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In this paper it is shown that the microplane 
formulation based on the volumetric-deviatoric 
split (VD split) possesses the property of losing 
macro information during the transition from 
macro to micro level, i.e. during the projection of 
macroscopic strain components on microplanes 
with various orientations. However, it is also 
argued that the kinematic constraint principle 
including microplane lateral strains preserves all 
the information related to the macroscopic strain 
tensor.
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1 Introduction

The microplane theory is based on the hypothesis 
that the influence of the macroscopic state of strain 
can be quantitatively represented at the microplane 
level. Generally, the macro-micro transition 
depends on the assumed kinematic constraint 
principle and is defined via a set of appropriated 
projections of the macroscopic strain tensor 
components (e.g. engineering strain tensor ). To 
bear evidence of some implications provoked by the 
adopted kinematic constraint principle, it is 
opportune to introduce the microplane kinematic 
operator P. The operator depends on the microplane
orientation, defined by an orthonormal basis n, m
and k, and relates macro ( ) to micro quantity (e)
through: 

.,, )kmn(e (1)

It is worth noting that it is convenient for P (1) to 
perform the one-to-one mapping. The statement is 
to be hereafter appropriately supported and it 
basically means that the mapping procedure in Eq. 
(1) is reversible, enabling the inverse operation:

.,,1 e)kmn(P (2)

Namely, the violation of the requirement in Eq. (2) 
implies that the state of strain at the microplane 
level is not fully related to the macroscopic level 
since the system is actually not uniquely defined 
and undoubtedly possesses an infinite number of 
solutions. Consequently, the microscopic strain 
components will not depend on all macroscopic 
strain tensor components. In other words, if for 
given microplane deformations and kinematic 
constrain rules, the macroscopic strain tensor cannot 
be reconstructed, it can be said that the adopted 
kinematic constraint principle possesses the 
property of losing information and during the 
macro-micro transition performs some filtering of 
macro data. This paper sets out to test the kinematic 
constraint principle based on the decomposition of 
the normal microplane strain vector eN into its 
volumetric eV and deviatoric part eD (split 
procedure), which is commonly adopted in the 
microplane models M2 up to M5 [1, 2, 3], and M2-
O [4]. It is, therefore, tested on the preserved 
macroscopic information during its transition to the 
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microplane level. Correspondingly, in order to 
evidence the usage of a more opportune and robust 
kinematic constraint principle, the same procedure
is adopted to check the requirement in Eq. (2) by 
testing the “enriched” kinematic constraint principle 
introduced in Hasegawa-Bažant (HB) microplane 
model [5,6]. The conclusions drawn from both 
analyses are thus invariant on the microplane 
orientation.

2 Kinematic constraint based on VD split 

The microplane model basically involves a
subdivision (discretization) of a unit microsphere 
located around the given finite element Gauss point. 
The discretization process leads to a finite number 
of integration points [7], the locations of which 
define the microplanes as tangential planes on the 
microsphere surface (Fig. 1).

Figure 1. Discretization of a unit sphere

Congruently, each generated microplane is defined 
by its own local coordinate system with 
orthonormal basis vectors n, m and k (Fig. 2).

Figure 2. Microplane basis vectors

Once the macroscopic strain tensor has been
known (typically at the finite element Gauss point), 

the adopted kinematic constraint principle dictates 
the computational procedure needed to obtain the 
microplane strain vectors. For this purpose, since 
the related procedures are equal for all microplanes, 
it is opportune to focus the further considerations on 
a single microplane. Accordingly, Fig. 3 shows a 
typical result obtained by the currently considered 
kinematic constraint principle (VD decomposition).

Figure 3. Microplane strain components

As seen, the resulting microplane strain vector e has 
been decomposed into its normal eN and tangential 
part eT. Furthermore, due to constitutive 
requirements to model quasi-brittle material such as 
concrete [4], the normal part has been decomposed 
into its volumetric eV and deviatoric part eD, and the 
tangential component into two perpendicular strain 
vectors eM and eK associated with the coordinate 
axes m and k, respectively. To consider the 
preservation aspect of macroscopic strain 
information (i.e. strain tensor components) and to 
simplify the microplane system, the microplane 
with local basis vectors is assumed to be parallel 
with global axes of the Cartesian coordinated 
system. (Fig. 4).
The microplane strain components (illustrated in 
Fig. 3 for an arbitrary oriented microplane) are 
obtained through the adopted kinematic constraint 
principle by applying basic vector algebra. 
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Figure 4. Results of macro-micro transition with 
the kinematic constraint principle based 
on VD decomposition

