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Summary
One of the most crucial activities for a successful business is 
project time and cost estimation. This is an early estimation 
process which is usually handled by highly skilled, in-house 
experts. One of the main obstacles in this process is to accu-
rately defi ne the relationship between product properties and 
the machining hours necessary to manufacture the mould. This 
article suggests how to address this problem by using artifi cial 
neural networks (ANN). The developed model shows that it is 
possible to achieve admissible accuracy of the estimation by 
using easily obtainable input data.
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KLJUČNE RIJEČI:
alatničarstvo
injekcijsko prešanje
umjetne neuronske mreže
procjenjivanje
sati izrade

Procjena vremena potrebnoga za izradu kalupa za 
injekcijsko prešanje s pomoću modela temeljenoga 
na umjetnim neuronskim mrežama

Sažetak
Jedna od najvažnijih aktivnosti u izvedbi projektno orijenti-
ranih poslovnih procesa ocjena je potrebnih tehnoloških vre-
mena i troškova. To je rana faza procjene koju provode visoko 
kvalifi cirani interni stručnjaci. Jedna od najvećih zapreka u 
toj fazi je precizno defi niranje odnosa između karakteristika 
proizvoda i potrebnih tehnoloških vremena za izradu kalupa. 
Ovaj rad predlaže pristup rješavanju tog problema korištenjem 
umjetnih neuronskih mreža. Razvijeni model pokazuje da je 
moguće postići prihvatljivu točnost procjene korištenjem lako 
dostupnih ulaznih podataka.

Introduction
The mould making industry is project driven, and as such it 
has to cope with the characteristics of individual production 

process. One of major sources of risk in project management 
is an inaccurate forecast of project costs, demand, and other 
impacts.1 In the mould manufacturing process it is crucial to 
minimize risks in the project estimation phase. This is an early 
project stage in which different resources are estimated. One of 
the important estimations is also the necessary number of man-
ufacturing hours. The estimation phase is commonly a human 
expert driven activity which is sensitive to the expert’s bias. 
This bias can lead to an underestimation of project resources, 
when the estimator is overconfi dent, or to over-estimation of 
project resources when the estimator does not have suffi cient 
confi dence that all aspects of the project can be properly cov-
ered. Both scenarios, based on the expert’s estimation, have 
a negative impact on the future business decisions. In case of 
underestimation, the project will bring economic loss, and in 
case of overestimation, it will most likely be assigned to a com-
petitive supplier. The estimator’s key competence is to properly 
collect and evaluate all the information which is signifi cant for 
making the project estimation. The paradigm lies in the fact that 
the estimator should spend minimal time necessary on estima-
tion activity, since in the mould-making industry usually less 
than 10% of all offers turn into orders, as stated in 2,3,4.

The estimation process
The research objective is to develop an estimation model which 
helps an expert to improve the estimation of manufacturing 
hours in the mould manufacturing. Figure 1 shows that un-
supported expert estimation represents a very broad solution 
space. This is mainly due to limited information availability, 
the expert’s limited capability of simultaneously processing 
multiple information, and the expert’s bias. By using artifi -
cial neural networks (ANN) supported expert estimation the 
solution space gets narrower as shown in Figure 1. It is very 
important to properly position the supporting estimation model 
in the expert process. By using a supported estimation process 
the risk of underestimating or overestimating the manufactur-
ing hours is minimized.
In this article manufacturing hours represents the total of all 
machining hours spent to complete all parts of the mould. In 
each operation machining time, the loading time and unload-
ing time are taken into account. This means that only the hours 
when machines are actually occupied are taken into account.
ANN output retrieved from the developed model is categorized 
as an evaluation indicator for the expert to confi rm the results 
or re-evaluate and correct them accordingly. This is an empiri-
cal model that learns from past examples and generalizes the 
solution for new cases. When implementing ANN the most vital 
step is to defi ne an appropriate set of parameters that capture 
the properties of part geometry and represent them as a mould 
complexity, which most signifi cantly infl uences the volume of 
manufacturing hours.
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A major challenge of the estimation process in general is to 
achieve suffi cient accuracy within minimal time consumption 
for this operation. Estimation accuracy is directly related to 
the data that we have at our disposal at the moment in which 
the estimation process takes place. As shown in Figure 2, the 
availability of data differs during the different project phases. 
As we move along the timeline of the project the availability of 
data increases, as well as its accuracy. Consequently, estimation 
uncertainty and risk decreases, so more accurate results can be 
expected. Estimation methods differ in accordance with the 
project stage in which they are used:3,6,7

