Estimating the Number of Eggs per Egg Mass of the Forest Tent Caterpillar, Malacosoma Disstria (Lepidoptera: Lasiocampidae)

J. A. Witter
University of Minnesota
H. M. Kulman
University of Minnesota

Follow this and additional works at: https://scholar.valpo.edu/tgle
Part of the Entomology Commons

Recommended Citation

Witter, J. A. and Kulman, H. M. 2017. "Estimating the Number of Eggs per Egg Mass of the Forest Tent Caterpillar, Malacosoma Disstria (Lepidoptera: Lasiocampidae)," The Great Lakes Entomologist, vol 2 (2) Available at: https://scholar.valpo.edu/tgle/vol2/iss2/3

This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

estimating the number of eggs per egg MASS OF THE FOREST TENT CATERPILLAR, MALACOSOMA DISSTRIA (LEPIDOPTERA: LASIOCAMPIDAE)'

J. A. Witter and H. M. Kulman
Department of Entomology, Fisheries, and Wildlife
University of Minnesota
St. Paul, Minnesota 55101

Abstract

Calculation of the number of eggs per egg mass of the forest tent caterpillar, Malacosoma disstria Hibner, is required in survey and population studies. Eggs are usually laid in cylindrical masses around twigs of trees. Hodson (1941) determined the number of eggs in egg masses of the forest tent caterpillar by counting the number of eggs around the circumference and multiplying by the number of rows. This technique is apparently reliable for comparative counts, but because the eggs are frequently laid in oblique rather than straight rows on the twig, counts of both length and circumference are subject to error. In addition, adjacent rows are often offset to form a honeycomb pattern which leads to inaccuracies in length and circumference counts. Because of these shortcomings, we developed a quicker and more accurate method not subject to the effects of oblique or honeycomb egg patterns.

METHOD

Eighty egg masses of the forest tent caterpillar were chosen at random from $2,000 \mathrm{egg}$ masses and the foamy covering of the egg mass (spumaline) was brushed off with a tooth brush. Two variables, length and diameter, were measured with a caliper to the nearest .1 mm . Two to three additional measurements were made and averaged if either length or diameter was somewhat irregular. The number of eggs per unit area was obtained by counting the number of eggs enclosed in a square which was drawn on a piece of cellophane and wrapped around the egg mass. Eggs on the line were alternately included or excluded. A $20 \mathrm{sq} . \mathrm{mm}$. area (4.47 mm . on a side) was used because it gave a better estimate of the number of eggs than unit areas of other sizes for the time invested.
The total number of eggs per mass was calcuiated by using the formula, $N=\pi d l n$, when $\dot{N}=$ number of eggs per mass, $d=$ diameter of egg mass, $l=$ length of egg mass, and $n=$ number of eggs per sq. mm . To verify the above results, the total number of eggs per mass was counted.

CONCLUSION

The mean and standard error of the mean for the number of eggs per mass for M. disstria was $186.84 \pm .4 .95$ and 194.04 ± 5.10, respectively, for the calculated and total count methods. A correlation coefficient of 0.89 was calculated and the relationship between the 2 methods was significant at the 99% level.
Two counts of n were taken at random to determine how much variation was due to this variable. A correlation coefficient of 0.94 was obtained. The difference of the 2 correlation coefficients when comparing 2 values of n to one value was $0.05(0.94-0.89)$. Since this was only a minute increase in accuracy, önly one sample of n is required for each egg mass.
The use of the formula to determine the number of eggs per mass of the forest tent

[^0]TABLES 1A-1G. Tables of number of eggs per egg mass of the forest tent caterpillar based on the length and diameter of the egg mass for masses having 1.3-1.9 eggs per sq. mm.

TADLE 1A

	(4,3)	(4.6)	(4,7)	(4.9)	$\begin{aligned} & \text { IAMET } \\ & (4,9) \end{aligned}$	$\begin{aligned} & \text { R }(\mathrm{Mm} \\ & i 5,0) \end{aligned}$	(3.1)	15.21	(5.3)	15.4.	(5.5)
LENGTH ${ }_{\text {(NH) }}$											
(4.5)	33	85	86	88	90	92	94	96	97	99	101
(4.7)	46	88	90	92	94	96	98	100	102	104	106
(4.91)	90	92	94	96	98	100	102	104	106	108	110
(5.1)	94	96	98	100	102	104	106	108	110	112	115
(5.3)	97	100	102	104	106	108	110	113	115	117	119
(5.5)	101	103	108	108	110°	112	115	117	119	121	124
(5.7)	105	107	109	112	114	116	119	121	123	126	128
15.91	108	111	113	116	118	120	123	125	128	130	133
(6.1)	112	115	117	120	122	125	127	130	132	135	137
(6.3)	116	118	121	124	126	129	131	134	136	139	142
(6.51	119	122	125	127	130	133	135	138	141	143	146
(6.7)	123	126	129	$13]$	134	137	140	142	145	148	150
16.91	127	130	132	135	138	141	144	147	149	152	155
(1.1)	130	133	136	139	142	145	148	151	154	157	159
(7.3)	134	137	140	143	146	149	152	155	158	16.1	164
(7.5)	138	141	144	147	150	153	156	159	162	165	168
(7.7)	142	145	148	151	154	157	160	164	161	170	173
(7.9)	145	148	152	155	158	161	165	168	171	174	177
(8.1)	149	152	153	159	162	163	164	172	173	179	182
(8.3)	153	156	159	163	160	164	173	176	180	183	186
(8.5)	150	160	163	167	170	174	177	181	184	187	191
18.71	160	163	167	171	174	178	181	185	188	192	195
(8.9)	164	167	171	174	178	182	185	189	193	196	200
19.11	167	171	175	178	182	186	190	193	197	201	204
(9.3)	171	175	178	i82	186	190	194	198	201	205	209
(9.5)	175	178	182	186	190	194	198	202	206	210	213
(9.7)	178	182	186	190	194	198	202	206	210	214	218
(9.9)	182	188	190	194	198	202	206	210	214	218	222
(10.1)	180	190	194	198	202	206	210	214	219	223	227
(10.3)	189	194	198	202	200	210	213	219	223	227	231
(10.5)	193	197	202	208	210	214	219	223	227	232	236
(10.7)	197	201	205	210	214	218	223	227	232	236	240
(10.9)	200	205	209	214	218	223	227	231	236	240	245
(11.1)	204	209	213	218	222	227	231	236	240	245	249
(11.3)	208	212	217	222	226	231	235	240	245	249	254
111.51	211	210	221	225	230	235	240	244	249	254	258
111.7)	215	220	225	229	234	239	244	248	253	258	263
(11.71	219	224	228	233	238	243	248	253	258	262	267
(12.1)	222	227	232	237	242	247	252	257	262	267	272