The considered case (Fig. 4) involves three skew-
symmetric second order tensors Np, Mp and Kp.
These projection tensors relate the macroscopic 
strain components ij to a particular microplane 
strain components, as shown in Eq. (3).
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It is worth pointing out that the components of 
tensors Np, Mp and Kp are only dependant on the 
components of microplane basis vectors. 
Particularly, for the considered microplane 
orientation (Fig. 4), the orthonormal basis vectors 
are:

.mnk
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(4)

To characterize property of the currently considered 
kinematic constraint principle, it is opportune to 
expand Eq. (3) by components (5).
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Rearranging the macroscopic strain components 
into vector form as (Voigt notation):

,
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(6)

and the microplane strain components as:
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the microplane kinematic operator P (1) can be 
defined as:
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Resuming, P relates macroscopic strain components 
to microplane strains via:

.eP (9)

For the assumed microplane (4), P has the following
structure (10):

010000
000100
100000

P (10)

Now, after performing the matrix multiplication in 
Eq. (9), it follows that the involved components of 
are only those with at least one index equal to 3 (i.e. 
z direction). The other marked components in Eq. 
(11) are not involved in the kinematic procedure.
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However, the currently adopted kinematic
constraint principle will also involve the 
macroscopic strain components 11 and 22. Namely, 
these components are necessary for the computation 
of the microplane volumetric strain eV, defined as
[1,2,4]:

.e kk
V 3

(12)

Nevertheless, it is evident that these macro-micro 
and vice-versa transitions are not influenced by the 
microplane orientation. This is the reason why Eq. 
(12), i.e. a possible additional equation in the 
system of Eq. (9), is not present in the microplane 
kinematic operator P (8). Since for the considered 
kinematic constraint principle all the macro-micro 

relations have been exhausted, we can conclude that 
the macroscopic strain component 12 (and 
obviously 21) will not affect the microplane state of 
strain.

To single out a possible side effect (in the 
proceeding of the microplane constitutive 
description), two microplanes must be considered. 
Clearly, the microplanes are on different 
microspheres and have the same spatial 
orientations. To simplify the consideration, for both 
microplanes, the local basis vectors are assumed to 
be coaxial with the global basis vectors. To point 
out the implications of Eq. (11), two macroscopic 
strain tensors (one for each microsphere) are
presented with equal strain components except for
the shear component 12. Under these circumstances
and considering these microplanes the given 
kinematic procedure reflects different macroscopic 
states of strain in equal microplane strain 
components. In other words, both microplanes will 
be further traded as if they were immersed in the 
same macroscopic strain environment, which they 
are apparently not. This is caused because the shear 
component 12 is not included in the macro-micro 
transition (11). On the other hand, it is easy to 
deduce that even if the microplane has some
arbitrary direction, i.e. if the coordinate system of 
the microplanes rotates, the property of losing 
macro information will still be present and the 
macroscopic state of strain will not be fully 
(uniquely) reflected on the microplane level. The 
statement can be supported by the fact that three 
microplane strain components (7) are directly 
related to 6 macroscopic strain components (6). 
Taking into account the micro-macro transition, the 
system of Eq. (11) has infinitely many solutions. As 
a consequence, the macroscopic state of strain 
cannot be reconstructed from the microplane state 
of strain, which arises from the fact that the 
kinematic constraint has not preserved all macro 
information.

3 Kinematic constraint based on HB split  

Apart from the three microplane strain components 
(on-plane components) in Eq. (7), the HB model 
[5,6] introduces an additional kinematic constraint 
into macroscopic strain components. The resulting 
additional microplane strains (in-plane components)
are the so-called lateral strains (Fig. 4). Indeed, the 
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lateral strains should not be viewed as strains on 
predefined edges obtained by cutting the microplane 
(as shown in Fig. 4). On the contrary, in accordance 
with the on-plane strain components (7), the lateral 
strains are associated at the integration point, i.e. 
acting at that point on the unit microsphere.

Figure 5. Results of macro-micro transition with 
the kinematic constraint principle in the 
HB model

Apart from the on-plane strain components (7), the 
same as those presented in the previously 
considered kinematic constraint principle (Fig. 4), 
the additional lateral strains are analogously 
obtained through tensor projections on imaginary 
lateral planes (Fig. 5). Since these surrounding 
planes are well defined through permutation of the 
basis vectors m and k, the lateral strain components 
eM

l, eK
l and eS

l are related to macroscopic strain 
components ij with second order projection tensors 
Ml, Kl and Sl, respectively (13).
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The lateral strains are introduced to replicate the 
influence of confinement on the microplane normal 
response. In this case, the volumetric compression is 
individually traded for each microplane, which was 
not the case in the previously considered kinematic 
principle (12). Note also that, due to the equilibrium 

requirement, the microplane value of the lateral 
component eS

l is equal on each lateral planes. 
Indeed, the directions of these strains are not 
important since these are needed only to compute 
the principal lateral strains. Namely, to make the 
microplane response affected by surrounding 
volumetric strains, the principal lateral strain in the 
HB model is used as an indicator of confinement 
and is calculated as [5]:
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To check if the macro-micro kinematic relations 
presented in the HB microplane model meet the 
requirement imposed by Eq. (2), it is opportune to 
expand Eq. (1) in components. So, by appending 
Eq. (13) to Eq. (3), it follows that:
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The microplane kinematic operator P (now a 6x6 
matrix) can be written as:

