Valparaiso University ValpoScholar

Symposium on Undergraduate Research and Creative Expression (SOURCE)

Office of Sponsored and Undergraduate Research

Summer 7-28-2016

Computational Study of CO2 Adsorption and Reduction on Doped Graphene Sheets

Yesukhei Jagvaral Valparaiso University, yesukhei.jagvaral@valpo.edu

Haiying He Valparaiso University, haiying.he@valpo.edu

Follow this and additional works at: https://scholar.valpo.edu/cus

Recommended Citation

Jagvaral, Yesukhei and He, Haiying, "Computational Study of CO2 Adsorption and Reduction on Doped Graphene Sheets" (2016). Symposium on Undergraduate Research and Creative Expression (SOURCE). 576. https://scholar.valpo.edu/cus/576

This Poster Presentation is brought to you for free and open access by the Office of Sponsored and Undergraduate Research at ValpoScholar. It has been accepted for inclusion in Symposium on Undergraduate Research and Creative Expression (SOURCE) by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at scholar@valpo.edu.

Computational Study of CO₂ Adsorption and Reduction on Doped Graphene Sheets

In recent decades, growing CO₂ in the Earth's atmosphere has become a major issue.

Thus, it is crucial to reduce the level of concentration of CO₂ in the atmosphere.

We have investigated the adsorption and reduction of CO₂ on metal-doped graphene sheets, through computational methods. The electrochemical reduction of CO₂ to CO, CH₃OH and CH₄ were calculated. Codoped graphene sheet shows very promising catalytic behavior for CO₂ reduction with the highest elemental reaction energy less than 0.7 eV. In addition, tThe reaction pathways reveal the possible rate limiting step could be the removal of the second H₂O, CH₃OH or CH₄ from the doped graphene sheet, depending upon the type of dopant in graphene.