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Abstract 

Consumers increasingly desire to make purchasing decisions based on factors such as 

health, the environment, and social justice. In response, there has been a commensurate 

rise in cause-related marketing to appeal to socially-conscious consumers. However, a lack 

of regulation and standardization makes it difficult for consumers to assess marketing 

claims; this is further complicated by social media, which firms use to cultivate a personality 

for their brand through frequent conversational messages. Yet, little empirical research has 

been done to explore the relationship between cause-related marketing messages on social 

media and the true cause alignment of brands. In this paper, we explore this by pairing the 

marketing messages from the Twitter accounts of over 1,000 brands with third-party ratings 

of each brand with respect to health, the environment, and social justice. Specifically, we 

perform text regression to predict each brand’s true rating in each dimension based on the 

lexical content of its tweets, and find significant held-out correlation on each task, 

suggesting that a brand’s alignment with a social cause can be somewhat reliably signaled 

through its Twitter communications — though the signal is weak in many cases. To aid in the 

identification of brands that engage in misleading cause-related communication as well as 

terms that more likely indicate insincerity, we propose a procedure to rank both brands and 

terms by their volume of “conflicting” communications (i.e., “greenwashing”). We further ex-

plore how cause-related terms are used differently by brands that are strong vs. weak in 

actual alignment with the cause. The results provide insight into current practices in cause-

related marketing in social media, and provide a framework for identifying and monitoring 

misleading communications. Together, they can be used to promote transparency in cause-

related marketing in social media, better enabling brands to communicate authentic values-

based policy decisions, and consumers to make socially responsible purchase decisions.  

Introduction  
Consumers increasingly make purchasing decisions based on factors such as health, the en-

vironment, and social justice — a recent survey reports that 71% of Americans consider the 

environment when they shop.
  
In response, there has been a commensurate rise in cause-

related marketing to appeal to these socially-conscious consumers (Aaker, 1999; Sonnier & 

Ainslie, 2011). However, because there is little standardization of terminology used in mar-

keting communications, vague and misleading terms (e.g., “greenwashing”) can make it very 
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difficult for consumers to make informed decisions (Kangun, et al., 1991; Laufer, 2003; 

Furlow, 2010).  
 

This problem is amplified by the growth of social media, which provide a cost-effective 

platform for firms to cultivate brand personalities with frequent conversation-like messages, 

the volume of which complicates regulatory enforcement. The informal nature of Twitter 

makes it particularly easy to cultivate an association between a brand and a cause, without 

necessarily making concrete statements or claims.  
 

Despite substantial theorizing on the prevalence and implications of such greenwashing, 

little empirical work has been done to broadly examine the nature of cause-related 

marketing messages in relation to a brand’s true alignment with the cause. In this paper, we 

investigate the relationship between the lexical content of a brand’s Twitter communications 

and the quality of that brand with respect to three cause-related dimensions: health, the 

environment, and social justice. We collect nearly three million tweets from over one 

thousand brands across two different sectors (Food & Beverage and Personal Care) and pair 

them with independent ratings from GoodGuide.com, which provides in-depth ratings of 

brands for social causes based on product contents, corporate policy, certifications, and 

awards. With these data, we explore several questions:  
 

RQ1. Can we estimate the health, environment, and social justice ratings of brands based 

on their Twitter communications?  We find that the lexical content of a brand’s Twitter feed 

is significantly correlated with its rating, most strongly for health. A text regression model 

produces out-of-sample error rates between 1 and 2 points on a 10-point scale, suggesting 

that high-rated brands do indeed communicate differently than low-rated brands.  
 

RQ2. Can we detect brands that potentially engage in misleading Twitter marketing? 

Selecting the brands for which the model overestimates the ratings quickly reveals 

instances of cause-related marketing that may conflict with the properties of the product. 

While explicit false advertising is uncommon, we instead find a concerted effort to cultivate a 

brand personality that suggests a stronger cause alignment than the ratings indicate.  
 

RQ3. Can we identify cause-related terms that are used most frequently by brands in 

misleading contexts?  We perform a variant of feature selection to identify terms that overall 

correlate with high ratings, but also appear often in tweets from low-rated brands. This 

analysis identifies cause-related marketing terms on Twitter that are most susceptible to 

“greenwashing” and may have reduced communication value.  
 

RQ4. Can we further classify misleading cause-related terms based on context?  We train a 

classifier to distinguish tweets containing terms like organic as originating from high-rated or 

low-rated brands, based on the context in which they are used. We find that retweets 

containing such salient terms are strong indicators of low-rated brands.  

