allows several transformation like rotation and translation be performed on a vector 
using a single matrix. 

 𝜗 [
𝑢
𝒗
𝟏
]

⏟
𝒎

= [

𝑷𝟏𝟏 𝑷𝟏𝟐 𝑷𝟏𝟑 𝑷𝟏𝟒
𝑷𝟐𝟏 𝑷𝟐𝟐 𝑷𝟐𝟑 𝑷𝟐𝟒
𝑷𝟑𝟏 𝑷𝟑𝟐 𝑷𝟑𝟑 𝑷𝟑𝟒

]
⏟                

𝑷

[

𝑋
𝑌
𝑍
1

]

⏟
𝑀

 
2.28 

 𝑲 = [
𝑠𝑓 𝛾 𝑢0
0 𝑓 𝑣0
0 0 1

] 
 

2.29 
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Figure 2.17: The perspective projection of a sphere. (𝑋𝑊, 𝑌𝑊, 𝑍𝑊)  is the world coordinate frame, 

(𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶)   is the camera coordinate frame and (𝑋𝑏 , 𝑌𝑏)  is the image coordinate frame. 

2.6.2 Geometric Lens Distortion 

In the modern camera, the pinhole is replaced with lenses which are designed to collect more light 

while performing similar perspective projection. These lenses introduce several optical aberrations 

due to different flaws in the lens construction. One category of these optical aberrations is the 

geometric lens distortions which affect the shape of the projection. Geometric lens distortion will 

cause the world point to be projected to the wrong position and will affect the accuracy of any 

camera based metrology system. It is therefore important to correct for geometric lens distortion. 

The three types of distortion discussed in camera calibration literature are radial, tangential and thin 

prism distortions. The problem of modelling lens distortion can be stated mathematically as finding a 

function that maps a point (𝑥, 𝑦) in the normalised camera coordinate frame to its corresponding 

distorted point (𝑥𝑑 , 𝑦𝑑) or vice versa.  

1. Radial distortion:  a distortion due to the fact that rays of light are bent more at the edges of the 

lens than at the centre of the lens. Radial distortion is typically classified into barrel distortion 

which is the negative distortion and pincushion distortion which is the positive distortion 

(although more complicated distortion patterns exist). Both barrel and pincushion distortion are 

illustrated in Figure 2.18. Several methods have been proposed to model radial lens distortion 

[85]. The most commonly used method is the polynomial model given in the equation below. 

 𝛿𝑟 = (
 𝛿𝑥𝑟
𝛿𝑦𝑟

) = (
𝑥(𝑘1𝑟

2  +  𝑘2𝑟
4 + 𝑘3𝑟

6)

𝑦(𝑘1𝑟
2  +  𝑘2𝑟

4 + 𝑘3𝑟
6)
) 2.30 
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Commonly, the undistorted point is used to compute the distorted point as shown in the 

equation above even though it is more suitable to compute the undistorted point using the 

distorted point because the distorted points are directly observable from the image whereas the 

undistorted points are not [86]. A lens subject to radial distortion can be calibrated 

independently (without other intrinsic or extrinsic parameters) using several methods 

 The Plumb-line method: These method use the principle that straight lines in the world 

should correspond to straight lines in the image, but lens distortion causes lines in the world 

to map to curves in the image [87]. 

 Cross-ratio invariance: The cross ratio of the set of colinear points in the real world is the 

same as the cross ratio of projected points in the image [85], where, A, B, C, D are four 

distinct points, then their cross ratio is defined to be 
𝐴𝐶

𝐶𝐵
/
𝐴𝐷

𝐷𝐵
. 

 Multiple view geometry: Some authors attempt to exploit multiple view geometry in the 

determination of  radial distortion of a camera. Fitzgibbon [88] proposed a linear method  

that estimated both the fundamental matrix (discussed in Section 2.6.4) and the radial lens 

distortion. The author proposed a new model to represent the radial distortion. The method 

assumes that the radial distortion from both cameras are the same which may not be the 

case in a stereo camera system5. 

2. Tangential (Decentring) distortion: a distortion caused by improper alignment of the optical 

centre of the lens and the principal point of the camera (see Figure 2.18b). It is modelled using 

the equation below which consists of a radial and non-radial component. It is commonly 

assumed to be negligible for many applications [89]. 

3. Thin prism distortion:  a distortion also caused by improper alignment, in particular when the 

camera sensor is not orthogonal to the lens assembly.  This situation could arise due to 

imperfections in the lens design and manufacturing or in the camera assembly [86]. It is 

modelled using the equation below. 

The total lens distortion is the sum of all the types of distortion (Equation 2.33). Determining lens 

distortion accurately is a non-trivial problem since both thin-prism and tangential distortion could 

contribute to the radial error [86]. Many camera calibration techniques determine the total lens 

                                                           
5 It should be noted that a multi-view system could be built by moving a single camera to multiple positions or 
by using multiple cameras. 

𝑟2 = 𝑥2 + 𝑦2 

 𝛿𝑑 = (
𝛿𝑢𝑑
𝛿𝑣𝑑

) = (
2𝑝1𝑥𝑦 + 𝑝2(𝑟

2 + 2𝑥2)

𝑝1(𝑟
2 + 2𝑦2) + 2𝑝2𝑥𝑦

) 2.31 

 𝛿𝑡 = (
𝛿𝑢𝑡
𝛿𝑣𝑡

) = (
𝑠1(𝑥

2 + 𝑦2)

𝑠2(𝑥
2 + 𝑦2)

) 2.32 
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distortion by finding the distortion parameters (𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2, 𝑠1, 𝑠2) that minimize a selected 

calibration error function. The distorted image point (𝑢𝑑 , 𝑣𝑑 , 1) is determined by multiplying the 

distorted normalised camera point (𝑥𝑑 , 𝑦𝑑 , 1)
𝑇 by the intrinsic camera matrix as detailed above. 

 

     

(a)                                           (b) 

          

(c)                                           (d) 

Figure 2.18: Illustration of a checkerboard with (a) No distortion (b) Barrel distortion (c) Pincushion 

distortion (d) Tangential distortion 

2.6.3 Camera Calibration 

Camera calibration attempts to find the intrinsic and extrinsic parameters (typically 5 intrinsic and 6 

extrinsic) for a camera. If lens distortion is modelled, those parameters must also be determined. 

Most cameras will contain some distortion therefore to achieve high accuracy; lens distortion should 

be accounted for. Some assumptions are typically made to reduce the number of parameters to be 

found. One such assumption is that the pixels on the sensor are perfectly square or that the principal 

point is in the middle of the image. It is also common to assume that the skew is zero. Camera 

 (
𝑥𝑑
𝑦𝑑
) = (

𝑥
𝑦) + 𝛿𝑟 + 𝛿𝑑 + 𝛿𝑡 2.33 
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calibration typically involves using a calibration apparatus containing known points, such apparatus 

could be 1D, 2D or 3D. Other methods utilise some knowledge of camera motion or scene 

knowledge like the presence of vanishing points. It is recommended to use a calibration apparatus to 

achieve the highest accuracy [82]. 

Three dimensional grid 

Calibration may be performed using a three dimensional object with known geometry i.e. the 

Euclidean distance between points on the object is known. It is also possible to use a planar object 

which is translated very accurately to give a 3D set of points. Hall et al [90] proposed a method that 

assumes no radial distortion is present. They attempt to directly estimate the entries of the camera 

projection matrix with a linear least squares formulation. Tsai [91] proposed a two stage calibration 

method using the Radial Alignment Constraint. The principal point of the camera is assumed to be 

known and only radial distortion is modelled. Several improvements to the original technique have 

been proposed [92]. Weng et al [86] proposed a method which also used a different distortion 

model that included tangential and thin prism distortion alongside radial distortion.  

Two dimensional grid 

Using this approach, a planar grid containing calibration points is used for calibration. The appeal of 

two dimensional calibration objects arises from their easy setup. It is possible to print such objects 

using a desktop printer as opposed to the more complicated manufacture required by a 3D target 

however the achievable accuracy could be limited by the print quality. The printed grid should be 

attached to a rigid, flat surface. Many techniques require the 2D pattern be shown to the camera at 

multiple orientations and positions, while others estimate the camera parameters from a single 

image of the grid. Any two images of the same planar surface are related by a 3 by 3 matrix known 

as a homography. Homographies can be estimated when the same points in one image are visible in 

the second image; a minimum of four points are required for this estimation. Zhang [82] proposed a 

technique that recovers homographies of the planar grid which has been shown to the camera at 

different positions and orientations. The camera parameters are later recovered from the 

homographies. 

One dimensional grid 

Calibration may be performed using a calibration object consisting of a set of collinear points with 

known distances between them. This is also known as wand calibration [93] and is commonly used 

by the motion capture community to calibrate their systems. The benefit of wand calibration arises 

when calibrating multiple cameras as the wand minimizes the possibility of occlusion of the 
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calibration points. Zhang [82] proposed a closed form technique for calibration using a 1D object 

with a minimum of three points of known distance. He proved, using the number of equations and 

the number of unknowns, that it is impossible to calibrate with a freely moving 1D object but it is 

possible when one end of the object is fixed and when at least three points are present. Mitchelson 

and Adrian [93] proposed a technique that uses a 1D object with two points of known distance. Their 

technique requires the use of a multi camera setup therefore cannot be used to calibrate a single 

camera. They used non-linear minimization to obtain the camera parameters. The initial guess for 

the focal length of the cameras are extracted using the fundamental matrix (discussed in the next 

section) and image centre and scaling factor of the cameras are assumed to be known. 

Vanishing point or Known Motion 

These techniques assume some understanding of the scene or the motion of the camera. They could 

be less accurate than the previous methods if the vanishing points are not correctly extracted from 

the image or the camera motion deviates from the planned trajectory. This method is not discussed 

in more details but the reader is referred to [94]. 

Self-calibration 

Self-calibration attempts to calibrate the camera with no calibration apparatus. It is also known as 

auto-calibration. Self-calibration attempts to estimate a large number of parameters with no 

calibration apparatus which leads to a harder mathematical problem. Self-calibration methods are 

therefore less accurate than the techniques using calibration objects [82]. 

2.6.4 Epipolar Geometry 

In perspective projection, the distance of a 3D point from the camera (also known as the depth) is 

lost and cannot be recovered without some extra information. It is possible to reconstruct the three 

dimensional position of a point by triangulation from two or more calibrated camera views. As 

mentioned in Section 2.5.1, a non-trivial problem that needs to be solved in triangulation systems is 

the correspondence problem. The correspondence problem refers to the problem of determining 

which point of one image corresponds to a point in another image. A common method of finding 

correspondence is by exploiting the geometry of the multi-camera setup, this geometry is typically 

called epipolar geometry. 

Suppose a world point 𝑿 is viewed from two cameras as shown in Figure 2.19 or by a single camera 

moved to two distinct positions. The image plane 𝜋𝑖 of each view would contain a projection of the 

world point denoted as 𝒙𝟏 and 𝒙𝟐 for the first and second camera respectively. The plane formed by 

𝑿 and the camera centres 𝑂1 and 𝑂2 is known as the epipolar plane and the vector between the two 
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camera centres (i.e. the origin of the camera coordinate frame) is known as the baseline. The 

projections 𝒙𝟏 and 𝒙𝟐  of point 𝑿 would also lie on the epipolar plane. With this information, the 

search for a corresponding point could be constrained to a single line (the epipolar line) which is the 

intersection between the epipolar plane and the respective image plane. This constraint, known as 

the epipolar constraint, is mathematically represented by the fundamental matrix. 

The Fundamental Matrix 

The Fundamental matrix [95] is a 3 by 3 matrix that can be derived using the extrinsic and intrinsic 

parameters of both cameras as shown in Equation 2.34. Given the extrinsic parameters of the two 

cameras in homogeneous matrix form (𝑪𝟏, 𝑪𝟐) the fundamental matrix 𝑭 can be computed using the 

equation below.  

where [𝑹|𝒕] is the rigid transformation from the first camera frame to the second camera frame 

with rotation component 𝑹 and translation component 𝒕 as shown in Figure 2.19, [𝒕]𝒙 is a skew 

symmetric matrix created using the translation vector 𝒕, 𝑬 is typically known as the Essential Matrix 

[96] and  𝑲𝟏, 𝑲𝟐 are the intrinsic camera matrices for the first and second cameras respectively.  

Although the fundamental matrix can be computed using the camera parameters, in the absence of 

these several methods also exist to estimate the fundamental matrix using point correspondences 

only. The reader is directed to [97] for more details on such methods. Using the fundamental matrix, 

the Epipolar constraint between the corresponding image points 𝒙𝟏 and 𝒙𝟐 is given by Equation 

2.35. Any pair of corresponding points must satisfy the equation below but the presence of noise 

and distortion would invalidate the relationship. 

 

 

𝑪𝟐. (𝑪𝟏)
−𝟏 = 𝑪 

𝟐
𝟏
 = [𝑹|𝒕] 

𝑬 =  [𝒕]𝒙𝑹 

𝑭 = 𝑲𝟐
−𝑻𝑬𝑲𝟏

−𝟏  

2.34 

 𝒙𝟐𝑭𝒙𝟏
𝑻 = 0 2.35 
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Figure 2.19: Epipolar geometry between two cameras with image planes (𝜋1, 𝜋2)   

 and camera centres (𝑂1, 𝑂2). The 3D Point 𝑋 projects onto the respective cameras as image 

points(𝑥1, 𝑥2). The 3D point and camera centres form the Epipolar plane and the intersection 

between the Epipolar plane and the image plane determines the Epipolar Line. 

2.6.5 3D Triangulation 

Theoretically, triangulation should be as easy as finding the intersection between the back-projected 

rays from two or more images (such as in Figure 2.19) but in practice the rays from these cameras do 

not intersect, as shown in Figure 2.20, due to camera calibration error and quantization error (error 

due to sampling from continuous light signal). Several methods have been proposed to account for 

the non-intersecting rays such as the midpoint algorithm which proposed to find the shortest line 

between the two rays and return the midpoint of the line as the results from the triangulation but 

this method has been demonstrated to give poor result [98]. 
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Figure 2.20: Triangulation from two image views showing non intersecting camera rays and the 

midpoint method. 

A commonly used method in computer vision is the linear least square method [98] which finds the 

3D point that minimises the projection error in the two images. Given a 2D point 𝒙𝟏 = (𝑢1, 𝑣1, 1)  

from one camera and its corresponding point 𝒙𝟐 = (𝑢2, 𝑣2, 1) in the second camera and the 

projection matrices for both cameras (𝑃1, 𝑃2), the linear least square method finds the 3D point 𝑿 

that satisfies the projection equations for both cameras i.e.  𝒙𝟏 = 𝑃1𝑿, 𝒙𝟐 = 𝑃2𝑿. The projection 

equations for both cameras can be rearranged into an equation of the form 𝐴𝑿 = 0 as shown in 

Equation 2.36 where (𝑃1)𝑖 is the 𝑖𝑡ℎ row of 𝑃1. This equation can be solved using singular value 

decomposition. 

  

 [

𝒖𝟏(𝑃1)𝟑 − (𝑃1)𝟏
𝒗𝟏(𝑃1)𝟑 − (𝑃1)𝟐
𝒖𝟐(𝑃2)𝟑 − (𝑃2)𝟏
𝒗𝟐(𝑃2)𝟑 − (𝑃2)𝟐

]

⏟            
𝑨

𝑿 = 𝟎 
2.36 
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3 Modelling of Positioning Systems 

As discussed in Section 2.2.3, model based alignment techniques have several benefits that make 

them very appealing especially when complex samples are involved. Model based alignment 

solutions such as the SScanSS package work to the extent that the virtual laboratory on which they 

are based corresponds, in terms of sample position, coordinate systems and characteristics of 

moving components, (such as the sample positioning system), to the real laboratory. Although 

neutron beam-line instruments are designed and built to very high specifications there are 

circumstances where this correspondence may not be adequate. At the most basic level, moving 

components, such as jaws, collimators and most importantly sample positioning systems, often, over 

time, develop accuracy issues, that may cause a divergence between the real behaviour and the 

ideal kinematics assumed in the modelled system. The effect of using inaccurate kinematic 

parameters can be very significant, particularly in relation to more complex positioning systems such 

as the 3 or 6 axis revolute manipulators which are of increasing interest as sample positioning 

systems [3, 9].  

The question addressed in this chapter is how to acquire more accurate models of imperfect or 

complex systems, be they sample positioning systems, jaws or detectors.   

3.1 Methodology 

All the model based alignment techniques reviewed in Section 2.2.3 used kinematic models for their 

planning. Kinematic models are popular because they require no knowledge of the forces causing 

the motion, for example using a dynamic model could require the user to know the mass of the 

sample and the velocities applied to the joints of the positioning system. Practically, it would be non-

trivial and in some neutron diffractometers impossible for dynamic models to be used. This could 

also defeat one of the major benefits of the model based alignment which is ability of the user to 

plan their experiment in advance. Hence in this work, we continue to use the kinematic models for 

representing the moving systems. The kinematic model parameters used to design a positioning 

system would typically be provided by the manufacturer6 but insufficient construction tolerance 

typically leads to the real kinematic parameters of the manipulator being different from the 

manufacturer's design parameters   

In this chapter, the use of kinematic calibration techniques (Section 2.4) from the field of robotics to 

determine the kinematic parameters of both off-the-shelf and custom built positioning systems is 

proposed. Using a measuring device, these kinematic parameters can be estimated from 

                                                           
6 In the case of simple positioning systems, idealized kinematic parameters are typically assumed 
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measurements taken from the positioning system and then be used for more accurate instrument 

control or simulation. The pipeline for the proposed solution shown in Figure 3.1, follows the 

standard robot calibration steps of modelling, measurement, parameter identification, and 

implementation which were reviewed in Chapter 2. The proposed solution is discussed in more 

details in the next section. Experimental evaluation of the proposed method requires particular 

functionalities such as a numeric inverse kinematic solver [14] and graphical rendering which, due to 

time constraints, cannot be built from scratch for this project so a pre-existing package- SScanSS is 

used to demonstrate the performance of the methods. However the methods developed in this 

thesis are generally applicable. The functionality already provided by the SScanSS package is not 

addressed in this work. The approach is illustrated using positioning systems on the ENGIN-X 

instrument at the UK's ISIS pulsed neutron source, but again the methods could be applied to other 

neutron and synchrotron instrument hardware 

 
Figure 3.1: The pipeline for the proposed solution 

It should be noted that earlier results from the work presented in this chapter have already been 

published [99] but that several measurements have been repeated since that publication. Any 

significant differences will be pointed out in the text. 

