## The Great Lakes Entomologist

| Volume 5 |  |
| :--- | :--- |
| Number 2 -- The Singing Insects of Michigan -- | Article 1 |
| Summer 1972 Number 2--The Singing Insects |  |
| of Michigan -- Summer 1972 |  |

July 2017

# The Singing Insects of Michigan 

Richard D. Alexander<br>The University of Michigan<br>Ann E. Pace<br>The University of Michigan<br>Daniel Otte<br>University of Texas, Austin

Follow this and additional works at: https://scholar.valpo.edu/tgle
Part of the Entomology Commons

## Recommended Citation

Alexander, Richard D.; Pace, Ann E.; and Otte, Daniel 2017. "The Singing Insects of Michigan," The Great Lakes Entomologist, vol 5 (2)
Available at: https://scholar.valpo.edu/tgle/vol5/iss2/1

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

# THE SINGING INSECTS OF MICHIGAN 

Richard D. Alexander, ${ }^{1}$ Ann E. Pace ${ }^{1}$ and Daniel Otte ${ }^{2}$

## INTRODUCTION

The so-called "singing" insects are all those that make loud, rhythmical noises. They include members of three groups of Orthoptera (Gryllidae, Tettigoniidae, and Acridoidea) and one family of Homoptera (Cicadidae). There are about 300 noisy species in these four groups in eastern North America, perhaps a thousand in all of North America, and $25-30$ thousand in the entire world. Only about 1000 of the world species have been studied in any detail, mostly in North America, Europe, Japan, and Australia.

Michigan has 90 known species of singing insects, representing all four of the above groups and a variety of subfamilies and genera. Recently, the Michigan species in each of these groups have been listed, and maps of their distributions and dates indicating adult seasonality have been presented (Moore, 1966; Cantrall, 1968). Except for morphological notes by Moore on the ten Michigan species of cicadas, however, no keys or other adequate means of distinguishing the species have been available. In this paper we add three orthopterans to Cantrall's list, and we provide keys, illustrations, and other information that we hope will enable interested persons to identify any singing insects from Michigan, either from a specimen that has date and locality data, or from a song and a field observation. Brief seasonal, distributional, and other biological information is also provided. The bibliography at the end of the paper includes all recent papers and phonograph records dealing with Michigan singing insects. Because no keys to the sounds and associated behavior of locusts (Acrididae) are included in the present paper, discussions of these characteristics by Cantrall $(1943,1968)$ and Otte ( 1971 ) will be especially useful.

The common names used for these four groups have been almost unbelievably confused between Europe and North America. The word "cricket" is used for all Gryllidae, but it has also been used for another family, the Gryllacrididae (including Stenopelmatinae and Rhaphidophorinae), along with various qualifying adjectives such as "camel cricket," "cave cricket," "stone cricket," and "Jerusalem cricket." "Weta" is the common name used for Gryllacrididae in New Zealand, but there appears to be no universal common name among English-speaking people for members of this family. Both "grasshopper" and "locust" have been used for both Acrididae and Tettigoniidae. "Locust" and "harvest-locust" are commonly used for cicadas in North America, reputedly because early settlers likened their sudden emergences to Old World locust plagues. Another common name for cicadas, especially in the South, is "jarfly." Sometime during the 18 th or 19 th century in North America, the name "katydid" was derived for Pterophylla camellifolia because its call can easily be paraphrased "katy-did." The name has been expanded by American entomologists to include most or all subfamilies of Tettigoniidae, and various adjectives have been applied such as "true katydids" (Pseudophyllinae), "false katydids," (Phaneropterinae), and "shield-backed katydids" (Decticinae). Some North American Tettigoniidae have been commonly referred to as "long-horned grasshoppers," with the Conocephalinae becoming "meadow grasshoppers," the Copiphorinae becoming "coneheaded grasshoppers," etc. But this requires that the Acrididae be referred to specifically as "short-horned grasshoppers" (or locusts). In fact, Britishers refer to members of the Acridinae as "meadow grasshoppers" while we call members of the same genera "locusts," and a recent book on British Orthoptera refers to all Tettigoniidae as "bush crickets"!

It seems impossible to straighten out this colloquial nomenclature to everybody's satisfaction, but for simplicity in this paper we use the names "locust" and "grasshopper" only for Acrididae, "cicada" for Cicadidae, "cricket" for Gryllidae, and "katydid" for Tettigoniidae.

[^0]In all known cases, the males of these groups are the predominant or the sole noisemakers, and most of the sounds-even such embellishments as aggressive, territorial, or male aggregation sounds-function in connection with pair formation, courtship, mating. Disturbance squawks, prevalent in cicadas, unusual in katydids, and virtu 'J absent in crickets and locusts, may be secondary phenomena in all of the groups irs which they are found. They are produced when the insect is startled or manhindled and probably function in connection with escape from predators, though this has not been proved in any natural situation.

As a consequence of the role of acoustical signalling in mating, a.1d therefore indirectly in reproductive isolation among species, it is not surprising that, on a local basis, acoustical behavior has turned out to be essentially infallible in species recognition. In other words, no case has yet been discovered in which two species that are reproductively active in the same places at the same times have identical acoustical behavior. Sometimes the calling songs of two species are distinct and non-overlapping when analyzed by audiospectrograph or oscilloscope, but their differences are not distinguishable to the unaided human ear. In a few instances, closely related species that are temporally isolated (Gryllus veletis and G. pennsylvanicus here), ecologically isolated on different host plants (Oecanthus quadripunctatus and O. pini and O. laricis here), or geographically isolated (O. pini and O. laricis here or G. firmus on the Atlantic Coast and G. bermudensis on Bermuda) still have very similar or apparently identical acoustical behavior.

Crickets and katydids make their noises by rubbing the forewings together and hear with tympanal auditory organs located on the front legs (Figs. 10-14, 24-31, 37-40, 48). Band-winged locusts (Oedipodinae) make their noises by rubbing their hind legs against the forewings and by snapping their hind wings in flight (crepitation). Slant-faced locusts (Acridinae and Gomphocerinae) use only the first of these two methods, and both kinds of locusts have tympanal auditory organs on the sides of the abdomen near its base. Cicadas make their noises by popping in and out convex portions of the body wall (timbals) near the base of the abdomen (Figs. 5-7), and they hear with tympana located in the same general region. There are some exceptions to these rules-locusts that snap their mandibles or stamp their feet, cicadas that clack their wings together, and others-but they are relatively trivial for our purposes here.

In all of the cicadas and nearly all crickets, the males make all the noise and attract the females; the single exception in Michigan is that mole cricket females also stridulate, but the function of their sounds is unknown. In locusts and some katydids, male noises are answered by female noises, and the male then goes to the female, usually during an exchange of signals. In some cases the female approaches before answering the male. Locust and cicada males usually move around during their daily singing periods; cricket and katydid males are mostly more stationary, particularly the males of burrowing cricket species.

Pair formation is usually effected either by individual females going to individual, singing males (all crickets and some katydids and cicadas) or by females flying into "chorusing" aggregations of males (cicadas and probably some locusts). In some katydids and locusts females are attracted into the vicinity of the made by a long-range signal. Then the male approaches the female during an exchange of signals while male and female are a few feet or yards apart. Crickets have 1-6 known kinds of signals per species; katydids, 1-3; locusts, 1-5 (possibly more); cicadas, 1-4. Aside from calling (pair-forming) and courting (pre-copulatory) signals, there are post-copulatory (or inter-copulatory), aggressive, disturbance, and (evidently) some kind of "recognition" signals, the last only in parental species of crickets, such as Neocurtilla hexadactyla, which tend their offspring briefly.

The so-called "singing" insects are by no means the only insects in Miehigan with special sound-producing devices. Thousands of species of beetles and bugs stridulate (DuMortier, 1963; Alexander, 1967a). Indeed, many waterbugs in the families Corixidae and Notonectidae make fairly intense, rhythmical noises that would qualify by our definitions as "songs." But they are not often heard unless the insects are kept in aquaria. The behavioral significance of some of these sounds has recently been examined
(Wilcox, 1969; Jansson, 1971). Probably most of the social insects (termites, ants, wasps, bees) use sounds in some fashion. Most people know about the piping signals of queen honeybees; and honeybees also make noises when they "dance" in the hive after visiting food or hive sites (Wenner, 1968). Flies and wasps often have specialized buzzing wing noises. Many of the tiny Homoptera related to cicadas (leafhoppers and spittlebugs) make a variety of soft noises (Moore, 1961). Most of the noises of these many sonifiers seem to function either in courtship or alarm situations. We exclude them here because their sounds are too soft to be heard except at very close range, or because the sounds are produced in such specialized situations that they are rarely heard.

## A NOTE ON SIBLING SPECIES

The Orthoptera and Cicadas both include many pairs of species that are difficult to distinguish on morphological grounds alone, or by use of traditional key characters. Examples in the Michigan fauna are Scudderia furcata* and S. fasciata*, Neoconocephalus lyristes and N. nebrascensis, Orchelimum concinnum and O. delicatum, Gryllus pennsylvanicus* and G. veletis*, Allonemobius allardi and A. tinnulus, Oecanthus pini* and $O$. laricis*, Oecanthus nigricornis and O. quadripunctatus, Magicicada cassini and M. septendecim, Okanagana canadensis and O. rimosa, Tibicen canicularis and T. linnei.

It is easy to fall into the trap of believing that such populations are somehow different in their evolutionary status from species more unequivocally separable on conventional grounds. But morphological differences visible to biologists need not appear when speciation occurs. The pairs of sibling or cognate species listed above can be shown on other grounds to have attained status similar or equivalent to that of other pairs of species more easily distinguishable. In all of these cases but those asterisked(*) the songs are distinct; this together with geographic and ecological sympatry demonstrates that interbreeding is absent. Gryllus pennsylvanicus and G. veletis are inter-sterile (Alexander and Bigelow, 1960), their songs apparently having failed to diverge because their life history difference results in almost complete seasonal separation of adults. Scudderia furcata and $S$. fasciata, and Oecanthus pini and $O$. laricis, may have slight song differences, but these are probably not great enough for the insects to avoid mistakes by song responses alone. These species pairs represent unusual and interesting cases because they involve shifts in host-specificity which at least now render them ecologically isolated. The color differences by which they are most easily distinguished if the host is unknown have evidently evolved as a result of the value of cryptic coloration owing to bird predation. One might wonder if the slight color differences used in the key are simply local differentiations of populations that recently moved onto different hosts. Geographic patterns, however, indicate otherwise. S. fasciata and $O$. pini both occur on pines in southern and eastern Ohio, at Turkey Point and Point Pelee, Ontario, and in Berrien County, Michigan. They are absent from planted pines in other regions and from pines in northern and central Michigan, where their close relatives on other vegetation, $S$. furcata and $O$. quadripunctatus respectively, are abundant. Likewise, O. laricis, most likely sharing an exclusive common ancestor with $O$. quadripunctatus, $O$. nigricornis, or $O$. pini, is restricted to larch trees in northern Ohio and southeastern Michigan. These geographic patterns indicate ancient separations, and full species status. All of the various cases listed above together demonstrate that absence of known, non-overlapping morphological or behavioral differences is not a reliable indicator of species status, particularly in cases of geographic, ecological, or temporal separation.