– intuitive,
– analogical,
– parametric, and
– analytical.
Intuitive estimation methods are based on the human expert’s 
prior knowledge and experience. A major downside to these 
methods is that the results are very susceptible to many differ-
ent subjective factors. So, the results obtained face problems 
regarding accuracy and repeatability. These problems can be 
reduced to a certain extent by applying methods that use more 
than one estimator.8 A major benefi t of these methods is moder-

ate time consumption. They are usually applied in early project 
stages.
Analogical estimation methods are based on fi nding success-
ful projects with similar characteristics like the estimated one. 
On the basis of detected similarities corresponding values are 
assigned to the estimated project. These methods become ap-
plicable when the basic product shape is defi ned. They are also 
considered as conditionally reliable methods since the relations 
between similarities are usually estimated by an expert.8 Their 
main strengths are transparency of gained results and the abil-
ity to achieve the solution rapidly. These methods strongly rely 
on the database of previous projects, and become unreliable if 
proper mapping of similar characteristics cannot be obtained.
Parametric estimation methods are used to make estimations 
on the basis of parameters that are able to directly translate the 
properties of the product or project into an estimated value. 
These methods are built on the databases of past projects. 
Estimations are obtained by collecting input parameters and 
processing those to formulate a proper estimation impact. 
These methods are usually seen as black box solutions. A ma-
jor challenge is in defi ning a proper set of input parameters. 
These methods offer both speed and suffi cient accuracy if used 
properly. By keeping the database of a past project open and 
adding the data of new projects, this model gains the ability 
of adaptation and learning, which comes forward signifi cantly 
when used properly with ANN platforms. Parametric methods 
are prone to use both parametric and non-parametric models 
which were found to give acceptable estimates.
Analytical estimation methods are applicable when both prod-
uct data and manufacturing technology are defi ned in detail. 
They are usually applicable in the latter stages of the product 
life cycle. The estimation is made on a detailed breakdown of 
the complete process into elementary tasks.5 For every task 
relations between inputs and corresponding outputs are analyti-
cally determined. These methods are usually rigid and relations 
between parameters are not easily modifi ed. They do not have 
adaptation ability.5 The gained results give the most accurate 
estimations. Their major downsides are time consumption and 
limited applicability in the early project stages.

FIGURE 1 – Expert estimation solution space

FIGURE 2 – Estimation methods applicable in different stages of the project (product life-cycle)
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FIGURE 3 – Systematic expert driven estimation process 
supported by ANN

In the mould making business the most commonly 
used practice are human intuitive methods,6 or a 
combination of intuitive and analogical methods. 
Mould makers put a major emphasis on retriev-
ing accurate project estimation with minimal time 
consumption, because a large number of quotations 
have to be processed in order to achieve suffi cient 
order load. The reason for that lies in a very mod-
erate success rate of all submitted offers. In order 
to achieve a suffi cient level of result credibility, 
the estimation process has to be systematically ap-
proached. The complete estimation process consists 
of several phases, and in each phase different solv-
ing solutions are available. A detailed step-by-step 
model of the expert driven estimation approach was 
developed for this research and it is shown in Figure 
3. The diagram gives precise instructions how the 
expert should approach the estimation. This model 
fi ts into intuitive methods. The left side of the dia-
gram shows in which part of the process the ANN 
response (estimation), which is part of this research, 
is used. By implementing ANN the unsupported 
estimation process is upgraded to supported estima-
tion process (see Figure 1).

An overview of previous work
Review of signifi cant recently published literature 
and articles is presented in structured form in Table 
1. They are sorted in regards to the used estimation 
method. The table also defi nes for which industry 
the research was done and what problem they were 
trying to solve. The majority of research activities in 
this fi eld are focused on defi ning estimation models 
that are able to defi ne the link between geometric 
characteristics of the product and price/cost of the 
product/project. By focusing on these economic 
values, the estimating process is contaminated by 
infl uences that do not possess technical character-
istics of the manufacturing process. These are actu-
ally infl uences of the market, refl ecting request and 
demand, and have very little to do with technologi-
cal issue. To achieve a successful business process 
on the shop fl oor production process planning is 
crucial. To deal with this issue it is necessary to 
use estimation models which predict the volume of 
manufacturing hours. Articles which are the most 
signifi cant for this research are related to product 
complexity,9,10,11 and the implementation of ANN 
in the mould estimating process.9,12 All these ap-
proaches give quite accurate estimates when used 
for very specifi c types of products