3.2 Calibration for Diffractometers 

This section discusses some of the important considerations for applying calibration techniques to 

diffractometers in general but some of the considerations are particular to the SSCANSS/ENGIN-X 

combination which is used to illustrate the methods. 
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3.2.1 Kinematic Modelling Notation 

Other than the three selection criteria in Section 2.4.1 of completeness, proportionality, and 

equivalence, which should be a priority, the selection of a modelling notation would depend on the 

modelling convention of the simulation or control software where the kinematic parameters would 

be used. SScanSS originally employed a modified version of the four parameter DH notation (Section 

2.3.2) which is an incomplete notation (i.e. a notation that is unable to represent all possible 

variation that could occur in the kinematic structure of the manipulator). With the DH notation, a 

serial manipulator with n joints requires n + 1 coordinate frames and 4 × n parameters for its 

representation. Since six numbers are required to specify the position and orientation of an arbitrary 

coordinate frame in space, the DH notation requires the additional constraints that i) the xn axis 

intersects both zn−1  and  zn  axes and ii) that the xn axis is perpendicular to both the zn−1  and  zn  

axes. Industrial robots are typically designed to respect these constraints, but calibration can reveal 

that such constraints are broken [37]. Generally, beam line positioning systems are not designed 

with conscious reference to these constraints so that the standard DH parameters may typically not 

be sufficient to represent these systems. To solve this problem, the modified DH notation of Hayati 

and Mirmirani [37] is used instead. In this modified DH notation, an extra parameter 𝛽𝑖, is used to 

represent the rotation around the axis 𝑦𝑖  of joint 𝑖 + 1. Under this system 5 ×  n parameters 

describe a manipulator with n joints. 

The transformation from coordinate frame 𝑖 − 1 to 𝑖 is now computed by multiplying rotation and 

translation matrices formed using the five parameters as shown below 

 

Where 𝑅𝑜𝑡𝑘() is a homogeneous transformation matrix where the rotation component is a rotation 

about the 𝑘 axis and  𝑇𝑟𝑎𝑛𝑠𝑘() is a homogenous matrix which contains a translation along the k 

axis. The homogenous matrix 𝐴𝑖  
𝑖−1 represents the transformation from the 𝑖 − 1𝑡ℎ coordinate 

frame to the 𝑖𝑡ℎ coordinate frame. The transformation from the frame placed at the base of the 

robot to the frame placed at the end point of the robot (the forward kinematics) remains the same 

as the normal DH Notation. 

It should be noted that the choice of the modified DH notation is to allow for compatibility with the 

selected simulation software and that the methods developed in this thesis are not constrained to 

 𝐴 𝑖 
𝑖−1 = 𝑅𝑜𝑡𝑧(𝜃𝑖). 𝑇𝑟𝑎𝑛𝑠𝑧(𝑑𝑖). 𝑅𝑜𝑡𝑥(𝛼𝑖). 𝑇𝑟𝑎𝑛𝑠𝑥(𝑟𝑖). 𝑅𝑜𝑡𝑦(𝛽𝑖) 3.1 

𝐴 𝑖 
𝑖−1 = [

cos 𝛽
𝑖
cos 𝜃𝑖 − sin 𝛼𝑖 sin 𝛽𝑖 sin 𝜃𝑖 −sin 𝜃𝑖 cos 𝛼𝑖 sin 𝛽

𝑖
cos 𝜃𝑖 + sin 𝛼𝑖 cos 𝛽𝑖 sin 𝜃𝑖 𝑟𝑖 cos 𝜃𝑖

cos 𝛽
𝑖
sin 𝜃𝑖 + sin 𝛼𝑖 sin 𝛽𝑖 cos 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 sin 𝛽

𝑖
sin 𝜃𝑖 − sin 𝛼𝑖 cos 𝛽𝑖 cos 𝜃𝑖 𝑟𝑖 sin 𝜃𝑖

−𝑧 cos 𝛼𝑖 sin 𝛽𝑖 sin 𝛼𝑖 cos 𝛼𝑖 cos 𝛽𝑖 𝑑𝑖
0 0 0 1

] 3.2 
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any model. The proposed method was, in fact, initially developed using the Quaternion-Vector 

model discussed in Section 2.3.2 and later changed to utilize the DH notation. Due to the 

equivalence property, it is known that the choice of model should not affect the accuracy of the 

calibration.  

3.2.2 Pose Measurements 

Accuracy is the priority for neutron diffractometer sample positioning therefore the most accurate 

measurement device available at the instrument should be used for the calibration. The selected 

measurement device should be able to measure to the desired accuracy in the workspace of the 

manipulator. Essentially the measurement device should be more repeatable and accurate than the 

positioning system being calibrated. If this is not the case the measurement device would limit the 

accuracy achieved by the calibration process. A variety of measurement devices have been used in 

the calibration research (Section 2.4.2) but the calibration of any arbitrary manipulator would 

require at least a 3D measuring device. The measurement device available for this project was a 

FARO Vantage laser tracker whose accuracy is discussed in the next section.  

Laser Tracker Accuracy 

The laser tracker used was sent to the manufacturer for calibration and was reported to be within 

the manufacturer specification7 after servicing. Before using the tracker, the accuracy of the laser 

tracker was tested, using the manufacturer designed tests, and was found to be typically around 20 

microns under stable temperature conditions. The tracker is an absolute distance measurement 

(ADM) tracker which requires the target to be stable before taking a measurement. The tracker is 

equipped with a weather (temperature, pressure, humidity) sensor to measure environmental 

variation so as to compensate for their effects on the laser beam. Although the tracker can utilize up 

to four weather sensors; only a single sensor was available. This sensor would typically be mounted 

close to the tracker. This implies the tracker would not compensate for environmental variations at a 

distance from the tracker. All necessary measures were taken to ensure the environmental 

variations were minimal during all measurement, for example, all room heating and cooling 

equipment were switched off during calibration. 

The accuracy of a laser tracking system depends on the accuracy of its subsystems, which consists of 

a distance measurement system (using the laser) and two motor encoders (azimuth and zenith). The 

accuracy of the laser system could be improved by limiting the error from any one of these 

subsystems. A method of minimizing the total error from the laser tracker is to reduce the distance 

                                                           
7 Maximum permissible error for measuring a 2.3m horizontal scale bar at a range of 2m is 44 microns but 
error is typically 22 microns. 



 

61 
 

travelled by the laser beam hence the laser tracker was positioned as close as possible to the 

manipulator being calibrated to minimize the accuracy loss due to distance. The 2m range was rarely 

exceeded so expected accuracy should be similar to the stated specification. Another method of 

minimizing the error from the laser tracker is to disable the azimuth and zenith motors and make 

measurements with the laser beam only. This method might not be possible in every scenario; an 

alternative would be to reduce the angular range within which the measurements are made because 

small angular errors are typically magnified by distance. 

The SMR used with the laser tracker was a 1.5 inch Standard Accuracy Break Resistant SMR also from 

FARO. The break resistant target features a single element retroreflector with a gold coating. The 

vertex of the single element reflector is centred within ± 0.0076mm. Other manufacturer 

recommended best practices were followed to ensure the best accuracy [100]. 

Automation of the Calibration Measurements 

In addition to accuracy of the measurements, another very important consideration is the 

automation of the measurement process as this can have the following benefits: 

 The complete automation of the measurements process is necessary in order to minimise 

human error as a large number of measurements are required to be made.   

 Automation would also to allow the measurement be repeated as many times as required with 

minimal variation due to differing human operators in each run.  

 Automation of the calibration process is essential if the calibration process is to be carried out by 

non-experts.  

 A one click calibration process would be essential to avoid unnoticed errors from being inputted 

into the simulation software. 

Therefore, when possible the measurements were automated in this project. A system architecture 

that enables the automation of measurements is presented in Section 3.3.1. 

3.2.3 Numerical or Geometrical Calibration? 

The different methods for parameter identification were presented in Section 2.4.3. Here we re-

examine these methods with specific reference to neutron diffractometers. The accuracy required 

for sample alignment in a stress measurement experiment is typically taken to be a function of the 

size of the gauge volume used. A general rule of thumb cited within the neutron diffraction 

community is that the positioning system should be capable of positioning the sample within an 

accuracy of 10% of the smallest dimension of the gauge volume of the instrument [12]. The smallest 
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gauge volume routinely used for experiments is 1 × 1 × 1𝑚𝑚3, suggesting a positioning accuracy of 

approximately 0.1mm8.  

It is desirable to select a calibration method that gives the most accuracy and parametric methods 

are typically more accurate than circle-point-analysis (CPA) because they can find kinematic 

parameters that account for some of the non-geometric errors in the measurements whereas CPA 

would account for geometric errors only. In reality however, non-geometric error typically account 

for only a small percentage of the total positioning error therefore modelling non-geometric errors 

might not be necessary. 

Other broader considerations need to be taken into account, for example CPA has the advantages of 

being easily implemented and validated since no minimization or Jacobians are required by the 

technique. This could allow personnel to make intuitive decisions when calibrating a new system. For 

example, if space restriction prevents personnel from measuring a full circle it is possible to omit 

some points and still fit a reasonable circle, but with the parametric method it is less intuitively 

obvious how to handle such a situation. CPA also has the advantage of requiring no knowledge of 

the existing kinematic parameters of the manipulator, which makes it suitable for custom-built 

positioning systems whose kinematic parameters are unknown; as is the case with many positioning 

systems at neutron diffractometers.   

It should be noted that robot calibration techniques in general are not guaranteed to generate 

models that look like the physical robot which might be a problem if such models are also used for 

training, visual orientation or collision detection as well as for control (see Figure 3.12). One possible 

solution to this problem would be to maintain two separate models, the calibrated model which 

would be used for sample alignment and a CAD model used for the collision detection. This problem 

could arise in both parametric methods and CPA but it could be managed in the parametric methods 

by setting some constrains in the minimization problem. 

Because neutron diffractometers mostly utilise custom-built positioning systems and in the light of 

the practical operational issues discussed above, it was decided to choose the CPA method over a 

parametric method. When further accuracy is deemed to be necessary the non-geometric errors 

could be modelled separately. This is the approach taken in this thesis. 

3.2.4 Implementation 

As part of the implementation stage, the extracted kinematic parameters would be included into 

SScanSS to evaluate the performance of the calibrated model experimentally. The experimental 

                                                           
8 In the case of X-ray diffraction a typical gauge volume size could be as small as 0.1mm which indicates a 
positional accuracy of 0.01mm. This accuracy can be achieved in calibration by using a measuring device with 
sufficient accuracy. 
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evaluation of the system is presented in Chapter 5. In the next section, an example of the CPA 

method applied to a removable three axis manipulator and a XYZΩ positioning table as used on the 

ENGIN-X instrument is presented. 

3.3 Case Study I: ENGIN-X Instrument 

The standard positioning system used on the ENGIN-X instrument is a positioning table but when 

necessary the positioning table can be augmented with supplementary systems such as a revolute 

manipulator. The ENGIN-X positioning table is a custom-built manipulator with four stages9 arranged 

in order, (bottom to top) of Z, Ω, Y, and X. The maximum payload that can be lifted is specified as 

1000Kg. The ENGIN-X Revolute manipulator shown in Figure 3.2 is a portable, custom-built, robotic 

manipulator designed by Cybaman Technologies with 3 revolute joints10; all having a range of -180° 

to 180°. The maximum payload that can be lifted is specified as 25Kg. The end effector is a 

breadboard mounting plate to which samples are attached. At ENGIN-X, the joints of the revolute 

manipulator are labelled from top to bottom using alphabetic characters; so the topmost joint is 

Joint A and the base Joint is Joint C. This convention is also used in this thesis. A typical setup of table 

and revolute manipulator is shown in Figure 3.2. The operational advantage of using the revolute 

manipulator, in conjunction with the positioning table, is that it allows greater flexibility in terms of 

sample orientation and, in particular, allows the automated measurement of three orthogonal strain 

components without requiring the sample to be removed, manually rotated and re-mounted.  

Given that, in common with much similar ancillary equipment in use on beam-lines, the revolute 

manipulator is not used for all experiments; the table and revolute manipulator were calibrated 

separately, and a method for combining them into a single manipulator model was developed. 

3.3.1 System Architecture 

The system architecture illustrated in Figure 3.3 was proposed and implemented for taking the 

measurements at ENGIN-X to ensure the minimal errors and good repeatability of the 

measurements. A measurement server was created which communicates with the laser tracker 

system installed on ENGIN-X. The server software which was written using the C++ programming 

language communicated with the metrology device via the software development kits (SDK) 

provided by the equipment manufacturer. The server abstracts away the complexity of using the 

laser tracker and make it as simple as sending a TCP request to the server.  

                                                           
9 Each stage uses encoders for motion feedback and limit switches to prevent the stage from exceeding the 
physical or desired travel limits for the axis. 
10 Due to a damaged motor driver, results published in [100], were for two joints only but the driver has since 
been repaired so all three joints are reported here. 
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Figure 3.2: The XYZΩ stage and the revolute manipulator of the ENGIN-X Instrument (Top) and, a 

schematic diagram of the combined XYZΩ and revolute manipulators showing all the revolute joints 

as cylinders and the prismatic joints as cubes with arrows to indicate direction of translation or 

rotation (below). 

 

The ENGIN-X instrument can be controlled via Open Genie scripting [101]. The script allows granular 

control of the positioner and other ancillary devices with a few lines of code. For example, the X axis 
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of the positioning table could be commanded to move to the 100mm position with 0.1mm accuracy 

using a single line of code like CHECK_POS /X 100 0.1. The procedure doesn’t return until the X axis 

arrives at the desired position within the requested tolerance. Although the instrument control 

scripts would be written in Open Genie, when necessary the script sends the appropriate command 

via TCP to the measurement server. A simple TCP request sent to the measurement server could be 

used to measure the position of an SMR attached to the moving axis or the server could be 

configured to take several measurements and output the measured points to a file or the console. 

 

Figure 3.3: The system architecture developed for taking measurements on the ENGIN-X instrument. 

This architecture allowed the automation of several of the calibration and evaluation measurements 

presented in this chapter. One major limitation to complete automation of the entire measurements 

is the requirement that the SMR continues to face the laser tracker all through the measurement 

process. Therefore measuring a very large translation or rotation would require manual rotation of 

the SMR to keep the beam. Complete automation could be achieved by using a motorised SMR [41] 

that moves to maintain the laser beam. 

3.3.2 Repeatability Analysis 

As discussed in Section 2.3.3, it is not possible to achieve accuracies higher than the repeatability of 

the manipulator, therefore understanding the repeatability of the positioning system is vital to 

understand the limits on the achievable accuracy. This section presents the results of repeatability 

tests performed on the ENGIN-X positioning system (table and revolute manipulator). Before 

carrying out the tests, it was important to determine the joint limits of the positioning table. The 

knowledge of the joint limits is required for selecting the configurations for the tests. The limits were 

found by manually jogging the positioners and recording the sensor positions at which the positioner 

stopped at the limit switch. The joint limits and calculated travel for each joint are shown in 

Appendix A. 
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Procedure for Determining Repeatability 

The repeatability tests were performed for three poses (sets of joint configurations). These 

configurations are denoted as configurations A to C. In each configuration, thirty one measurements 

were made to determine the repeatability of the positioner in that pose. The initial configurations 

were selected in a systematic way in order to sample the workspace. The repeatability tests were 

performed using the laser tracker and the 1.5 inch SMR in the ENGIN-X instrument hutch. The SMR 

was attached rigidly on the revolute manipulator (which was mounted on the positioner). It should 

be noted that the repeatability of both positioners are characterised independently i.e. the revolute 

manipulator was not commanded to move while the repeatability of the positioning table was 

characterised and vice versa. The entire tests used for the evaluation of repeatability were fully 

automated using the system architecture described in Section 3.3.1 therefore no human 

intervention was required after the initial setup. For a single test, thirty new configurations were 

generated by adding random offsets11 to the initial configuration. An Open Genie script was written 

to perform the following  

1. Command the positioner to move to the initial configuration and measure the initial position 

of the SMR. 

2. Set variable 𝑖 = 1. 

3. Command the positioner to move to the 𝑖𝑡ℎ configuration. 

4. Command the positioner to return to the initial configuration and wait for a few seconds for 

stability after the move is completed.  

5. Command the laser tracker to measure the position of the SMR.  

6. Set 𝑖 =  𝑖 + 1 

7. Repeat steps 3-6 until all configurations have been reached.  

Every time the positioner reached the initial configuration, a measurement was taken which gave a 

total of thirty one measurements. These thirty one measurements were taken at a single 

configuration and constituted a single test. All tests were repeated a minimum of three times at 

each configuration to reduce the bias that could arise from any laser tracker issues. Minimization of 

random errors from the laser tracker was necessary to get the best results; this was done by keeping 

the laser beam stationary at the initial configuration and disabling the azimuth and zenith motors 

hence ensuring that the repeatability of the measurements depended largely on the repeatability of 

the laser distance measurement system and that the only moving object in these tests was the 

positioner being tested. For this measurement technique to work, an assumption was made that the 

                                                           
11 These random offsets were generated using a random number generator and scaled to ensure the 
positioning system did not run into the limit switch. 
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repeatability of the positioners were good enough to ensure that the SMR was returned back to 

within its angle of acceptance so the beam is never lost when the target is returned to the initial 

configuration. The assumption was found to be valid for all the ENGIN-X positioning systems tested. 

Repeatability can be classified into unidirectional and bidirectional repeatability. If the positions on 

the individual joints are always approached from the same direction, this is known as unidirectional 

repeatability. Bidirectional repeatability is when a joint position is approached from both directions. 

Unidirectional repeatability values are typically better than that of bidirectional repeatability tests 

[33] due to the presence of backlash and other dynamic errors when direction of a moving joint is 

reversed. Only bidirectional tests were conducted and the results from these tests are discussed in 

next section. 

Repeatability Results for the Positioning Table 

The selection of configurations for repeatability is considered something of a black art in the field of 

robotics as no approved systematic method exists for the selection. Mooring and Pack [32] proposed 

the method in which a Jacobian (see Section 2.4.3) based joint index is used to select the 

configurations for the repeatability tests. They suggest that the repeatability measurements be 

made at the configuration with the worst and average joint index. They proved mathematically that 

the worst joint index for a particular joint should be achieved when the end effector is farthest from 

that joint, hence that joint would contribute more to the repeatability errors. This seems reasonable; 

for example, considering the manipulator in Figure 3.4, small angular errors in the base joint should 

make larger contribution to the repeatability error for the pose shown in Figure 3.4b than that in 

Figure 3.4a because of the increased radius. Their method requires the knowledge of the kinematic 

parameters of the manipulator in advance which may not be available and also the method would 

not work for prismatic joints because, in the Jacobian matrix, a unit displacement of a prismatic joint 

always leads to a unit displacement of the end effector. The joint index method was deemed 

unsuitable for this project because of the challenges above.  
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(a)                                                                                 (b) 

Figure 3.4: Illustration of a manipulator in two different configurations. Configuration (a) is the zero 

configuration of the manipulator and configuration (b) has one of the joints rotated by 180 degrees.  