## SPECIES LIST <br> Order ORTHOPTERA <br> Family Tettigoniidae

Subfamily PHANEROPTERINAE (False Katydids)

1. Amblycorypha oblongifolia (De Geer)
2. Amblycorypha rotundifolia (Scudder)
3. Microcentrum rhombifolium (Saussure)
4. Scudderia curvicauda (De Geer)

Oblong-Winged Katydid
Round-Winged Katydid
Angle-Winged Katydid
Curve-Tailed Bush Katydid
5. Scudderia fasciata Beutenmuller
6. Scudderia furcata Brunner
7. Scudderia pistillata Brunner
8. Scudderia septentrionalis (Serville)
9. Scudderia texensis Saussure and Pictet

Hemlock Bush Katydid
Fork-Tailed Bush Katydid
Broad-Winged Bush Katydid
Northern Bush Katydid
Texas Bush Katydid

Subfamily COPIPHORINAE (Cone-Headed Katydids)
10. Neoconocephalus robustus (Scuddes) ${ }^{3}$
11. Neoconocephalus ensiger (Harris)
12. Neoconocephalus lyristes (Rehn and Hebard)
13. Neoconocephalus nebrascensis (Bruner)

Crepitating Conehead
Sword-Bearing Conehead
Slender Conehead
Nebraska Conehead

Subfamily CONOCEPHALINAE (Meadow Katydids)
14. Orchelimum campestre Blatchley
15. Orchelimum concinnum Scudder
16. Orchelimum delicatum Bruner
17. Orchelimum gladiator Bruner
18. Orchelimum nigripes Scudder
19. Orchelimum volantum McNeill
20. Orchelimum vulgare Harris
21. Conocephalus attenuatus (Scudder)
22. Conocephalus brevipennis (Scudder)
23. Conocephalus fasciatus (De Geer)
24. Conocephalus nemoralis (Scudder)
25. Conocephalus nigropleurum (Bruner)
26. Conocephalus strictus (Scudder)
27. Conocephalus saltans (Scudder)

Dusky-Faced Meadow Katydid Stripe-Faced Meadow Katydid Delicate Meadow Katydid Gladiator Meadow Katydid
Black-Legged Meadow Katydid
Nimble Meadow Katydid Common Meadow Katydid Long-Tailed Meadow Katydid Short-Winged Meadow Katydid Slender Meadow Katydid Woodland Meadow Katydid Black-Sided Meadow Katydid Straight-Lanced Meadow Katydid Prairie Meadow Katydid

Subfamily DECTICINAE (Shield-Backed Katydids)
28. Atlanticus davisi Rehn and Hebard
29. Atlanticus testaceus (Scudder)

Davis' Shield-Bearer
Short-Legged Shield-Bearer
Subfamily PSEUDOPHYLLINAE
30. Pterophylla camellifolia (Fabricius) Northern True Katydid

> Family Gryllidae
> Subfamily GRYLLINAE (Field and House Crickets)
31. Acheta domesticus (Linnaeus)
32. Gryllus pennsylvanicus Burmeister
33. Gryllus veletis (Alexander and Bigelow)

House Cricket Fall Field Cricket Spring Field Cricket

Subfamily NEMOBIINAE (Ground Crickets)
34. Allonemobius allardi (Alexander and Thomas)
35. Allonemobius fasciatus (De Geer)
36. Allonemobius griseus (Walker)
37. Allonemobius maculatus (Blatchley)
38. Allonemobius tinnulus (Fulton)
39. Eunemobius carolinus (Scudder)

Allard's Ground Cricket Striped Ground Cricket Gray Ground Cricket Spotted Ground Cricket Tinkling Ground Cricket Carolina Ground Cricket

[^1]40. Eunemobius melodius (Thomas and Alexander) Melodious Ground Cricket 41. Neonemobius palustris (Blatchley) Marsh Ground Cricket
42. Neoxabea bipunctata (De Geer)
43. Oecanthus exclamationis Davis
44. Oecanthus fultoni T. J. Walker
45. Oecanthus pini Beutenmuller
46. Oecanthus laricis T. J. Walker
47. Oecanthus nigricornis F. Walder
48. Oecanthus niveus (De Geer)
49. Oecanthus quadripunctatus Beutenmuller

Two-Spotted Tree Cricket
Davis' Tree Cricket
Snowy Tree Cricket
Pine Tree Cricket
Tamarack Tree Cricket
Black-Horned Tree Cricket
Narrow-Winged Tree Cricket
Four-Spotted Tree Cricket

Subfamily TRIGONIDIINAE (Sword-Bearing Crickets)
50. Anaxipha exigua (Say)

Say's Bush Cricket

## Subfamily GRYLLOTALPINAE (Mole Crickets)

51. Neocurtilla hexadactyla (Perty)

Northern Mole Cricket
Subfamilies GOMPHOCERINAE AND ACRIDINAE (Slant-Faced Locusts) ${ }^{4}$
52. Pseudopomala brachyptera Scudder
53. Metaleptea brevicornis (Johannson)
54. Syrbula admirabilis (Uhler)
55. Orphulella speciosa (Scudder)
56. Orphulella pelidna (Burmeister)
57. Dicromorpha viridis (Scudder)
58. Chloealtis conspersa Harris
59. Chloealtis abdominalis (Thomas)
60. Chorthippus curtipennis (Harris)
61. Ageneotettix deorum (Scudder)
62. Stethophyma gracile (Scudder)
63. Stethophyma lineatum (Scudder)

Bunch Grass Locus
Short-horned Locust
Handsome Locust
Pasture Locust
Spotted-Winged Locust
Short-Winged Locust
Sprinkled Locust
Rocky Mountain Sprinkled Locust
Meadow Locust
Sand Locust
Northern Sedge Locust
Striped Sedge Locust

Subfamily OEDIPODINAE (Band-Winged Locusts)
64. Arphia pseuaonietana (Thomas)
65. Arphia sulphurea (Fabricius)
66. Arphia xanthoptera (Burmeister)
67. Chortophaga viridifasciata (De Geer)
68. Encoptolophus sordidus (Burmeister)
69. Camnula pellucida (Scudder)
70. Pardalophora apiculata (Harris)
71. Pardalophora haldemani (Scudder)
72. Dissosteira carolina (Linnaeus)
73. Spharagemon bolli Scudder
74. Spharagemon collare (Scudder)
75. Scirtetica marmorata (Harris)
76. Trachyrhachys fuscifrons (Stål)
77. Psinidia fenestralis (Serville)

Red-Winged Locust
Spring Yellow-Winged Locust
Autumn Yellow-Winged Locust
Green-Striped Locust
Dusky Locust
Clear-Winged Locust
Coral-Winged Locust
Haldeman's Locust
Carolina Locust
Boll's Locust
Mottled Sand Locust
Northern Marbled Locust
Ash-Brown Locust
Long-Horned Locust

[^2]78. Trimerotropis huroniana E. M. Walker<br>79. Trimerotropis interior E. M. Walker<br>80. Trimerotropis verruculata (Kirby)<br>Lake Huron Locust<br>Seaside Locust<br>Cracker Locust

ORDER HOMOPTERA<br>Family Cicadidae (Cicadas)

81. Diceroprocta vitripennis (Say)
82. Magicicada cassini (Fisher)
83. Magicicada septendecim (Linnaeus)
84. Okanagana canadensis (Provancher)
85. Okanagana rimosa (Say)
86. Tibicen auletes (Germar)
87. Tibicen canicularis (Harris)
88. Tibicen chloromera (Walker)
89. Tibicen linnei (Smith and Grossbeck)
90. Tibicen lyricen (De Geer)

Green-Winged Cicada<br>Cassin's 17-year Cicada<br>Linnaeus' 17 -year Cicada<br>Canadian Cicada<br>Say's Cicada<br>Northern Dusk-Singing Cicada<br>Dog-Day Cicada<br>Swamp Cicada<br>Linne's Cicada<br>Lyric Cicada

## LEARNING THE SINGING INSECTS

Unless an expert is available to take one into the field and teach him how to recognize the species one by one, probably the best way to learn the singing insects quickly is to begin in May and take careful note of each new insect singer as the season progresses. By late July, when the main horde of noise-makers begins to fill the air with a really confusing chorus, several species will already have been identified, and the family or subfamily of most new singers will be recognizable just by sound or appearance. This is half the battle. One should learn when and where to listen and look, and try to identify each singer by catching it or watching it at close range. He should consider such questions as whether the sound is produced only by day (cicadas, grasshoppers), only by night (some crickets and katydids), or both day and night (some crickets and katydids). Is it coming from vegetation or from the ground? From bushes, trees, or herbs? Is it a clear, whistle-like sound (crickets) or a "noise" (buzz, click, rasp, whir, rattle, etc.) (all groups except crickets)? How far away is it audible? Is it abundant in lawns, or does it come only from woodlands, marshes, or some other special place? Once a species has been identified, the listener should expect it in the same kinds of places and be aware of the likelihood that species heard in quite different habitats may be something else.

## THE EARLY SINGERS

JUVENILE-OVERWINTERERS: Late in April or early in May, the Green-Striped Locust (Chortophaga viridifasciata), first singing insect to mature in Michigan (after spending the winter as a partly-grown juvenile), begins its short, low, buzzing, daytime flights in pastures, lawns, and old fields. About two weeks later, the Spring Field Cricket (Gryllus veletis) adds a clear chirp from burrow entrances day and night in the same locations. Then the Spring Yellow-Winged Locust (Arphia sulphurea) starts its crackling, daytime flights in dry, upland pastures and fields. The Coral-Winged Locust (Pardalophora apiculata) and Haldeman's Locust ( $P$. haldemani) are also spring species, which lack the noisy "crepitating" flights of the other spring locusts, but share with them the ability to signal by stridulating by rubbing the hind legs against the forewings or "body while sitting in the grass.

There are five other early species, all cicadas which require many years to reach maturity. These five species, which begin song in late May or early June, are the 17-year Magicicada species, which last filled the daytime air with their choruses in 1970 in southern counties, the two Okanagana species, rimosa and canadensis, and the single Diceroprocta species, known only from Michigan's southwestern county (and the only known early cicada there). There is a third 17-year cicada, but it apparently does not get into Michigan (Alexander and Moore, 1962); the two species involved here can be
separated easily: cassini, which is rare in Michigan if it occurs there at all, is small and black underneath, and produces ticks followed by shrill buzzes, mostly in the afternoon; septendecim has much brownish color underneath and sings a low-pitched buzz that some people have paraphrased "phaar-oo-ah," beginning at dawn and dwindling in intensity by afternoon. The Okanagana species are generally more northern, but behave similarly, singing in noisy choruses. The Canadian Cicada ( $O$. canadensis) buzzes more or less continually and evenly, while the Rimose Cicada ( $O$. rimosa) dehivers lisps slowly enough to be distinguished but too rapidly to be counted. These two species can otherwise be distinguished from Magicicada because their dorsum is usually marked with orange between the wings, while those of the Magicicada species are wholly black.

Aside from the five remaining cicadas (Tibicen species), the above ten species are the only native Michigan singing insects that do not overwinter solely in the egg stage. One European import, the House Cricket (Acheta domesticus), can sometimes be heard giving its weak chirp in and around buildings during winter as well as summer. This cricket, originally from tropical Asia, is reared and shipped extensively within the United States as fish bait and for laboratory use.

EARLY MATURING EGG-OVERWINTERERS: The Short-Legged Shield-Bearer (Atlanticus testaceus) hatches very early in woods and brushy areas, and usually matures and begins its soft, irregular, whispery, night-time buzzes in mid-June. Shortly afterward, the Gladiator Meadow Katydid (Orchelimum gladiator) starts its typical, meadow katydid "tick-and-buzz" kind of song along roadsides in low, marshy areas. These two are soon joined by the Carolina Ground Cricket (Eunemobius carolinus) with a vibrating, buzzy trill from the ground day and night in damp grass and tangled woodland areas. Eight more locust species begin to crepitate and stridulate between 20 June and 1 July. In early July, Linne's Cicada (Tibicen linnei) and the Dog-Day Cicada (T. canicularis) add to the growing din their very loud daytime buzzes-vibratory and smooth, respectively.

LATE SEASON REPLACEMENTS: The 24 species discussed above are the only "early season" singers. All but the first nine keep right on singing into the main season, which lasts from late July until frost. But three of them have "sing-alike" replacements in their habitats, which come along as they disappear in late July. The Fall Field Cricket (Gryllus pennsylvanicus) replaces the Spring Field Cricket; the Red-Winged Locust (Arphia pseudonietana) replaces the Spring Yellow-Winged Locust; and the Common Meadow Katydid (Orchelimum vulgare) replaces the Gladiator Meadow Katydid. The Common Meadow Katydid is heard in fields, pastures, and rarely in lawns, as well as in the marshy habitats to which the Gladiator Meadow Katydid is more or less restricted. It is not easy to distinguish these three pairs of seasonally isolated species except by the times of their appearance; but if one learns the three early species, he will recognize their later counterparts.