	DTAMEIER (Mm)										
$\begin{aligned} & \text { LENGTH } \\ & \text { (MM) } \end{aligned}$											
(4.5)	103	105	107	108	110	112	114	116	118	129	121
14.71	107	109	111	113	115	117	119	121	123	125	127
(4.9)	112	114	116	118	120	122	124	126	128	130	132
(5.1)	117	119	121	123	125	127	129	131	133	135	137
(5.3)	121	123	126	128	110	132	134	136	139	141	143
(5.5)	126	128	130	133	135	137	139	142	144	146	148
15.71	130	133	135	137	140	142	144	147	149	151	154
15.91	135	137	140	142	145	147	149	152	154	157	159
(6.1)	140	142	144	147	149	152	154	157	159	162	164
(6.3)	144	147	149	152	154	157	160	162	165	167	170
(6.5)	149	151	154	157	159	162	165	167	170	173	175
18.71	153	156	159	161	164	167	170	172	175	178	181
(6.91	158	161	163	166	169	112	175	178	180	183	186
17.11	162	165	168	171	174	171	180	183	186	188	191
(7.3)	167	170	173	176	179	182	185	188	191	194	197
(7.51	172	175	178	181	184	187	190	193	196	199	202
(7.71	176	179	182	186	189	192	195	198	201	204	208
(7.9)	181	184	187	190	194	197	200	203	206	210	213
18.11	185	189	192	195	198	202	205	208	212	215	218
(0.3)	190	193	197	200	203	207	210	214	217	220	224
(0.5)	194	198	201	205	208	212	215	219	222	226	229
(0.7)	199	203	206	210	213	217	220	224	227	231	235
(8.9)	204	201	211	214	218	222	225	229	233	236	240
(9.1)	208	212	216	219	223	227	230	234	238	242	245
(9.3)	213	210	220	224	228	232	235	239	243 248	247 252	251 256
(9.5)	217	221	225	229	233	237	241	244	248	252	256
19.71	222	226	230	234	230	242	246	250	254	258	261
18.91	226	230	235	239	243	247	251	255	259	263	267
(10.1)	231	235	239	243	247	252	256	260	264	268	272
(10.3)	236	240	244	248	252	257	261	265	269	273	278
(10.5)	240	244	249	253	257	262	266	270	274	279	283
(10.7)	245	249	253	258	262	267	271	275	280	284	288
(10.9)	249	254	258	263	267	272	276	280	285 290	289	294
(11.1)	254	258	263	267	272	277 282	281	286	290	295 300	299 305
(11.3)	258	263	268 272	272	277 282	282 286	286	291	301	305	310
(11.5)	263	268	272	277	282	286	291	296 301	308	311	315
(11.7)	268	272 277	277 282	282 287	287 292	291	301	306	311	316	321
(12.1i	277	282	287	292	297	301	306	311	316	321	328

TABLE 18
number of egis per souare militmetere l.4
DIAMETER (MM)