,
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and operates on a supplemented microplane strain 
vector e given by:
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To simplify further considerations, the target 
microplane is assumed again to have a local basis 
parallel with the axes of the global coordinate 
system (4). In this case, the components of P
become:
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and accordingly with Eq. (1), the macro-micro 
transition can be written as:
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Contrary to the previously considered kinematic 
constraint principle (11), note that in the current 
case there are no macroscopic strain components 
that are to be avoided during the macro-micro 
transition. Indeed, all the macroscopic strain 
components are affected by at least one component 
of P. Also, the discussion about eventual rotation of 
the microplane local coordinate system is redundant 
because the considered microplane orientation (4) 
maximizes the number of zeros in P while still 
ensuring that all the components of are involved in 
the transition.

Finally, in order to meet the requirement imposed 
by Eq. (2), i.e. to ensure property preservation of 
macro information, the determinant of P must 
always be different from zero. Since the matrix 
rows are multiplications of permutated components 
of orthogonal basis vectors, they cannot happen to 
be equal or proportional. This condition is sufficient 
to ensure that the matrix determinant will always be 
different from zero. As a consequence, the inverse 
operation in Eq. (2) is valid, so that we can 
conclude that the kinematic constraint principle in 
the HB microplane model preserves all the 
macroscopic strain data during the skipping form 
macro to micro.

4 Conclusion 

In this paper it is shown that the kinematic 
constraint principle based on the VD split causes 
the loss of information of macroscopic strain 
components while skipping from macro to micro 
level. At this moment, it is hard to define a true 
proportion in which the property of losing 
information affects the macro-mechanical response. 
However, the possible consequence of losing macro 

(16)

(19)



Engineering Review Vol. 32, Issue 3, 157-163, 2012. 163
______________________________________________________________________________________________________________________

information during the transition to micro scales 
should be known. It can be concluded that once the 
macroscopic strain tensor has been uniquely 
reflected on the microplane level (without losing 
any information), another, more involving and 
complex question, arises as how to correctly 
manipulate the microplane strain components for 
the purpose of reaching the real macro-mechanical 
response of quasi-brittle materials such as concrete. 
Taken as a hole, this paper states that the kinematic 
constraint principle defined in the HB model should 
be used for this purpose.

Acknowledgement

I would like to thank the National Foundation for 
Science, Higher Education and Technological 
Development of the Republic of Croatia for the 
financial support during my research activities at 
the Technological Institute at Northwestern 
University (USA). Also, I would like to express my 
gratitude to Prof. Dr P. Bažant for giving 
me the opportunity to conduct this research at 
Northwestern University.

References

[1] Bažant, Z.P., Caner, F.C., Carol, I., Adley, 
M.D. and Akers, S.A.: Microplane model M4 
for concrete: Part I: Formulation with work-

conjugate deviatoric stress, Journal of 
Engineering Mechanics ASCE, 126 (2000), 9,
944–953.

[2] Caner, F.C. and Bažant, Z.P.: Microplane 
model M4 for concrete: Part II: Algorithm and 
Calibration, Journal of Engineering Mechanics
ASCE, 126 (2000), 9, 954–961.

[3] Ožbolt, J. and Bažant, Z.P.: Microplane model 
for cyclic triaxial behavior of concrete, Journal 
of Engineering Mechanics ASCE, 118 (1992), 
7, 1395-1386.

[4] Ožbolt, J., Li, Y. and Kožar, I.: Microplane 
model for concrete with relaxed kinematic 
constraint, International Journal of Solid and 
Structures, 38 (2001), 2683-2711.

[5] Hasegawa, T. and Bažant, Z.P.: Nonlocal 
microplane concrete model with rate effect and 
load cycles. Part I: General formulation,
Journal of Materials in Civil Engineering
ASCE, 5 (1993), 3, 372–410.

[6] Hasegawa, T. and Bažant, Z.P.: Nonlocal 
microplane concrete model with rate effect and 
load cycles. Part II: Application and 
verification, Journal of Materials in Civil 
Engineering ASCE, 5 (1993), 3, 411–417.

[7] Bažant, Z.P. and Oh, B.H.: Efficient numerical 
integration on the surface of a sphere,
Zeitschrift für angewandete Mathematik und 
Mechanik, 66 (1986), 1, 37-49.