So nearly one-third of the 90 Michigan singing insects can be learned before late July when the main season for insect noise is just beginning. The following keys have been designed to identify all species, early or late. One simply chooses the proper alternative in each couplet and follows the numbers until he comes to a name. If the species finally reached doesn't seem to fit, decisions should be retraced until a doubtful one is discovered, and other alternatives tried until everything fits. Only a careful ear, a ruler, and rarely a hand lens, will be necessary. If either song or structure is not mentioned in separating two species, this means that they can be distinguished in that particular regard only by analyzing tape recordings or by using a microscope. The illustrations include a full view of one member of each major group and key characters that will distinguish the species of each group.

## LIST OF KEYS

I. Keys for identifying Michigan's singing insects using a combination of songs, morphology, and distribution
A. Families and Subfamilies (page 40)
B. Cicadas (page 41)
C. Crickets (page 42)
D. True and False Katydids (page 43)
E. Coneheaded Katydids (page 44)
F. Shield-backed Katydids (page 44)
G. Meadow Katydids (page 44)
II. Keys for identifying Michigan's singing insects by specimen alonc
H. Families (page 46)
I. Cicadas (page 46)
J. Crickets (page 47)
K. Katydids (page 49)
L. Locusts (page 52)

## KEYS FOR IDENTIFYING MICHIGAN'S SINGING INSECTS USING A COMBINATION OF SONGS, MORPHOLOGY, AND DISTRIBUTION

## A. IDENTIFYING FAMILIES AND SUBFAMILIES (see also H, page 46)

1. Loud, daytime buzzes from trees, less commonly from bushes or tall weeds; insects an inch or more long with beaks and transparent wings, and without enlarged jumping hind legs (Cicadas) . . . . . . . . . . . . B, I (pages 41, 46)
$1^{\prime}$. Either loud or soft nighttime noises, or else daytime noises from herbs, from the ground, or from flying insects with yellow- or red-flashing wings; insects more or less than an inch long, with enlarged jumping hind legs (Locusts, Crickets, Katydids)
2 (1'). Short, crackling or buzzing daytime noises made in flight by insects with colored wings ("crepitation" of Band-Winged Locusts). (Not all band-winged grasshoppers crepitate. Slant-faced grasshoppers in the genus Orphulella crepitate, but their hind wings are clear.).
$J$ (page 47)
$2^{\prime}$. Any loud or soft, long or short noises produced day or night by stationary or walking insects (Crickets, Katydids, Slant-Faced Locusts, and Band-Winged Locusts)

3
3 (2'). Short, soft, rasping daytime noises from the ground in grass, weeds, or woodland leaf litter; insects with antennae shorter than body ("stridulation" of Slant-Faced Locusts and Band-Winged Locusts) . . . . . . . . . . J (page 47)
$3^{\prime}$. Either clear, (whistle-like) sound or else buzzing, rasping, clicking noises; day or night; on the ground or on any kind of vegetation; insects with antennae much longer than body (except mole crickets-singing only in swamps at night, also flying to lights); if song fits 3 above, then it never comes from the ground and for only a few species does it come from low vegetation (Crickets, Katydids)

4
4 (3'). Song clear (that is, resembling a police whistle, through usually higher- or lower-pitched); forewings either opaque or translucent, brownish or black, rarely greenish, and with the greatest part of its area horizontal (Crickets)

C, K (pages 42, 49)
4'. Song noise-like, not clear (buzzes, rasps, clicks, lisps, etc.); forewings opaque or partly translucent, often greenish, and either with greatest part of its area vertical or with a shield-like extension covering a third of the wings or more (Katydids)

5
$5\left(4^{\prime}\right)$. Loud or soft noises, usually only at night; never continuous for long periods without perceptible breaks, but consisting of short phrases or notes; large green or brown insects with opaque forewings (True and False Katydids)

D, L (pages 43, 52)
$5^{\prime}$. If loud, nighttime buzzes, then continuous for long periods without obvious breaks or regular breaks at 3 per five seconds (Cone-Headed Katydids); otherwise, either very soft noises or else "tick-buzz" songs produced both day and night (Meadow Katydids Shield-Backed Katydids, one False Katydid) . . . 6
$6\left(5^{\prime}\right)$. Loud, nighttime buzzes or very rapidly delivered lisps that continue for long periods without interruption, or else with regular breaks at 3 per five
seconds; usually on herbaceous vegetation 3-5 feet above the ground (Coneheaded Katydids). . . . . . . . . . . . . . . . . . . . . . . . . F, L (pages 44, 52)
6. Loud or soft noises, usually from low vegetation, and usually composed of two parts, a tick series and a buzz series; or else very soft, continual buzzes; or else groups of short, irregular buzzes

7
$7\left(6^{\prime}\right)$. Sounds produced day and night, usually from woodlands or brushy areas; groups of whispery, intense buzzes; insects brown with a shield covering a third or more of the very short forewings (Shield-Backed Katydids)
$7^{\prime}$. Sounds produced day or night; otherwise fitting $6^{\prime}$ above, except that buzzes are not noticeably grouped; insects brown or green, small or large, with pronotal shield covering much less than a third of the forewings (Meadow Katydids and one False Katydid, the Northern Bush Katydid)

D, G, L (pages 43, 44, 52)

## B. IDENTIFYING CICADAS CHIEFLY BY SONG

1. Singing generally in large choruses in May and June; wing veins red or green; thorax black, black and red, or black and green.

2
$1^{\prime}$. Usually singing alone or in small groups, early July until frost every year; wing veins green or brown; thorax green or brown and black 6
2(1). Dorsal thorax black; emerging every 17 years . . . . . . . . . . . . . . . . . 3
$2^{\prime}$. Dorsal thorax with some reddish or greenish patterning; possibly emerging every four years

4
3 (2). Ventral abdomen usually entirely black; song a series of high-pitched ticks followed by a sibilant buzz, produced mostly after noon; very rare in Michigan, if at all present.

Magicicada cassini
$3^{\prime}$. Ventral abdomen brown or brown and black; song a series of buzzes that drop in pitch at their ends, beginning at dawn; sounding like "Phaaaroah!"
. Magicicada septendecim (Fig. 1)
$4\left(2^{\prime}\right)$. Berrien County only; wing veins greenish. . . . . Diceroprocta vitripennis (Fig. 3)
$4^{\prime}$. Known only from Washtenaw County and Berrien County and north from Clare County; wing veins reddish
$5(4$ ) $)$. Song a steady fast buzz in which the pulses are delivered far too fast to be individually audible; 2nd and 8th dorsal abdominal segments red and black; Lower Peninsula (LP) and Upper Peninsula (UP) . .Okanagana rimosa (Fig. 2)
$5^{\prime}$. Song a series of lisps delivered slowly enough to hear but too fast to count; 2nd and 8th dorsal abdominal segments usually all black; UP only

Okanagana canadensis
$6\left(1^{\prime}\right)$. Song very loud, produced in choruses mostly around dusk, individually at other times, sounding something like roller skates stroked regularly against a sidewalk; generally restricted to oak woods in sandy areas in the LP; wing length over 40 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tibicen auletes
$6^{\prime}$. Not necessarily as above; wing length under 40 mm . . . . . . . . . . . . . . . 7
7 (6'). Song smooth without easily discernible vibrato . . . . . . . . . . . . . . . . . . . 8
7'. Song with obvious vibrato (actually an intensity, not a frequency, modulation) during its most intense portion

9
8 (7). Song a completely smooth whining buzz sounding like a miniature buzz saw, rarely lasting more than a minute . . . . . . . . . . . . . . . Tibicen canicularis
$8^{\prime}$. Song rather coarse in quality, a rough buzz often lasting more than a minute
Tibicen lyricen (Fig. 4)
$9\left(7^{\prime}\right)$. Vibratory portions of song usually lasting $15-25$ seconds, produced mostly in afteroon, nearly always from trees (common and widespread). . Tibicen linnei
$9^{\prime}$. Vibratory portions of song usually lasting 8-13 seconds, produced mostly in morning, usually from bushes or tall weeds in low, swampy areas (rare in Michigan)
.Tibicen chloromera

## C. IDENTIFYING CRICKETS CHIEFLY BY SONGS

1. On vegetation; head much narrower than forewings; blackish-green, whitishgreen, or else reddish- or yellowish-brown (Tree Crickets, Sword-Tailed Crickets). 2
$1^{\prime}$. On the ground or in burrows or buildings, head usually about as wide as forewings or else forelegs enlarged and shovel-like; black, brown, or gray (Field, House, Ground, Mole Crickets)10

2 (1'). Song an extremely high-pitched, continuous trill heard day and night from low herbs only in damp areas; body less than $1 / 2$ inch long; forewings pale brown.

$2^{\prime}$. Song not necessatily as above; body more than $1 / 2$ inch long; forewings not pale brown; otherwise not fitting above description
$3\left(2^{\prime}\right)$. Songs continuous without perceptible breaks, heard day and night on herbs and small shrubs, never in trees.
. 4
$3^{\prime}$. Songs always with regularly or irregularly spaced breaks (songs of individuals must be heard); at night, only in bushes and trees, never on herbs . . . . . 5
4 (3). On coarse weeds and woody plants; body suffused with black; usually more than three feet above the ground (almost any old field, especially marshy places) . . . . . . . . . . . . . . . . . . . . . . . .Oecanthus nigricornis (Fig. 14)
$4^{\prime}$. On grasses and fine-stemmed, soft weeds, within three feet of the ground; body never suffused with black (almost any old field, especially upland fields)

Oecanthus quadripunctatus
5 (3'). Song composed of chirps delivered at such a rate that the number in 15 seconds +40 gives the approximate air temperature in Fahrenheit degrees
$5^{\prime}$. Song composed of trills a second or more in length . . . . . . . . . . . . . . . 6
$6\left(5^{\prime}\right)$. On conifers in southern Michigan; body green with brownish or blackish coloration on head and pronotum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
$6^{1}$. Very rarely on conifers; body pale-green or reddish . . . . . . . . . . . . . . . . 8
7 (6). On tamarack or in plantations of pine and spruce in southeastern and southcentral Michigan; body dark green, about the color of tamarack needles, with blackish markings, especially on head and pronotum . . . . Oecanthus laricis
7'. On pines in southwestern Michigan; body the color of pine needles with brownish or reddish markings, especially on head and pronotum. . . Oecanthus pini
$8\left(6^{\prime}\right)$. Wings and body with reddish markings . . . . . . . . . . . .Neoxabea bipunctata
$8^{\prime}$. Wings and body whitish-green 9
$9\left(8^{\prime}\right)$. Wings about $1 / 4$ as wide as body length; first antennal segment with a straight black mark underneath . . . . . . . . . . . . . . . . . Oecanthus exclamationis
$9^{\prime}$. Wings about $1 / 3$ as wide as body length, first antennal segment with a J-shaped black mark underneath . . . . . . . . . . . . . . . . . . . . . . Oecanthus niveus
10 ( $1^{\prime}$ ). Song made up of countable chirps which are multipulse and sometimes buzzy. .
$10^{\prime}$. Song a trill or else (in woods only) made up of bately countable, clearly onepulse "tink" sounds

15
11 (10). Usually one chirp per second or slower; body straw-colored; more than $1 / 2$ inch long; always in or near buildings. . . . . . . . . . . . . . . . Acheta domesticus
11'. Usually more than one chirp per second; body dark brown or black; in grassy places, rarely inside buildings
12 ( 11 '). Chirps clear-sounding and loud without any buzzy quality; body more than a half inch long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
12'. Chirps buzzy-sounding, soft, carrying only a few yards; body less than $1 / 2$ inch long (lawns, pastures, fields) . . . . . . . . . . . . . . Allonemobius fasciatus
13 (12). Very low-pitched chirps at $1-3$ per second, delivered with considerable regularity from marshes at night; may be mistaken for a frog; a large, cylindrical, velvety, burrowing insect with a pointed head-Neocurtilla hexadactyla (Fig. 10)

13'. The most common loud cricket chirp around lawns; a large black or brown cricket not fitting above description.