The configurations used for the ENGIN-X manipulators were selected using a combination of 

kinematic intuition (such as the one demonstrated above) and knowledge of the manipulator design 

specification. For example it was mention by one of the instrument scientists that in the 

specification of the positioning table the edges of the table were allowed to have less tolerance than 

the centre of the table therefore some configurations were selected near the joint limits to validate 

this claim. The configurations used to assess the repeatability of the positioning table are presented 

in Table 3.1. Configuration A was selected to be at the zero point of all joints which is located near 

the centre of travel for each joint. Configurations B and C were selected to be close to the upper and 

lower joint limits respectively.  

 X (mm) Y (mm) Z (mm) Ω (deg) 

A 0.000 0.000 0.000 0.000 

B 200.000 200.000 200.000 165.000 

C -200.000 -200.000 -200.000 -165.000 

Table 3.1: The joint configurations used for the repeatability tests on the ENGIN-X positioner. 

From the results in the Table 3.2, it is clear that the repeatability of the ENGIN-X positioning table as 

is common with many other manipulators, varies over the workspace. These tests were done using 

multi-axis control (all joints were commanded to move together to the desired position). The 

Euclidean distance from the measured point to the origin of the laser tracker’s coordinate frame was 
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computed, then the standard deviation and maximum deviation from the average are used to 

analyse the repeatability of the positioning table. 

 1st Attempt 2nd Attempt 3rd Attempt 

Configuration A 

Std. dev. 0.00926 0.00905 0.00412 

Maximum 0.04430 0.03292 0.03209 

Configuration B 

Std. dev. 0.01082 0.00783 0.00827 

Maximum 0.06566 0.06096 0.05739 

Configuration C 

Std. dev. 0.01316 0.01310 0.01406 

Maximum 0.03721 0.03574 0.03683 

Table 3.2: The results from the multi-axis repeatability tests on the ENGIN-X positioner. The 

standard deviation and the largest deviation from the average (in mm) are presented for all the 

configurations. 

The best repeatability is obtained at the centre of travel of all joints which is configuration A and 

degraded slightly as the manipulator approached the joint limits represented by configuration B and 

C. Assuming a normal distribution of the errors, the deviation of the manipulator from a commanded 

position would be below the standard deviation for 68.3% of the observations and below three 

multiplied by the standard deviation (according to the 3-sigma rule [102]) for 99.7% of the 

observations. Therefore at configuration C (Attempt 3), deviations are expected to fall under 

0.04218 mm (3 x 0.01406 mm) 997 times out of 1000 and under 0.01406 mm 683 times. To confirm 

whether the 3-sigma rule is applicable, each set of measurements were evaluated using the Shapiro-

Wilk normality test [103] and a q-q plot [104]. These evaluations revealed that the measurements 

from configuration A were normally distributed with a long tail which implies that the repeatability 

of the positioning table at configuration A would have more outliers than the 3-sigma rule predicts. 

Towards the joint limits (i.e. configuration B and C), the measurements start to deviate from 

normality. A closer look at the measurements (Figure 3.5a) at configuration C shows that all three 

attempts are strongly correlated which would suggest that the source of the variations is non-

random. For comparison, the measurements12 for configuration A are shown in Figure 3.5b.   

                                                           
12 Configuration A and B measurements show similar random behaviour therefore only Configuration A is 
shown. 
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(a) 

 

(b) 

Figure 3.5: A plot of the 31 measurements used to access the repeatability in Table 3.2, (a) data 

from configuration C13 (b) data from configuration A. 

Non-random error would indicate the presence of a repeatable error source that can be fixed but 

due to the small size of the error, this was not investigated. It is typically expected that the 

repeatability of single-axis control (a single axis is actuated at a time) should be better than the 

multi-axis control mainly because keeping the other joints fixed should reduce cross-coupling error 

(when the movement of one stage causes another stage to move). Hence the repeatability tests 

were repeated (with the same 30 configurations used for the multi-axis tests) on the positioning 

                                                           
13 The magnitude axis of the plot for configuration C is adjusted to allow easy comparison with the plot for 
configuration A. 
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table using the single-axis control to evaluate if this assumption holds for the positioning table. The 

results from those tests are presented in the table below 

 1st Attempt 2nd Attempt 3rd Attempt 

Configuration A 

Std. dev. 0.00750 0.00932 0.00961 

Maximum 0.02249 0.02795 0.02882 

Configuration B 

Std. dev. 0.00669 0.01299 0.00999 

Maximum 0.02008 0.03898 0.02996 

Configuration C 

Std. dev. 0.01547 0.01395 0.01607 

Maximum 0.04640 0.04185 0.04821 

Table 3.3: The results from the single-axis repeatability tests on the ENGIN-X positioner. The 

standard deviation and the largest deviation from the average (in mm) are presented for all the 

configurations. 

On first impression Table 3.3, suggest that the repeatability of the single axis control tests does not 

vary significantly from the multi-axis control results. But a closer look at the maximum deviations for 

configurations A and B, indicates that the single-axis control consistently resulted in less outliers 

than the multi-axis control, even though the standard deviations are similar. The results remained 

normally distributed with a long tail but the tail is shorter than for the previous test, which could 

indicate that the single-axis control is more reliable than the multi-axis control. The main exception 

was Configuration C which like the multi-axis control was found to not be normally distributed. The 

measurements for configuration C had the same profile as shown in Figure 3.5a. 

From the evaluation above, the repeatability of the positioning table would be stated to be below 

0.050mm (which is the manufacturer specified value) at the centre and deteriorates towards the 

extremes with the assumption that there is no extreme variation in between the selected 

configurations. 

Repeatability Results for the Revolute Manipulator 

The configurations used to assess the repeatability of the revolute manipulator are presented in 

Table 3.4. Configuration A was selected to be at the zero point of all joints. Configuration B was 

selected to be close to the joint limits for all joints except joint C while configuration C is selected to 

be near the midpoint between the zero point and the joint limits for all joints except joint C. The 
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values used for joint C were intentionally kept below 40° to ensure line of sight visibility to the laser 

tracker. 

Configuration Joint A (deg) Joint B (deg) Joint C (deg) 

A 0.00 0.00 0.00 

B 165.00 -165.00 -30.00 

C -75.00 90.00 35.00 

Table 3.4: The joint configurations used for the repeatability tests on the revolute manipulator. 

The repeatability tests on the revolute manipulator were performed using single axis control. The 

Euclidean distance from the measured point to the origin of the laser tracker’s coordinate frame was 

computed, and the standard deviation and maximum deviation from the average were then 

calculated. Results are presented in Table 3.5, from which it appears that the repeatability of the 

revolute manipulator varies minimally over its workspace. The measurements from all configurations 

were determined to be normally distributed using the same tests mentioned above. Therefore the 

bidirectional repeatability of this revolute manipulator could be stated to be around 0.016mm (3–

sigma of the maximum in Table 3.5) when unloaded also with the assumption that there is no 

extreme variation in between the selected configurations. 

 1st Attempt 2nd Attempt 3rd Attempt 

Configuration A 

Std. dev. 0.00505 0.00427 0.00298 

Maximum 0.01151 0.00890 0.00701 

Configuration B 

Std. dev. 0.00319 0.00479 0.00221 

Maximum 0.00619 0.00864 0.00648 

Configuration C 

Std. dev. 0.00378 0.00518 0.00295 

Maximum 0.00759 0.00973 0.00630 

Table 3.5: The results from the single-axis repeatability tests on the revolute manipulator. The 

standard deviation and the largest deviation from the average (in mm) are presented for all the 

configurations. 

It should be noted that the repeatability of a positioning system typically varies with both the speed 

and acceleration of the positioning hardware, but since these values are fixed by the ISIS motion 

control team, the effect of changing these parameters is not evaluated. Theoretically increasing 
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these variables should degrade the repeatability (because of higher possibility of overshooting the 

selected joint position) while decreasing the value should improve the repeatability.   

3.3.3 Description of Calibration 

A custom tool, shown in Figure 3.6, was mounted at the end effector of the manipulator. The tool 

has a magnetic end to allow attachment of the target (SMR). The SMR on the end of the tool was 

manually tilted or rotated to maintain it facing the tracker beam. The tool was mounted with an 

offset from the relevant centres of rotation so that the rotation of the revolute joints resulted in the 

SMR following a circular path, the minimum size of the offset would depend on the behaviour of the 

circle fitting algorithm selected. All Joints on the manipulator being calibrated were set to the zero 

position (0° or 0mm). Beginning from the topmost joint the manipulator was then moved, 

throughout its range, in fixed increments and the position of the SMR measured at each step. The 

joint was then returned to its zero position and the same procedure repeated for the next joint in 

the chain, until the base (or bottom) joint was reached so all joints were moved during the 

measurement process. The measured points were passed into an IDL [105] function implementing 

the CPA algorithm (Algorithm 2.1). The output from the CPA algorithm is the identified joint axes 

and centre points; these were passed to another function written in IDL that utilized vector algebra 

and Euler angle analysis to extract the 5 modified DH parameters. 

 
Figure 3.6: The custom tool used for the calibration experiment with the 1.5'' SMR. 
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3.3.4 Conversion from Axis/Point to DH notation  

In this section, a new method to convert from identified joint axes and centre points to the modified 

DH notation is presented. A few techniques have been proposed to extract modelling parameters 

from measured joint axes and centres. Barker [106] used vector algebra to extract standard DH 

parameters from identified axes and points. He developed equations for the cases where the 

consecutive joint axes were skewed, parallel, or intersecting. Sklar [53] used an equation which he 

termed the ‘mutual moment equation’ to determine if a pair of joint axes was intersecting, skew or 

parallel. He derived a set of equations for determining the DH parameters for each category. 

Rajeevlochana et al [107] used line geometry, Plücker coordinate and dual vector algebra to 

determine if two consecutive joint axes are skewed, parallel, or intersecting then used that 

knowledge to compute the standard DH parameters of the serial manipulator. Stone [40] proposed a 

method in which coordinate frames are assigned to each link using the measurements and then used 

to derive the parameters for his modelling notation known as the S-model. The S-model parameters 

could then be converted into standard DH parameters. Here a method similar to Stone’s method is 

proposed but the modified DH parameters are derived directly instead of via S-model parameters. 

Similar to Stone’s method, the proposed method begins by assigning a coordinate frame, but in this 

case a coordinate frame is assigned only to the first link in the manipulator. This coordinate frame 

could be the same as the measuring system, a known instrument coordinate frame or any arbitrary 

frame. All the measured joint axes and centres must be placed in this coordinate frame. Given two 

joint axes, it is trivial to calculate the rotation matrix 𝑀 that aligns the first axis with the second. 

When 𝑀 is computed, it can be decoupled into four rotation matrices as shown in Equation 3.3 

where 𝜃𝑖,  𝛼𝑖,  𝛽𝑖  are the same as in Equation 3.1 and  𝛾𝑖+1 is a joint offset for the next link which is 

included to deal with the arbitrary assignment of coordinate frames. It can be seen from Equation 

3.3 that if 𝜃𝑖 is removed from 𝑀, the other parameter can be determined by solving for X-Y-Z euler 

angles.  The proposed algorithm relies on these concepts to decouple the DH parameters from the 

rotation matrix. The basic algorithm for the method is given below. 

Given a set of measured joint axes 𝑱 and joint centres 𝑪 which have been placed in the assigned first 

link coordinate frame, the DH parameters would be denoted as in equation above  where 𝑖 is the link 

index. Let 𝑖 = 0,  𝛾𝑖 = 0.0 and 𝑀𝑖 be a 3 x 3 identity matrix. 

1. Calculate a vector from the centre of joint  𝑖 to joint 𝑖 + 1 as shown below 

𝑉𝑖 = 𝑪𝒊+𝟏 − 𝑪𝒊 

 𝑀 =  𝑅𝑜𝑡𝑧(𝜃𝑖). 𝑅𝑜𝑡𝑥(𝛼𝑖). 𝑅𝑜𝑡𝑦(𝛽𝑖). 𝑅𝑜𝑡𝑧(𝛾𝑖+1)⏟                    
𝑥𝑦𝑧 𝐸𝑢𝑙𝑒𝑟 𝐴𝑛𝑔𝑙𝑒𝑠

 
3.3 
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When 𝑖 + 1 exceeds the number of joints, the end effector position should be used to 

compute the vector. 

2. Rotate the vector into the coordinate frame of the first link 

�̂�𝑖 = 𝑀𝑖
𝑇  .  𝑉𝑖 

3. Calculate the link length 𝑟𝑖 and the link offset 𝑑𝑖  of link 𝑖 using  𝑉�̂�. The components of 𝑉�̂� is 

denoted as [𝑉𝑥 𝑉𝑦 𝑉𝑧].  The link length is the magnitude of the 𝑥 and 𝑦 component of 𝑉�̂�  

while the link offset is the 𝑧 component.  

𝑟𝑖 = √𝑉𝑥
2 + 𝑉𝑦

2 

𝑑𝑖 = 𝑉𝑧 

4. Calculate the joint offset 𝜃𝑖  for link 𝑖  

𝜃𝑖 = 𝑎𝑡𝑎𝑛2(
𝑉𝑦

𝑉𝑥
) 

5. Create a rotation matrix 𝑅𝑧 using the calculated 𝜃𝑖 value. 

𝑅𝑧 = [
cos (𝜃𝑖) −sin (𝜃𝑖) 0
sin (𝜃𝑖) cos (𝜃𝑖) 0
0 0 1

] 

6. Determine the rotation matrix 𝑀𝑖+1 that rotates the first joint axis 𝐽0 to joint axis 𝐽𝑖+1.  This 

can be done using the shortest arc quaternion algorithm [108]. 

7. Decouple the joint offset 𝜃𝑖 from 𝑀𝑖 which as explained above would give a matrix �̂� which 

can easily be decomposed into X-Y-Z Euler angle. 

�̂� = (𝑀𝑖 . 𝑅𝑧)
𝑇  .  𝑀𝑖+1 

8. Update the joint offset 𝜃𝑖 

`𝜃𝑖 = 𝜃𝑖 + 𝛾𝑖  

9. Decompose the matrix �̂� into 𝑥𝑦𝑧 Euler angles (𝛼𝑖 𝛽𝑖 𝛾𝑖+1) where 𝛼𝑖 is the joint twist,  

𝛽𝑖 is the Hayati parameter and 𝛾𝑖+1 is the joint offset for link 𝑖 + 1. One shortcoming of 

using Euler angles is that when 𝛽𝑖 is 90°, the joint twist and the joint offset for the next link 

becomes inseparable. In such a situation, the derived DH parameters would still be 

mathematically correct but they might not agree with the nominal DH parameters (if 

known). 

𝛼𝑖 = 𝑎𝑡𝑎𝑛2(
−�̂�12

�̂�22
) 

𝛽𝑖 =  𝑡𝑎𝑛2

(

 
−�̂�02

√�̂�12
2
+ �̂�22

2

)
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𝛾𝑖+1 =  𝑎𝑡𝑎𝑛2(
−�̂�01

�̂�00
) 

 

10. Set 𝑖 = 𝑖 + 1 and repeat steps 1 to 9 for the remaining links.   

The resulting DH parameters from the algorithm above can now be applied directly into the 

simulation software of choice. After extracting the DH parameters from the measured data, it is vital 

to validate the accuracy of the DH parameters (how closely the model corresponds to the physical 

system). The accuracy analysis is presented in the next section. 

3.3.5 Accuracy Evaluation of Kinematic parameters 

The accuracy of the calibration was measured using metrics proposed in the ANSI/RIA R15.05-1-1992 

(R1999) standard [109]. A set of 𝑁  joint configurations were randomly generated for both 

manipulators. The physical manipulator was commanded to move to each configuration and the end 

effector position 𝑃𝐴 was measured using the laser tracker and SMR. The calibrated kinematic model 

was then used to calculate the model end effector position 𝑃𝐶 for the same joint configurations. The 

difference between 𝑃𝐶𝑖 and  𝑃𝐴𝑖 gives the error between the calibrated model and the actual 

manipulator for the 𝑖𝑡ℎ joint configuration. The overall accuracy is simply the mean of the magnitude 

of each of the errors for the 𝑁 configurations, as shown in Equation 3.4 below. The ANSI standard 

recommends that  𝑁 ≥  50 configurations are used and the resulting mean is called the Static 

Position Accuracy (SPA). 

Both manipulators were tested using 100 (instead of the minimum 50 used in [99]) randomly 

generated joint configurations and the end effector positions were measured. It may be noted that 

because residual stress measurements are made with the measurement point positioned over the 

centre of rotation of the XYZΩ table, errors in the rotation table do not produce corresponding 

displacement errors in the sample (only small orientation errors), hence all the Ω values in the test 

configurations for the positioning table were set to zero.  

After the test measurements were made, each manipulator was calibrated three times to assess the 

repeatability of the calibration procedure. In the first and second attempt the calibration 

measurements were made in a similar direction (the joints were moved from the lower limit to the 

upper limit) whereas in the last calibration attempt the measurements were reversed (the joints 

were moved from the upper limit to the lower limit). All three attempts used the same number of 

 𝑆𝑃𝐴 = 
1

𝑁
∑‖𝑃𝐴𝑖 − 𝑃𝐶𝑖‖

𝑁

𝑖=1

 
3.4 
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calibration points (eleven per joint). The SPA and the standard deviation for both manipulators, 

following calibration, are shown below. 

 

 

Manipulator 1st Attempt 2nd Attempt 3rd Attempt 

Revolute 

manipulator 

SPA (mm) 0.06951 0.06472 0.06784 

Std. dev. (mm) 0.02767 0.02835 0.02854 

Maximum (mm) 0.13949 0.13022 0.13665 

XYZΩ Table 

(No 

rotation) 

SPA (mm) 0.11777 0.11643 0.11820 

Std. dev. (mm) 0.05363 0.05195 0.05261 

Maximum (mm) 0.23178 0.23601 0.25132 

Table 3.6: Accuracy of the revolute manipulator and positioning table kinematic models 

It should also be noted that although the measurement for the positioning table were completely 

automated; the measurements from the revolute manipulator could not be automated due the 

requirement that the SMR is rotated to face the laser tracker. The rotation of the SMR was done 

manually which, it is considered, would introduce some additional error in some of the measured 

points. 