Artifi cial neural network model
The solution can be approached by different mod-
els (regression, genetic programming, ANN, etc.). 
Using ANN is an effi cient way to solve complex 
problems. ANN are recognized as universal ap-
proximators. They represent a valid alternative, 
especially when relationships are not known and 
cannot be logically argued13. When using the ANN 
approach the system is decomposed into simple 
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elements – in this case neurons, which can be seen as compu-
tational units which are fed with inputs that initiate a certain 
response. Connections between neurons determine information 
fl ow, which determines network behaviour. 
For solving the estimation task a multi-layer feed-forward net-
work is used. For ANN training a Levenberg-Marquard algo-
rithm is used. It is a method which is fast and most appropriate 
for training moderate-sized, feed-forward neural networks14. 
The training process objective is to tune weights in order for 
the network to behave as expected when it is presented with 
certain inputs.
The performance function for feed-forward networks is a mean 
square error (MSE), which defi nes the average squared error 
between the network outputs (yi) and the target outputs (ti).

  
(1)

The methodology for the creation of estimation model consists 
of three major phases which are input defi nition, ANN defi ni-
tion, and model validation, as shown in Figure 4. After the model 
is approved by an expert it is ready for implementation. If the 
selected variables do not properly describe the relationship 
between inputs and expected outputs, optimization takes place 
and the model is re-evaluated.

Architecture of ANN 
The ANN architecture foreseen for this model is shown in 
Figure 5. It consists of 27 inputs in the input layer, less than 10 
neurons with a sigmoid activation function in the hidden layer, 

TABLE 1 – Literature overview

Method Source
Method sub-type (ANN , 
Regression, Case-Based 

Reasoning, …)

Industry 
(Mould-making, 
Construction, …)

Problem solving

Analogical
2 Fonseca et al. Retrieval of similar data 

from database
Mould Making / Tools for 

injection moulding Assisting mould quotation 
3 Duverlie et al. Case Based Reasoning Product Design Cost estimation

15 Wang et al. Case Based Reasoning Mould Making Mould cost estimation 

Parametric

9 Raviwongse et al. ANN Mould Making Mould complexity computation
6 Ficko et al. Case Based Reasoning Mould Making/ Tools  for 

Sheet Metal Forming
Manufacturing costs estimation 

for stamping tools
7 Farineau et al. Regression model Product Design Cost estimation
13 Cavalier et al. Regression model, ANN Automotive Production cost estimation

12 Che ANN Mould Making  and 
Injection moulding Product and mould cost estimation

16 Farineau et al. Regression model Product Design Cost estimation

17 Elhag et al. Regression model, ANN Construction/Buildings Tender price estimation
18 Verlinden et al. Regression model, ANN Sheet metal parts cost estimation

19 Kim et al. Regression model, ANN, 
Case based Reasoning Construction/Buildings Construction costs

Analytical

4 Denkena et al. Rule-based Mould Making/ Tools for 
die casting Die cost calculation

10 Fagade et al. Mould Making  and 
Injection moulding Lead time estimation

11 Fagade et al. Mould Making  and 
Injection moulding Lead time estimation

20 Chan et al.
Mould Making / Tools for 
injection moulding/  Toy 

industry
Mould cost estimation

21 Denkena et al. Accessibility Analysis
Mould Making/ Tools for 

injection moulding  and die 
casting

Manufacturing cost calculation

22 Chin et al. Decision Tables Mould Making Mould cost estimation
23 Fagade et al.

Boothroyd-Dewurst
Dixon-Poli

Mould Making Product and mould cost estimation

24 Fagade et al. Mould Making  and 
Injection moulding Product and mould cost estimation

25 Nagahanumaiah 
et al.

Tools for injection 
moulding  and die casting Die or mould cost estimation

26 Navodnik et al. Mould Making Mould cost estimation
27 Menges et al. Mould Making Mould cost estimation

28.Kazmer Mould Making Mould cost estimation
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and one neuron with a linear activation function in the output 
layer. Software used for ANN modelling is MATLAB. 