	DIAMETER (MM)										
	(5.6)	(5.7)	(5.8)	(5.9)	(6.0)	(6.1)	(6.2)	(6.3)	(6.4)	(6.5)	16.61
$\begin{gathered} \text { LENGTH } \\ \text { [MM } \end{gathered}$											
$(4.51$	111	113	115	117	119	121	123	125	127	129	131
(4.7)	116	118	120	122	124	126	128	130	132	134	136
14.91	121	123	125	127	129	131	134	136	136	140	142
(5.1)	126	128	130	132	135	137	139	141	144	146	148
(5.3)	131	133	135	138	140	142	145	147	149	152	154
15.51	135	138	140	143	145	148	150	152	155	157	160
(5.7)	140	143	145	148	150	153	155	158	160	163	165
15.91	145	148	151	153	156	158	161	163	160	169	171
16.11	150	153	156	158	161	164	166	189	172	174	177
(6.3.31	155	158	161	163	106	169	172	175	177	180	183
16.51	160	163	168	169	172	174	177	100	183	186	189
(6.7)	165	188	171	174	177	180	183	186	189	192	194
16.91	170	173	176	179	182	185	188	191	194	197	200
17.11	175	178	181	184	187	190	194	197	200	203	206
17.31	180	183	188	189	193	196	199	202	205	209	212
17.51	185	188	191	195	198	201	205	208	211	214	218
17.71	190	193	196	200	203	207	210	213	217	220	224
17.91	195	198	202	205	208	212	215	219	222	226	229
(8.1)	200	203	207	210	214	217	221	224	228	232	235
(8.3)	204	208	212	215	219	223	226	230	234	237	241
$(8.51$	209	213	217	221	224	228	232	236	239	243	247
(8.7)	214	218	222	226	230	233	237	241	245	249	253
18.91	219	223	227	231	235	239	243	247	251	254	258
(9.1)	224	228	232	236	240	244	248	252	256	260	284
19.31	229	233	237	241	245	250	254	258	262	200	270
19.51	234	238	242	247	251	255	259	263	267	272	276
(9.7)	239	243	247	252	256	260	265	269	273	277	282
19.91	244	248	253	257	261	266	270	274	279	283	287
(10.1)	249	253	258	262	267	271	275	280	284	289	293
110.3)	254	258	263	267	272	276	281	285	290	294	299
(10.5)	259	263	268	272	277	282	286	291	296	300	305
110.71	264	268	273	278	282	287	292	296	301	306	311
(10.9)	268	273	278	283	288	292	297	302	307	312	316
(11.1)	273	278	283	288	293	298	303	308	312	317	322
(11.3)	278	203	288	293	298	303	308	313	318	323	328
(11.5)	283	280	293	298	303	309	314	319	324	329	334
111.71	288	293	298	304	309	314	319	324	329	334	340
111.91	293	298	304	309	314	319	325	330	335	340	345
(12.1)	298	303	309	314	319	325	330	335	341	346	351

$\begin{gathered} \text { LENSTH } \\ (M H) \end{gathered}$											
(4.51	95	94	100	102	104	106	108	110	112	115	117
(4.7)	100	102	104	106	109	111	113	115	117	120	122
(4.91	104	106	109.	111	113	115	118	120	122	125	127
(5.11)	108	111	113	115	118	120	123	125	127	130	132
(5.3)	112	115	117	120	122	125	127	130	132	135	137
(5.5)	117	119	122	124	127	130	132	135	137	140	143
(5.71	121	124	126	129	132	134	137	140	142	145	148
(5.9)	125	128	131	133	136	139	142	145	147	150	153
(6.11	129	132	135	138	141	144	147	149	152	155	158
18.31	134	137	140	143	145	148	151	154	157	1.60	183
(6.51	138	141	144	147	150	153	156	159	162	165	168
(6.71	142	145	148	152	155	158	161	164	167	170	174
(6.91)	146	150	153	156	159	163	166	169	172	176	179
(7.1)	151	154	157	it1	164	167	171	174	177	181	184
(7.3)	155	158	162	165	169	172	175	179	182	186	189
(7.51	159	163	166	170	173	177	180	184	187	191	194
(7.71	163	167	171	174	178	181	185	189	192	196	200
(7.91)	168	171	175	179	182	186	190	194	197	201	205
(8.11	172	176	179	183	187	191	195	198	202	206	210
(8.3)	176	180	184	188	192	196	199	203	207	211	215
(8.5)	180	184	188	192	196	200	204	208	212	216	220
18.71	184	189	193	197	201	205	209	213	217	221	225
18.91	189	193	197	201	206	210	214	218	222	226	231
(9.1)	193	197	202	206	210	214	219	223	227	232	236
(9.3)	197	202	206	210	215	219	224	228	232	237	241
(9.5)	201	206	210	215	219	224	228	233	237	242	246
19.71	206	210	215	219	224	229	233	238	242	247	251
(9.9)	210	215	219	224	229	233	238	243	247	252	257
(10.1)	214	219	224	228	233	238	243	247	252	257	262
(10.3)	218	223	228	233	238	243	248	252	257	262	267
(10.5)	223	228	233	238	242	247	252	257	262	267	272
(10.7)	227	232	237	242	247	252	257	262	267	272	277
(10.9)	231	236	241	247	252	257	262	267	272	277	283
(11.1)	235	241	246	251	256	2 C 2	267	272	277	282	288
(11.3)	240	245	250	256	261	266	272	277	282	288	293
(11.5)	244	249	255	260	286	271	276	282	287	293	298
(11.7)	248	254	259	265	270	276	281	287	292	298	303
(11.9)	252	258	264	269	275	280	286	292	297	303	308
(12.1)	257	262	268	274	279	285	291	297	302	308	314
	OIAMETER (MM)										
	(5.6)	(5.7)	15.81	(5.9)	(6.0)	16.11	(6.2)	16.31	(6.4)	(6.5)	16.61
$\begin{aligned} & \text { LENGTH } \\ & \text { (MM) } \end{aligned}$											
(4.51	119	121	123	125	127	129	131	134	136	138	140
(4.7)	124	126	128	131	133	135	137	140	142	144	146
(4.9)	129	132	134	136	139	141	143	145	148	150	152
(5.1)	135	137	139	142	144	147	149	151	154	156	159
(5.31	140	142	145	147	150	152	155	157	160	162	165
(5.51	145	148	150	153	156	158	161	163	168	168	171
(5.7)	150	153	156	158	161	164	167	169	172	175	177
$(5.91$	156	158	161	164	167	170	172	175	178	181	184
(6.11	161	164	167	170	172	175	178	181	184	187	190
16.31	166	169	172	175	178	181	184	187	190	193	196
$(6.51$	172	175	178	181	184	187	190	193	196	199	202
(6.71	177	180	183	186	189	193	196	199	202	205	208
$(6.91$	182	185	189	192	195	198	202	205	208	211	215
(7.1)	187	191	194	197	201	204	207	211	214	217	221
(7.3)	193	196	200	203	206	210	213	217	220	224	227
(7.51	198	201	205	209	212	216	219	223	226	230	233
(7.7)	203	207	210	214	218	221	225	229	232	236	239
(7.91	208	212	216	220	223	227	231	235	238	242	246
(8.1)	214	218	221	225	229	233	237	240	244	248	252
(8.3)	219	223	227	231	235	239	242	246	250	254	258
18.51	224	228	232	236	240	244	248	252	256	260	264
(8.7)	230	234	238	242	246	250	254	258	262	286	271
18.91	235	239	243	247	252	256	260	264	268	273	277
19.11	240	244	249	253	257	262	266	270	274	279	283
19.31	245	250	254	259	263	267	272	276	280	285	289
(9.51	251	255	260	264	269	273	278	282	287	291	295
$(9.71$	256	261	265	270	274	279	283	288	293	297	302
(9.9)	261	266	27.	275	280	285	289	294	299	303	308
(10.1)	267	271	276	281	286	290	295	300	305	309	314
(10.3)	272	217	282	286	291	296	301	306	311	315	320
110.51	277	282	287	292	297 303	302 308	307 313	312 318 3	317 323	322	327 333
(10.7)	202	287	292	297	303	308	313	318	323 329	328	333 339
(10.9)	288	293	298	303	308	313 319	318 324	324	329 335	334 340	339 345
(11.1)	293	298	303	309	314	319	324	330 335	335 341	340	345
(11.3) (111.5)	298 303	304 309	309	314 320	319 325	325 331	330 336	335 341	341 347	348	351 350
(111.7)	309	314	320	325	331	336	342	347	353	358	364
(11.91	314	320	325	331	336	342	346	353	359	365	370
112-14.	319	325	331	336	342	344	354	399	365	371	376