3.3.6 Correcting Other Error Sources 

The accuracies of both models, as shown in Table 3.6, are less than the previously measured 

repeatabilities of the manipulators. Because all three calibration attempts correlate, it can be 

deduced that other systematic error sources existed within the manipulators. Such additional errors 

could be modelled, potentially allowing further improvement to the model accuracy. An important 

requirement for any error source to be modelled is repeatability of the error. While CPA will 

determine the geometric arrangement of the joints it also makes particular assumptions, including i) 

perfect rotation or translation, ii) a completely rigid system and iii) a flawless motor control.  These 

assumptions are never fully met. For example imperfections in the circularity of a joint or 

straightness of translation of a stage, will show up as errors in the model, unless they are also 

explicitly modelled. In this section three additional error sources revealed by the CPA measurements 

are discussed and methods for modelling two of them described. 
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CPA Eccentricity Errors 

The back projection error is the difference between the measured positions and those calculated 

using the calibrated model of the manipulator. The back projection error will typically contain some 

measurement error, the size of which depends on the measuring device. If the back projection errors 

are less than the estimated accuracy of the measuring device they should be ignored. When the back 

projection error is computed for the second joint of the revolute manipulator, it reveals that the 

physical joint does not move in a perfect circle as shown in Figure 3.7. This error is known as an 

eccentricity error. Eccentricity errors are typically modelled [41] using three translational 

parameters 𝐿 =  (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧), two rotational errors (휀𝑥 , 휀𝑦) and one angular error 휀𝑧 which are 

illustrated in Figure 3.8. During the course of rotation the axis of the joint would translate by a 

vector 𝐿(𝜃) and rotate around axis 𝑖 by 휀𝑖(𝜃), the values of these parameters are not constant but 

vary with the angle of rotation 𝜃. With the assumption of a smooth variation, it is possible to model 

the change in these six parameters using a polynomial or Fourier series as described in [41]. In this 

implementation a single polynomial was used for each eccentricity parameter, therefore six 

polynomials are used for each joint deemed to have sufficient eccentricity errors.  

 

Figure 3.7: CPA back projection error of the second joint of the revolute manipulator. The deviations 

δx, δy and δz are computed in the coordinate system of the measuring device. 

 

The order of the polynomials was selected empirically and the coefficients of the polynomials were 

determined using a non-linear minimization technique [41]. 
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Figure 3.8: Eccentricity error of a revolute joint. The original axis XYZ becomes X’Y’Z’ when the joint 

is rotating, the position and orientation of X’Y’Z’ is determined by the eccentricity 

parameters [𝐿𝑥 , 𝐿𝑦, 𝐿𝑧, 휀𝑥 , 휀𝑦, 휀𝑧] which vary with joint angle. 

Incorrect Motor Offset 

The back projection error for the positioning table model showed that each stage moved with 

offsets that varied from that requested. These offsets were found to be repeatable irrespective of 

the direction in which the measurements were taken. Figure 3.9 shows the deviations of the Y-Axis 

for three different calibration attempts. The deviations for the X-Axis and the Z-Axis can be seen in 

Appendix A. 

 

Figure 3.9: Deviation between commanded offset and measured offset for the Y-Axis of the 

positioning table.  
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These errors were due to a combination of incorrect motor calibration and the straightness of the 

axis of travel. A simple model for this error was created by assuming that the error between 

measured points is uniformly distributed within each offset. Correction vectors were created by 

considering each interval in the equally spaced CPA measurements. Errors for each interval were 

calculated as the difference between the measured and expected changes in position between 

consecutive points. The errors for each interval were stored in a lookup table enabling the correction 

of any position on the axis to be calculated as the sum of the errors in the lookup table from the zero 

position to the commanded position. The intermediate offsets are calculated by linear interpolation. 

Using a polynomial in place of the lookup table also performed comparably while providing a more 

compact representation. It should be noted that this error in particular would be present even if the 

user were to align the sample with another method like wall scanning and would probably have 

gone undetected if the positioning table had not been calibrated. 

Sawtooth Errors 

In the initial calibration of the positioning table published in [99], the comparison between the 

commanded angles of the rotation stage with measured angle, revealed errors with a perfect 

sawtooth profile. In a more recent calibration, the profile of the error deviated from perfect 

sawtooth pattern (Figure 3.10), probably due to repairs that had taken place between the two sets 

of calibrations. These errors were still repeatable, however the relationship between the 

commanded angle and the observed errors have not yet been determined. Although this error is 

important for a comprehensive system model it is insignificant in the context of strain measurement 

because, as described above, the gauge volume of the instrument is always located at the centre of 

rotation, so that the error manifests solely as a small discrepancy of sample orientation. For this 

reason tests of the XYZΩ kinematic model were made with the Ω stage set to zero so as to reflect the 

true positioning accuracy obtainable by this system in the context of stress measurement.  
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Figure 3.10: Deviation between commanded angle and measured angle of the rotation stage  

3.3.7 Accuracy Evaluation of New Models 

The models of the eccentricity and motor offset errors discussed above were included with the 

kinematic models, thereby further improving the manipulators’ performance. Using the same test 

described in Section 3.3.5, the modified results are shown in the table below. The eccentricity 

correction resulted in an improvement of the accuracy in all attempts. Some error is expected in the 

eccentricity model since the polynomial would be an approximation of the actual error and the data 

itself contains errors from the measurement device. Since the eccentricity error is small, the model 

should only be applied to samples that would not significantly affect the eccentricity of the joints. 

For example a heavy sample might cause significant vibration in the joint that would act to increase 

or reduce the eccentricity errors. In such a case therefore either a modified eccentricity model 

should be developed or the kinematic model only should be used.   

The correction of the motor offset error also led to a significant improvement in the average 

accuracy and standard deviation of the positioning table. Using linear interpolation to compute 

intermediate intervals of the motor offset error would suggest that there must be a linear variation 

from one error point to another. This assumption was used to reduce the number of points taken for 

the calibration process. It might be thought that increasing the number of calibration points would 

better allow us to characterise the motor offset errors and improve the accuracy. This was tested by 

recalibrating the positioning table with twice the initial number of points (22); the resulting accuracy 

improvements were minimal with an average of 0.0611mm, standard deviation of 0.0278mm, and a 
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maximum deviation of 0.1385mm. Further understanding of the positioning table could be achieved 

by an extensive mapping of each axis but due to time limitations this is left for further work.  

 

Manipulator 1st Attempt 2nd Attempt 3rd Attempt 

Revolute 

manipulator 

+ 

Eccentricity 

model 

SPA (mm) 0.05153 0.04570 0.04600 

Std. dev. (mm) 0.02542 0.02345 0.02426 

Maximum (mm) 0.11131 0.09642 0.10298 

XYZΩ Table 

+ motor 

offset 

model (No 

rotation) 

SPA (mm) 0.06432 0.06238 0.06677 

Std. dev. (mm) 0.02829 0.02931 0.03008 

Maximum (mm) 0.14574 0.15667 0.17354 

Table 3.7:  Accuracy of the revolute manipulator and positioning table models with eccentricity and 

motor offset error models. 

3.4 Case Study II: Huber Eulerian Cradle 

In this section, another manipulator was calibrated to demonstrate the versatility of the calibration 

procedure. The manipulator is a Eulerian cradle designed by HUBER Diffraktionstechnik GmbH 

(Figure 3.11). The Huber Eulerian Cradle 511 consists of full circle cradle (known as the Chi Circle) 

and an inner joint (known as the Phi Circle). The Phi and Chi Circle planes are at right angles to one 

another both joints are designed to have an unrestricted 360° rotation around their axes. On the 

model available at ISIS, the Chi-circle has a limit switch which limits the travel range of the joint to 

356°. Due to time limitation, the repeatability of the cradle was not evaluated but should be 

evaluated before the kinematic models are applied to a user experiment.  

3.4.1 Description of Calibration 

The calibration of the Eulerian cradle was performed outside the ENGIN-X instrument hutch using 

the laser tracker. A magnetic SMR holder was attached to the end effector of the cradle using super 

glue although this is not the most robust means of mounting the holder it proved rigid enough for 

the calibration. The holder was also mounted away from the centre of rotation of the last joint (as 

with the Positioning table) to ensure that the circular motion of the last joint is measurable. With 

every new manipulator, it may be necessary to evaluate the best placement of the SMR holder to 

ensure that a large part of the circle or line is measured without obstruction but this only needs to 

be done once if the holder is placed in the same position for subsequent calibration. 
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After setting up the measurement system, the calibration procedure proceeds as usual with each 

joint actuated individually and the measured data was used to generate calibrated models of the 

manipulator. As with the revolute manipulator, the Eulerian cradle breaks the DH notation requiring 

the modified DH notation instead of the standard notation. 

 

 

Figure 3.11: Huber Eulerian Cradle and Galil control box installed outside the ENGIN-X instrument 

hutch. 

3.4.2 Accuracy Evaluation of Kinematic parameters 

The Eulerian cradle model was tested using the method described in Section 3.3.5. The calibration 

was only performed once due to time limitations but the result nonetheless serve to demonstrate 

that the proposed methods are not limited to conventional robotic system but can also be applied to 

system with more complex designs. The cradle was tested using 52 randomly generated joint 

configurations and the end effector positions were measured. An average of 0.0578mm, a standard 

deviation of 0.0275mm, and a maximum deviation of 0.10792mm were achieved when the 

measured positions were compared with the computed positions from the kinematic model. The 

accuracy achieved from the Eulerian cradle is comparable to the accuracy achieved from the 

revolute manipulator after eccentricity correction has been applied.  No non-linear corrections were 

applied to the cradle as further measurements would be needed to uncover such errors. 
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3.4.3 Discussion 

Kinematically, the Eulerian cradle can be described by a serial chain with two links. The Eulerian 

cradle is designed so that the centre of rotation of joint 1 (see Figure 3.12) does not correspond with 

the physical location of the joint. This design minimizes the possibility of collisions since the 

workspace of the manipulator is centred on joint 1. The difference between the calibrated model 

and the physical robot clearly illustrate the simplicity of kinematic modelling and why kinematic 

modelling is insufficient for collision detection 

 

Figure 3.12: The Huber circle (Right) and its corresponding kinematic structure (Left) 

During calibration, the location at which the measuring tool is mounted will affect the location of the 

circles which are measured and could in turn generate a slightly different set of DH parameters for 

the same manipulator. This needs to be accounted for when the DH parameters are also used for 

anything other than sample alignment. As an example, Figure 3.13 shows the results from the 

calibration of the revolute manipulator with two different measuring tools denoted as Tool 1 and 

Tool 2. Tool 2 is longer than Tool 1 hence the circles measured by this tool are further away from the 

manipulator than those measured with the other tool. Irrespective of the lengths of these tools, the 

axes perpendicular to the measured circles should remain unchanged; however the centre of the 

circles would be translated differently along their respective axes. This translation would lead to 

different link lengths, r1 for Tool 1 and r2 for Tool 2, for the same manipulator. Theoretically, the DH 

parameters extracted from both tools should perform equally well when the resulting model is used 

for sample alignment but could fail if used for another operation such as collision prediction.  
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Figure 3.13: Illustration showing the effect of tool length on the extracted DH parameters. 

When planning an experiment the estimated accuracy of the kinematic models should be 

considered. For example, if the generated kinematic model for two manipulators averaged 

60mircons and 200micons respectively in the tests, with all other factors being equal the former 

manipulator should always be selected especially when accuracy is a priority. Both the Eulerian 

cradle and revolute manipulator produced similar level of accuracy in the tests therefore selecting 

which manipulator is used for an experiment would depend on other factors like the size and 

dimensions of the sample, collision avoidance, potential shadowing of the neutron beam by the 

hardware and required orientations as there are orientations that cannot be achieved automatically 

with the cradle. 

3.5 Combining multiple kinematic models  

As previously stated, the revolute manipulator and the Eulerian cradle are portable systems which 

are setup on the positioning table when required. When one of these systems, is in use it is 

necessary to combine its model with the model of the positioning table. The combination of both 

models can be seen as a problem of finding a matrix 𝑯𝒍𝒊𝒏𝒌 which is the transformation from the end 

effector coordinate frame of the positioning table model to the coordinate frame of the first link in 

the portable manipulator model. Every time the portable manipulator is physically removed and re-

mounted the position and orientation of the manipulator, and hence the 𝑯𝒍𝒊𝒏𝒌 matrix, can 

potentially change.  

Given a sample, with at least three fiducial points,  mounted on the end effector of the portable 

manipulator (which is, in turn, mounted on the positioning table); the position of the fiducial points 

in the instrument  coordinate system can be calculated, for any configuration  𝑄, using  

r
1
 

r
2
 

Axis of Joint B 
Axis of Joint A 

Centre of joint A 

with Tool 1 

Centre of joint A 

with Tool 2 

Centre of joint B 

with Tool 2 

Centre of joint B 

with Tool 1 
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where 𝑷(𝑸) and 𝑷(𝟎) are matrices whose columns are the homogeneous coordinates (𝑥, 𝑦, 𝑧, 1)𝑻, 

of the calculated fiducial point positions, for an arbitrary configuration ‘Q’ and the zero configuration 

(all joint variables set to zero) respectively. 𝑯 
𝒋

𝒌 is the homogeneous matrix transformation from 

coordinate frame 𝑗 to coordinate frame 𝑘, 𝑾 denotes the world or instrument coordinate system 

and 𝑪𝒏 denotes the end effector coordinate frame of the positioning table model. 𝑮𝟎 and 𝑮𝒏 are the 

coordinate frames of the first and last links of the portable manipulator model respectively, 𝑺 is the 

coordinate frame at the centroid of the sample fiducial points (which is also known as the tool 

frame) and 𝑯 
𝑾

𝑪𝒏(𝟎)
𝐼 is the inverse of the transformation from the world coordinate frame to the 

end effector frame of the positioning table when it is in the zero configuration. 𝑯 
𝑾

𝑪𝒏 and 𝑯 
𝑮𝟎

𝑮𝒏

 
are 

known from the models of the positioning table and portable manipulator respectively but 𝑯 
𝑾

𝑮𝟎

 
 

and 𝑯 
𝑮𝒏

𝑺

 
 (the base and tool matrices of the portable manipulator) are unknown. When the 

positioning table is in the zero configuration Equation 3.5 may be written as 

Determining the base and tool matrices in Equation 3.6 would allow us to compute the position and 

orientation of the sample when using the portable manipulator or the combined manipulator. If the 

portable manipulator is moved to 𝑁𝑄 joint configurations (where 𝑁𝑄 ≥ 3) and the fiducial points are 

measured at each configuration, the base and tool matrix can be determined using non-linear 

minimization to reduce the error between the measured fiducial point positions 𝑴 and those 

calculated using Equation 3.6, as shown in Equation 3.7. If the rotation part of the base and tool 

matrices were parameterized using a 3D representation e.g. Euler angles or Exponential maps, [110] 

then each transformation matrix could be represented with six parameters. However attempts, 

based on simulation, to directly minimize the cost function given by Equation 3.7 by finding the 12 –

dimensional vector 𝑣 (containing the 6D representation of the base and tool matrix), were found to 

frequently fail to converge. 

Convergence was improved after consideration of the nature of the manipulator as a rigid body, i.e. 

if 𝐻 
𝑊

𝐺0
 is set to the identity matrix in Equation 3.6 then, once the correct tool matrix is known, the 

actual base matrix will be that rigid transform that maps the set of predicted fiducial point positions 
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onto the corresponding set of measured fiducial point positions. Hence the problem is reduced to 

that of finding the tool matrix only. This approach was applied via the following algorithm: 

Let P be a set of fiducial points {𝑃𝑖}, (0 ≤ 𝑖 ≤ 𝑁𝑝) attached to the sample and Q a set of robotic 

configurations {𝑄𝑖}, (0 ≤ 𝑖 ≤ 𝑁𝑄). Both 𝑁𝑝 and 𝑁𝑄 should be greater or equal to 3. 

1. Measure the position, in the world coordinate system, of 1 < 𝑛 < 𝑁𝑝 fiducial points for each 

configuration and form the matrix M whose columns 𝑀𝑖 are the (homogeneous) coordinates 

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖, 1)
𝑇 

2. Generate a trial tool matrix and calculate the corresponding fiducial point positions using the 

forward kinematics (Equation 3.6) with 𝐻 
𝑊

𝐺0
 = 𝐼.  Form a matrix 𝑃 of predicted positions 

corresponding to 𝑀 

3. Find the homogeneous rigid transformation matrix 𝑅 that provides the least square best fit 

mapping of 𝑃 onto 𝑀 using, (for example) the method proposed by Arun et al [111] 

4. Calculate the cost function; 

F =∑‖𝑅𝑃𝑖 −𝑀𝑖‖𝐸
𝑖

 

Where the Euclidean norm, ||𝑃𝑖 −𝑀𝑖||𝐸 is the distance between the predicted and measured 

positions of the fiducial point occupying the 𝑖𝑡ℎ column of the P and M matrices. 

5. Repeat steps  2-4, using a suitable minimisation method to generate trial matrices 

6. On convergence the trial matrix is the required tool matrix 𝐻 
𝐺𝑛

𝑆
  and 𝑅 is the required base 

matrix 𝐻 
𝑊

𝐺0
  

In using this procedure the selected joint configurations or poses must not move the sample in a 

plane as planar movement does not provide enough information to uniquely determine the required 

base and tool matrices. A minimum of one fiducial point should be measured at each configuration, 

but measuring a greater number of points has been found to minimise the effect of noise and 

improve convergence. The algorithm does not require that the same fiducial points or even the same 

number of points be measured at each configuration. This flexibility allows the experimenter to 

measure the most convenient points close to the measuring device.  As with other minimization 

problems, the search can be trapped in a local minimum, therefore a good guess of the starting 

parameter is likely to assist convergence. The accuracy of this method relies mainly on the accuracy 

of the calibrated model and the accuracy of the measured positions. It should be noted that the base 

matrix would only change when the portable manipulator has been physically moved but the tool 

matrix changes whenever the sample is changed in which case the new tool matrix can be 

recalculated using a minimum of three points measured in a single configuration. An algorithm for 

tool matrix re-calculation is presented in Appendix C.  



 

88 
 

The method presented above is one solution to the tool/flange and robot/world calibration problem 

in the field of robotics. Several solutions have been proposed to this problem; a proper literature 

review can be found in [112]. The solutions proposed can be classified as closed form or iterative. 