ronment infl uence is captured within the expected network 
response. 
In the ANN model design phase expert opinion was taken into 
account when initial parameters, described in the following 
text, were foreseen: 
–  part envelope length (LP ) (Part envelope width, length, and 

height defi ne the bounding box around a properly oriented 
product. All three dimensions are aligned with orthogonal 
mould axis. The width and length lie on the xy plane, while 
the height lies on the z axis direction (Figure 7). The latter is 
also the direction of mould opening and closing. This param-
eter is represented by a positive real number in ANN. The 
same applies for Wp and Hp.);

– part envelope width (WP );
– part envelope height (HP );
–  part surface area (SP ) (Part surface area defi nes the total sur-

face area of the product. This parameter is represented by a 
positive real number in ANN.);

–  part volume (VP ) (Part volume defi nes the total volume of 
the product. This parameter is represented by a positive real 
number in ANN.);

–  nominal part thickness (TP ) (Nominal part thickness defi nes the 
base thickness of the product. This parameter is represented 
by a positive real number in ANN.);

–  part material (MP ) (In general, thermoplastic materials are 
divided in two major groups according to their molecular 
structure: amorphous and semi-crystalline. Both groups fur-
ther divide thermoplastic materials according to their perfor-
mance into high performance, engineering, and commodity 
(Figure 8). This parameter infl uences the mould design rules. 
In ANN this parameter is represented by a vector with six 
entries.);

–  surface area of part projection (SPA ) (The surface area of part 
projection is observed in the direction of mould opening 
dimension (z axis). This dimension infl uences the size of 
the machine, which is necessary for processing the observed 
product. This parameter is represented by a positive real 
number in ANN (Figure 7).);

–  envelope volume (VE ) (Envelope volume represents the vol-
ume of bounding box around the product. This parameter is 
represented by a positive real number in ANN.);

–  part complexity/cavity detail (CXP ) (Part complexity is divided 
into three categories: simple/low detail, moderately complex, 
or complex. In ANN this parameter is represented by a vector 
with three entries.);

–  overall dimensional tolerance requirements of the part (DTP ) 
(Dimensional requirements of the product are commonly 
defi ned on the drawings. These requirements defi ne manu-
facturing precision of mould parts and consequently infl uence 
the duration of mould manufacturing. Overall dimensional 
tolerance requirements are categorized in six categories: class 
1 (<0.01), Class 2 (<0.05), Class 3 (<0.1), Class 4 (<0.5), 
Class 5 (<1), and Class 6 (<1). In ANN this parameter is 
represented by a vector with six entries.);

–  number of cavities (NC ) (In this case we are investigating 1+1 
cavity moulds, which mean that this parameter holds Value 
2 across the database. This parameter is represented by a 
positive real integer number in ANN.);

–  mould length (LM ) (This parameter is defi ned by mould design 
rules. It is represented by a positive real integer number in 
ANN. The same applies for WM and HM.);

FIGURE 4 – Estimation model creation

FIGURE 5 – ANN architecture

FIGURE 6 – Dominant factors defi ning ANN inputs

Process variables
These variables should properly describe the factors that sig-
nifi cantly infl uence the manufacturing hours. The most infl u-
ential sets of factors in this case are (see Figure 6):
–  micro and macro part geometry and quality requirements, 

prescribed b a 3D CAD model, part drawing, and special 
technical requirements;

–  technical requirements for the injection mould, which defi ne 
environment in which the mould will operate in serial pro-
duction (moulding facility);

– mould design principles/rules;
–  production environment in which mould manufacturing takes 

place (mould shop equipment, organization, technology uti-
lization, corporate culture, etc.).

Process variables used in this ANN model describe the fi rst 
three sets of signifi cant factors, while the production envi-
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FIGURE 7 – Bounding box, part envelope width, length and height, and 
surface area of part projection

–  mould width (WM );
–  mould height (HM );
–  parting line/surface complexity (CXPL) (Parting surface com-

plexity is divided into three categories: simple/fl at, moder-
ately complex (smoothly shaped, small steps), or free-form 
(complex, non-tangential surfaces, big steps). In ANN this 
parameter is represented by a vector with three entries.);

–  number of sliders per cavity, injection side (NS,IS ) (Parts of 
product geometry that cannot be ejected in the direction of 
the main mould opening are called undercut areas. In order 
to assure the ejection of the product, these areas must be re-
leased prior to or during the ejection with special mechanical 
elements like sliders, lifter cores, unscrewing mechanisms, 
etc. External undercuts are usually released by sliders and 
internal undercuts by lifter cores (Figure 9). This parameter 
is represented by a positive real integer number in ANN. The 
same applies for NS,ES, NLC,IS, and NLC,ES.);