14
14 (13'). May to late July . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gryllus veletis
14'. Late July until heavy frosts . . . . . . . . . . . . Gryllus pennsylvanicus (Fig. 13)
$15\left(10^{\prime}\right)$. Only in sandy areas; body and wings gray without reddish-brown coloration
Allonemobius griseus
15'. In woods, pastures, lawns, sphagnum bogs, or marshes; body and wings reddishbrown or dark brown or black
. 16
16-(15'). Very abundant in pastures and lawns; song a slow trill with occasional breaks
16' In . . . . . . . . . . . . . . . . . . . . . . . Allonemobius allarai (Fig. 12) woods, sphagnum bogs, marshes, and (less often) lawns (if in lawns, then
song a very fast, buzzy pulsating trill) . . . . . . . . . . . . . . . 17
17 (16'). In dry woods; song a slow, continual "tink-tmk-tinketc."; body and wings reddish-brown, sometimes rather pale . . . . . . . . . .Allonemobius tinnulus
17'. In marshes, bogs, damp woods, or (rarely) lawns . . . . . . . . . . . . . . . . . 18
18 (17). In any kind of moist area; song usually with obvious thythmical pulsations in intensity and without breaks

Eunemobius carolinus
18'. In bogs, marshes, or woods; song without obvious pulsations in intensity, but with either regular, rapid, or else irregular, infrequent breaks . . . . . . . . 19
19 (18'). In bogs and marshes; song with irregular, obvious breaks every few seconds . . 20
19'. In woods; song with regular, momentary breaks ("catches") recurring several times a second; grayish, spotted species . . . . . . Allonemobius maculatus
20 (19). In bogs throughout the state; body length under 6 mm ; song rather soft and buzzy
20'. Only known in Berrien County; body length $8-10 \mathrm{~mm}$; song a succession of rather loud, clear trills with occasional separated single pulses audible

Eunemobius melodius

## D. IDENTIFYING TRUE AND FALSE KATYDIDS CHIEFLY BY SONG

1. A very loud, harsh, 2- to 3 -pulse phrase delivered steadily at about one phrase per second at night from trees; a large, green, convex-winged kitydid.

Pterophylla camellifolia (Fig. 24)
$1^{\prime}$. Song not as above; if a large, green insect, then with vertical part of forewings flat, not convex (False Katydids)
2 ( $1^{\prime}$ ). A series of $20-40$ loud sharp ticks, repeated rapidiy at rates of $3-10$ per second, becoming louder and faster as the series progresses, ending abruptly; usually at night only from trees; a large, green katydid (See couplet 4 for this species' other song) . . . . . . . . . . . Microcentrum rhombifolium (Fig. 25)
$2^{\prime}$. Not fitting above description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
$3\left(2^{\prime}\right)$. Simple lisps repeated continually from trees, bushes, or weeds . . . . . . . . . 4
3'. Multi-pulse phrases, buzzes, or rattles from weeds or bushes . . . . . . . . . . . 6
4 (3). Loud lisps from trees, usually at night only, delivered 2-3 in five seconds; usually from high in trees (See also couplet 2)

Microcentrum rhombifolium (Fig. 25)
4'. Rather soft lisps delivered much more slowly, day or night; a slender green katydid $1 / 2$ inch long
5 (4'). Hemlock trees and other conifers . . . . . . . . . . . . . . . . . Scudderia fasciata
$5^{\prime}$. Bushes and weeds in dry upland areas . . . . . . . . . Scudderia furcata (Fig. 29)
$6\left(3^{\prime}\right)$. Groups of rattly buzzes or phrases, $5-15$ phrases per group with one long phrase near the end of the group lasting about five seconds; at night in old fields or along woodland borders about 4-5 feet up on weeds and bushes; a small green katydid with a brown basal patch on its forewings

Amblycorypha rotundifolia (Fig. 27)
6'. Single, ragged phrases delivered at a fairly regular pace, or else groups of soft lisps with one phrase much longer than any other

[^3]7 (6'). A non-uniform phrase beginning with a long pulse that speeds up toward its end, the whole phrase sounding like "zzzzzz-zik-zik" and repeated every few seconds with some regularity; in weeds and bushes at night, usually 4-8 feet above the ground; a large green katydid with a brown basal patch on its forewings . . . . . . . . . . . . . . . . . . Amblycorypha oblongifolia (Fig. 26)
7'. Not as above; discernible pulses all about alike; no brown patch on forewings, 2-5 feet above ground on weeds and in bushes; slender green katydids . . . 8
$8\left(7^{\prime}\right)$. Several 1- to 3-pulse phrases spaced about five seconds apart; the pulses in each phrase repeated slowly as if with deliberation at a rate of $2-3$ per second (if imagined to be repeated continuously); an individual may start with a 1-pulse phrase then follow with several 2- and 3-pulse phrases

Scudderia curvicauda 5 (Fig. 31)
8'. Individual pulses in each phrase delivered much more rapidly, usually running together

9
$9\left(8^{\prime}\right)$. $\quad 5-8$ (uncountable) pulses per phrase, delivered so rapidly that the phrase sounds like one rough note; phrase louder toward its end

Scudderia pistillata ${ }^{5}$ (Fig. 30)
9'. $\quad 3-21$ (usually 3-4) (almost countable) pulses per phrase, delivered rapidly so that the phrase sounds like a pulse series rather than a single rough phrase; seemingly louder toward end of phrase . . . . . . . . . . . .Scudderia texensis ${ }^{5}$

## E. IDENTIFYING CONE-HEADED KATYDIDS CHIEFLY BY SONG

1. Rapidly delivered lisps from old fields; underside of cone on head with only tip and sides black (almost any roadside). . . .Neoconocephalus ensiger (Fig. 48)
$\mathbf{1}^{\prime}$. Continuous or broken buzzing; underside of cone on head either nearly all black or all green

2
$2\left(1^{\prime}\right)$. Buzz broken regularly about three times every five seconds (rare outside Berrien County); underside of cone nearly all black . . Neoconocephalus nebrascensis
$2^{\prime}$. Buzzes continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
$3\left(2^{\prime}\right)$. Very loud buzzing; cone all green underneath; rather common along roadsides ..
. Neoconocephalus robustus
3'. A fine, thin buzz from marshes only; underside of cone all black (rare)
Neoconocephalus lyristes

## F. IDENTIFYING SHIELD-BACKED KATYDIDS CHIEFLY BY SONG

1. Groups of soft buzzes, the buzzes irregular in length, lasting from $1 / 2$ second up to several minutes; generally distributed across the state; singing from early June to mid-September . . . . . . . . . . . . . . .Atlanticus testaceus (Fig. 37)
$1^{\prime}$. Groups of soft buzzes, the buzzes about $1 / 2$ second long and delivered about one per second at $80^{\circ} \mathrm{F}$; known only from several countries north of the Thumb on the Lower Peninsula; singing from July 13 to September 11.

Atlanticus davisi

## G. IDENTIFYING MEADOW KATYDIDS CHIEFLY BY SONG

NOTE: The Northern Bush Katydid, because of its complicated "tick-buzz" song, keys out here in the key to subfamilies. It may be identified by the following: a soft, complicated phrase lasting $10-30$ seconds a composed of a series of 3-8 clicks followed by a series of "zeeps," beginning in early July, just before

[^4]the true katydid, and coming from trees at night; a dark green, small, slender katydid (also see Fig. 28).
NOTE: We have not heard the song of the Prainie Meadow Katydid, Conocephalus saltans.

1. Soft, seedy, continuous buzzes audible only a few feet away from grasses and weeds about one foot above the ground; no ticks . . . . . . . . . . . . . . . 2
1'. Either ticks and buzzes or else short phrases; not continuous buzzes; 1-6 feet above the ground
2 (1). Buzz changing speed, alternately slowing and speeding up about every $15-30$ seconds; in grassy and weedy areas; a tiny greenish or brownish insect.

Conocephalus strictus
$2^{\prime}$. Buzz not changing speed, but continuing uniformly for indefinite periods; only around marshes
$3\left(2^{\prime}\right)$. Strikingly marked in black and yellowish . . . . . . . Conocephalus nigropleurum
3'. Tan-colored or brownish . . . . . . . . . . . . . . . . . . Conocephalus attenuatus
$4\left(1^{\prime}\right)$. Song definitely composed of ticks delivered slowly enough to be counted (or at least clearly distinguished) and buzzes that last one second or more . . . . 5
4'. Song composed either of buzzes without ticks, or of buzzes with ticks attached to their front ends, the ticks delivered so rapidly that they can barely be distinguished from the regular part of the buzz; 2-6 buzzes per five seconds

5 (4). Usually $2-4$ ticks per buzz; buzzes lasting less than five seconds; in marshy areas, two feet above the ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5'. More than 4 ticks per buzz, buzzes lasting more than five seconds; in marshes, fields, pastures, lawns; 2-6 feet above the ground.

8
6 (5). $3-5$ complete phrases in five seconds; very soft sound usually less than a foot above the ground in pastures, lawns, fields; insect tiny with forewings not reaching tip of abdomen . . . . . . . . . . Conocephalus brevipennis (Fig. 39)
6'. Complete phrases each lasting more than two seconds; usually about two feet above the ground in marshy areas; forewings usually reaching beyond tip of abdomen

7
$7\left(6^{\prime}\right)$. Face usually green laterally and with a red center stripe. Orchelimum concinnum
$7^{\prime}$. Face usually green without a stripe . . . . . . . . . . . . . . Orchelimum delicatum
$8\left(5^{\prime}\right)$. Loud sounds, noticeable several yards away; usually more than two feet above the ground

9
8'. Soft sound, noticeable only a few feet away; usually less than two feet above the ground; 10-30-second buzzes, with 10-25 ticks between them; a tiny, slender, long-winged insect . . . . . . . . . . . Conocephalus fasciatus (Fig. 40)
9 (8). Buzzes lasting $15-30$ seconds; often several buzzes repeated without intervening ticks; only in marshy areas; face splotched with red, but central part usually pale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Orchelimum campestre
$9^{\prime}$. Buzzes never much over five seconds in length; usually ticks between buzzes every time; face green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
$10\left(9^{\prime}\right)$. Beginning in late June or early July; in marshy areas only; buzzes not noticeably louder toward their ends, Males may omit the ticks from their songs at night.

Orchelimum gladiator
10'. Beginning in late July; in grassy, weedy, marshy areas; buzzes noticeably getting louder toward their ends . . . . . . . . . . . . . . Orchelimum velgare (Fig. 38)
$11\left(4^{\prime}\right)$. Each buzz slowing toward its end; in marshes only. . . . . Orchelimum volantum
$11^{\prime}$. Buzzes not noticeably slowing toward their ends . . . . . . . . . . . . . . . . . 12
$12\left(11^{\prime}\right)$. Soft buzzes from about one foot above the ground in or near woodland; a tiny, brown, short-winged insect; some buzzes with a slightly noticeable preface of ticks so rapidly delivered that the buzz sounds like the roll of a miniature drum.
. Conocephalus nemoralis
12'. Louder buzzes, each prefaced by $2-3$ very rapidly delivered ticks; in marshy areas; insect blue-green with blackish hind legs . . . . . . Orchelimum nigripes

## KEYS FOR IDENTIFYING MICHIGAN'S SINGING INSECTS BY SPECIMEN ALONE

## H. IDENTIFYING FAMILIES BY SPECIMENS ALONE

1. Enlarged jumping hind legs; no beak; wings usually opaque or translucent (Orthoptera)
$1^{\prime}$. Hind legs similar in size to others; beak extending from back of head ventrally; wings largely transparent (Cicadas)

I (page 46)
2 (1). Antennae with fewer than 30 segments and usually less than half body length; cerci (hind end feelers) very short and not obvious; tarsi 3 -segmented (Locusts)

L (page 52)
$2^{\prime}$. Antennae with more than 30 segments and (except in mole crickets) longer than body; cerci either long, pointed, tactual devices or forceps-like; tarsi 3- or 4 -segmented
3 (2'). Tarsi 3 -segmented; cerci long, pointed, tactual devices with knobbed setae internally near their bases; most of forewings horizontal (Crickets). J (page 47)
$3^{\prime}$. Tarsi 4 -segmented; cerci forceps-like without knobbed setae; usually most of forewings vertical (Katydids) . . . . . . . . . . . . . . . . . . . . . . K (page 49)

## I. IDENTIFYING CICADA SPECIMENS

1. Wing veins reddish; body black and reddish; timbals (dark-ribbed convex soundproducing organs on sides of abdomen) of males exposed (Fig.5 ) . . . . . 2
$1^{\prime}$. Wing veins and body greenish or brown and black; timbals of male covered. . 5
2 (1). Pronotum, viewed from above, all black except for lateral margins (Fig. 1); eyes reddish
$2^{\prime}$. Pronotum, viewed from above, usually with some pale (orange or reddish) marking, especially along rear border (Fig. 2); eyes dark, not reddish . . . . 4
3 (2). Ventral abdomen usually all black (rare if present at all in Michigan)

3'. Ventral abdomen always marked with reddish or brownish . Magicicada septendecim (Fig. 1)
4 (2'). UP only; male with $10-11$ timbal ribs (Figs, 5-6); second abdominal segment black dorsally. . . . . . . . . . . . . . . . . . . . . . . . . Okanagana canadensis
4'. Up and LP; male with 7-8 (rarely 9) timbal ribs (Fig. 7); second abdominal segment red dorsally . . . . . . . . . . . . . . . . . Okanagana rimosa (Fig, 2)
$5\left(1^{\prime}\right)$. Body length $33-38 \mathrm{~mm}$; first cross-vein in forewing originating $1 / 3-1 / 2$ of the way out on first marginal cell; known only from Berrien County.