Closed form techniques tend to be faster while iterative solutions tend to give better accuracies. 

Closed-form solutions are typically used to initialise iterative solutions in order to provide the best 

possible results. Most solutions require position and orientation data while a few techniques exist 

that work with position data only [113]. The new technique proposed in this thesis uses multiple 

measurements of position data per configuration, which is a more robust approach than using a 

single measurement. When a single point is measured per configuration, more configurations could 

be required to reduce the effect of noise.   

3.6 Testing the combined models and Error corrections 

A practical test of the accuracy of the model of the combined revolute manipulator, positioning table 

and sample was performed. Six magnetic SMR holders were attached to a sample weighing 

approximately 4kg as shown in Figure 3.14. These holders serve as fiducial points on the sample and 

their initial positions were measured by using a laser tracker with an SMR placed in each holder. 

Finally the sample was rigidly mounted on the revolute manipulator and the base and tool matrices 

determined as described above and added to the model.  

 

Figure 3.14: The 4kg Sample used to evaluate the accuracy of the combined model of the revolute 

manipulator and the positioning table. Magnetic SMR holders have been attached to serve as 

fiducial points 

A set of 12 joint configurations were generated spanning some of the instrument workspace. Both 

the combined model and the physical robots were moved to each of these configurations. At each 

configuration, the SMR is placed on all target holders that were visible (in the line of sight of the 
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tracker) and those points were measured as shown in Figure 3.15. We compared these measured 

points with the points calculated by the model and the results are presented in Table 4.1 below. 

 

 

 

Figure 3.15: The setup used to evaluate the accuracy of the combined model. A laser tracker is 

partially shown on the left and the sample is mounted on the revolute manipulator. 

 

We note that the combined system accuracy is somewhat better than the sum of the accuracies of 

the initial models. The mechanism whereby this occurs is under investigation but may be due to 

cancelation between errors in the two components of the positioning. The errors are normally 

distributed with the same mean and standard deviation shown in Table 4.1.  
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 Joint Configurations 
No of 

visible 

points 

Average 

Error 

(mm) 

Standard 

Deviation 

(mm) 

Maximum 

Deviation 

(mm) ID 
Z 

(mm) 

Y 

(mm) 

X 

(mm) 

C 

(deg) 

B 

(deg) 

A 

(deg) 

1 10 -10 10 30 40 90 4 0.06163 0.01537 0.07544 

2 30 50 -100 10 90 -40 5 0.09798 0.01875 0.11834 

3 200 30 50 10 10 10 5 0.05725 0.01393 0.07643 

4 250 -120 100 -10 90 180 3 0.07505 0.01696 0.09166 

5 50 90 -150 25 60 18 5 0.04777 0.02245 0.07457 

6 41 -60 -20 -25 18 60 5 0.09453 0.01105 0.10974 

7 170 -89 70 -30 -20 -70 3 0.08401 0.01711 0.10335 

8 90 -45 -136 45 -50 -30 5 0.07712 0.03106 0.12870 

9 62 170 112 32 -80 -20 5 0.07413 0.05226 0.15810 

10 242 143 -77 -18 50 80 3 0.10186 0.01567 0.11971 

11 400 -136 95 60 180 -90 4 0.13290 0.01561 0.14621 

12 300 37 -65 60 180 -90 5 0.15501 0.01928 0.18092 

 All Points 0.08807 0.03798 0.18092 

Table 3.8:   Accuracy of the combination of the revolute manipulator and positioning table models 

with eccentricity and incorrect motor offset models 

 

3.7 Deployment 

In this section we discuss the important considerations for the deployment of the proposed system 

in a neutron diffractometer. 

How often should I calibrate?   

A complete calibration14 of the ENGIN-X positioning table takes approximately two hours. The reader 

is reminded that the calibration of the rotation stage could not be automated due to the absence of 

a motorized SMR. Full automation of the measurements would only slightly reduce the time taken 

since currently only the rotation stage needs to be done manually. Calibration without test 

measurements would reduce the duration of calibration to about 40 minutes, but it is not 

recommended to perform a calibration without proper testing. The duration of the calibration 

procedure suggests that a complete calibration should not be performed at the start of a user 

experiment. 

                                                           
14 A complete calibration includes the 100 random test measurements used to evaluate the quality of the 
calibration. 
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The kinematic structure of any rigid positioning system is not expected to change frequently except 

when some modification has been made to the system. The system should be recalibrated after any 

hardware damage is repaired or after any maintenance where the system is deconstructed. Damage 

to external controllers should not warrant the recalibration of the whole positioning system unless 

the system is deconstructed also. The constant usage of the positioning system would lead to wear 

and tear which could require recalibration even in the absence of any damage or maintenance. Such 

routine calibration could be performed at the beginning of a measurement cycle or on a yearly basis 

depending on the age of the system. The non-kinematic calibration for errors such as the motor 

offset errors found in the ENGIN-X positioning system would require more consideration as the 

source of the errors was not completely structural. Some modifications to the controller software 

were found to re-arrange the measured motor offsets. Dynamic errors are typically affected by the 

mass of sample so a significantly large sample could cause the errors to change although this was 

not tested. Recalibration for the dynamic error should be determined on an experiment basis, a 

simple one joint test could reveal if a new calibration is necessary. 

Who should do the calibration? 

In the best case scenario, the calibration process should be completely autonomous and the 

observer could intervene if necessary. In the absence of full automation, the selection of personnel 

for the calibration would depend mainly on the measurement device, if significant training is 

required before using the measurement device, to get the best accuracy it might be better for a 

trained person such as an instrument scientist to perform the calibration. Other practical 

considerations like safety of the instrument should also be examined, for example if collimators are 

mounted during the calibration process, an untrained personnel could cause a collision while trying 

to follow the calibration instructions.  
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4 Monitoring the Instrument 

After planning an experiment, it is still possible that the planned motion can deviate from the actual 

motion during the experiment. Failure of the positioning system could lead to a misalignment of the 

sample. This could lead to wasted beam time if the misalignment is discovered or erroneous results 

if not discovered. For example, during a user cycle at ENGIN-X, it was reported by some users that 

the ENGIN-X positioning table would rotate the sample when not commanded; such types of failures 

could slip by a non-observant user and end up as published results. Positioner failures could be 

present irrespective of the alignment technique (wall scans or simulations). Some other failures are 

unique to model based alignment techniques, for example, kinematic models might deviate from the 

actual hardware when the system is repaired or when parts are replaced, so an experiment planned 

completely offline could be incorrect when applied in the real world. With these problems in mind, 

the question addressed in this chapter is to find out how the position of the sample, and potentially, 

any other hardware items can be monitored so as to ensure correspondence to the experiment plan. 

4.1 Methodology 

In this chapter, a fiducial based metrology system is proposed. Fiducial markers are placed on 

positions on the sample, jaws or any other part of the instrument. These fiducial markers would be 

monitored throughout the experiment and the feedback from the metrology system could be used 

to confirm that the instrument including the sample behaved as expected. The feedback system 

could also be used to correct the sample if it is found to be in the wrong position or just notify the 

user of the situation. 

4.2 Proposed Metrology System 

The next section discusses some of the important considerations for the development of a 

metrology system for a neutron diffractometer. 

4.2.1 Medium of Interaction 

As discussed in Section 2.5.1, several mediums of interaction are used by 3D measuring devices, 

some of which are not conducive for use during a neutron diffraction experiment. We will now 

discuss the various possibilities and select the best for the neutron diffractometer. 

1. Mechanical systems: These systems measure the position of an object by having a mechanical 

linkage or fixture attached to the sample. The major challenge with mechanical linkage is the 

possibility that they might interfere with the experiment. If the linkages are made of a material 
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that diffracts neutrons the system could contribute error to the measurements. Mechanical 

systems have the potential to be the most accurate but would require essential and probably 

expensive redesign to be used on a diffractometer. 

2. Acoustic systems: The challenge with acoustic systems is that they are susceptible to external 

noise hence they are mostly used underwater or for short range measurements. Some neutron 

diffractometer environments contain noise generating equipment from fans to UPS systems 

some of which emit noise in the ultrasound range. Therefore to have a more reliable system, 

acoustic systems should be avoided. 

3. Magnetic systems: These systems are capable of providing reasonable accuracy at excellent 

range but they have the disadvantage of being distorted by metallic objects in their workspace. 

Magnetic systems are robust to occlusions i.e. they do not require line of sight to the target but 

the previously mentioned limitation overshadows the benefit of magnetic systems. 

4. Inertia Systems: Although not discussed in the literature review, inertia systems are not popular 

for high accuracy metrology because they tend to drift over a period of time. Inertia systems 

typically provide accuracies in the millimetre range which would be insufficient for this project. 

5. Optical System: Optical systems are popular in motion capture and robotics research. They 

provide excellent accuracy and a myriad of commercial products are available.  They have the 

disadvantage of requiring a line of sight to the object being measured. Although these systems 

might require markers mounted on the sample, they are otherwise unobtrusive and do not 

interfere with the experiment. They could be grouped into laser-based systems and camera-

based systems. 

From the discussion above, it can be seen that the best option for monitoring experiment on a 

neutron diffractometer with minimal interference would be achieved using an optical system. The 

decision between a laser-based system and camera-based system is open to choice. In this project, a 

camera-based system is developed for the reasons presented in the next section 

Laser Vs Camera 

Both laser-based systems and camera-based systems could provide sufficient accuracy for neutron 

diffraction monitoring. Several commercial systems in both categories exist which promise 

accuracies of 0.1mm or better. Other considerations that affect the choice of system are: 

1. Cost: laser-based systems are typically more expensive than camera-based systems. Monitoring 

using for example a laser tracker would require the purchase of multiple SMR targets which 

could cost around £1000 each, and still require the purchase of target holders. The cost of 

markers for a camera system would be significantly cheaper.  
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2. Speed: Camera based systems can measure several targets at the same time and do not need to 

wait for stability of the medium of interaction. Laser systems would typically measure a single 

target at a time and need to wait for stability of the laser before each measurement. Speed is 

beneficial to ensure that the system does not interfere with the time required for the 

experiment. 

4.2.2 Static Metrology or Dynamic Tracking?  

The metrology system could be designed to make static measurement only or to dynamically track 

the sample as it moves from one pose to the next. During stress measurements on a neutron 

diffractometer, the whole instrument is typically kept stable. Stress measurements are typically not 

concerned with the path that the sample takes between measurements except in instances when 

the system is being used to check that paths are collision-free. Therefore in this work, the focus is on 

static metrology. The extension to dynamic tracking should be relatively straightforward once the 

static system is developed 

4.3 Camera based Metrology System 

The proposed system is similar to those used in the motion capture industry. These systems use a 

set of cameras to monitor the positions of fiducial markers placed on the object. Several types of 

markers have been proposed for such systems [114]. In this project, retroreflective markers will be 

used because these markers can be detected easily using an external light source. Retroreflective 

markers are typically designed in one of two forms: flat circular or spherical targets. Spherical targets 

have the benefit that their 3D location can be verified using a non-camera based metrology device 

such as a touch probe. When multiple retroreflective markers are attached to the object being 

monitored as shown in Figure 4.1 then each marker or cluster of markers can be monitored 

independently.  
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Figure 4.1: Multiple retroreflective spherical markers attached to a sample 

Although commercial camera metrology systems are available from a variety of manufacturers; the 

system proposed in this project would be a custom built system. A custom built system has the 

following advantages: 

 The system can be optimised for the specific instrument, for example, the field of view of the 

system could be optimised to cover as much of the instrument as desired, the measurement 

range of the device could be optimised to suit the instruments, and control software could be 

integrated into the instrument software etc. 

 The cost of the camera system can be reduced when most of the system is built in house. 

The essential question that needs to be answered is that of achievable accuracy. The accuracy of 

camera metrology systems is mainly dependent on the quality of the camera, lens and proper 

calibration. The calibration of the developed system is discussed in Section 4.4. After calibration, the 

proposed system follows the pipeline presented in Figure 4.2 each stage of the pipeline is discussed 

in details in the following sections 
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Figure 4.2: The pipeline for the proposed camera based metrology system 

4.3.1 Image Acquisition 

The image acquisition system evolved through several iterations before arriving at the current 

system. The first iteration was the use of the CCTV cameras (Figure 4.3a) which had been mounted 

in the instrument hutch to capture video and pictures of the sample environment for the users. The 

system provided a compact package with an inbuilt infrared mode and also a C++ SDK. The infrared 

mode could only be triggered by a light sensor, so the light sensor had to be covered with tape in 

order to switch on the infrared lights. These cameras process the raw images and output a 

compressed JPEG file; no means of accessing the raw images was found. The proposed camera 

based metrology system was developed ignoring these limitations of the CCTV cameras. The test of 
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the CCTV system showed that reasonable accuracy is achievable from such a system. The CCTV 

system initially performed poorly which was possibly due to sensor noise and the on-board image 

processing. Also a plastic dome protecting the CCTV camera was found to be distorting the images. 

After removing the plastic dome, the system typically achieved an average accuracy of 1.239mm, 

with a standard deviation of 2.040mm, and maximum error was 8.140mm when tested over 150 

fiducial marker positions. With manual outlier removal, the best accuracy achieved for the CCTV 

system was an average of 0.093mm, a standard deviation of 0.053mm, and maximum error of 

0.254mm over 118 fiducial marker positions. Since manual outlier removal would not be convenient 

for the proposed system, it was necessary to find a camera with less noise and no inbuilt image 

processing. These requirements led to the purchase of a pair of Basler Ace machine vision cameras, 

see Appendix B for specification (Figure 4.3b) which allowed access to the raw images and 

contained less noise. Both cameras were fitted with near infrared (850nm wavelength) ring lights 

which were acquired as CCTV replacement parts (Figure 4.3c) and connected to a variable power 

supply. Several lenses were tested during the development of the camera system: 

 4mm CCTV lens: These were inexpensive lenses which provided a good field of view of the 

instrument and reasonable image quality (see Figure 4.3e), however they caused a flaring effect 

on the image of the retroreflector which made them unusable for this system. The flaring effect 

was considered to be due to poor anti-glare coatings on the lenses. 

 12mm-24mm varifocal lens: These lenses are usually used for Digital Image Correlation (DIC) 

techniques on the instrument. These lenses provide excellent image quality with little distortion 

but only a small field of view at the distances available within the instrument hutch (see Figure 

4.3d). 

 3.5mm Navitar lens:  These are wide angle, 3.5mm fixed focal length lenses with large field of 

view that covered most of instrument at the distances available (see Figure 4.3c). These lenses 

had more distortion than the DIC lenses but still provided good image quality. 

The current image acquisition system is composed of two Basler Ace cameras equipped with Navitar 

lenses described above. The infrared ring lights were replaced with a pair of white LED ring lights 

(Figure 4.3g) which performed better than the former in all tests. The image capture is performed 

via the Basler Pylon SDK. The SDK allows several camera settings such as the exposure time to be 

managed from code. The SDK is available in .net, C and C++ programming languages. The C++ SDK 

was chosen as the language for this work. Typically the sample and the instrument are static prior to 

any neutron measurements therefore no attention has been paid to the synchronization of the two 

cameras. Synchronization of the cameras needs to be addressed if the system is to be used for 

dynamic tracking of samples. 
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(a)                                                                                     (b) 

 
(c)                                                                                     (d) 

 
(e)                                           (f)                                                          (g) 

 Figure 4.3: The components that were tested in the camera metrology system (a) CCTV camera 

system (b) Basler Ace acA1920-25um (c) CCTV replacement infrared ring light (d) 12mm-24mm 

varifocal lens (e) CCTV replacement 4mm fixed focal length lens (f) 3.5mm Navitar fixed focal length 

lens (g) Neewer 48 Marco LED Ring Light 
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A camera mounting rig was fabricated15 using an 825mm long aluminium rail with two camera 

stands for the cameras. The aluminium rail allowed the baseline between the cameras to be 

adjusted when necessary and a locking screw is available to rigidly hold each stand. The camera 

stands were designed with a ball-socket joint so that the camera could be panned or tilted to the 

appropriate orientation. A locking screw is also present on the camera stand to rigidly hold the 

orientation of the camera. The whole rig was mounted above the ENGIN-X beam guide using 

adhesives as shown in Figure 4.4. The current stereo camera system hardware cost about £1000 and 

more cameras could be added to improve accuracy and ensure robustness.  

   

Figure 4.4: The current design of the camera metrology system and mounting rig (left) with a closer 

view of a single camera stand (right). The rig is mounted on the ENGIN-X beam stop behind the jaws.  

4.3.2 Marker Detection 

Marker detection is crucial to the accuracy of the monitoring system. The spherical marker must be 

segmented from the image accurately prior to the centre of the sphere being determined. For easy 

segmentation, the markers should appear as bright regions (blobs) surrounded by a near black 

background. The segmentation of the markers is simplified by the retroreflective nature of the 

markers since they reflect light back in the direction of the light source, thus increasing the contrast 

between marker and background. Better contrast of the markers can be achieved by modifying one 

of the following: 

 Brightness of the ring lights: increasing the brightness of the ring lights, increases the brightness 

of the retroreflective markers in the image. 

                                                           
15 The design and fabrication of the mounting rig was done by the ISIS mechanical support group 
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 Exposure count time: Decreasing the count time for each image exposure decreases the 

brightness of the image. Larger count times are typically used to improve the signal to noise 

ratio therefore decreasing the count time could have the unintended effect of increasing the 

noise. 

 Aperture Size: Decreasing the aperture of the lens, increases the depth of field of the camera 

while simultaneously reducing the amount of the light in the image. Decreasing the aperture size 

could cause diffraction of the light when the size is below a certain limit which can be calculated 

using the wavelength of the light used and the diameter of the aperture. 

  

(a)       (b) 

Figure 4.5: An image from the camera system of a set of fiducial markers mounted on a sample (a) 

crop of the whole sample (b) crop of a single fiducial marker. 

Essentially the parameters above must be optimised to get the best accuracy for the available 

hardware. Achieving the right contrast should produce an image of blobs such as shown in Figure 

4.5. Such images may also contain outliers so an appropriate blob detection technique is required. 

On the proposed system, the best accuracy was achieved when the aperture was fully opened 

(which corresponds to an f-number16 of 1.4) and the exposure time was set to 15000 microseconds 

which is about half the default time. The brightness of the ring light could not be controlled. 

Blob detection 

Blob detection consists of three stages in the first stage potential markers candidates are segmented 

using thresholding. The threshold value for each camera is selected empirically. 

                                                           
16The f-number is the ratio of the lens's focal length to the diameter of the aperture. 