– number of sliders per cavity, ejection side (NS,ES );
– number of lifter cores per cavity, injection side (NLC,IS );
– number of lifter cores per cavity, ejection side (NLC,ES );
–  ejection (EJ) (Ejection principles can be structured in several 

different ways. For the purposes of this article a simplifi ed 
categorization into basic two categories was formulated: sim-
ple/single stroke and multiple strokes. They are suffi cient to 
cover all the results in the database of this research. In ANN 
this parameter is represented by a vector with two entries.);

–  injection system (IS) (For the purposes of this article injec-
tion systems are categorized into three basic categories: cold 
runner systems, hot runner systems, and combined systems. 
In ANN this parameter is represented by a vector with three 
entries.);

–  cavity material, injection side (MC,IS ) (Cavity materials are 
commonly divided into two categories: non-hardened or pre-
hardened (1.1730, 1.2311, 1.2312, etc.) and hardened steel 
(1.2343, 1.2344, 1.2083, 1.2767, etc.). Applying the material 
from a different category infl uences the production technol-
ogy and consequently the consumption of manufacturing 
hours. In ANN this parameter is represented by a vector with 
two entries. Same applies for MC,ES.);

– cavity material, ejection side (MC,ES );
–  surface fi nish, injection side (SFIS ) (Product surface fi nish 

signifi cantly impacts the number of manufacturing hours. 
It is crucial to assure proper fi nal machining operations in 
order to achieve the required surface fi nish. Eight basic cat-
egories mould surface fi nishes are used: rough machined, fi ne 
milled/machined, fi ne EDM, polished with sandpaper (up to 
800-grit), polished with sandpaper (up to 1,200-grit), high 
polished, high polished/class A surfaces, photo etched/textur-
ized. In ANN this parameter is represented by a vector with 
eight entries. The same applies for SFES.);

– surface fi nish, ejection side (SFES );
–  tool lifetime (TLSPE ) (The standard mould classifi cation defi ned 

by The Society of Plastic Engineers uses the following classes 
of moulds: Class 101 (one million or more cycles), Class 102 
(not exceeding one million), Class 103 (under 500,000 cycles), 
Class 104 (under 100,000 cycles), and Class 105 (not exceeding 
500 cycles). All samples in this research are categorized as high 
production moulds and belong to Class 101.)

FIGURE 9 – Sliders and lifter cores

FIGURE 8 – Polymer performance pyramide26

Validation of the model
Obtaining a large number of cases in an individual production 
represents a certain obstacle, because companies hold this 
information as internal know-how. 
For the purposes of this research 105 cases were investigated. 
These samples were obtained from a mid-sized mould shop. 
They are typical automotive industry projects when the in-
jection mould holds the mirrored part geometry. These are 
usually referred to as 1+1 cavity moulds (see Figure 10). By 
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narrowing the research to a certain type of moulds, improved 
results are expected and a narrower and denser decision space 
is achieved.  

 

1

 

(5)