TMLE TO NUMBER DF EGGS PER SQUARE MILLIMETER= 1.6
DIAMETER (MM)
$(4.5)(4.6)(4.7)(4.8)(4.9)(5.0)(5.1)(5.2)(5.3)(5.4)(5.5)$

$\begin{aligned} & \text { LENGTH } \\ & \text { (MH) } \end{aligned}$			-		(4.9)						
(4.5)	102	104	106	109	111	113	115	118	120	122	124
(4.4)	106	109	111	113	116	118	120	123	125	128	130
14.91	111	113	116	118	121	123	126	128	131	133	135
(5.1)	115	118	120	123	126	128	131	133	136	138	141
(5.3)	120	123	125	128	131	133	136	139	141	144	147
(5.5)	124	127	130	133	135	138	141	144	147	149	152
(5.7)	129	132	135	138	140	143	146	149	152	155	158
(5.9)	133	136	139	142	145	148	151	154	157	160	163
(6.1)	138	141	144	147	150	153	156	159	163	166	169
(6.3)	143	146	149	152	155	158	162	165	168	171	174
(6.5)	147	150	154	157	160	163	167	170	173	176	180
16.71	152	155	158	162	165	168	172	175	178	182	185
(6.9)	156	160	163	166	170	173	177	180	184	187	191
(7.1)	161	164	168	171	175	178	182	186	189	193	196
(7.31	165	169	172	176	180	183	187	191	194	198	202
(7.5)	170	173	177	181	185	188	192	196	200	204	207
(7.71	174	178	182	186	190	194	197	201	205	209	213
(7.9)	179	183	187	191	195	199	203	206	210	214	218
(8, 1)	183	167	191	195	200	204	208	212	216	220	224
[8.3]	188	192	196	200	204	209	213	217	221	225	229
(8.51	192	197	201	205	209	214	218	222	226	231	235
(8.7)	197	201	206	210	214	219	223	227	232	236	241
18.91	201	206	210	215	219	224	228	233	237	242	246
(9.1)	206	210	215	220	224	229	233	238	242	247	252
(9.3)	210	215	220	224	229	236	238	243	248	252	257
(9.5)	215	220	224	229	234	239	244	248	253	258	263
(9.7)	219	224	229	234	239	244	249	254	258	263	268
(9.9)	224	229	234	239	244	249	254	259	264	269	274
110.1)	228	234	239	244	249	254	259	264	269	274	279
(10.3)	233	238	243	249	254	259	264	269	274	280	285
(10.5)	230	243	248	253	259	264	269	274	280	285	290
(10.7)	242	247	253	258	264	269	274	280	285	290	296
(10.9)	247	252	258	263	268	274	279	285	290	296	301
(11.1)	251	257	262	268	273	279	285	290	296	301	307
(11.3)	256	261	267	273	278	284	290	295	301	307	112
(11.5)	260	266	272	277	283	289	295	301	306	312	318
(11.7)	265	271	276	282	288	294	300	306	312	318	323
(11.9)	269	275	281	287	293	299	305	311	317	323	329
112.11	274	280	286	292	298	304	310	316	322	328	335