 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = {
 𝐹(𝑖, 𝑗)

0
       

𝑖𝑓 𝐹(𝑖, 𝑗)  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 4.1 
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The output from the thresholding stage is an image containing the marker candidates against a black 

background. The marker candidates are extracted from the image by locating all the clusters of non-

background pixels (non-black pixel). The extracted marker candidates are validated to remove 

outliers and noisy markers. The validation is done by checking the circularity, aspect ratio and area 

of the extracted marker candidates, if a marker candidate falls outside the pre-selected range for 

any of the above properties it is discarded. 

The circularity property of the blob checks how close the segmented region is to a circle i.e. a perfect 

circle would have a circularity of 1. The correct markers would not be a perfect circle but an ellipse 

[115] due to perspective projection and lens distortion. With a low distortion lens, it is possible to 

achieve circularity close to 1. The formula used for computing the circularity of a blob is given below 

where A is the area of the blob and P is the perimeter.  

The aspect ratio property basically evaluates the ratio between the major axis and the minor axis of 

the blob while the area property checks the number of pixels in the blob, this value would vary as 

the blob moves away from the camera but should be selected so that the unrealistically small or 

large blob candidates are discarded. All marker candidates that pass all the property tests are 

assumed to be valid markers. The next step is to determine the projected centre of the markers with 

sub-pixel accuracy. 

Sphere Centre Detection 

Several methods have been proposed for centre determination [89]. Both the ellipse fitting and the 

grayscale centroiding method were implemented in this work with the latter outperforming the 

former in all tests.  

 Grayscale centroiding: is a simple centroid operation in which the grayscale values are used as 

weights as shown in Equation 4.3 where (�̅�, �̅�) is the centroid point, 𝐹(𝑖, 𝑗) is the grayscale value 

of the pixel at location (𝑖, 𝑗), 𝑚 is the image width, and 𝑛 is the image height. When using this 

method, it is assumed that the brightest spot on the marker should be the centre of the sphere 

as surface normal at that point should be perpendicular to the camera (and the light source). 

Grayscale centroiding is sensitive to non-uniform illumination, dirt or any sort of noise that 

affects the grayscale values. Further weighting of the centroid operation so that contribution of 

the brighter pixels in the equation above is increased has been found to improve the accuracy of 

the centre detection [116]. This extra weighting is achieved by using the square of the grayscale 

 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋𝐴

𝑃2
 4.2 
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values. Both the grayscale centroiding and the squared grayscale centroiding were tested and 

the squared grayscale centroiding performed better in the accuracy tests. 

 Ellipse fitting: In this method, the contour of the blob is extracted and an ellipse is fitted to the 

extracted contour. The centre of the fitted ellipse is the projected centre of the sphere. Since the 

contour of the marker is discretized into integer-valued locations or pixels, the extracted contour 

has been found to not provide sufficient accuracy. One way of achieving better accuracy is to 

determine the contour to floating-point or sub-pixel accuracy then fit the ellipse to the sub-pixel 

contour. Several sub-pixel edge detection algorithms have been developed; this work used an 

open source implementation [117] based on Steger’s algorithm [118]. Contour based methods 

are sensitive to noise due to incomplete contours or extra pixels in the contour therefore to 

avoid using poorly segmented or incomplete markers, the error for the ellipse fit was computed 

and any marker above a selected threshold discarded.  

After locating the markers from the two camera images, the next step is to remove lens distortion 

from the segmented markers.  

4.3.3 Lens Distortion Removal 

Before the correspondence between markers can be found, it is essential that the distortion 

introduced by the lens be removed. The removal of the lens distortion could also be done before the 

marker detection stage. The major benefit of performing the lens distortion after the marker 

detection stage is speed, since the distortion removal would then only need to be performed on a 

small number of points (the calculated centres) as opposed to it being performed on every pixel in 

the image. 

The standard models for lens distortion (Section 2.6.2) are not invertible therefore the distortion is 

typically removed using a minimization technique or an approximation of the inverse. In this work, 

the undistort function in OpenCV Library [119] was used.   

4.3.4 Marker Correspondence 

The marker correspondence problem is to find the corresponding points from the point sets from 

both cameras. The problem is complicated by the homogeneity of the markers used in the system 

i.e. markers cannot be visually differentiated from each other. There could also exist points that 

have no correspondence either due to occlusion or because such points are outliers, therefore a 

robust algorithm is required for determining marker correspondence. 

Several methods have been proposed for matching points in multiple cameras. The most common is 

the Epipolar line method. In Section 2.6.4, the Fundamental matrix is used to locate the line in the 
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second camera on which to search for correspondences, as shown in Figure 2.19. Chen et al [120] 

proposed the 3D space intersection method which is analogous to the Epipolar line method but uses 

the camera triangulation error instead. Both methods would perform similarly as they both have 

similar uncertainty [120].  

Epipolar line method 

The Epipolar constraint between the corresponding 2D points 𝒎𝟏 and 𝒎𝟐 is given in Equation 2.35. 

In practice, the result from that equation would not be zero but would be within some tolerance as 

shown in Equation 4.4. This equation returns the distance between point 𝒎𝟐 and the epipolar line 

corresponding to 𝒎𝟏. This relationship can be exploited to find the correspondences between two 

point sets. 

Given a set of 𝑚 2D points from the first camera and a set of 𝑛 2D points from the second camera; a 

cost matrix 𝑪 with 𝑚 rows and 𝑛 columns can be created. Each element 𝑪𝑖𝑗 of the cost matrix would 

be the result from the left-hand side of Equation 4.4 for the  𝑖𝑡ℎ point from the first camera and 

the 𝑗𝑡ℎ point from the second camera. The cost matrix contains a pair-wise comparison between 

points in the first and second camera. With this matrix, the problem of finding the correspondence 

becomes an assignment problem which is to find the correspondences that result in the minimum 

total cost. A popular method of solving the assignment method is to use the Hungarian algorithm 

[121] which is used in this thesis. 

The correspondence algorithm should perform correctly when the assignments are unique and there 

are no outliers in both point sets. In a situation where a point with no correspondence exists, an 

outlier could be assigned to such a point irrespective of the magnitude of the distance between the 

point and the outlier. Therefore it is important to check that the cost for each assignment does not 

exceed the pre-selected tolerance, any assignment that exceeds the tolerance should be discarded 

as an outlier or a wrongly assigned point. 

With the epipolar line method, an ambiguity exists when multiple points in the second camera have 

the same distance to the epipolar line corresponding to a point in the first camera. In this case, it 

becomes non-trivial to find a proper match. The simplest and fastest solution is to discard any row 

and column in the cost matrix where more than one cost value is below the selected tolerance then 

find the assignment for the remaining points. A minimum of three points are required to determine 

the pose of the sample when the minimum is not reached. Some heuristics could be used to find 

more correspondences, for example when both cameras are facing the same direction, the order of 

the point might be preserved i.e. the leftmost point in the first camera should typically correspond 

to the leftmost point in the second camera. It is also possible to use a third camera to resolve 

 ‖𝒎2𝐹𝒎1
𝑇‖ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 4.4 
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ambiguities between the first and second camera. The epipolar method has been implemented for 

the camera system described above (see Figure 4.6). 

 

Figure 4.6: A screenshot of the GUI of the camera system showing the left and right camera images. 

The blue squares highlight fiducial markers whose corresponding marker in the second camera is 

found. The red squares highlight markers for which no correspondence is found. The white lines are 

the Epipolar lines. 

Another interesting method of resolving the correspondence ambiguities (which is applicable when 

simulation software is used for the sample alignment) would be to use simulated position data to 

resolve the ambiguity. If the simulation software is used to estimate the positions of the fiducial 

markers on the sample, these estimated fiducial positions can be projected into a virtual camera 

image using the camera model for each camera. Although the virtual image would not be a perfect 

match with the real image; with calibrated kinematic models, the virtual image should be good 

enough to determine the correspondences in both cameras. This method simultaneously finds the 

correspondence between image points in the first and second camera and the correspondence 

between the fiducial points and the image points which usually has to be found via another method. 

It is hoped that this approach, which to the author’s best knowledge is novel, will be tested in the 

future.   

4.3.5 Triangulation 

After marker correspondences are found from both cameras, the points are used to reconstruct the 

3D points using the linear least square triangulation method discussed in Section 2.6.5. Several 

methods have been proposed to improve upon the linear least square triangulation method such as 

the optimal triangulation methods which attempt to adjust the image points from both cameras so 

as to minimise the error from Equation 4.4 following which triangulation is performed with these 
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new points. The optimal triangulation technique proposed by Kanatani [122] was evaluated in the 

proposed system but provided no improvements to the system accuracy in all performed tests. 

4.3.6 Model Fitting 

Determining the pose of the sample, jaws or any other part of the instrument being monitored 

requires the correspondence between the known fiducial point set and the triangulated point set. 

Let 𝑃 be a set of fiducial points {𝑃𝑖}, (0 ≤ 𝑖 ≤ 𝑁𝑝) attached to the sample (or other parts of the 

instrument) and 𝑄 be the 3D points from the triangulation stage of pipeline described above. Both 

𝑁𝑝 and 𝑁𝑄 should be greater or equal to 3. 𝑁𝑄  would typically be smaller than 𝑁𝑃 because all the 

points might not be visible to the cameras. 𝑄 could also contain some outliers therefore a robust 

algorithm is required to find the correspondence between 𝑃 and 𝑄 

A common method for finding the correspondence between the two sets of 3D points is to compare 

the distances between points in both sets. If 𝑑𝑃
𝑖𝑗

 is the distance between point 𝑖 and 𝑗 in point set 𝑃 

and 𝑑𝑄
𝑖𝑗

 is the distance between point 𝑖 and 𝑗 in point set 𝑄. The magnitude of the difference 

between 𝑑𝑃
𝑖𝑗

 and 𝑑𝑄
𝑖𝑗

 should be less than a pre-determined tolerance i.e. ‖𝑑𝑃
𝑖𝑗
− 𝑑𝑄

𝑖𝑗
‖ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, if 

the  𝑖𝑡ℎ and 𝑗𝑡ℎ  points in 𝑃 corresponds to the 𝑖𝑡ℎ and 𝑗𝑡ℎ  points in 𝑄. If the distances between the 

points in the model are unique, all the correspondences between 𝑃 and 𝑄 can be determined by 

comparing the distances from both sets, otherwise some ambiguity would exist. If at least three 

correspondences are found, the pose is determined using the method proposed by Arun et al [111]. 

Any other ambiguity from this method can be resolved by evaluating the error from the pose 

computation.   

4.4 Camera Calibration   

The preceding sections described the pipeline used by the camera system to measure 3D position 

from images. The lens distortion removal, marker correspondence, and triangulation stages require 

a calibrated camera system if high accuracy is to be achieved. The pinhole model presented in 

Section 2.6.1 was used in the developed camera system. Both radial and tangential distortions were 

modelled while thin prism distortion was found to be negligible therefore it was removed from the 

camera model. The 4th and 6th order radial distortion terms were also removed since their effect was 

also found to be negligible also. These simplifications reduced the distortion parameters that were 

required to be found to (𝑘1, 𝑝1, 𝑝2). The camera model used consists of 4 intrinsic and 6 extrinsic 

parameters with the skew set to zero. 

After selecting the camera modelling parameters, typically a set of measurements would be made to 

determine the values of the model. As explained in Section 2.6.3, these measurements could be 
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made in a variety of ways. When developing the measurement procedure for the ENGIN-X camera 

system, the following were taken into consideration: 

 Zhang [82] recommended that calibration be performed with a three dimensional apparatus 

when the highest accuracy is required. 

 Some off-the-shelf systems require the user to place a calibration apparatus at pre-programmed 

locations which could be unreachable on the ENGIN-X instrument due to the small workspace of 

the instrument and possibility of collision.  

With these in mind, the proposed measurement procedure utilises a three dimensional grid of 

fiducial markers which can be modified to cover the available workspace without a human operator 

thereby avoiding collisions or the possibility of someone stepping on the positioning system or 

otherwise interfering with the instrument hardware. In this procedure, the positioning table of the 

instrument is used to construct a three dimensional grid of fiducial sphere positions. The laser 

tracker described in Section 3.2.2 was used to track the actual position of the table to avoid 

including positioning table errors in the camera calibration. The architecture presented in Section 

3.3.1 is used to facilitate communication between laser tracker and positioning system which means 

human intervention was avoided during the camera calibration. The calibration measurement 

procedure is as follows 

 A single fiducial sphere is mounted rigidly on the positioning table. The positioning table is 

commanded to move in a grid pattern. 

 At each position in the grid, the camera is commanded to capture the image of the fiducial 

targets and the laser tracker is commanded to measure the 3D location of the table. 

 The 2D centre of the fiducial marker is extracted from the captured images using the techniques 

already discussed in Section 4.3.2.  

 The laser tracker measurements are assumed to follow the same motion as the centre of the 

fiducial marker. However because the tracker follows an adjacent SMR rather than the fiducial 

sphere these measurements do not correspond to the actual centre of the fiducial sphere. 

However, these errors result in a translated camera coordinate frame.  

 Finally, the centre of the fiducial sphere should be aligned with the centre of the instrument’s 

gauge volume. The measurement made at this position can be used to fix the coordinate frame 

after calibration. 

Using the positioning table to construct the positioning grid implies that the number of points can be 

increased to give better statistics or reduced when faster calibration is required. Testing is necessary 

to determine the best number of points that optimise the trade-off between speed and statistics. 

The shape of the grid could also be changed to account for obstructions or smaller workspaces but 
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best practices recommend that the grid cover as much of the camera field of view as possible. The 

disadvantage of using the positioning table is that the workspace of the positioning table becomes 

the workspace of the camera, so if the field of view of the camera extends beyond the reach of the 

table such areas would be uncalibrated. The accuracy of this method relies on the assumption that 

the target is rigidly mounted on the table if the target was vibrating errors would be introduced into 

the extracted camera model. It is also essential that the table is not rotated during the grid 

movements. 

After the measurements, an estimation of the camera model can be performed using a number of 

methods (Section 2.6.3). In this project, the model parameters were estimated using the C++ port of 

Bouguet’s camera calibration toolbox [123] which is available in the OpenCV Library. 

4.4.1 Accuracy Evaluation 

After calibration of the camera system, it is vital to evaluate the accuracy of the system and evaluate 

if the accuracy is sufficient to track moving items during an experiment. Several metrics [84] have 

been used to evaluate the accuracy of camera calibration. The following were used in this thesis: 

1. Accuracy of image points (or Re-projection Error): In this metric, the estimated camera model is 

used to project a set of 3D points into image points. Then the accuracy of calibration is 

estimated by comparing the real and estimated image points. Because this metric is a 

comparison between image points, the unit of the comparison is pixels. This metric is useful for 

spotting errors in the calibration of a single camera, as no information from the second camera 

is used, however the method may not give a realistic measure of accuracy when both cameras 

are combined. 

2. Accuracy of 3D points from triangulation (or 3D Error): In this method, two or more cameras 

are calibrated separately. The cameras are used to observe a single fiducial marker with a known 

3D position. The 2D centres of the marker can be used along with the estimated camera models 

to estimate the 3D position of the marker via triangulation. The accuracy of the system can then 

be determined by comparing the estimated and the known 3D positions. This method is 

considered to give accuracies which are more realistic as it contains the error from all the 

cameras.   

Single Marker Test 

Three successive calibrations were performed using a single fiducial marker moved to 125 positions 

in a 5 x 5x 5 grid (100mm x 100mm x 400mm); each calibration file was stored. After the third 

calibration, the same fiducial marker was moved to 125 random positions in the calibrated 
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workspace also using the positioning system. The developed camera system was used to measure 

the positions of the fiducial marker at each random position and a laser tracker was used to measure 

the position of the positioning table as described above. At each random position, all of the three 

calibration files were used to measure the position of the fiducial markers so as to test the 

repeatability of the calibration procedure. The re-projection and 3D errors were calculated for each 

of the points and the results are presented in Table 4.1 and Table 4.2 

Re-projection Error 1st Attempt 2nd Attempt 3rd Attempt 

Left Camera 

Mean (pixel) 0.04397 0.03852 0.04544 

Std. dev. (pixel) 0.02169 0.02170 0.02136 

Maximum (pixel) 0.11533 0.11123 0.11285 

Right 

Camera 

Mean(pixel) 0.12104 0.07325 0.06855 

Std. dev. (pixel) 0.03056 0.02647 0.02846 

Maximum (pixel) 0.19737 0.15268 0.14769 

Table 4.1: The results from the single marker accuracy tests on the camera system. The mean, 

standard deviation, and the largest deviation of the re-projection errors are presented. 

  

 

3D Error 1st Attempt 2nd Attempt 3rd Attempt 

Mean (mm) 0.06108 0.05119 0.04874 

Std. dev. (mm) 0.02364 0.02386 0.02484 

Maximum (mm) 0.12608 0.10517 0.10401 

Table 4.2: The results from the single marker accuracy tests on the camera system. The mean, 

standard deviation, and the largest deviation of the 3D errors are presented. 

A trend can be observed from the results in Table 4.2, the average error improves after each 

attempt. This is probable due to slight movement of the right camera which shows the same trend 

(see Table 4.1). The third attempt is always the most accurate because the third calibration 

immediately preceded the test measurement while the first calibration was done two hours earlier, 

in which time the camera might have shifted because of instrument vibrations. 
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Multiple Marker Test 

In this test, three fiducial markers were mounted rigidly on the positioning system and the 3D 

positions of the centre of the fiducial markers were determined using a probing device. After 

calibration of the camera system using a set of 125 points in a grid, the positioning system was 

moved to 125 random positions in the calibrated workspace. At each position, the developed 

camera system was used to measure the 3D positions of the fiducial markers. The Euclidean distance 

between the markers were calculated and compared against the actual distance determined using 

the probing device. The result from the comparison is shown in the table below. 

 Distance 1-2 Distance 1-3 Distance 2-3 

Actual Distance (mm) 

(from touch probe) 
133.585 203.650 165.018 

Mean Distance (mm) 

(from camera) 
133.380 203.673 165.260 

Mean Error (mm) 0.20501 0.04877 0.24179 

Std. dev. (mm) 0.04765 0.03054 0.03894 

Maximum Error (mm) 0.34293 0.13295 0.33054 

Table 4.3: The results from the multiple marker accuracy tests on the camera system. The mean 

distance, mean error, standard deviation, and the largest deviation are presented. 

 

The multiple target tests revealed very large errors in between targets. The standard deviation and 

the maximum deviation in Table 4.3 indicate that the distances measured even though erroneous 

were very repeatable. The high accuracy from the single marker test indicates that a repeatable 

point is being detected by the centre detection algorithm but the error from the multiple maker 

tests reveals that the detected point is not actually the centre of the target.   

