Identifying Student Discussion in ComputerMediated Problem Solving Chat

Lindsey K. Arndt
Valparaiso University, lindsey.arndt@valpo.edu
Stamatina E. Kalafatis
Valparaiso University, stamatina.kalafatis@valpo.edu
Emily Graham
Valparaiso University, emily.graham1@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/fires

Recommended Citation

Arndt, Lindsey K.; Kalafatis, Stamatina E.; and Graham, Emily, "Identifying Student Discussion in Computer-Mediated Problem Solving Chat" (2017). Fall Interdisciplinary Research Symposium. 82.
https://scholar.valpo.edu/fires/82

Identifying Student Discussion in Computer-Mediated Problem-Solving Chat

Lindsey Arndt, Emily Graham, Tina Kalafatis
Dept. of Mathematics and Statistics, Valparaiso University

Research Questions

1. Can we write machine classifiers that can recognize productive student discussion?
2. Can we achieve this using only a common English vocabulary?

Abstract

The COMPS project employs computer chat for students working in small groups solving classroom problems. This summer's project aims to build computer classifiers that could effectively "look over the shoulders" of the students while working, to approximately recognize whether the students are engaging in productive discussion.

Several thousand lines of COMPS transcripts were manually annotated. A topic modelling program determined 10 main topics which appeared in the transcripts and the words in those topics. A Linear Classifier and a Support Vector Machine Classifier used the topic model to predict the annotation of each line of dialogue.

To address the common English vocabulary research question, an intersection of many transcripts from various sources was combined with Google word lists and modified to accommodate text-chat conventions.

Productive Discussion

In order to determine whether or not the students are engaging in a productive discussion, we need to see evidence that the students are:

1. Talking about the problem
2. Using key agreement and disagreement terms

Order of Processes

Classifiers

We worked with two classifiers: our Linear Classifier and our Support Vector Machine (SVM) Classifier. We trained on 60% of our data and then tested on the remaining 40%. For the Linear Classifier, the computer is doing a linear regression to predict the annotation based on the topic values outputted by the topic modeling program and it fits the annotated lines with the following equation:
$A_{0} * T_{0}+A_{1} * T_{1}+A_{2} * T_{2}+\cdots+A_{9} * T_{9}+C=Y$
$A_{0} * I_{0}+A_{1} * I_{1}+A_{2} * I_{2}+\cdots+A_{9} * I_{9}+$
The A_{i} values are the coefficients of the linear regression and the T_{i} are the topic values that are outputted by our topic modeling program. Y is our annotation mark, so if $Y>\alpha$ where α is our cutoff value, then the annotation is 1 . If $Y \leq \alpha$, then the annotation is 0 .

To judge the success of our classifiers, we look at precision, recall, and the harmonic mean ($f 1$), which is the preciance between precision and recall. Ideally, $f 1>0.6$.

The SVM Classifier fits a hyperplane that separates the 0 's and 1's in a scatter plot.

Results

Linear Classifier Reasoning f1 Scores

Linear Classifier Reasoning f1 Scores		
Poison	Original Vocab	Common Vocab
Java	0.737	0.658
Combined	0.592	0.578

Linear Classifier Agree f1 Scores

	Original Vocab	Common Vocab
Poison	0.509	0.455
Java	0.278	0.321
Combined	0.377	0.397

Our reasoning scores were by far the best, mostly meeting our target of 0.6 and above. Agree scores were less promising around 0.4. The disagree scores were much lower, ranging from 0.03 to 0.1 . The SVM Classifier results were very similar to those of the Linear Classifier.
In general, our classifiers worked better on the Poison transcripts than on the Java transcripts.

Next Steps

- Create the dashboard program

Explore other conversational behaviors - Investigate other applications of the COMPS program

Acknowledgments

Thank you to Professors Melissa Desjarlais and Michael Glass and fellow students Nathaniel Bouman and Yesukhei Jagvaral at and fellow students Nathaniel Bouman and Yesukhel Jagv
Valparaiso University for their assistance with this project Partial support for this work was provided by the National Science Foundation's Improving Undergraduate STEM Education (IUSE) program under Award No. 1504918 and by the MSEED program under Award No. 1068346. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