(5') out on first marginal cell; not restricted to Berrien County ........ . 6
6 (5'). Wing length over 45 mm ; pronotal collar brown; abdomen more or less unicolorous beneath, often pruinose (covered with a grayish "bloom").
6'. Wing length under 45 mm ; pronotal collar black, brown, or green; abdomen beneath with or without a dark mid-line . . . . . . . . . . . . . . . . . . . . . 7
7 (6'). Pronotal collar largely or entirely black . . . . . . . . . . . . . . . . . . . . . . . 8
7'. Pronotal collar brown or green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8 (7). Abdomen beneath with mid-line only slightly darker than rest, sometimes only at base of each sternite; pronotal shoulder patches large, solid green; mesonotum largely black . . . . . . . . . . . . . . . . . . . . . . .Tibicen chloromera
$8^{\prime}$. Abdomen beneath with a broad, shining black stripe down mid-line; shoulders and pronotum largely black or mesonotum heavily patterned with green or brown

Tibicen lyricen (Fig. 4)
9 (7'). Wing length usually over 40 mm ; costal (anterior) margin or forewing decidedly more bent near its center than elsewhere, so that, if vein $M+R$ is projected
by holding a ruler over it, it crosses SC before SC coalesces with C near the tip of the wing (Fig. 8) Tibicen linnei
$9^{\prime}$. Wing length usually under 40 mm ; costal margin of forewing only slightly curved and forming a nearly symmetrical arc, so that ruler held to projected vein $M+R$ passes behind the coalescence of $S C$ and $C$ near tip of wing (Fig. 9)

Tibicen canicularis

## J. IDENTIFYING CRICKET SPECIMENS

1. Front legs enlarged and shovel-like, much stouter than middle legs; head horizontal, much narrower than pronotum and narrowing anteriorly toward mouthparts . . . . . . . . . . . . . . . . . . . Neocurtilla hexadactyla (Fig. 10)
1'. Front legs not enlarged and shovel-like not noticeably stouter than middle legs; otherwise not necessarily as above. . . . . . . . . . . . . . . . . . . . . . . . . 2
2 (1'). Hind tarsus with the long basal segment having a false joint about midway, giving the impression that the tarsus is 4 -segmented (Fig. 14); head more or less horizontal, longer than pronotum when viewed from above; foretibiae with large oval tympana on both internal and external faces, the inner one a little longer3
$2^{\prime}$. Hind tarsus without a false joint on the basal segment and clearly only 3segmented; otherwise not necessarily as above12
3 (2). Hind tibiae with apical spurs only; first antennal segment not marked with black ventrally and with a small prominent tubercle on distal border.
3'. Hind tibiae with several non-apical long spurs and many shorter spines; first antennal segment frequently marked with black ventrally and without a prominent tubercle on distal border.
4 (3'). Inner edge of ventral face of first antennal segment with a pale swelling marked with black (Figs. 15-17); stridulatory file with fewer than 30 teeth per mm of length
4'. Inner edge of ventral face of first antennal segment without a pale swelling but segment marked with black (Figs. 18-23); stridulatory file frequently with more than 30 teeth per mm of length

2. Black mark on first antennal segment round or oval (occasionally a second black mark near distal border of segment); second antennal segment usually with a similar mark (Fig. 15); width of dorsal field of male forewings more than four-tenths of length; more than 35 teeth in stridulatory file.

Oecanthus fultoni
5'. Black mark on first antennal segment neither round nor oval; second segment with an elongate black mark; width of dorsal field of male forewings frequently less than four-tenths of length; fewer than 35 teeth in stridulatory file

$$
6
$$

6 (5'). Mark on first antennal segment straight (rarely slightly curved) (Fig. 16); no prominent orange markings on vertex; length of male forewings $12-15 \mathrm{~mm}$; file teeth more widely spaced (19-23.4 teeth per mm).
. . . . . . . . . . . . . . . . . .Oecanthus exclamationis
6. Mark on first antennal segment strongly curved toward the inner side or Jshaped (Fig. 17); vertex yellow or orange (in fresh specimens); length of male forewings $9.8-12.2 \mathrm{~mm}$; file teeth less widely spaced (23.7-29.7 teeth per mm).
. Oecanthus niveus
7 (4'). Pronotum black or with one, two, or three black or suffused-blackish longitudinal stripes; venter and distal portions of legs and antennae black

Oecanthus nigricornis (part)
7'. Pronotum never black, never with black or suffused-blackish stripes (except that laricis may have brown stripes with the lateral ones somewhat blackish); venter and distal portions of legs and antennae sometimes suffused-blackish or brown but never black

[^5]8 (7'). Head, pronotum, and legs largely brownish or blackish; forewings a contrasting bright green or dark green in fresh specimens; found only in or (rarely) beneath conifers

9
$8^{\prime}$. Head, pronotum, and legs without much brown pigment and not contrasting in color with the forewings; almost never found in conifers
9 (8). In larches and planted conifers in southeastern and south central Michigan; dark coloration blackish . . . . . . . . . . . . . . . . . . . . . . . . Oecanthus laricis
9'. In pines in Berrien County only; dark coloration reddish-brown . Decanthus pini
$10\left(8^{\prime}\right)$. Black marks on second antennal segments confluent, contiguous, or separated by no more than one-third the width of the inside mark (Fig. 22); may be found in Michigan through no records yet exist. . . . . .Oecanthus argentinus
10'. Black marks on second antennal segment separated by more than one-third the width of the inside mark .11
$11\left(10^{\prime}\right)$. Outside marks on first and second antennal segments usually less heavily pigmented than inside marks (sometimes they are missing, and rarely they are as heavily pigmented as the inside marks); outside mark on first segment often round (Fig. 23); tibiae and apex of hind femur usually without conspicuous dark markings; more than 47 teeth in stridulatory file

11'. Outside marks on first and second antennalitus
11'. Outside marks on first and second antennal segments as heavily pigmented as inside ones; outside mark on first segment never round (Figs. 18-19); tibiae and apex of hind femur usually with conspicuous dark markings; fewer than 47 teeth in stridulatory file
. .Oecanthus nigricornis (part)
$12\left(2^{\prime}\right)$. Head with prominent dorsal bristles; spurs of hind tibiae long, slender, hairy, usually cylindrical; in most species some non-apical spurs are nearly as long as basal tarsal segment; body length usually under 10 mm
12'. Head without prominent dorsal bristles; spurs of hind tibiae are not as above,
but stout, often emarginate, and none approaching length of basal tarsal
segment; body length usually over $10 \mathrm{~mm} . \ldots$. . . . . . . . . . . . . 21
13 (12). Second tarsal segment depressed and with a prominent adhesive pad (Fig. 11); hind tibia as long as hind femur or longer . . . . . Anaxipha exigua (Fig. 11)
13'. Second tarsal segment compressed and without a noticeable adhesive pad (Fig. 12); hind tibia shorter than hind femur
.14
$14\left(13^{\prime}\right)$. Ventral apical internal and external spurs of hind tibiae equal or nearly equal in length; spurs of hind tibiae without teeth on their ventral margins; ovipositor of female with teeth on the ventral valve .15
14'. Ventral apical internal and external spurs of hind tibiae unequal in length; spurs of hind tibiae with rows of tiny teeth on their ventral margins; ovipositor of female without teeth on the ventral value 16
15 (14). Male with fewer than 75 teeth on the stridulatory file; female with ovipositor less than 3.5 mm long . . . . . . . . . . . . . . . . . . . Neonemobius carolinus
15'. Male with more than 100 teeth on the stridulatory file; female with ovipositor more than 4.5 mm long . . . . . . . . . . . . . . . . . . Neonemobius melodius
$16\left(14^{\prime}\right)$. Size larger, hind femora of males $4.8-7.6 \mathrm{~mm}$, females, $4.9-8.0 \mathrm{~mm}$; face or dorsal head nearly always with distinct markings; ovipositor of female straight, nearly as long as or longer than the hind femora . . . . . . . . . . 17
$16^{\prime}$. Size smaller, hind femora of males $3.9-5.8 \mathrm{~mm}$, females $4.0-6.7 \mathrm{~mm}$; face and dorsal head nearly always unicolorous; ovipositor of female gently curved, no more than $2 / 3$ as long as hind femora
. Neonemobius palustris
17 (16). Face below the antennae shining black; general color with a grayish suffusion; lateral margins of dorsal field of male tegmina narrowly yellow

Allonemobius griseus
17'. Face below the antennae not a shining black; general color without a noticeable grayish suffusion
18 (17'). Black markings, especially in females, scattered to give a mottled appearance . .

18 ${ }^{\prime}$. Black markings of body not scattered in blotches and dashes to give a mottled appearance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
$19\left(18^{\prime}\right)$. Head and pronotal coloration usually a strong patterning of dark brown or black with light yellowish; dorsal head well-rounded and full; pronotum in short-winged specimens barrel-shaped, so that head and front edge of pronotum are usually as wide as or wider than rear edge of pronotum; hind wings either long or short; ovipositor of females $5.9-10.0 \mathrm{~mm}$ in length, over 7.5 mm only in the specimens with head width behind eyes over 2.6 mm ; stridulatory vein on right forewing of male bearing only $100-150$ teeth and with portion inside ulnar vein (a lateral longitudinal vein, connecting to the stridulum from behind) less than 1.0 mm long and less than one-third as long as width of head behind eyes . . . . . . . . . . . . . . Allonemobius fasciatus
19'. Head and pronotal color either sandy-reddish or dark reddish-brown or black; dorsal head striping faint or absent; head narrow and restricted; pronotum in both long-winged and short-winged specimens trapezoidal, narrower in front so that head and front of pronotum are noticeably narrower than rear edge of pronotum; ovipositor of females $6.0-10.3 \mathrm{~mm}$ in length; head width behind eyes in females not over 2.8 mm ; stridulatory vein on right forewing of male bearing more than 160 teeth, and with portion inside ulnar vein rarely under 1.0 mm in length and more than two-fifths as long as width of head behind eyes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
$20\left(19^{\prime}\right)$. General coloration pale and reddish, especially dorsal surface of head; specimens with long hind wings extending beyond tips of forewings are not known; in woodlands and leaf litter . . . . . . . . . . . . . . . . . . Allonemobius tinnulus
20'. General coloration red-brown to black; dorsal head striping usually faintly visible, and head sandy-reddish only in some specimens from sandy areas around the Great Lakes; with hind wings long or short; in grasslands . . . . .

$21\left(12^{\prime}\right)$. General coloration yellowish or brown with a dark transverse bar between the compound eyes; only in or near houses . . . . . . . . . . . Acheta domesticus
21'. General coloration black, head black, nearly always without noticeable markings; forewings sometimes brown, appendages and face sometimes with pale markings, in grassy fields
.22
22 (21'). Adult from May to middle or late July; overwintering as a half-grown, juvenile; female ovipositor averaging shorter, but overlapping that of following species

> Gryllus veletis

22'. Adult from late July until frost; overwintering as an egg; female ovipositor averaging longer but overlapping that of previous species

Gryllus pennsylvanicus (Fig. 13)

## K. IDENTIFYING KATYDID SPECIMENS

1. Dorsal surface of first tarsal segment laterally grooved; usually with spines between bases of forelegs; front wings about as long as or longer than hind wings
1'. Dorsal surface of first tarsal segment smoothly rounded; no spines between bases of forelegs; hind wings longer than front wings, or front wings obliquely truncate at apex 3
2 (1). Pronotum about as long as wide, and with two transverse grooves; front wings usually broadly oval and convex; mesal (inner) margins of antennal sockets elevated and ridgelike, and extending nearly or quite to dorsal surface of vertex . . . . . . . . . . . . . . . . . . . . . . Pterophylla camellifolia (Fig. 24)
$2^{\prime}$. Pronotum longer than wide, and with only one transverse groove or none; shape of forewings variable, but usually not broadly oval and convex; mesal margins of antennal sockets not particularly ridgelike, and rarely approaching dorsal part of vertex.