In the previous version of the camera system design in which infrared ring lights were used, the 

error in the distances between markers ranged between 0.4mm to 0.9mm. These were inexpensive 

lights and it was hypothesised that the error in the distances between markers was due an uneven 

distribution of light on the markers. In order to test this, the ring lights were replaced with a pair of 

white LED ring lights and following this change the errors were reduced as shown in Table 4.3. This 

improvement is considered to be due to a combination of the following: 

 The new ring lights provide a more uniform illumination than the previous ones which had 

exposed LEDs. 
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 The current lenses have a 10%-20% higher transmission efficiency in the visible light range than 

with infrared. Transmission efficiency is the efficiency with which the light passes through the 

lens assembly (some light will be lost to reflection and refraction).   

 The current camera sensors have 20%-40% better quantum efficiency with visible light than with 

infrared. Quantum efficiency is the efficiency with which the sensor converts photons of a 

certain wavelength into electrons in the sensor.  

The mechanism by which the improvement occurs needs to be evaluated further in order to improve 

the accuracy of the centre detection. 

Repeatability of Measurements 

In this test, we evaluate the repeatability of measurements made using the camera system. Since 

most user experiments run for days, it is necessary to evaluate the effect of time on static 

measurements. A fiducial marker is mounted rigidly on the positioning table and the camera system 

is used to measure the position of the marker repeatedly at 20 minute intervals for 3 days which 

implies 72 measurements per day. The laser tracker was setup as a control device to ensure 

vibrations of the table and other errors that do not arise from the camera system would be 

detected. An SMR was placed beside the fiducial marker on the positioning table and the position of 

the SMR was measured during the 3 days. The positioning table was not commanded to move during 

the experiment but just served as a mounting surface. The magnitude of the deviation of each of the 

fiducial marker measurements from the average of the 3 days was calculated. The mean deviation, 

the standard deviation and maximum deviation for the fiducial measurements are presented in 

Table 4.4. 

 

 Day 1 Day 2 Day 3 

Mean (mm) 0.115862 0.137717 0.091589 

Std. dev. (mm) 0.047349 0.056568 0.060318 

Maximum (mm) 0.190733 0.282468 0.236896 

Table 4.4: The results from the single marker repeatability tests on the camera system. The mean, 

standard deviation, and the largest deviation from the average are presented. 

A look at the results in Table 4.4 shows that the position of the static fiducial marker varied by as 

much as 0.282mm which is not encouraging as the camera system is supposed to monitor 

experiments that require 0.1mm positioning accuracy. The calculated deviations (see Figure 4.7a) 

show a fairly repetitive pattern in all the components with the largest deviation coming from the z-
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component of the measurements. When comparing the measurement from the camera and the 

measurement from the laser tracker (see Figure 4.7b), the same pattern can be observed; this would 

indicate that the source of the error is not the camera system but with the mounting surface.  

It was thought that the observed oscillations were caused by thermal expansion so to evaluate this 

hypothesis; the same experiment was repeated for a 12 hours period and the measurements were 

taken at 10 minute intervals. A temperature and relative humidity sensor was placed on the 

positioning table and the sensor was configured to record the temperature and relative humidity at 

2 minute intervals. The resulting reading (see Figure 4.8) showed no correlation with the measured 

position data which still contained the oscillations. The log files from the motion control team at ISIS 

confirmed that the motors of the positioning table did not move during the testing period. The laser 

target and the fiducial marker were then moved off of the positioning table and remounted near one 

of the instrument’s collimators. The experiment was repeated in this new location, the results 

showed similar oscillations but with a smaller amplitude. 



 

112 
 

 

(a) 

 

(b) 

 Figure 4.7: The errors from the repeatability tests conducted on the camera system. (a) shows the 

measurements from the camera system and, (b) shows the control measurements from the laser 

tracker 

Vibrations have been noted on the ENGIN-X instrument for some time but measurements have 

never been made to validate the nature of these vibration. It is probable that the error observed are 
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caused by the vibration of the instrument therefore the repeatability of the camera system could not 

be properly quantified in the instrument hutch. A controlled lab is required to properly evaluate the 

repeatability and accuracy of the camera system indicating that a more rigid mounting rig is 

necessary if the system is to perform optimally in a real experiment. 

 

Figure 4.8: Temperature and relative humidity measured during the repeatability test performed on 

the camera system. 

Comparison of Calibration Algorithms 

In this test, the selected calibration algorithm is compared against the other established algorithms 

to ensure that no bias or errors exist in the current implementation. This test could also indicate 

whether other algorithms outperform the selected one. The camera system was re-calibrated using 

the original MATLAB version of the Bouguet’s toolbox with the (𝑘1, 𝑘2, 𝑝1, 𝑝2) distortion parameters, 

Faugeras [124] algorithm which only accounts for the first order radial distortion (𝑘1) and Weng et 

al algorithm [86] which accounts for thin prism distortion alongside the (𝑘1, 𝑝1, 𝑝2) distortion 

parameters. The data used is the same from the third attempt of the single marker tests.  
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Bouguet  

[OpenCV C++] 

Bouguet 

[Matlab] 

Faugeras 

[Matlab] 

Weng 

[Matlab] 

𝑢0 971.111 931.115 971.328 805.997 

𝑣0 520.671 496.175 523.842 525.911 

𝑠𝑓 1662.194 1659.722 -1664.016 1660.474 

𝑓 1661.058 1658.978 1663.120 1663.667 

𝑘1  -0.35172 -0.35000       0.38531 0.37356 

𝑘2 0.00000 -0.10176    0.00000 0.0000 

𝑝1 0.00022 0.00026 0.00000 -0.03771 

𝑝2 0.00080 -0.00001   0.00000 0.00149 

𝑠1 0.00000 0.00000 0.00000 0.02487 

𝑠2 0.00000 0.00000 0.00000 -0.00164 

Table 4.5: Comparison of different calibration algorithms using a single marker. The resulting 

intrinsic parameters from each algorithm are presented. The unit of the intrinsic parameters 

(𝑢0, 𝑣0, 𝑓, 𝑠𝑓) is pixels while the distortion parameters (𝑘1, 𝑘2, 𝑝1, 𝑝2, s1, s2) are dimensionless 

The results from the table above show that the tested algorithms and implementations have a 

reasonable correspondence for many of the parameters. It can be seen that the principal point 

(𝑢0, 𝑣0) is very close to the centre of the sensor which has a dimension of 1920 by 1080 pixels. This 

is crucial for the convergence of some of the algorithms which used the centre of the sensor as a 

starting guess for the principal point. The principal point of the Weng algorithm deviates the most 

from the sensor centre which is probably due to the extra distortion parameters in the calibration 

procedure. The scale factor (𝑠) is close to 1 since the values of 𝑓 and 𝑠𝑓 are nearly identical which 

confirms that the pixels are actually square. The distortion parameters are similar even though and 

Faugeras and Weng use an inverse distortion model hence the positive distortion value for 𝑘1. The 

accuracy results in Table 4.6 also show good correspondence from which it can be deduced that the 

thin prism distortion (𝑠1, 𝑠2) provide no significant accuracy improvement when used in the model.   
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Bouguet 

[OpenCV] 

Bouguet 

[Matlab] 

Faugeras 

[Matlab] 

Weng 

[Matlab] 

Mean (mm) 0.04874 0.04784 0.05091 0.04578 

Std. dev. (mm) 0.02484 0.02450 0.02405 0.02491 

Maximum (mm) 0.10401 0.107712 0.11188 0.11931 

Table 4.6: Comparison of different calibration algorithms using a single marker. The mean, standard 

deviation and the largest deviation from the average (in mm) are presented. 

 

4.5 Applications 

It is anticipated that the proposed camera system could be used to solve a myriad of problems on 

neutron diffractometers, such as collision avoidance, instrument and sample monitoring, safety 

checks etc. In this dissertation, both sample monitoring and sample correction were implemented 

on the ENGIN-X instrument. It should be noted that the applications discussed below have been 

implemented in software and tested in simulation but have not be practically tested due to 

challenges with the camera system which have been mentioned in the previous section 

4.5.1 Sample Monitoring 

Given a sample with mounted retroreflective markers as in Figure 4.1, the sample is digitised using a 

scanning device, and the locations of the fiducial markers determined using a touch probe or by 

fitting point clouds using the same scanner. The known locations of the fiducial markers can be used 

to determine the pose of the sample during the experiment. The pose of the sample at each 

measured position can be stored alongside the neutron measurements. This data could allow the 

following  

1. While analysing the neutron data, it might be very useful to remember how the sample was 

aligned during the measurement and the accuracy of the alignment. With this pose data, the 

user could replay all the measurements made during the experiments (in simulation software 

like SScanSS) and confirm visually that the measurement were made in the correct location. 

2. If simulations were used to plan the experiment, the measured poses can be compared with the 

simulated poses in real-time and the user can be notified that the sample is not aligned in the 

desired location. 
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4.5.2 Sample position correction via visual servoing  

In situations where the sample has been determined to be misaligned, it is possible to automatically 

correct the alignment of the sample using a technique known as visual servoing. In visual servoing, 

the camera system is used as a feedback system to correct the pose of the end effector of the robot 

(in this case, the sample). 

The manipulator Jacobian is the first order derivative of the forward kinematic function with respect 

to Joint variables therefore the change in end effector position and orientation can be estimated 

as ∆𝑋 ≈ 𝐽∆𝑞 . This is the same Jacobian as used in the Jacobian measurement method and hence 

has been described in Chapter 2 of this thesis. The Jacobian matrix is not invertible in the cases of 

over-constrained (< 6DOF) or redundant (> 6DOF) manipulators. One solution is to invert the matrix 

using the Moore-Penrose pseudoinverse  𝐽† = 𝐽𝑇(𝐽𝐽𝑇)−1. The change in joint variables ∆𝑞 is 

computed as ∆𝑞 =  𝐽†𝑒 . 

The joint variables are updated iteratively using the equation above. The iteration would be stopped 

when sufficient accuracy is achieved or after a specific number of iterations have been reached. The 

Jacobian pseudoinverse is unstable when the manipulator is in or near a singular configuration. In a 

singular configuration, 𝐽 is not of full row rank, which is still an issue with the Jacobian inverse 

kinematics methods.  

The analysis of the Jacobian matrix of the ENGIN-X positioning table revealed that the matrix would 

always be full rank irrespective of the configuration selected.  This is not the case with the revolute 

manipulator whose zero configuration is nearly singular because the axes of Joint A and Joint C are 

closely aligned (see Figure 3.13). In this configuration, the motion caused by actuating Joint A is 

similar to the motion cause by actuating Joint C. This implies that the Jacobian pseudoinverse could 

be unstable around the zero configuration of the revolute manipulator. The Jacobian pseudoinverse 

method worked well for the positioning table but performed poorly on the revolute manipulator due 

to singularity and local minima issues. 

Several modifications to the Jacobian pseudoinverse have been proposed in literature to meet the 

various challenges of the method [125]. In this thesis, one such modification called the Damped 

Least squares method was implemented. This method which uses 𝐽 = 𝐽𝑇(𝐽𝐽𝑇 + 𝜆2𝐼)−1 in place of 

the Moore-Penrose pseudoinverse above and the change in the joint variables is computed as 

above. The non-zero damping constant 𝜆 > 0 is included as a solution to some of the singularity 

problems present in the original method. When 𝜆 = 0, the method is equivalent to the Jacobian 

pseudoinverse method. The inclusion of this damping factor increased the performance of the 

method for the revolute manipulator.   

 𝑞 = 𝑞 + ∆𝑞 4.5 
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5 Experimental validation and Applications 

In this chapter, descriptions of user experiments are presented that demonstrate the advantage of 

the methods developed in this project 

5.1 Copper Bolt Experiment 

The calibrated kinematic models of the ENGIN-X positioning system were applied in a user 

experiment designed to measure spatially resolved texture in a number of large copper bolts which 

were used in the construction of 18th century British naval warships. Archaeological samples such as 

these cannot be destructively analysed because of the value of the samples hence non-destructive 

methods such as neutron diffraction are very suitable. The purpose of the experiment was to 

determine the method by which the bolts were produced whether rolling, drawing, or swaging etc.; 

and any other information about the service history of the bolts. Previously, an experiment had been 

conducted [126] on the same bolts without the calibrated revolute manipulator. In that experiment 

the samples required manual handling to acquire the necessary measurements. A comparison 

between that experiment and the experiment that used the combined model is presented in Section 

5.1.3. 

Texture measurements are typically made with several different rotations and tilts of the sample so 

as to determine the complete pole figure. The texture analysis method used in both experiments is 

based on splitting the ENGIN-X detector into smaller virtual detectors. This improves the angular 

resolution and increases the number of directions explored for a fixed orientation of the specimen 

[127]. A number of incomplete experimental pole figures are used to define the orientation 

distribution function (ODF) of the material. The best ODF is determined by solving a minimization 

problem, more information about the technique can be found in [127]. 

5.1.1 Description of Sample 

The archaeological samples shown in Figure 5.1  are copper bolts recovered from the shipwreck of 

two warships from the British Royal Navy. The characterization of the bolts from the identified 

shipwrecks, HMS Impregnable and HMS Pomone, would allow the archaeologist to acquire a better 

understanding of the construction and the history of the ships. A more complete description of the 

bolts and the historical context can be found in [126]. 
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Figure 5.1: The Copper bolts for the texture measurement. The largest bolt is 956mm long and 

35.5mm in diameter. 

5.1.2 Experiment Description 

Steel ball bearings were mounted on each sample to serve as fiducial markers. The fiducial markers 

were sprayed with white paint to minimise the specular reflections of the ball so as to ensure better 

visibility to the laser scanner (see Figure 5.2). After spraying, the samples and fiducial marker were 

scanned using a laser scanner; the locations of the fiducial markers were determined from the 

scanned sample model by fitting a sphere to the scanned data. At the start of the experiment, the 

ENGIN-X revolute manipulator was mounted on the positioning table and the first bolt (the largest) 

was mounted on the manipulator. The revolute manipulator was moved to four different 

configurations and at each pose the positions of the accessible fiducial balls were measured. The 

algorithm detailed in Section 3.5 was used to calculate the base and tool matrices for the revolute 

manipulator. As mentioned in Chapter 3, the calibrated kinematic models were incorporated in the 

SScanSS software and the addition of the base and tool matrices described above completed the 

combined model of the positioning system and mounted sample. It should be noted that the base 

matrix would only be determined once during the entire experiment, unless the revolute 

manipulator is physically removed from the positioning system. With the known base matrix, the 

tool matrix can simply be recomputed using the algorithm in Appendix C whenever the sample is re-

mounted or changed.  
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Figure 5.2: One of the copper bolts with attached fiducial markers; the markers were sprayed white 

to reduce specular reflection to the laser scanner. 

The laser captured virtual sample model was loaded into SScanSS and the experiment plan was 

generated. In order to test the accuracy of the model the numerical inverse kinematics 

implementation in SScanSS was used to generate a motor script that would bring each fiducial ball to 

the centre of the gauge volume. A few of the fiducial balls were then moved into the gauge volume, 

their positions were validated using the theodolite in the hutch. The accuracy of the sample 

positioning could not be validated using other measuring devices due the limited time given for the 

setup. The generated motor scripts were used to automate the instrument control for the entire 

experiment. An example of the experimental setup and corresponding SScanSS virtual model are 

shown in Figure 5.3.   
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(a)                                                         (b) 

Figure 5.3:  User experiment to measure spatially resolved texture in copper bolts (a) Photographic 

record of the experiment. (b) Screen capture of corresponding SScanSS simulation, including 

calibrated sample positioning system, laser scanned sample model and ENGIN-X detector banks 

Using this model-based approach individual measurement points were automatically brought to the 

gauge volume and rotated, as required, around three axes of rotation. The construction of the ODF 

also requires knowledge of the path lengths travelled by the neutrons to each virtual detector 

element and these were output automatically by the SScanSS software for each orientation (this 

development was not part of this project).  

5.1.3 Contributions 

Measuring spatially resolved texture in this manner, while providing a useful first test of the 

calibrated positioning system, is not a typical use of ENGIN-X and an example of the application of 

these techniques to the more usual strain scanning experiment will be reported in the next section. 

The contributions of the techniques proposed in Chapter 3 of this thesis to the copper bolt 

experiment are the following: 

Flexibitity 

As previously mentioned an experiment had been conducted on the same bolts before the 

calibration of the positioning system. The nominal models of the three axis manipulator although 
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available lacked the accuracy and reliability necessary for that user experiment. Hence the samples 

were mounted as shown in Figure 5.4a using fabricated  wood pieces. Using this arrangement, the 

sample could only be rotated automatically around a single axis (the axis of the rotation stage). 

When other orientations were required the sample had to be detached and remounted in that 

orientation. This limited the number of measurements made and prevented the researchers from 

making measurements in certain orientations because of the difficulty of alignment. 

 

(a)                                                                               (b) 

Figure 5.4: The alignment of the HMS Pomone copper bolt for texture measurement showing (a) the 

previous experiment without the calibrated positioner model (b) the experiment with the calibrated 

model.  

In the second experiment, the calibrated positioning system was used to align all the samples, and a 

fabricated aluminium holder was used to attach the sample to the positioner (Figure 5.4b). The 

alignment technique allowed for large degree of flexibility and the researchers were able to make 

measurement at several orientations without manual reorientation or physical intervention. 

Without model based alignment, it would be non-trivial to find the joint configurations of the three 

axis manipulator that positions the measurement points in the gauge volume. Only model based 

techniques can determine the orientation of the sample and this property is very desirable for 

texture experiments. 

Maximized Beam-time 

The first day of the experiment was spent setting up and validating the calibrated positioning system 

model. Since this experiment was the first in which the calibrated positioning system model would 

be used, the setup took the whole day but subsequent experiments should benefit from a significant 

improvement in setup time. The proposed alignment technique increased the throughput of the 

experiment by allowing non-stop measurements. These measurements allowed the researchers to 
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further enhance the texture measurement method. Without the proposed method, almost every 

measurement would have required the user to stop and realign the sample but with the method, the 

time spent realigning the sample and verifying the alignment with theodolites was spent making 

useful measurements on the sample. 

5.2 Stress Measurement on Creep specimen 

This experiment was designed to measure the complete stress tensor of creep specimens by 

measuring the strain at different orientations [128]. Although the methods developed in this thesis 

were demonstrated with the user’s samples, the methods were not used for the actual neutron 

measurements due to problems that will be discussed in this section. 