Before collected data was submitted to the ANN model, fur-
ther input optimization was performed with data encoding as 
follows.
The majority of samples from the database only belong to one 
of two groups of thermoplastic materials (Mp): semi-crystalline 
engineering polymers or amorphous engineering polymers. 
Only six samples belong to one of the other four groups. Due to 
this observation, the initial vector with six entries was reduced 
to two entries, one representing amorphous thermoplastic poly-
mers, and the other representing semi-crystalline thermoplastic 
polymers. For further input simplifi cation encoding [-1, 1] is 
used to describe parameter value as a single entry.
The collection of data for surface area of part projection (SPA) 
was found as time consuming (more than 15 minutes per sam-
ple), and therefore it did not meet an easy-to-obtain criterion. 
As result, it was removed from the model. 
For part complexity/cavity detail (CXP) encoding [-1, 0, +1] 
is used to transform a vector with three entries into a single 
entry. The same encoding is also used for parameters parting 
line/surface complexity (CXPL), injection system (IS).
According to overall dimensional tolerance requirements of the 
part (DTP) all samples are classifi ed either in Class 3 or Class 
4. Due to this observation, the initial vector with six entries was 
reduced to two entries. Encoding [0, 1] is used to describe the 
parameter value as a single entry. The same encoding is also 
used for parameters that are represented with all other vectors 
that have only two entries: ejection (EJ), cavity material, injec-
tion side (MC,IS), cavity material, ejection side (MC,ES).
Since all THE observed samples are 1+1 moulds, the parameter 
number of cavities (NC) is constant across the database. This means 
that it does not contribute to the network response and that it can 
be left out from the model. The same applies for the parameter tool 
lifetime (TLSPE) where all the samples belong to Class 101.
For parameters Number of sliders per cavity, injection side (NS,IS) 
and number of lifter cores per cavity, injection side (NLC,IS) the 
value is zero across the database. This means that they do not 
contribute to the network response and that they can be left 
out from the model.
When observing the parameters surface fi nish, injection side 
(SFIS) and surface fi nish, ejection side (SFES) the majority of the 
sample belongs to one of four groups. The initial vector with 
six entries was reduced to three entries. Encoding [0, ½, 1] is 
used to describe parameter value as a single entry.
Complete set of 22 inputs with encoding is presented in Table 2.
Through an iteration process the number of neurons and layers 
was optimized having in mind the fundamental ANN rules of 
minimizing the output error and keeping network small. The 
ANN architecture used consists of 22 inputs in the input layer, 
four neurons with sigmoid activation function in the hidden 
layer and one neuron with linear activation function in the 
output layer.
As previously presented, multifold cross-validation was used 
to validate network response (see Figure 11). Input data were 
randomized and divided in fi ve subsets, each containing 21 

FIGURE 11 – Multifold cross-validation on 5 subsets

FIGURE 10 – Example of typical injection mould for automotive industry 
holding geometry for mirrored parts

In order to overcome the obstacle of restricted number of 
samples a multifold cross-validation procedure is performed. 
Input data is divided in fi ve subsets, each containing 21 samples 
(Figure 11). The network is trained fi ve times. Each time one 
of the subsets is left out. Four (4) subsets are used for training 
while the fi fth subset is used for measuring the accuracy of the 
network response.

Evaluation of the network response for each validation set is 
carried out through the observation of validation error, mea-
sured as error (E), relative percentage error (RPE), root mean 
square error (RMSE), and mean absolute percentage error 
(MAPE).

  (2)

 
· 100

 
(3)

 

1

 

(4)
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TABLE 2 – Inputs, output, and encoding 

Inputs Encoding Inputs Encoding
Part envelope length 

[mm] LP True Value Mould height 
[mm] HM True Value

Part envelope width 
[mm] WP True Value

Parting 
line/surface 
complexity 

CXPL

-1=Simple / Flat
0=Moderately complex (Smoothly shaped, 

Small steps)
+1=Free-form (Complex, non-tangential 

surfaces, big steps)

Part envelope height 
[mm] HP True Value

Number of 
sliders per 

cavity, Ejection 
side

NS,ES True Value

Part surface area 
[mm2] SP True Value

Number of 
lifter cores per 
cavity, Ejection 

side

NLC,ES True Value

Part volume [mm3] VP True Value Ejection EJ
0=Simple/ Single stroke

1=Multiple strokes

Nominal part 
thickness [mm] TP True Value Injection 

system IS
-1=Cold runner system
0=Combined system

+1=Hot runner system

Part material MP

-1= Semi-crystalline
+1=Amorphous 

Cavity material,
 Injection side

MC,IS

0=Non Hardened or Pre-Hardened 
1=Hardened steel 

Envelope volume 
[mm3] VE True Value

Cavity material, 
Ejection side

MC,ES

0=Non Hardened or Pre- Hardened
1=Hardened steel 

Part complexity 
/Cavity detail CXP

-1=Simple/ Low 
detail

0=Moderately 
complex 

+1=Complex/ High 
detail

Surface fi nish,
 Injection side

SFIS

0=Polished with sandpaper, Fine EDM, Fine 
milled/ Machined ...
1/2=High polished

1=High polished-Class A surfaces

Overall dimensional 
tolerance 

requirements of the 
part

DTP

0=Class 4 (<0.5), 
Class 5 (<1), Class 

6 (>1)
1=Class 3 (<0.1), 
Class 2 (<0.05), 
Class 1 (<0.01)

Surface fi nish,
 Ejection side

SFES

0=Polished with sandpaper, Fine EDM, Fine 
milled/ Machined ...
1/2=High polished