11

3 (1'). Forewings broad, $7 / 22$ as wide as long or wider; top of head and face forming an obtuse angle; space between bases of antennae usually twice or more than twice as wide as first antennal joint

4
$3^{\prime}$. Forewings long, narrow, $5 / 19$ as wide as long or narrower; top of head and face forming an acute angle; space between bases of antennae scarcely or not wider than basal joint of antennae
4 (3). Hind femora not reaching beyond apical third of forewings; fore and middle tibiae smooth and rounded above without angular margins; ovipositor short, bent abruptly upward, finely or not at all serrate.

Microcentrum rhombifolium (Fig. 25)
4'. Hind femora reaching to or beyond apical fourth of forewings; fore and middle tibiae flat or angled above, their margins raised, acute; ovipositor long, curved gradually upward, usually strongly serrate on both edges . . . . . . 5
$5\left(4^{\prime}\right)$. Forewings $30-40 \mathrm{~mm}$ long, lobes between bases of hind legs longer than broad, their hind margins narrowly rounded or pointed

Amblycorypha oblongifolia (Fig. 26)
5'. Forewings $23-27 \mathrm{~mm}$ long, lobes between bases of hind legs broader than long, their hind margins rather broadly rounded
. Amblycorypha rotundifolia (Fig. 27)
$6\left(3^{\prime}\right)$. Last dorsal abdominal segment of male slightly produced centrally, without a central notch or fork (Fig. 32); cerci tapering more or less smoothly toward tip; forewings rather broad, dull, with swollen veinlets; ovipositor with both margins curved, not bent, more than 1-1/2 times length of pronotum. . . . .
.Scudderia septentrionalis (Fig. 28)
6'. Last dorsal abdominal segment of male with a long median process notched or forked at tip; cerci with a thickened region, not tapering smoothly; ovipositor bent as well as curved, less than 1-1/2 times length of pronotum. . 7
$7\left(6^{\prime}\right)$. Apical fork of dorsal abdominal process of male with fork much wider than deep with a central tooth (Fig. 33) . . . . . . . . . . . . . . . . Scudderia texensis
7'. Apical fork of dorsal abdominal process of male U-shaped or V-shaped and as deep as wide or deeper, with no central teeth . . . . . . . . . . . . . . . . . 8
$8\left(7^{\prime}\right)$. Dorsal abdominal process of male with arms of apical fork about as long as central basal portion, notch U-shaped (Fig. 34) . . . . . . . . . . . . . . . . . 9
8'. Dorsal abdominal process of male with arms of apical fork shorter than central basal portion, notch V-shaped (Figs. 35-36)

10
9 (8). Known only from Berrien County; living chiefly in coniferous trees; forewings with a blackish stripe along the upper (medial) edge, sometimes with blackish or purplish regions elsewhere on the wings and body . . . Scudderia fasciata
9'. Known throughout the state; living in weeds and deciduous trees; forewings without blackish stripes, more or less uniform green

Scudderia furcata (Fig. 29)
10 ( $8^{\prime}$ ). Lobes or lateral projections of dorsal abdominal process (each side of notch), viewed from above, narrow and distinctly tapering apically (Fig. 35); forewings not over four times longer than wide . . . Scudderia pistillata (Fig. 30)
$10^{\prime}$. Lobes or lateral projections of dorsal abdominal process, viewed from above, rounded (Fig. 36); forewings about five times longer than wide or longer .
.Scudderia curvicauda (Fig. 31)
$11\left(2^{\prime}\right)$. Head between bases of antennae forming a long tapering cone, extending well beyond basal antennal segment
.12
11'. Head between bases of antennae usually not conical and not extending beyond basal antennal segment in any case

15
12 (11). Lower surface of cone without black coloration or black only at tip (Fig. 49) .
Neoconocephalus robustus
12'. Lower surface of cone either almost entirely black, or black at tip and along margins (Figs. 50-52)
.13
13 (12'). Lower surface of cone black only at tip and along margins (Fig. 50)
.Neoconocephalus ensiger (Fig. 48)

13'. Lower surface of cone wholly or nearly wholly black (Figs. 51-52) . . . . . . . 14
14 ( $13^{\prime}$ ). First ten teeth on lateral end of male stridulatory file nearly as widely spaced as next ten, occupying $0.4-0.5 \mathrm{~mm}$; forewing 3.57 to 4.21 times as long as wide

14'. First ten teeth on lateral end of stridulatory file much more closely spaced than next ten teeth, occupying about 0.25 mm ; forewing 4.23 to 4.65 times as long as wide

Neoconocephalus lyristes
15 (11'). One or more spines on dorsal surface of front tibia; pronotum extending back to abdomen; hind wings usually greatly reduced; forewings usually gray, brown, or spotted and never reaching tip of abdomen . . . . . . . . . . . . . 16
15'. No spines on dorsal surface of front tibia; pronotum never extending back to abdomen; hind wings always well developed; forewings usually green and in most species reaching beyond tip of abdomen
16 (15). Exposed part of male forewings, as viewed from above, more than half length of pronotum; the two lateral portions of subgenital plate of female almost semicircular, not triangular . . . . . . . . . . . . .Atlanticus testaceus (Fig. 37)
16'. Exposed part of male forewings, as viewed from above, less than half length of pronotum; the two lateral portions of subgenital plate of female somewhat triangular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atlanticus davisi
$17\left(15^{\prime}\right)$. Body usually more than 18 mm in length; forewings reaching past tip of abdomen; spines between bases of forelegs rather long, cylindrical, slender; ovipositor stouter, usually distinctly scimitar-shaped, or upcurved . . . . . 18
$17^{\prime}$. Body usually less than 17 mm in length; forewings shorter than abdomen in most species; spines between bases of forelegs very short or absent; ovipositor slender, straight or nearly so
18 (17). Apical portion of male cercus behind the median tooth not much if any longer than the basal portion in front of it (Fig. 41-43); ovipositor in the majority of the species not distinctly more than half as long as hind femur and (except in gladiator) with upper margin always evidently and regularly curved

18'. Apical portion of male cercus behind the tooth distinctly longer than the portion in front of it (Fig. 44); ovipositor (except rarely in concinnum) distinctly more than half as long as hind femur, its upper margin either straight or curved
.21
19 (18). Tibiae blackish; upper surface of male cercus with a distinct obtuse sinuate carina (Fig. 41) . . . . . . . . . . . . . . . . . . . . . . . . Orchelimum nigripes
19'. Tibiae not blackish; upper surface of male cercus without a distinct sinuate carina

$20(19$ ). Tooth of male's cercus shorter than apical half of shaft (Fig. 42); ovipositor less than half the length of hind femur, its upper margin distinctly curved
.Orchelimum vulgare (Fig. 38)
20'. Tooth of male's cercus as long as apical half of shaft (Fig. 43); ovipositor almost two-thirds as long as hind femur, its upper margin nearly straight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Orchelimum gladiator
$21\left(18^{\prime}\right)$. Apical portion of male's cercus distinctly and strongly tapering to a narrow but not sharp tip; upper margin of ovipositor straight or nearly so .

$22\left(21^{\prime}\right)$. Face green with few or no reddish markings except scattered tiny flecks of reddish and rarely a brownish central area . . . . . . . . Orchelimum delicatum
22'. Face with prominent red central stripe or prominent network of red lines laterally or both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
23 (22'). Face with a central red stripe and otherwise without prominent reddish areas on the face . . . . . . . . . . . . . . . . . . . . . . . . . . . Orchelimum concinnum
23'. Face with prominent networks of red lines at sides, central part usually unmarked, rarely a red vertical mark.

[^6]$24(17 \prime)$. Hind tibia with one pair of apical spurs; prosternum without spines; forewings pad-like, scarcely longer than pronotum; hind femora unarmed beneath; face with a medium reddish-brown stripe or blotch . . . . . .Conocephalus saltans
24'. Hind tibia with two or three pairs of apical spurs; prosternum with two spines; forewings (except in female of strictus) always distinctly longer than the pronotum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
$25(24$ '). Male cercus swollen at middle and armed on underside with a slender tooth, the base of which is scarcely visible from above (Fig. 45); apical portion of cercus strongly flattened; hind femora very rarely unarmed beneath. . . . . 26
25'. Male cercus armed in inner margin near middle with a stout tooth, the base of which is plainly visible from above; hind femora very rarely armed beneath

26 (25). Sides of abdomen shining black . . . . . . . . . . . . .Conocephalus nigropleurum
26'. Sides of abdomen not shining black . . . . . . . . . . . Conocephalus attenuatus
$27\left(25^{\prime}\right)$. Apical portion of male cercus dished out, i.e., with dorsal surface concave in cross-section (Fig. 46); ovipositor shorter than body and with upper margin straight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
27'. Apical portion of male cercus somewhat flattened and upturned, but with dorsal surface convex in cross-section (Fig. 47); ovipositor either longer than body or, if shorter, with upper margin curved29

28 (27). Forewings longer than abdomen; hind wings longer than forewings
Conocephalus fasciatus (Fig. 40)
28'. Forewings and hind wings both shorter than abdomen
29 (27'). Ovipositor shorter than hind femur; male cercus with flattened apical portion no longer than tooth; general color smoky or greenish brown

Conocephalus nemoralis
29'. Ovipositor much longer than hind femur, male cercus with flattened apical portion 1 1/2-2 times length of tooth (Fig. 47); general color green

Conocephalus strictus

## L. IDENTIFYING LOCUST SPECIMENS

1. Pronotum covering abdomen (no prominently acoustical species) . . . Tetrigidae $1^{\prime}$. Pronotum not covering abdomen (Acrididae) . . . . . . . . . . . . . . . . . . . . 2
$2\left(1^{\prime}\right)$. Ventral surface of first thoracic segment (prosternum) with a prominent spine (no prominently acoustical species) . . . Cyrtacanthacridinae and Melanoplinae
$2^{\prime}$. Ventral surface of first thoracic segment without a prominent spine (Bandwinged grasshoppers and Slant-faced grasshoppers)

3
$3\left(2^{\prime}\right)$. Face in lateral view slanting backwards forming an acute angle with the dorsum; posterior margin of pronotum centrally rounded, truncate, or very obtusely angulate (Fig. 54) (Slant-faced grasshoppers) . . . . . . . . . . . . . . . . . . 4
$3^{\prime}$. Face in lateral view rounded and not strongly slanted backwards, face above antennae forming approximately a right angle with top of head, or an obtuse angle; posterior margin of pronotum usually forming a right or acute angle (Fig. 53) (Band-winged grasshoppers) . . . . . . . . . . . . . . . . . . . . . . 15
4 (3). Lateral carinae of pronotum, viewed from above, straight and parallel . . . . . 5
4'. Lateral carinae of pronotum, viewed from above, not straight and parallel, at least slightly incurved in middle, and often strongly divergent posteriorly. . 7
5 (4). Third antennal segment about as broad as first segment . . . . . . . . . . . . 6
5'. Third antennal segment distinctly narrower than first segment
6 (5). F
6 (5). Forewings not extending beyond end of abdomen, usually much shorter; body color brown . . . . . . . . . . . . . . . . . . . . . . Pseudopomala brachyptera
6'. Forewings extending beyond end of abdomen; dorsal surfaces of male distinctly lighter than lateral surfaces, usually green . . . . . . . . Metaleptea brevicornis
$7\left(4^{\prime}\right)$. Lower surfaces of hind femora bright red and hind tibiae yellow . . . . . . . . 8