In many stress measurement experiments, assumption are made that minimize the number of 

required measurement orientations to three principal directions however in this experiment 

measurement were made in more than three arbitrary orientations. Multiple measurements of 

strain in different directions leads to a system of linear equations [128]. In the case where there are 

six or more measurements (from non-coplanar orientations) the complete strain tensor may be 

solved 

5.2.1 Description of Sample 

Six 316H stainless steel  samples were measured in  this experiment. The samples were attached to 

an aluminmum specimen holder and the speciman holder was attached to the standard VAMAS 

mounting plate. The Unstrained lattice parameter specimens (or d-zeros) were attached to one of 

the six samples as shown in Figure 5.5. 

5.2.2 Experiment Description 

At the start of the experiment, the 3mm collimators were mounted on the instrument and aligned. 

In this experiment, the traditional fiducial marker system which used ball bearing and a touch probe 

was replaced with a more accurate and time saving alternative. A total of six laser target holders 

were mounted on the sample assembly with three holders been mounted on the specimen holder 

while the others were placed on the mounting plate as shown in Figure 5.5. The whole sample 

assembly was scanned using a FARO Edge measuring arm with an attached laser line scanner.  The 

centre of each fiducial marker was determined by placing an SMR on the target holder and probing 

the SMR with the FARO Edge which is designed to perform the laser scanning and probing 

operations in the same coordinate frame. By using the FARO Edge, the need to spray paint the 

fiducial markers for scanning is eliminated. 
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Figure 5.5: The sample assembly for the creep stress experiment. 

The revolute manipulator was mounted on the positioning table and the sample assembly was 

mounted on the manipulator. The revolute manipulator was moved to four different configurations 

(see Figure 5.6) and at each position the visible fiducial points were measured. The algorithm 

detailed in Section 3.5 was used to calculate the base and tool matrices for the revolute 

manipulator. The computed matrices were inputted into the SScanSS package. A few measurements 

were made to ensure that the system would perform accurately enough for the experiment but the 

test measurements showed that the achieved accuracy was not sufficient for the experiment. The 

reason for the inaccuracy was later found but because the error source could not be corrected 

without consuming time, the actual experiment was performed without the revolute manipulator 

model. Even though the calibrated model was not used for the experiment, subsequent analysis of 

the errors observed provides a valuable insight into errors that might be present in other 

experiments that attempt to use automatic positioning.  The cause of the inaccuracy would now be 

discussed in the next section 

5.2.3 Discussion 

Using the 10% rule, a gauge volume of 3mm would signify the desired positioning accuracy should be 

better than 0.3mm. Good accuracy was also necessary to avoid collisions with other parts of the 
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instrument as some of the measurement orientations required movements in close proximity to the 

hardware. The base and tool matrices were determined using the configurations 1-4 detailed in 

Table 5.1. After these matrices were determined, measurements were made in two other 

configurations (5 and 6) also listed in Table 5.1. 

 

Figure 5.6: The sample assembly mounted on the revolute manipulator oriented in one of the four 

configurations used to determine the base and tool matrices. 

The model achieved an average of 0.14168mm with a standard deviation of 0.08841mm and a 

maximum error of 0.37377mm on the 11 points measured in the two test configurations. 

The maximum error exceeded both the recommended accuracy for the experiment and the 

anticipated error which, based on previous tests, was expected to be approximately 0.1mm. Recall, 

that six points were mounted on the specimen holder with three mounted on the mounting plate. 

The worst point in both configurations was always fiducial point 1 (see Figure 5.5) which was the 

highest point on the sample assembly. This sort of error could be due to vibrations of the sample or 

small angular errors of the goniometer joint being amplified along the length of the sample   
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Configurations A (Deg) B (Deg) C (Deg) 
No of visible 

points 

1 0.00 0.00 0.00 6 

2 90.00 -90.00 50.00 4 

3 -90.00 90.00 -50.00 6 

4 90.00 180.00 90.00 6 

Test Configurations 

5 -180.00 -5.00 150.00 6 

6 -100.00 -170.00 -100.00 5 

Table 5.1:   Joint configurations used for the base and tool calculation and the two configurations 

used to test the calculated base and tool matrices. 

Investigating the rigid transformation between the points measured at each configuration and the 

points measured when the sample was scanned, a trend was observed; (see Figure 5.7) with the 

fiducial markers mounted on the specimen holder (numbers 1-3) have larger error17 than those 

mounted on the VAMAS mounting plate. This could indicate that the specimen holder had moved 

slightly from its original position. This shift would contribute to errors in the base and tool matrix 

calculation which might explain the larger than expected errors. It should be noted that fiducial 

point 3 consistently produced worse errors than points 4, 5, and 6 even though point 3 had closer or 

similar distance to the mounting plate than those points. This observation could exclude vibration as 

a source of the errors as vibrations would be amplified when the point is further from the mounting 

plate. 

                                                           
17 The rigid transformation error is the calculated by transforming the measured point into the same 
coordinate frame as the scanned points then the Euclidean distance between the transformed and scanned 
point calculated 
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Figure 5.7: The rigid transformation error for all the fiducial point measured in four different 

configurations. 

To test the hypothesis that the specimen holder had shifted, the rigid transformation analysis was 

repeated using only the fiducial points on the VAMAS mounting plate (numbers 4-6).  The result 

(Figure 5.8) showed improved accuracy of the rigid transformation for 3 of the 4 configurations, the 

rigid transformation for configuration 2 could not be calculated as only one fiducial marker on the 

mounting plate was visible in that configuration. Finally, the base and tool matrices were 

recomputed using only the fiducial points on the mounting plate and the model was re-tested using 

the same test configurations. The model achieved an average of 0.12367mm, standard deviation of 

0.05482mm and the maximum error of 0.23301mm on the same 11 points previously measured 

which is a considerable improvement over the previous model.  

 

Figure 5.8: The rigid transformation error for the fiducial point attached to the VAMAS mounting 

plate measured in three different configurations.  
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Due to time limitations inherent in a user experiment, it was not possible to fully evaluate the source 

of the shifts which could have been due to erroneous scanning, thermal expansion or non-rigid 

mounting. In the absence of a complete understanding of the error source, it was decided that the 

experiment should proceed with a semi-manual alignment.  
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6 Conclusion 

6.1 Summary & Conclusions 

Accurate sample alignment is essential for stress measurement on neutron diffractometers. Model 

based alignment is frequently used for aligning samples at many neutron instruments. In this thesis, 

the modelling of positioning systems and the monitoring of the instrument is proposed as solutions 

to some of the challenges of the model based alignment technique.  

6.1.1 Modelling of Positioning Systems 

One major challenge facing model based alignment is the discrepancy between simulated and real 

motion due to inaccurate modelling of positioning systems. In this thesis, robotic calibration is 

demonstrated as an effective tool for accurately determining the kinematic parameters of both 

custom and off shelf serial positioning systems used by neutron diffractometers, irrespective of 

whether these systems are used to align detectors, samples, jaws or cameras. It has been shown 

how additional, non-geometric error sources such as eccentricity may be identified and modelled to 

further improve model accuracy. The resulting calibrated hardware can be used to perform rapid, 

accurate sample alignment and so further improve the scientific output and quality assurance of 

beam line experiments.  

The SScanSS software was modified to allow updated model kinematic parameters to be read from a 

simple text file after manipulator calibration. The potential of the calibration technique is 

demonstrated in two user experiments which used SScanSS for experimental planning and control. 

It is recognised that kinematic calibration alone might not be sufficient for experiments such as near 

surface measurements where even more accurate positioning of the sample in relation to the beam 

is required. It is anticipated that such positioning requirements may be met by some combination of 

the following options: 

 Develop a more complex model that takes into account the dynamics rather than just the 

kinematics of the positioning system. 

 Use a measuring device to perform visual servoing on the instrument. 

 Use the neutron beam to check and automatically modify the alignment of the sample. 

6.1.2 Monitoring the Instrument 

Another challenge of model based alignment techniques is the inability to detect positioning failure. 

A very accurate model of the instrument could fail if physical repairs have been carried out on the 

positioning system or following a collision. In such a situation, offline simulation would be incorrect 
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and lead to wrong results. In this thesis, a stereo camera system was developed to monitor the 

sample and other moving parts of the neutron diffractometer. The camera system is designed to 

measure the positions of retroreflective markers attached to any object that is being monitored. A 

fully automated camera calibration procedure was developed with an emphasis on accuracy. The 

system was tested and showed the potential for highly accurate measurements. Average accuracies 

of about 50microns were achieved when tracking a single marker. Issues with the sphere centre 

detection and instrument vibration still limit the potential of this device. 

It is anticipated that the camera system would be used to correct the positioning system when the 

error is minimal or notify the user of the error when it is significant. 

6.2 Contributions of the thesis 

1. First author of paper titled “Modelling and control of neutron and synchrotron beamline 

positioning systems” [99]. 

2. Co-author of a paper titled “Spatially resolved texture analysis of Napoleonic War Era Copper 

bolts” [129]. 

3. Robot calibration code written in IDL which has partly been included into the SScanSS package. 

4. A new algorithm for solving the robotic base and tool calibration problem. 

5. A new algorithm for extracting Hayati D-H parameters from a point and axis. 

6. Development of a camera metrology system for ENGIN-X. 

7. Extensive repeatability and accuracy analysis of the ENGIN-X positioners  

6.3 Further Work 

1. Publish Papers: Some of the novel contributions of this work are yet to be published due to time 

required to write and find the appropriate journals. The base and tool calibration technique 

presented in Chapter 3 used a new non-linear method to determine the tool and the base matrix 

of the positioner. Also the method used to extract Hayati D-H parameters from the measured 

centre points and joint axes also presented in Chapter 3 used a novel vector analysis method. 

Attempts would be made to publish both techniques if time permits. 

2. Complete the monitoring system: As discussed in Chapter 4, a few challenges limited the 

potential of the developed camera system. If the system must achieve the accuracy shown in the 

single marker test, the sphere centre detection and vibration problems must be overcome. The 

sphere centre detection might be improved further by optimisation of the ring lighting but this 

has to be tested. The vibration detected on the instrument could be addressed by using a more 

rigid mounting system. 
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3. Visual Servoing on ENGIN-X: An important application of the developed feedback system in 

Chapter 4 is the ability to correct the sample if it is found to be aligned with insufficient 

accuracy. This would be valuable for experiments requiring higher accuracy than that which the 

positioning system can provide on its own. A possible challenge with visual servoing around a 

neutron diffractometer is the high risk of colliding with parts of the instrument. One way of 

minimising this is to limit the amount of error that the visual servoing system attempts to 

correct if the error exceeds the specified limit; the user is notified of errors that cannot be 

corrected. Another way of avoiding this is to impose virtual bounding boxes around the sample, 

jaws and the collimators and check the boundaries of these boxes for collisions during every 

movement of the positioner. 

4. Automation: A major hindrance to the uptake of model-based alignment techniques is that they 

require some extra work on the users’ part which could be seen as time consuming when limited 

beam time is available. Tasks such as measuring the location of sample fiducial marker on the 

instrument, aligning the coordinate frame of the measurement devices, calibration of the 

positioning systems etc. should be fully automated so that the users are content to use model 

based alignment since it costs them no extra effort. This automation would require software and 

hardware integration with the instrument, further testing would be vital to ensure that the 

accuracy of the automated system is not less than the manual counterparts. Also safety checks 

must be in place to prevent collisions during the automatic runs of any of these systems. 

5. Self-learning instruments: The data collected from the monitoring system can be used to create 

smart instruments which are able to diagnose problems and make suggestions for 

improvements. For example, if measurements repeatedly showed more errors in positioning 

along a particular axis such a system could suggest recalibration of that axis, cleaning of the 

stage, or replacement depending on its analysis. Machine learning could be used to analyse 

other factors that lead to better performance of the instrument and also provide suggestion for 

optimization of a single experiment or the instrument as a whole.  

6. Another Instrument: The methods presented in this thesis have been applied to the ENGIN-X 

instrument. It is anticipated that these techniques will be applied to the IMAT instrument which 

is a combined neutron imaging and diffraction instrument at the ISIS facility. It is expected that 

the virtual model of the IMAT instrument would be included into the SScanSS package, in which 

case all the methods presented would be directly applicable with minimal modification.  
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Appendix A: Positioning Table 

The knowledge of the joint limits is used in selecting configurations for the repeatability tests. The 

limits were found by manually jogging the positioner and recording the sensor positions at which the 

positioner stopped. The ENGIN-X positioning table which is calibrated as part of the thesis has the 

following joint limits. 

Joint Lower Limits Upper Limits Travel 

X (mm) -239.691 239.690 479.381 

Y (mm) -250.316 250.3155 500.631 

Z (mm) -295.950 295.950 591.900 

Ω (deg) -185.864 185.8635 371.727 

 

Errors between the commanded and the measured angles/distances 

The X, Y stages were commanded to move at intervals of 40mm from -200 to 200, the Z stage was 

commanded to move at intervals of 50mm from -250 to 250, and the W stage was commanded to 

move from -180 to 180 at intervals of 36°. The Euclidean distance between the measured points (for 

each stage) were computed and then subtracted from the commanded distance to compute the 

errors. Using the radius of rotation and the Euclidean distance of the W stage, the angle of rotation 

is computed; the difference between the computed angle and commanded angle is then 

representative of the error for the W stage. From these measurements, we observed the following: 

 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 -
2

0
0

 t
o

 -
1

6
0

 -
1

6
0

 t
o

 -
1

2
0

 -
1

2
0

 t
o

 -
8

0

 -
8

0
 t

o
 -

4
0

 -
4

0
 t

o
 0

0
 t

o
 4

0

4
0

 t
o

 8
0

8
0

 t
o

 1
2

0

1
2

0
 t

o
 1

6
0

1
6

0
 t

o
 2

0
0

D
e

vi
at

io
n

  (
m

m
)

Isssued Command (mm)

X Stage

Attempt 1

Attempt 2

Attempt 3



 

142 
 

 

 

 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

 -
2

0
0

 t
o

 -
1

6
0

 -
1

6
0

 t
o

 -
1

2
0

 -
1

2
0

 t
o

 -
8

0

 -
8

0
 t

o
 -

4
0

 -
4

0
 t

o
 0

0
 t

o
 4

0

4
0

 t
o

 8
0

8
0

 t
o

 1
2

0

1
2

0
 t

o
 1

6
0

1
6

0
 t

o
 2

0
0

D
e

vi
at

io
n

  (
m

m
)

Isssued Command (mm)

Y Stage

Attempt 1

Attempt 2

Attempt 3

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 -
2

5
0

 t
o

 -
2

0
0

 -
2

0
0

 t
o

 -
1

5
0

 -
1

5
0

 t
o

 -
1

0
0

 -
1

0
0

 t
o

 -
5

0

 -
5

0
 t

o
 0

 0
 t

o
 5

0

5
0

 t
o

 1
0

0

1
0

0
 t

o
 1

5
0

1
5

0
 t

o
 2

0
0

2
0

0
 t

o
 2

5
0

D
e

vi
at

io
n

  (
m

m
)

Isssued Command (mm)

Z Stage 

Attempt 1

Attempt 2

Attempt 3



 

143 
 

 

  

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

 -
1

8
0

 t
o

 -
1

4
4

 -
1

4
4

 t
o

 -
1

0
8

 -
1

0
8

 t
o

 -
7

2

 -
7

2
 t

o
 -

3
6

 -
3

6
 t

o
 0

 0
 t

o
 3

6

 3
6

 t
o

 7
2

 7
2

 t
o

 1
0

8

 1
0

8
 t

o
 1

4
4

 1
4

4
 t

o
 1

8
0

D
e

vi
at

io
n

 (
D

e
gr

e
e

s)

Issued Command (Degrees)

Rotation Stage

Attempt 1

Attempt 2

Attempt 3



 

144 
 

Appendix B: Camera Specification 

The current design of the camera system designed in this thesis used the Basler Ace aca1920-25gm 

machine vision camera shown in the Figure below 

  

 

The main specifications of the camera are presented in the Table below 

Resolution (H x V) 1920px  x 1080px 

Pixel Size (H x V) 2.2 µm x 2.2 µm 

Sensor Size (H x V) 4.22 mm x 2.38 mm 

Efficiency (typical) 57,21 % (at 545 nm) 

Saturation Capacity (typical) 6,7 ke 

Dark Noise (typical) 6,4 e- 

Sensor Vendor Aptina 

Sensor Name MT9P031 

Shutter rolling shutter 

Sensor Type CMOS 

Frame Rate 25 fps 

Mon/Colour Monochrome 

Interface GigE 
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The quantum efficiency of the camera is presented in the Figure below 
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Appendix C: Tool Matrix Calculation 

Recall, the forward kinematics gives the transformation from the base coordinate frame of the robot 

to the end effector 𝐻  
0

𝑛
 . 

𝐻 
0

𝑛
 = 𝑓(𝑥) 

The tool transformation 𝐻 
𝑛

𝑡
  is a matrix that relates the end effector frame 𝐻 

0
𝑛
  to the tool frame 𝐻 

0
𝑡
  

which in our case is in the sample. This is illustrated in the figure below: 

𝐻 
0

𝑡
 = 𝐻 

0
𝑛
 𝐻 
𝑛

𝑡
  

 

Given a set of fiducial points 𝑷, measured in the instrument or base coordinate frame with the 

manipulator in its zero configuration. 𝑷 is a 3 × 𝑛 matrix with each column containing a single point 

and 𝑛 is the number of fiducial points. When the base of the robot is known, the tool can be 

calculated without any non-linear minimization. 

1. Calculate the centre of mass (centroid) of the fiducial points (𝑷) by taking the sum of each 

row in 𝑷 and dividing by the number of points 𝑛. 

2. Since the sample is always measured in the instrument or base coordinate, the tool frame  

𝐻 
0

𝑡
  is a trivial matrix, the orientation part is an identity matrix (𝑰) and the translation part is 

the calculated centroid. 

𝐻 
0

𝑡
 = [

𝑰𝟑×𝟑 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝟎𝟏×𝟑 𝟏

] 

3. If 𝐻 
0

𝑛
  is the homogeneous matrix from the forward kinematic model when all joint variables 

set to zero. The tool matrix is calculated as 

𝐻 
𝑛

𝑡
 = ( 𝐻 

0
𝑛
 )−1 𝐻 

0
𝑡
 =  𝐻 

𝑛
0
 𝐻 
0

𝑡
  

 

Tool frame 

Base frame 

 

End effector frame 

𝐻 
0

𝑛
  

𝐻
 
𝑛

𝑡
 
 

𝐻
 
0

𝑡
 
 