Background and Related Work  
It is well established that brand image and personality associations constitute an important 

component of brand equity (Aaker, 1999; Sonnier & Ainslie, 2011). Brands serve not only to 

signal functional product attributes, but also to provide consumers with an identity 

association they can use for self-congruence and social signaling (Aaker, 1999). Marketing 

activities designed to cultivate such image and personality associations have been referred 

to as brand image advertising (Kuksov, et al., 2013) and cause-related marketing 

(Varadarajan & Menon, 1988) when the desired association is with a social cause. Because 
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consumers often project human personality characteristics onto brands (Aaker, 1999), firms 

can benefit from cultivating a general personality around social responsibility or causes of 

interest, even without making specific claims about their products or policies (for example, 

by enthusiastically recognizing Earth Day or retweeting news about the environment) (Etter & 

Plotkowiak, 2011; Banerjee, et al., 1995). This type of cause-related brand personality 

cultivation is often seen on Twitter, which provides a means of frequent conversation-like 

communications with their network (Etter & Plotkowiak, 2011). Such indirect tactics are low-

cost to implement and can influence consumers who seek relationships with brands based 

on perceived humanlike characteristics that match their own values (Sen & Bhattacharya, 

2001). However, because there is little regulation or standardization of terminology used in 

related marketing communications, vague and misleading terms are often used to imply 

socially responsible practices that are not in place (Kangun, et al., 1991).  
 

Numerous researchers have expressed concern over the potential implications of such 

practices (e.g., Kangun, et al., 1991; Laufer 2003; Bhattacharya & Sen, 2004; Marciniak, 

2009; Mark-Herbert & von Schantz, 2007). Some researchers have hypothesized, for exam-

ple, that an abundance of misleading advertisements may desensitize consumers to sincere 

communications of cause-related initiatives, thus reducing firms’ incentives to adopt socially 

responsible practices (Furlow, 2010). Others have suggested that consumers will identify in-

sincere marketing communications and penalize such firms for hypocrisy (Bhattacharya & 

Sen, 2004; Mark-Herbert & von Schantz, 2007; Wagner, et al., 2009). Popoli (2011) 

provides a review of literature on the link between corporate social responsibility (CSR) 

practice and brand image, but discusses little about the potentially moderating role of topic-

relevant marketing communications. Brown and Dacin (1997) show that increasing 

consumer awareness about a firm’s CSR activities can affect brand evaluations, but the role 

of marketer generated content (MGC) as a vehicle for awareness is not explored. Du, et al. 

(2010) and Varadarajan and Menon (1988) present conceptual frameworks for the role of 

MGC in realizing the value of legitimate CSR initiatives, but do not consider the effects of 

greenwashing practices or examine large empirical samples.  
 

Despite the importance of this issue and the confusion surrounding it, the literature does 

not yet offer broad empirically-grounded insights on truthfulness in cause-related marketing 

practices — i.e., on understanding the overall relationship between cause-related 

communication and commitment to the cause; on ways to detect brands and terms that may 

signal greenwash; and on identifying they ways in which sincere and insincere cause-related 

marketing communications differ. We expect that this is likely because empirically exploring 

this question requires collecting and labeling an extensive data set of categorized marketing 

communications, which can be prohibitively difficult and costly to obtain for large numbers 

of brands through traditional techniques (e.g., manual content coding) (Netzer, et al., 2012; 

Godes & Mayzlin, 2004; Liu, 2006).  
 

The recent explosion of social media use by marketers offers an unprecedented data trail of 

such communications, though new methods must be developed in order to effectively 

leverage this tremendous volume of unstructured data. We introduce an approach that uses 

text regression to build a model to predict a brand’s third-party ratings along different 

dimensions of social responsibility from the textual content of their Tweets. This technique 

has been used in the past to predict movie revenues from online reviews (Joshi et al., 2010), 

stock volatility from financial reports (Kogan, et al., 2009), and legislative roll calls from 

legislative text (Gerrish & Blei, 2011). In doing this, we can discover, over a wide range of 

brands, the extent to which truth can be predicted from Twitter communications; identify 
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brands and terms that may be using or used in greenwashing practices; and glean insight 

into how cause-related terms are used differently in sincere vs. misleading contexts.  

 

Data  
GoodGuide  
 

Several organizations have attempted to objectively rate different aspects of a brand or 

product, including the impact on health, environment, and society. While there is 

considerable debate on how to most usefully measure this (Delmas & Blass, 2010), for this 

study we rely on data from GoodGuide.com,
 
one of the most ambitious efforts in this area. 