OIAMETER (MM)

LENGTH (MM)	5.6)	-1									
(4.5)	127	129	131	133	136	138	140	143	145	147	149
(4.7)	132	135	137	139	142	144	146	149	151	154	156
(4.9)	138	140	143	145	148	150	153	155	158	160	163
(5.1)	144	146	149	151	154	156	159	162	164	167	169
(5.3)	149	152	155	157	160	163	165	168	171	173	176
(5.5)	155	158	180	163	166	169	171	174	177	180	182
(5.7)	160	163	166	169	172	175	178	181	183	186	189
(5.9)	166	169	172	175	178	181	184	187	190	193	196
(6.1)	172	175	178	181	184	187	190	193	196	199	202
(6.3)	177	181	184	187	190	193	196	200	203	206	209
(6.5)	183	186	190	193	196	199	203	206	209	212	216
(6.7)	189	192	195	199	202	205	209	212	216	219	222
(6.91	194	198	201	205	208	212	215	219	222	225	229
(7.1)	200	203	207	211	214	218	221	225	228	232	236
(7.3)	205	209	213	216	220	224	228	231	235	239	242
(7.5)	211	215	219	222	226	230	234	238	241	245	249
(7.7)	217	221	224	228	232	236	240	244	248	252	255
(7.9)	222	220	230	234	238	242	246	250	254	258	262
(8.1)	228	232	236	240	244	248	252	257	261	265	269
(8.3)	234	238	242	246	250	254	259	263	267	271	275
(8.5)	239	244	248	252	256	261	265	269	273	278	282
(8.7)	245	249	254	258	262	267	271	276	280	284	289
(8.9)	251	255	259	264	268	273	277	282	286	291	295
(9.11)	256	261	265	270	274	279	284	288	293	297	302
19.31	262	266	271	276	280	285	290	295	299	304	309
(9.5)	267	272	277	282	287	291	296	301	306	310	315
(9.7)	273	278	283	288	293	297	302	307	312	317	322
19.91	279	284	289	294	299	304	309	314	318	323	328
(10.1)	284	289	294	300	305	310	315	320	325	330	335
(10.3)	290	295	300	305	311	316	321	326	331	337	342
110.51	296	301	306	311	317	322	327	333	338	343	348
(10.7)	301	307	312	317	323	328	333	339	344	350	355
110.91	307	312	318	323	329	334	340	345	351	356	362
(11.1)	312	318	324	329	335	340	346	352	357	363	368
(11.3)	318	324	329	335	341	346	352	358	364	369	375
(11.5)	324	329	335	341	347	353	358	364	370	376	382
(11.7)	329	335	341	347	353	359	365	371	376	382	388
(11.9)	335	341	347	353	359	365	371	377	383	389	395
$(12+1)$	341	347	353	359	365	371	377	383	389	395	401

number of eges per square millinetere l. 7

	14.5)	4.6)	(4.7)	14.81	$\begin{aligned} & 1 \text { AME } \\ & 14.9) \end{aligned}$	$\begin{aligned} & \text { 1NH } \\ & \text { (5.0) } \end{aligned}$	(3.1)	(5.2)	(5.3)	5,4)	(5.5)
$\begin{aligned} & \text { LENG TH } \\ & \text { (MM) } \end{aligned}$											
$(4.51$	108	111	113	115	118	120	123	125	127	130	132
14.71	113	115	118	120	123	126	128	131	133	136	138
(4.9)	118	120	123	126	128	131	133	136	139	141	144
15.11	123	125	128	131	133	136	139	142	144	147	150
$(5.31$	127	130	133	136	139	142	144	147	150	153	156
$(5.51$	132	135	138	141	144	147	150	153	156	159	162
(5.7)	137	140	143	146	149	152	155	158	161	164	167
(5.9)	142	145	148	151	154	158	161	164	167	170	173
(6.1)	147	150	153	156	160	163	166	169	173	176	179
(6.3)	151	155	158	162	165	168	172	175	178	182	185
6.5)	156	160	163	167	170	174	171	181	184	187	191
(6.7)	161	165	168	172	175	179	182	186	190	193	197
6.91	166	170	173	171	181	184	188	192	195	199	203
7.1)	171	174	178	182	186	190	193	197	201	205	209
(7.3)	175	179	183	187	191	195	199	203	207	211	214
7.51	180	184	188	192	196	200	204	208	212	216	220
7.7)	185	189	193	197	202	206	210	214	218	222	226
(17.9)	190	194	198	203	207	211	215	219	224	228	232
8.11	195	199	203	208	212	216	221	225	229	234	238
18.31	199	204	208	213	217	222	226	231	235	239	244
8.51	204	209	213	218	222	227	232	236	241	245	250
8.71	209	214	218	223	228	232	237	242	246	251	256
$(8.91$	214	219	223	228	233	238	242	247	252	257	261
19.11	219	224	228	233	238	243	248	253	258	262	267
19.31	224	228	233	238	243	248	253	258	263	268	273
19.51	228	233	238	244	249	254	259	264	269	274	279
(9.7)	233	238	243	249	254	259	264	269	275	280	285
19.91	238	243	249	254	259	264	270	215	280	286	291
(10.1)	243	248	254	259	264	270	275	280	286	291	297
(10.3)	248	253	259	264	270	275	281	286	292	297	303
(10.5)	252	258	264	269	275	280	286	292	297	303	308
(10.7)	257	263	269	274	280	286	291	297	303	309	314
\{10.9)	262	268	274	279	285	291	297	303	309	314	320
(11.1)	267	273	279	285	290	296	302	308	314	320	326
(11.3)	272	278	284	290	296	302	308	314	320	326	332
(11.5)	276	283	289	295	301	307	313	319	326	332	338
(11.7)	281	287	294	300	306	312	319	325	331	337	344
111.91	286	292	299	305	311	318	324	330	337	143	350
112.1)	291	297	304	310	317	323	330	336	342	349	355