1=High polished-Class A surfaces

Mould length [mm] LM True Value Outputs

Mould width [mm] WM True Value Manufacturing 
hours VMH True Value

samples. The network was trained in fi ve steps. At each step as-
signed subsets are left out. Four (4) subsets are used for training 
while the assigned subset is used for measuring the accuracy 
of the network response. At each step ANN was re-trained and 
validated fi ve times. The average results were calculated per 
each sample.
For each subset error (E), relative percentage error (RPE), 
root mean square error (RMSE) and mean absolute percent-
age error (MAPE) are shown in Table 3. The overall network 
response returns MAPE 0.133, which is an acceptable result if 
used in an appropriate confi dence interval. Average RPE for 
each sample is shown in Figure 12. It shows that the majority 
of results (96.2%) for the predicted manufacturing hours have 
RPE -25% or less.

 | | (6)

  
(7)

The comparison between network responds and target outputs 
shows an acceptable correlation coeffi cient 0.9254, as shown 
in Figure 13. 
Negative and positive RPE represent underestimation and 
overestimation of estimation. Overestimation represents either 
profi t or in the worst case a non-competitive offer, underesti-
mation represents an unfavourable outcome, which represents 
itself in non-profi tability of the project. RPE shown in Figure 
12 was reshaped in histogram form as shown in Figure 14. By 
using the distribution diagram of RPE an expert gets good in-
sight how results are distributed when using the proposed ANN 
model. The goal of an expert is, to operate in overestimation 
interval. This can be achieved by using safety multiplier. By 
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TABLE 3 – Network response indicators

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Network

Output range min 384 289 229 453 303 229
max 1407 1209 1283 1604 2006 2006

RMSE 
Root mean square error

100.2 103.9 146.7 113.1 160.1 127.1

MAPE 
Mean absolute percentage error

0.085 0.124 0.192 0.123 0.140 0.133

E
Error

max 252.1 209.0 296.3 186.8 334.0 334.0
min -208.1 -170.1 -204.8 -250.0 -204.9 -250.0

AE
Absolute error

max 252.1 209.0 296.3 250.0 334.0 334.0
min 1.8 3.7 11.7 5.4 1.4 1.4

RPE
Relative percentage error

max 21.9% 20.9% 34.1% 26.2% 29.2% 34.1%
min -22.9% -23.5% -38.1% -24.6% -24.4% -38.1%

ARPE
Absolute relative percentage error

max 22.9% 23.5% 38.1% 26.2% 29.2% 38.1%
min 0.3% 0.3% 1.0% 0.8% 0.3% 0.3%

FIGURE 13 – Network outputs vs. target outputs

FIGURE 14 - Distribution of RPE

multiplying ANN response with multiplier 1.15, eighty percent 
of all results are pushed into the overestimation interval. In case 
that more conservative approach is necessary, multiplier 1.25 
can be used. In that case over 95% of all results are pushed into 
the overestimation interval.

FIGURE 12 – Average RPE for each sample

Discussion of using ANN model
The major benefi t of using ANN model lies in the ability of 
defi ning relationships between parameters, when they are not 
known in either parametric or analytical form. Using ANN 

model for estimating manufacturing hours gives an expert 
a support for improving estimation accuracy, it shortens the 
time necessary for shaping decision in estimation process and 
assures repeatability of estimation results. The major concern 
when using this model represent cases when signifi cant under-
estimation occurs.

Conclusion
This article focuses on estimation of manufacturing hours, 
which is one of most important information in project estima-
tion process. Developed estimation process (see Figure 3) sup-
ported by ANN model offers a bridge between expert-driven intuitive 
methods and data-driven ANN models. As difference to other authors 
this article focuses on manufacturing hours rather than cost-related 
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economic values which contaminate the estimating process 
with non-technical infl uences.
The implementation of an approach shown in Figure 14 gives an 
expert instruction on how to process network response in order 
to achieve acceptable estimation confi dence. This approach is 
conservative. The major role in this estimation process has a 
very specifi c production environment (individual production 
process) with consequentially limited number of cases on one 
hand, and on the other hand the assumption cannot be neglected 
that by implementing a limited number of parameters, the 
information is incomplete from a wider perspective. In deci-
sion making processes experts frequently rely on information 
that is incomplete. To overcome this obstacle, future research 
activities will consider implementation and development of a 
specially tailored expert elicitation model.
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