Founded in 2007 by a professor of environmental and labor policy at the University of 

California, Berkeley, GoodGuide applies a highly rigorous and well-documented scientific 

methodology to rate the health, environmental, and social impact of thousands of 

companies and brands across a range of sectors.  
 

Beyond its rigor, the GoodGuide ratings are uniquely suited for our research purposes as 

they provide ratings at the brand as well as company level, while most rating systems 

provide assessments only of corporate-level policies, and many only for Fortune 500 firms 

(e.g., TruCost, Newsweek, Fortune). For large companies, sub-brands may vary dramatically 

in both the environmental friendliness of the product line, and the brand personality/image. 

Corporate images can have highly variable influence on brand images (Berens, et al., 2005; 

Brown & Dacin, 1997) and in many cases consumers are more likely to form the 

relationship-like connections we aim to explore at the brand level.  
 

GoodGuide considers over 1,000 different indicators to rate performance, including green-

house gas emissions, environmental certifications and awards, third-party ratings, company 

policy statements, amount of recycled content in products, types of chemicals used, and fair 

trade status. These are compiled into three scores between 1 and 10, for health, 

environment, and social impact. Higher scores indicate better performance.  
 

We collect brand-level information from GoodGuide for the two sectors with the most ratings: 

Food & Beverage (1,644 brands) and Personal Care (1,377 brands). These sectors contain 

many brands that have been rated along all three dimensions (unlike Cars or Apparel, which 

lack a Health rating).  

Twitter  

For each brand, we searched for its official Twitter account using a semi-automated method. 

First, we executed a script to query the Twitter API for user profiles containing the name of 

the brand or its parent company. To focus on brands with an active Twitter presence, we 

removed accounts with fewer than 1,000 followers or 100 tweets or 1,000 tokens. We also 

removed accounts that appeared to be personal, rather than company accounts (i.e., those 

containing “I” or “me” in the description field or containing only first names in the name 

field). Finally, we manually checked each account to ensure it was correctly matched to the 

brand. This resulted in a final list of 941 brands in the two categories of Food & Beverage 

(446) and Personal Care (495). The GoodGuide scores for these final brands are 

summarized in Figure 1(a).  
 

We note that roughly 65% of the original brands collected from GoodGuide were removed 

from analysis because of a lack of Twitter presence (either no account found, or insufficient 

tweets or followers). An obvious limitation of our approach is that it is only applicable to 

brands that are active on Twitter (recently, it was estimated that 77% of Fortune 500 
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companies maintain active Twitter accounts (Barnes, et al., 2013)). We leave for future work 

extensions to other social media outlets (e.g., Facebook).  
 

The Twitter Search API allows us to collect up to 3,200 tweets per account. Doing so results 

in 2.95M tweets containing 49.7M word tokens, or 38k tokens per brand on average (Figure 

1(b)).  

 
Figure 1: Descriptive statistics of the collected data: (a) the ratings distribution from GoodGuide.com for the 

two product categories and three dimensions considered; (b) the number of tokens collected from each 

brand's Twitter account. 

 

Analysis  
Predicting Ratings from Text  
 

To explore RQ1, in this section we perform text regression to predict the GoodGuide rating of 

each brand based on the lexical content of its tweets.  
 

Preprocessing 
 

We created one term vector per brand, summarizing the content of all of that brand’s 

tweets. We tokenized each tweet by converting to lower case, collapsing URLs and mentions 

into identifier tokens, and collapsing characters repeated more than twice. Punctuation is 

retained, as are indicators for hashtags and retweets. For example, a tweet 

http://www.foo.com fast-forward hi :) how?? U.S.A. @you whaaaaaaat? #awesome. is 

transformed into the tokens: URL fast-forward hi :) how ?? u.s.a. MENTION what ? 

#awesome. A retweet RT hi there is transformed into rt-hi rt-there. The motivation here is to 

retain the distinction between hashtags and regular tokens, and between retweeted text and 

regular text. This allows us to identify Twitter-specific distinctions in brand marketing 
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strategy.  
 

Next, these tokens were converted into a binary representation, where 1 indicates that a 

term is used by a brand, 0 otherwise.
 
We removed from the vocabulary terms not used by at 

least 10 different brands, to help identify terms that are generalizable across brands. This 

resulted in 54,958 unique terms. Finally, to downweight common terms, we transformed 

these into tf-idf vectors by dividing by one plus the number of brands that use each term.  
 