	14.51	(4.6)	(4.7)	(4.8)	IAMETE 14.91	$\begin{aligned} & \text { (} \mathrm{Mm} \\ & (5.0) \end{aligned}$	(5.1)	(3.2)	(5.3)	(5.4)	15.5)
$\begin{gathered} \text { LENGTH } \\ \text { (MH) } \end{gathered}$											
(4.5)	115	117	120	122	125	127	130	132	135	137	140
$(4.71$	120	122	125	128	130	133	136	138	141	144	146
(4.9)	125	127	130	133	136	139	141	144	147	150	152
15.11	130	133	136	138	141	144	147	150	153	158	159
(5.31	135	138	141	144	147	150	153	156	159	162	165
15.51	140	143	146	149	152	156	159	162	165	168	171
(5.7)	145	148	151	155	158	161	164	168	171	174	177
(5.91)	150	153	157	160	163	167	170	173	177	180	184
18.11	155	159	162	166	169	172	176	179	183	186	190
(6.3)	160	164	167	171	175	178	182	185	189	192	196
(6.51	165	169	173	176	180	184	187	191	195	198	202
(6.7)	170	174	170	182	186	189	193	197	201	205	208
(6.9)	176	179	163	187	191	195	199	203	207	211	215
(7.1)	181	185	189	193	197	201	205	209	213	217	221
(7.3)	186	190	194	198	202	206	211	215	219	223	227
17.51	191	195	199	204	208	212	216	221	225	229	233
(7.7)	196	200	205	209	213	218	222	226	231	235	239
17.91	201	205	210	214	219	223	228	232	237	241	246
(8.1)	206	211	215	220	224	229	234	238	243	247	252
(8.3)	211	216	221	223	230	235	239	244	249	253	258
(8.5)	216	221	226	231	236	240	245	250	255	260	264
18.71	221	226	231	236	241	246	251	256	261	266	271
(8.91)	226	232	237	242	241	252	257	262	267	272	271
(9.1)	232	237	242	247	252	257	262	268	273	278	283
(9.3)	237	242	247	252	258	263	268	273	279	28.4	289
19.51	242	247	252	258	263	269	274	279	285	290	295
(9.7)	247	252	258	263	269	274	280	285	291	296	302
(9.9)	252	258	263	269	274	280	286	291	297	302	308
(10.1)	257	263	268	274	280	286	291	297	303	308	314
(10.3)	262	268	274	280	285	291	297	303	309	315	320
(10.5)	267	273	279	285	291	297	303	309	315	321	327
(10.7)	272	278	284	290	296	303	309	315	321	327	333
110.91	277	284	290	296	302	308	314	321	327	333	339
(11.1)	282	289	295	301	308	314	320	326	333	339	345
(11.3)	286	294	300	307	313	319	326	332	339	345	351
(11.5)	293	299	306	312	319	325	332	338	345	351	358
(11.7)	298	304	311	318	324	331	337	344	351	357	364
(11.9)	303	310	316	323	330	336	343	350	357	363	370
(12.1)	308	315	322	326	335	342	349	356	363	369	376

DIAMETER (MM)