7'. Lower surfaces of hind femora not bright red, if reddish, then hind tibiae are
8 (7). Lower edge of folded forewing with light yellow or yellowish-green stripe
8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stethophyma lineatum
8'. Lower edge of folded forewing without distinct light stripe, tegmina uniformly colored
. Stethophyma gracile
$9\left(7^{\prime}\right)$. Vertex, viewed from above, having two lateral carinae, one on each side, converging anteriorly
.10
$9^{\prime}$. Vertex, viewed from above, apparently with four lateral carinae, two on each side, converging anteriorly, so as to frame a small oblong depression in front of each compound eye
.14
10 (9). Antennae broad and flattened; third antennal segment broader than second though usually not as broad as the first segment; males distinctly smaller than females

10'. Antennae nearly filiform, only slightly flattened; third antennal segment no
broader than second and distinctly narrower than first; sexes about equal in
size

.13

11 (10). Hind tibia with 18 or more spines on outer margin. . . . . . . Syrbula admirabilis
11'. Hind tibia with 15 or fewer spines on outer margin .12
12 (11'). Both sexes usually with shiny black patch on abdomen around area of tympanum; male with lateral lobes of pronotum uniformly black and with antennae at least $11 / 2$ times length of head and pronotum together

12'. Neither sex with shiny black patch around tympanum; male with lateral lobes of pronotum brown dorsally, usually lighter below and with antennae only $1 / 3$ longer than head and pronotum together . . . . . Chloealtis abdominalis
$13\left(10^{\prime}\right)$. Lateral carinae of pronotum only slightly incurved, smallest distance between them more than $2 / 3$ greatest distance (Fig. 55) . . . . . . .Orphulella speciosa
13'. Lateral carinae of pronotum strongly incurved, smallest distance between them less than $2 / 3$ greatest distance (Fig. 56) . . . . . . . . . . . Orphulella pelidna
14 ( $9^{\prime}$ ). Hind femur more than five times as long as wide, and without dark markings near tip; body color greenish . . . . . . . . . Chorthippus curtipennis (Fig. 54)
14'. Hind femur less than five times as long as wide and with dark markings on lateral and dorsal surfaces; body color grayish, speckled with black

15 ( $3^{\prime}$ ). Median ridge of pronotum without a notch or with only one notch (very rarely with two notches) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
15'. Median ridge of pronotum with two notches, the posterior one usually more distinct.
16 (15). Dorsolateral margin of folded forewing with a pale stripe; tegmen otherwise speckled or spotted

17
16'. Dorsolateral margin of folded forewing usually without a pale stripe; or when it has one, lateral surface is dorsally brown and ventrally green, or else solid brown
17 (16). Hind wings colored red or yellow (Pardalophora) ..... 18
17'. Hind wings clear ..... 27
18 (17). Forewing with five or more large, fairly distinct spots; hind tibiae usually red or
Pardalophora haldemaniiorange
18'. Forewing indistinctly spotted, at most with three or fewer large spots; hindtibiae usually yellow, rarely reddish . . . . . . . . . . Pardalophora apiculata
19 (16'). Hind wings black with a pale border . . . . . . . . . . . . . . . Dissosteira carolina
19'. Hind wings yellow, orange, or red (rarely clear) with a dark border ..... 20
$20\left(19^{\prime}\right)$. Hind tibiae wholly or partially red or orange (in old faded specimens yellowish);head and pronotum mottled21
$20^{\prime}$. Hind tibiae without any red or orange; head and pronotum usually uniformly dark ..... 23

21 (20). Rear margin of pronotum forming a right or obtuse angle; most specimens strikingly mottled with ivory and black; head in side view higher than pronotum; hind tibia banded with reddish, black, and yellowish

21'. Rear margin of pronotum forming an acute angle; mot ear margin of pronotum forming an acute angle; mottling usually not so striking, in yellowish and dark brown; hind tibia not necessarily as above . 22
$22\left(21^{\prime}\right)$. Hind tibia banded with reddish, black, and yellowish . . . . . Spharagemon bolli
$22^{\prime}$. Hind tibia orange or reddish, without black band . . . . . . Spharagemon collare
$23\left(20^{\prime}\right)$. Hind wing with a yellow, orange, or red proximal portion and a very distinct outer dark band; lateral surface of folded forewing unicolorous, withont broad light and dark areas 24
23'. Hind wing with a pale, greenish-yellow proximal region and withou* a distinct outer band; lateral surface of folded forewing with dark markings or with distinct light and dark areas

26
24 (23). Facial ridge between antennae (frons) narrowing slightly or not at all above the antennae, at narrowest point more than half its width between the antennae (Fig. 57); adult season 10 July - 28 September . . . . . . . . . . . . . . . . . 25
24'. Facial ridge between antennae narrowing sharply above the antennae, at narrowest point less than half its width between the antennae (Fig. 58); adult season 9 May - 2 August

Arphia sulphurea
25 (24). Median carina of pronotum high, sharp, its silhouette rounded in side view and lacking any notch, though sometimes slightly sinuate; proximal portion of hind wing yellow (never red).

Arphia xanthoptera
$25^{\prime}$. . Median carina of pronotum low, not very prominent, its silhouette in side view with a notch just before the halfway point; proximal portion of hind wing usually red (rarely yellow)

Arphia pseudonietana
$26\left(23^{\prime}\right)$. Hind margin of pronotum forming an acute angle (viewed from above); width of pronotum less than the length . . . . . . . . . . . . . Chortophage viridifasciata
26'. Hind margin of pronotum forming a right angle or an obtuse angle; width of pronotum equal to or greater than the length of the pronotum . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoptolophus sordidus
$27\left(17^{\prime}\right)$. Lateral surfaces of head, pronotum, and folded forewings with large, dark blotches; hind margin of pronotum forming an obtuse angle. . Camnula pellucida
27'. Lateral surfaces of head, pronotum, and forewings without conspicuous large dark blotches, hind margin of pronotum forming an acute angle
. Chortophaga viridifasciata
$28\left(15^{\prime}\right)$. Top of head in lateral view much higher than top of pronotum . . . . . . . . 29
$28^{\prime}$. Top of head in lateral view nearly level with top of pronotum . . . . . . . . . 30
29 (28). Proximal area of hind wing reddish orange . . . . . . . . . . . Psinidia fenestralis
29'. Proximal area of hind wing yellow . . . . . . . . . . . . . . Trachyrhachys kiowa
$30\left(28^{\prime}\right)$. Cells in tip of hind wing darkly pigmented . . . . . . . Trimerotropis verruculata
$30^{\prime}$. Cells in tip of hind wing clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
$31\left(30^{\prime}\right)$. Proximal half of inside of hind femur entirely dark; distal half with one or two narrow light bands

Trimerotropis huroniana
31'. Proximal quarter of inside of hind femur distinctly lighter than the rest of the proximal half; distal half with two wide light bands (wider than the dark bands)

Trimerotropis maritima interior

## DISCUSSION BY R.D.A. OF SOME PREVIOUSLY PUBLISHED DISTRIBUTION RECORDS

1. Although specimens of Neoconocephalus nebrascensis have been taken in Michigan only from Berrien County (Cantrall, 1968), I have on two occasions, and Dr. Charles F. Walker of the University of Michigan Museum of Zoology (pers. comm.) has on one occasion, heard single males singing in or near Ann Arbor, Washtenaw County, in August. The song is unmistakable and was clearly heard by me on both occasions. These are almost surely flying immigrants that have failed so far to establish breeding
colonies; one of the males I heard was singing on a pole below a street light in downtown Ann Arbor. If Berrien County is the nearest Michigan population, then these individuals seem most likely to be immigrants from Ohio or eastern Indiana populations.
2. Moore (1966) gives Genesee County as the southermost record for Okanagana rimosa in the eastern Lower Peninsula, but on 24 June 1967, I heard two males near my home ( 5530 Warren Road) eight miles northeast of Ann Arbor, Michigan, and collected one male, deposited in the the University of Michigan Museum of Zoology. On 6 June 1971 I heard two males in Superior Township, Washtenaw County, Michigan, on the southwest corner of the junction of Cherry Hill and Harris Roads. These isolated records may be owing to nymphs transported on nursery stock. A nursery is located about a mile east of the second locality, and several balled spruce trees had been set out near the first site two years earlier. Moore also lists a Berrien County record. The basis for this isolated record is not clear; if it is a song record, some doubt must exist, in the absence of an analyzable tape recording, because of the similarity between the song and this species and that of Diceroprocta vitripennis.
3. Moore (1966) lists Magicicada cassini on the basis of a single specimen "found amid several quarts of specimens collected 21 June 1936 in Ann Arbor (Brood X) by I. J. Cantrall." Cantrall collected these specimens in Eberwhite Woods. In 1970 this population appeared to be extinct, and the specimen identified as cassini by Moore is apparently lost from the collection at the UMMZ. Visits by Moore and me to numerous populations of M. septendecim around Ann Arbor during the 1970 emergence of Brood X gave no indication, by song listening or examination of specimens, that cassini is present in this locale. This record seems doubtful, and cassini may be absent from Michigan.
4. Tibicen chloromera is recorded by Moore (1966) from three countries in southeastern Michigan: Lenawee, Washtenaw, and Ingham. A single male is present in the UMMZ collection, labelled Washtenaw County, July 1962, H. Westers. This specimen, according to Moore (pers. comm.) was submitted in a student collection, taken from inside an automobile by a resident of the Whitmore Lake region, on the west side of the lake. This specimen seems old, and it has apparently been hollowed out by dermestids, and possibly relabelled. Though I have lived in Washtenaw County for 13 years, I have not heard this species in Michigan. On the basis of these data, I am inclined to doubt that breeding colonies exist in the state, at least north of Lenawee County.

## NEW MICHIGAN RECORDS

All of the following records are from trips made by R. D. Alexander.

1. On 28 August 1971, Warren Dunes State Park in Berrien County, Michigan, was visited in late afternoon before and just after sundown. In a small population of young white pines down the slope from larger pines (probably jack pines), males of Oecanthus pini were heard singing within a few minutes after arrival, sporadically in the daylight. One tree in which a male was heard was climbed, and the male was eventually located on the main trunk of the tree and collected. On 3 September this locale was revisited. Again, pini was heard within a few minutes in late afternoon, though sporadically until dark. After dark two males and two females were collected, and two other males and female seen and missed. A katydid species tentatively identified as Scudderia fasciata was abundant, one juvenile and two adults being collected before dark (juvenile later matured in laboratory). Where this specimens are actually conspecific with New York, Ohio, and Ontario specimens is problematical; but the presence of Oecanthus pini in all three locations along with pine-inhabiting Scudderia suggests that this is the case.
2. On 28 August 1971, a bog west of Coloma, Michigan, in Berrien County was visited after dark. A single large white pine on the slope along the west side of the bog had no $O$. pini singing in it during about 15 minutes of listening. A clump of tamarack trees out
in the bog had no $O$. laricis singing in it during about 20 minutes of listening. Eunemobius melodius was heard on the sphagnum in the bog and two males and a juvenile female (later natured in the laboratory) were collected. Except for Clare and Roscommon Counties in central Michigan, this was the only locality in which white pine and tamarack were examined in close proximity.
3. On 29 August 1971 between late afternoon and about 11 PM, a listening trip was made through the coniferous forests of Clare and Roscommon Counties, Michigan, extending approximately 25 miles from the first tamaracks a few miles north of the I-75-27 interchange north of Clare north along Old Route $2 \%$. The northward half of the trip took place largely before dark, the return trip all after dark. Listening speed was $20-30$ miles per hour, slow enough to distinguish small populations of Oecanthus nigricornis singing in alders 100 feet from the highway from $O$. quadripunctatus singing on low weeds nearer the highway, and slow enough to detect single individuals of $O$. quadripunctatus several times singing in herbaceous vegetation under conifers back inside the woods $50-100$ feet. No tree crickets were heard in white pine, spruce, tamarack, jack pine, red pine, hemlock, white cedar, or red cedar. Neither were tree crickets heard singing in the deciduous trees in these forests, only the herb-inhabiting species, $O$. nigricornis and $O$. quadripunctatus. Tamaracks were inspected in both bogs and on upland sites.
4. On 6 September 1971, four medium-sized tamaracks at the west end of Coldwater Lake in Branch County, Michigan were inspected in late afternoon on a cloudy warm day (5:30-6 PM) No O. laricis was heard or seen.
5. On 6 September 1971, ten medium-sized tamarack trees in the large bog along the east side of Highway I-69 in Calhoun County, Michigan, south of Battle Creek were inspected in late afternoon ( $6: 10-6: 30 \mathrm{PM}$ ) on a cloudy day after a rain. One male was heard, beginning about ten minutes after the tamaracks were approached. None was collected. The listening record seemed absolutely certain, as the cricket (1) was definitely traced to a high tamarack branch, (2) sang with the slow trill of $O$. laricis, clearly distinct from $O$. nigricornis in the area, and (3) interrupted its trill at intervals in the manner of both $O$. pini and $O$. laricis.