Regression 
 

Given the list of brand vectors paired with three ratings from GoodGuide, we fit six separate 

ridge regression models (one for each category/rating pair). We performed 10-fold cross-

validation to assess the out-of-sample error rate of the model, reporting two quality metrics:  
 

 Pearson’s r: We collect all the predicted values from the held-out data in each fold 

and compute the correlation with the true values; r ∈ [−1, 1]; larger is better.  
 

 nrmsd: Normalized root-mean-square deviation computes the square root of the 

mean square error, normalized by the range of true values:  

 

where y is the vector of true ratings and ŷ is the vector of predicted ratings. nrmsd ∈ 

[0, 1]; smaller is better.  

Results 

 
 

Figure 2: Scatter plots of the true rating (from GoodGuide) and that predicted from the tweets from each 

brand, along with the held-out correlation (r) and normalized root-mean-square deviation (nrmsd). 
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Figure 2 shows the scatter plots for each category/rating pair. The out-of-sample correlation 

ranges from .598 (Food/Health) to .373 (Food/Society). All correlations are statistically 

significant at the .001 significance level using a two-tailed t-test. To interpret the nrmsd 

values, on a scale from 1-10, a value of .2 means that, on average, the predicted rating is 

within 1.8 points of the true rating (.2 * (10-1)).  
 

These results suggest that high-rated brands do indeed tweet differently than low-rated 

brands. It is perhaps unsurprising that the Food/Health results are the most accurate — the 

health of food is a widely discussed issue, and this rating is most tied to the contents of the 

actual product. Additionally, Figure 1(a) shows that the Health category has the largest 

dispersion of scores, which may provide a more useful signal for training. What is more 

surprising is the extent to which environment and society issues are discussed, and how 

predictive the related terms are of the brand rating.  
 

To further investigate these results, Table 1 shows the top six coefficients for each of the six 

models. We find a number of intuitive results, including terms like organic, fair trade, 

sustainable, and chemicals. Other terms require more context. While some may be a result 

of model over-fitting, others have plausible explanations once we examine the matching 

tweets: m-f is used when providing customer service phone number and hours to customers 

with complaints or queries. These correspond to brands with a very engaged customer 

support operation, which appears to correlate with high ratings. The term “mom’s” refers in 

part to the Mom’s Best Award, a website that recommends products safe for expectant 

mothers; a similar website mentioned is Mom’s Best Bets. Highly-rated products promote 

the fact that they have been awarded a high rating from such websites. The term “87” 

comes from a popular retweet of a poll indicating that 87% of Americans want genetically-

modified organisms (GMOs) to be labeled. Thus, while richer language analysis may uncover 

more complex linguistic patterns, it appears that a simple bag-of-words approach quickly 

identifies salient terms used by highly-rated brands.  

Sector Health Environment Society 

Food  

nutritious (0.72)  

cereals (0.70) 

 rt-cereals (0.69) 

 #organic (0.68) 

 rt-organic (0.63) 

 grains (0.63)  

#organic (0.40)  

sustainable (0.38)  

rt-film (0.37)  

farming (0.36)  

rt-#fairtrade (0.35)  

chalk (0.33)  

rt-#fairtrade (0.52) 

#fairtrade (0.36)  

m-f (0.30)  

philly (0.30)  

peeps (0.29) 

farming (0.28)  

Personal 

Care  

mom’s (0.75)  

chemical (0.75)  

#organic (0.71)  

toxic (0.65)  

rt-#eco (0.63)  

chemicals (0.62)  

rt-#ad (0.39)  

reco (0.36)  

incl (0.36)  

simone (0.36)  

photographs (0.36)  

ss14 (0.35)  

rt-#ad (0.32)  

feed (0.30) 

collaboration (0.30) 

87 (0.28)  

core (0.28)  

reco (0.27)  
 

Table 1: The top weighted coefficients for each category. 

Identifying Potentially Misleading Brands  

In RQ2, we explore whether the model from the previous section can be used to identify 

instances of low-rated brands using terms that are indicative of high-rated brands, and 

whether we can identify patterns in these potentially misleading accounts to better under-

stand greenwashing practices in social media.  
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A natural way to investigate this question is to examine brands for which the model over-

estimates the true rating. While some of these errors are simply due to inaccuracies of the 

model, many may be indicative of attempts to position a brand as higher rated than it is. For 

each brand, we compute the predicted rating minus the true rating, and sort the brands in 

decreasing order.  
 