DIAMETER (MM)											
	5.61	. 71	. 8	5.9	6.0	6.11	6.2	6.3	6.4	\%.5	6.6)
LENGTH (MM)											
(4.5)	143	145	148	150	153	155	158	160	163	165	168
(4.7)	149	151	154	157	159	162	165	167	170	173	175
(4.91)	155	158	161	163	166	169	172	175	177	180	183
(5.11)	162	164	167	170	173	176	179	182	185	187	190
(5.3)	168	171	174	177	180	183	186	189	192	195	198
(5.51	174	177	180	184	187	190	193	196	199	202	205
(5.71	181	184	187	190	193	197	200	203	206	210	213
15.91	187	190	194	197	200	204	207	210	214	217	220
16.11	193	197	200	204	207	210	214	217	221	224	228
(6.3)	200	203	207	210	214	217	221	224	228	232	235
$(8.51$	206	210	213	217	221	224	228	232	235	239	243
$(6.71$	212	216	220	224	227	231	235	239	242	246	250
16.91	219	222	226	230	234	238	242	246	250	254	258
17.11	225	229	233	237	241	245	249	253	257	261	265
17.31	231	235	239	244	248	252	256	260	264	268	272
(7.51	238	242	246	250	254	259	263	267	271	276	280
(7.7)	244	248	253	257	261	266	271	274	279	283	287
(7.91	250	255	259	264	268	273	277	281	286	290	295
1 8.1)	257	261	266	270	275	279	284	289	293	298	302
(8.3)	263	268	272	271	282	286	291	296	300	305	310
(0.5)	269	274	279	284	288	293	298	303	308	312	317
(8.7)	276	280	285	290	295	300	305	310	315	320	325
18.91	282	287	292	297	302	307	312	317	322	327	332
19.11	288	293	298	304	309	314	319	324	329	334	340
(9.31	295	300	305	310	316	321	326	331	337	342	347
(9.5)	301	306	312	317	322	328	333	338	344	349	355
$(9.71$	307	313	318	324	329	335	340	346	351	357	342
$(9.91$	314	319	325	330	336	341	347	353	358	364	369
(10.1)	320	326	331	337	343	348	354	380	366	371	377 384
(10.3)	326	332	338	344	349	355	361	387	373 380	379 386	384
$(10.51$	333 339	338	344	350 357	356 363	362 369	368 375	374 381	387	386 393	392
(10.7) $(10.91$	339 345	345 351	351	357 364	370	376	382	388	394	401	407
(11.1)	352	358	364	370	377	383	389	395	402	408	414.
(11.3)	358	364	371	377	383	390	396	403	409	415	422
(11.5)	364	371	377	384	390	397	403	410	416	423	429
(11.7)	371	377	394	390	397	404	410	417	423	430	437
111.91	377	384	390	397	404	410	417	424	431	437 445	444
(12.1)	383	390	397	404	411	417	424	431	436	445	452

TABLE IS
MuMaER OP EGES PER SOUARE MILLIMETER 1.9
DIAMETER \{HM!
$(4,5)(4,6)(4.7)(4,8)(4.9)(5.0)(5.1)(5.2)(5.3)(5.4)$ (5.5)

$\begin{aligned} & \text { LENETM } \\ & \text { (NM) } \end{aligned}$		20.	\%	-	4.	5.0	13.11	15.21			
14.53	121	124	126	129	132	134	137	140	142	145	148
$(4.71$	126	129	132	135	137	140	143	146	149	151	154
(4.9)	132	135	137	140	143	146	149	152	155	158	161
(5.1)	137	140	143	146	149	152	155	158	16.1	164	167
(5.3)	142	146	149	152	155	158	161	185	168	171	174
15.51	148	151	154	158	161	164	167	171	174	177	181
(3.71	153	157	160	163	167	170	174	177	180	184	187
(5.9)	158	162	166	169	173	176	180	183	187	190	194
(6.1)	164	167	171	175	178	102	186	189	193	197	200
16.31	169	173	177	181	184	188	192	196	199	203	207
(6.5)	175	178	182	186	190	194	198	202	206	210	213
(6.7)	180	184	188	192	196	200	204	208	212	216	220
16.91	185	189	194	198	202	206	210	214	218	222	227
(7.1)	191	195	199	203	208	212	216	220	225	229	233
(7.3)	196	200	205	209	214	218	222	227	231	235	240
(7.5)	201	206	210	215	219	224	228	233	237	242	246
(7.7)	207	211	216	221	225	230	234	239	244	248	253
(7.9)	212	217	222	226	231	236	240	245	250	255	259
(8.1)	218	222	227	232	237	242	247	251	256	261	266
(8.3)	223	228	233	238	243	248	253	258	263	268	212
(8.5)	228	233	238	244	249	254	259	264	269	274	279
(8.7)	234	239	244	249	254	260	265	270	275	280	286
(8.9)	239	244	250	255	260	266	271	276	282	287	292
(9.1)	244	250	255	261	266	272	277	282	288	293	299
(9.3)	250	255	261	266	272	278	283	289	294	300	305
(9.5)	255	261	267	272	278	284	289	295	301	308	312
(9.7)	261	266	272	278	284	289	295	301	307	313	318
(9.9)	266	272	278	284	290	295	301	307	313	319	325
(10.1)	271	277	283	289	295	301	307	313	320	326	332
(10.3)	277	283	289	295	301	307	314	320	326	332	338
(10.5)	282	288	295	301	307	313	320	326	332	338	345
110.7)	287	294	300	307	313	319	326	332	339	345	351
(10.9)	293	299	306	312	319	325	332	338	345	351	358
(11.1)	298	305	311	318	325	331	338	345	351	358	364
(11.3)	304	310	317	324	331	337	344	351	357	364	371
(11.5)	309	316	323	329	336	343	350	357	364	371	378
(11.7)	314	321	328	335	342	349	356	363	370	377	384
(11.91	320	327	334	341	348	355	362	369	376	384	391
(12.1)	325	332	339	347	354	361	368	376	383	390	397