## ACKNOWLEDGMENTS

We thank Drs. Irving J. Cantrall, Theodore H. Hubbell, Thomas E. Moore, and Thomas J. Walker for criticisms of the manuscript, and we are particularly grateful to Martha B. Lackey for preparing the excellent illustrations.

## PHONOGRAPH RECORDS OF THE SONGS OF MICHIGAN INSECTS

Alexander, R. D. and D. J. Borror. 1956. The songs of insects. Calls of the Common Crickets, grashoppers, and cicadas of the eastern United States. Ithaca, N.Y.: Cornell Lab. Ornith., 40 species, 29 minutes.
Taxonomic work since 1956 has resulted in the following nomenclatural alternations for species represented on this record:

1) Acheta assimilis = Gryllus pennsylvanicus, 2) Nemobius fasciatus fasciatus= Allonemobius allardi, 3) Nemobius fasciatus tinnulus $=$ Allonemobius tinnulus, 4) Nemobius fasciatus socius = Allonemobius fasciatus, 5) Nemobius maculatus $=$ Allonemobius maculatus, 6) Nemobius carolinus $=$ Eunemobius carolinus, 7) Nemobius confusus $=$ Eunemobius confusus, 8) Oecanthus angustipennis $=$ Oecanthus niveus, 9) Oecanthus niveus $=$ Oecanthus fultoni, 10) Gryllotalpa hexadactyla $=$ Neocurtilla hexadactyla, 11) Neoconocephalus robustus crepitans = Neoconocephalus robustus.
Alexander, R. D. 1960. Demonstration record accompanying Lanyon, W. E. and W. N. Tavalga (eds). Animal Sounds and Communication AIBS Publ. 7. Five selections including repertoires of Gryllus pennsylvanicus, Magicicada septendecim and M. cassini, Microcentrum rhombifolium, Pterophylla camellifolia, and Amblycorypha rotundifolia and its undescribed southern sibling.

## RECENT PUBLICATIONS DEALING WITH MICHIGAN SINGING INSECTS

Alexander, R. D. 1957. The song relationships of four species of ground crickets (Orthoptera: Gryllidae: Nemobius) Ohio Journ. Sci. 57:153-163, 13 figs.

1967a. Acoustical communication in arthropods. Ann. Rev. Entomol. 12:495-526.

1967b. Singing insects: Four case histories in the study of animal species. Rand-McNally Patterns of Life Series: 1-86, 30 figs. -1968. Arthropods. In: Sebeok, T. A. Animal communication: Techniques of Study and results of research. Bloomington, Indiana Univ. Press. 167-216, 19 figs.

- and R. S. Bigelow. 1960. Allochronic speciation in field crickets, and a new species, Acheta veletis. Evolution 14:334-346, 5 figs.
- and G. H. Meral. 1967. Seasonal and daily chirping cycles in the northern spring and fall field crickets, Gryllus veletis and G. pennsylvanicus. Ohio Jour. Sci. 67:200-209, 6 figs.
and T. E. Moore. 1962. The evolutionary relationships of 17 -year and 13-year cicadas, and three new species (Homoptera, Cicadidae, Magicicada). Univ. Mich. Mus. Zool. Misc. Publ. 121:1-59, 10 figs. 2 tab.
T. E. Moore, and R. E. Woodruff. 1963. The evolutionary differentiation of stridulatory signals in beetles (Insecta: Coleoptera) Animal Behaviour 11:111-115.
_ and E. S. Thomas. 1959. Systematic and behavioral studies on the crickets of the Nemobius fasciatus group (Orthoptera: Gryllidae:Nemobiinae). Ann. Entomol. Soc. Amer. 52:591-605. 9 figs.
Cantrall, I. J. 1943. The ecology of the Orthoptera and Dermaptera of the George Reserve, Michigan Univ. Mich. Mus. Zool. Misc. Publ. 54:1-182, 3 figs., 10 plates, 16 tab., 2 maps.

1968. An annotated list of the Dermaptera, Dictyoptera, Phasmatoptera, and Orthoptera of Michigan. The Mich. Entomol. 1:299-346, 142 figs.
—1970. Appalachian orthopteron relicts in Michigan. Mich. Entomol. 3:84-89, 4 figs.
DuMortier, B. 1963. Chapters 11, 12, 21; pp. 277-373, 583-654. In: Busnel, R. (ed.) Acoustic behavior of animals. NY: Elsevier.
Hubbell, T. H. 1929. The distribution of the beach-grasshoppers Trimerotropis huroniana and Trimerotropis maritima interior in the Great Lakes Region (Orthoptera: Acrididae). Jour. N. Y. Entomol. Soc. 37:31-39, 1 plate.
Jansson, A. 1970. Sound production and associated behavior in Corixidae. Ph. D. Dissertation, Univ. of British Columbia.
Moore, T. E. 1961. Audiospectrographic analysis of sounds of Hemiptera and Homoptera. Ann. Entomol. Soc. Amer. 54:273-291.
1969. The cicadas of Michigan (Homoptera: Cicadidae). Papers Mich. Acad. Sci. Arts, and Letters 51:75-94, 23 figs.
Otte, D. 1971. A comparative study of communicative behavior in grasshoppers. Univ. Mich. Mus. Zool. Misc. Publ. 141:1-168, 20 figs., 22 tab.
Spooner, J. 1968. Pair forming acoustic systems of phaneropterine katydids (Orthoptera, Tettigoniidae). Animal Behaviour 16:197-212.
Thomas, E. S. and R. D. Alexander. 1957. Nemobius melodius, a new species of cricket from Ohio (Orthoptera, Gryllidae). Ohio. J. Sci. 57:148-152.
-_ 1962. Systematic and behavioral studies on the meadow grasshoppers of the Orchelimum concinnum group (Orthoptera: Tettigoniidae). Univ. Mich. Mus. Zool. Occ. Pap. 626: 1-31, 9 figs., 1 plate.
Vickery, V. R. and D. E. Johnstone. 1970. Generic status of some Nemobiinae (Orthoptera: Gryllidae) in northern North America. Ann. Entomol. Soc. Amer. 63:1740-1749.
Walker, T. J. 1962. The taxonomy and calling songs of United States tree crickets (Orthoptera: Gryllidae: Oecanthinae) I. The genus Neoxabea and the niveus and varicornis groups of the genus Oecanthus. Ann. Entomol. Soc. Amer. 55:303-322, 17 figs.
1970. Ibid II. The nigricornis group of the genus Oecanthus. Ann. Entomol. Soc. Amer. 56:772-789.
Wenner, A. M. 1968. Honeybees. In: Sebeok, T. A. Animal Communication. Bloomington: Indiana Univ. Press, pp. 217-243.
Wilcox, R. S. 1969. Acoustical behavior, sound-producing structures and biology of Buenoa (Hemiptera, Notonectidae). Ph. D. Dissertation, The Univ. of Mich. vi +271 pp., 43 figs.

## A lexander et al.: The Singing Insects of M ichigan




Figs. 5-9 Some distinguishing characteristics of cicadas: Fig. 5, side view of Okanagana canadensis showing location of timbal; Fig. 6, timbal of O. canadensis; Fig. 7, timbal of O. rimosa; Fig. 8, forewing of Tibicen linnei; Fig. 9, forewing of T. canicularis.


Figs. 10-13 Dorsal views of male examples of four cricket species representing four Michigan genera in different subfamilies: Fig. 10, Neocurtilla hexadactyla (Gryllotalpinae); Fig. 11, Anaxipha exigua (Trigonidiinae) (inset is side view of tarsus showing depressed middle segment with adhesive pad and brush); Fig. 12, Allonemobius allardi (Nemobiinae); Fig. 13, Gryllus pennsylvanicus (Gryllinae).


Figs. 14-23 Tree crickets: Fig. 14, dorsal view of Oecanthus nigricornis; Figs. 15-23: ventral views of basal antennal segments of Oecanthus species: Fig. 15, 0. fultoni; Fig. 16, O. exclamationis; Fig. 17, O. niveus; Figs. 18-19, $O$. nigricornis; Fig. 20, O. laricis; Fig. 21, O. pini; Fig. 22, O. argentinus; Fig. 23, o. quadripunctatus.

## Alexander et al.: The Singing Insects of Michigan



Figs. 24-27 Side views of male representatives of true and false katydids: Fig. 24, Pterophylla camellifolia; Fig. 25, Microcentrum rhombifolium; Fig. 26, Amblycorypha oblongifolia; Fig. 27, A. rotundifolia.


Figs. 28-36 False katydids. Figs. 28-31, side views of male respresentatives of four Scudderia species: Fig. 28, S. septentrionalis; Fig. 29, S. furcata; Fig. 30, S. pistillata; Fig. 31, S. curvicauda; Figs. 32-36, dorsal views of dorsal processes of male terminalia: Fig. 32, S. septentrionalis; Fig. 33, S. texensis; Fig. 34, S. furcata; Fig. 35, S. pistillata; Fig. 36, S. curvicauda.


Figs. 37-40 Side views of male representatives of katydids: Fig. 37, Atlanticus testaceus; Fig. 38, Orchelimum vulgare; Fig. 39, Conocephalus brevipennis; Fig. 40, C. fasciatus.


Figs. 41-47 Dorsal views of cerci of meadow katydids: Fig. 41-44, right cerci of Orchelimum species: Fig. 41, O. nigripes: Fig. 42, O. vulgare; Fig. 43, 0. gladiator; Fig. 44, O. volantum. Figs. 45-47, left cerci of Conocephalus species: Fig. 45, C. nigropleurum; Fig. 46, C. fasciatus; Fig. 47, C. strictus.



Figs. 53-54 Side views of two grasshoppers respresening different subfamilies: Fig. 53, Chortophaga viridifasciata (Oedipodinae); Fig. 54, Chorthippus curtipennis (Gomphocerinae).

## Alexander et al.: The Singing Insects of M ichigan



55


56
5 mm

Figs. 55-56 Dorsal views of pronota of Orphulella species showing key difference in shapes of lateral carinae: Fig. 55, O. speciosa; Fig. 56, O. pelidna.


Figs. 57-58 Faces of Arphia species, showing key differences in shape of facial ridge between antennae: Fig. 57, A. xanthoptera; Fig. 58, A. sulphurea.


[^0]:    ${ }^{1}$ Museum of Zoology and Department of Zoology, The University of Michigan, Ann Arbor, Michigan 48104
    ${ }^{2}$ Current address: Department of Zoology, The University of Texas, Austin, Texas 78712

[^1]:    ${ }^{3}$ This species is the $N$. crepitans (Scudder) of Cantrall (1968) and other authors. Two species for which these names have been variously used overlap from southern Ohio to the Atlantic Coast (Alexander, unpubl.), but the types of robustus (Cape Cod, Mass.) and crepitans (Texas, Nebraska) are evidently both from outside the range of the eastern, unnamed species (Walker et al, in prep).

[^2]:    ${ }^{4}$ Attempts to distinguish the various subfamilies of Acrididae have been controversial and inconclusive. Some authors would place Metaleptea and Stethophyma in the Acridinae. Jago (1971: Proc. Acad. Nat. Sci. Phila. 123) is the most recent author in the series; Uvarov (1966: Grasshoppers and Locusts, Cambridge Univ. Press) lists representative genera in the various subfamilies and most of the recent publications.

[^3]:    7

[^4]:    ${ }^{5}$ Some bush katydids change their songs under conditions not yet understood, and on occasion one may make a noise very similar to that of another species. These variations are associated with the fact that the females make soft noises back at the males and the males go to the females rather than vice versa (Spooner, 1968).

[^5]:    8

[^6]:    .Orchelimum campestre