	(5.6)	(5.7)	(5.8)	15.91	$\begin{aligned} & \text { IAREI } \\ & (6.0) \end{aligned}$	$\begin{aligned} & \text { R }\{\mathrm{MM} \\| \\ & (6.1) \end{aligned}$	(6.2)	(6.3)	16.41	(6.5)	(6.6)
$\begin{aligned} & \text { LENG TH } \\ & (\mathrm{NH}) \end{aligned}$											
$(4.51$	150	153	156	158	161	164	167	169	172	175	177
14.71	157	180	163	168	168	171	174	177	180	182	185
14.91	164	167	170	173	175	178	181	184	181	190	193
15.11	170	174	177	180	183	186	189	192	195	198	201
(5.3)	177	180	183	187	190	193	196	199	202	206	209
$(5.51$	184	187	190	194	197	200	204	207	210	213	217
(5.7)	191	194	197	201	204	208	211	214	218	221	225
$(5.91$	197	201	204	208	211	215	218	222	225	229	232
$(8.11$	204	208	211	215	218	222	226	229	233	237	240
(6.3)	211	214	218	222	226	229	233	237	241	244	248
(6.5)	217	221	225	229	233	237	241	244	248	252	256
(6.7)	224	228	232	236	240	244	248	252	256	260	264
(6.91)	231	235	239	243	247	251	255	259	264	268	272
17.11	237	242	246	250	254	259	263	267	271	275	280
(7.3)	244	248	253	257	261	266	270	275	279	283	288
(7.51	251	255	260	264	269	273	278	282	287	291	295
(7.71	257	262	267	271	276	280	285	290	294	299	303
(7.9)	264	269	274	278	283	288	292	297	302	307	311
(8.1)	271	276	280	285	290	295	300	305	309	314	319
(8.3)	277	282	287	292	297	302	307	312	317	322 330	327 335
(8.5)	284	289	294	299	304	309	315	320	325	330	335
(8.7)	291	296	301	306	312	317	322	327	332	338	343
(8.93	297	303	308	313	319	324	329	335	340	345	351
19.11	304	310	315	320	326	331	337	342	348	353	358 366
(9.31	311	316	322	328	333	339	346	350 357	355 363	361	366
(9.5)	318	323	329	335	340	346	352	357 365	363	369 376	374 382
(9.7)	324	330	336	342	347	353	359	365 372	371	376 384	382 390
(9.9)	331	337	343	349	355	360	366	372	378	384	390 398
(10.1)	338	344	350	356	362	368	374	380 387	386 393	392 400	398 406
(10.3)	344	350	357	363	369	375	381	387 395	393 401	400	406
(10.5)	351	357	364	370	376	382	389	395	401	407	414
(10.7)	358	364	370	377	383	390	396	402	409	415	422
110.91	364	371	377	384	390	397	403 411	410	416	423	437
111.11	371	378	384	391	398 405	404	418	425	432	438	445
(11.31	378	384	391	398	405 412	411	426	425	439	446	453
(11.5)	314	391	398	405	412	419 426	433	432	447	454	481
(11.7)	391	398	405	412	419	426 433	433 440	440	455	462	469
(11.9)	398	405	412	419	426 433	433 441	441	459	462	469	477

Witter and Kulman: Estimating the Number of Eggs per Egg Mass of the Forest Tent Cat

caterpillar is reliable when the 3 variables are known. Its use is greatly facilitated by using Tables 1A-1G. These tables were produced by the IBM 360 computer and they cover all values between the observed ranges for the 3 variables. The ranges used in the tables covered over 95% of 2,000 egg masses used in a simultaneous population study.
In order to keep the tables at a reasonable size, we presented the number of eggs per sq. mm . in 0.1 mm classes. Since the number of eggs enclosed in a $20 \mathrm{sq} . \mathrm{mm}$ square was used as the sample unit, the table was constructed on a $20 \mathrm{sq} . \mathrm{mm}$, basis. In order to state egg density on a sq. mm basis, it is necessary to divide by 20 . When the total number of eggs per $20 \mathrm{sq} . \mathrm{mm}$ is odd, such is 27 or 29 , then one must alternate by interpolating up one time and down the next.

Tables $1 \mathrm{~A}-1 \mathrm{G}$ are usable for egg masses with 1.3 to 1.9 eggs per sq. mm.in egg masses 4.5 to 12.1 mm long, and 4.5 to 6.6 mm ., in diameter. When the length or diameter is very irregular or less than 4.5 mm , in length, the number of eggs per mass must be counted. For egg masses larger or smaller than the size range in the table, the number of eggs per mass can be calculated by inserting the 3 variables into the formula, $N=\pi d l n$. In all other cases, the number of eggs per mass can be determined quickly and accurately by measuring the 3 variables, and then reading the corresponding number from the tailes.

ACKNOWLEDGMENTS

We wish to thank the Woodlands Division of Boise Cascade Corp. and Mr. John Beck, District Forester for the company, for the space provided for a field laboratory and for his help during the study.

LITERATURE CITED

Hodson, A.C. 1941. An ecological study of the forest tent caterpillar, Malacosoma disstria Hbn., in northern Minnesota. Minn. Agr. Exp. Sta. Tech. Bull. 148: 1-55.

eent

Collecting insects at night with the aid of a lantern. Maurice Sand, Le monde des papillons (Paris, 1867), p. 17.

[^0]: $\overline{1}$ Paper No. 6917, Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul, Minnesota 55101.