Table 2 displays a sample of the top brands according to this measure. For each brand, we 

identified the terms that had the largest contribution to a high predicted rating (based on the 

corresponding coefficient), then we searched for tweets containing those terms. 

Brand  GoodGuide  Predicted  Sample Tweet  

The Ginger 

People  
1.6  5.4  

#EarthDay every day. Partnership with Non-GMO 

Project. Expanding organic production. Focus on 

complete sustainable and ethical supply chain.  

Daisy 

Brand  
3.5  6.9  

Top 5 Myths About the Diabetes Diet via 

@TodaysDietitian by @nutritionjill  

Pamela’s 

Products  
2.4  5.6  

PP Tasting 10/4 @ Organics & More in Wyoming, 

Ontario Canada  

Stretch 

Island  
2.9  6.1  

Try a healthier option for trick-or-treating this year 

with #StretchIsland FruitaBu Fruit Rolls! They’re 

naturally sweet and nutritious!  

Wholly 

Wholesome  
2.4  5.2  

Did you know our cookie doughs are 70% 

organic?! http://t.co/zEGIic7iD8 #Organic #Baking 

#Cookies  

Chobani  3.3  6.3  

@JWright99 We are actively exploring an organic 

option for consumers who prefer having that 

choice.  

Guiltless 

Gourmet  
3.2  6.0  

Check out this amazing vid, and stop drinking 

bottled water! #green #reuse #greenisgood #waste 

#eco #earthtweet  

Philip 

Kingsley  
0.5  4.1  

Our top 8 holiday season foods high in iron -a 

mineral essential for healthy, beautiful hair growth 

& wellbeing.  

Herbacin  1.1  4.6  

Hi everyone! Welcome to Herbacins Twitter page. 

Herbacin is a European skincare line that contains 

organic and natural ingredients.  
 

Table 2: A sample of the brands for which the model over-predicts the true rating by the largest amount. 
 

Examining these results, a few patterns emerge:  
 

1. Brand Personality: The most common pattern found is where a brand uses Twitter to 

cultivate an informal personality consistent with support of a cause. For example, Guiltless 

Gourmet discusses the environmental damage of water bottles, which is tangential to its 

product line. Similarly, Pamela’s Products mentions that its products are available at a store 

called “Organics and More,” even though its products are not necessarily organic. Finally, 

Philip Kingsley has a very low health rating, in large part because of hair products containing 

Cocamide Dea, which GoodGuide labels as a health concern. While its tweets do not make 
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direct claims about the health of its products, the brand personality promotes health and 

well-being.  
 

2. Product Labeling.  A second common case arises when low-ranked brands attempt to 

label their products with terms popularly associated with a cause, most notably for health 

and the environment. For example, some brands with low GoodGuide ratings have 

advocated for voluntary labeling of genetically-modified organisms (GMOs) or have 

advertised their products as GMO-free. Similarly, many brands highlight that their products 

are gluten-free or vegan. For example, in Table 2, Wholly Wholesome, which makes organic 

desserts, receives a low health rating from GoodGuide (due to high sugar content), but the 

model predicts a high score due to the term “organic.” Additionally, Herbacin, which makes 

skincare products, highlights its organic ingredients, though GoodGuide assigns a low health 

rating due to the presence of Propyl Paraben in some of its products, which GoodGuide 

views as a health risk.  
 

3. Explicit Health Marketing:  A third category contains direct attempts to promote the health 

of a line of products. For example, Daisy Brand, known most for sour cream and cottage 

cheese, often posts tweets promoting the health value of its products, e.g.: “Our mission is 

to make the highest-quality & healthiest cottage cheese on the planet.” The sample tweet in 

Table 2 cites an article clarifying that not all white foods are unhealthy (in response to the 

guidance to encourage people to eat more whole grains). 
 

This analysis provides insight into the most common ways in which brands may be engaging 

in greenwashing practices on Twitter and cultivating a brand image that is more in line with 

a social cause than independent ratings suggest.  

 Identifying Potentially Misleading Terms 
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Figure 3: The 100 most highly correlated terms for each rating. We have labeled the three terms with the 

highest correlation, as well as the three terms with the lowest and highest usage among below average brands. 

Terms with high usage by below average brands may indicate attempts to enhance the perception of a brand. 

 

Given that brands with very different ratings may use similar terminology, in this section we 

investigate how to identify terms that might be used most in misleading contexts. In doing 

so, we aim to provide insight to marketers and consumers alike regarding the true 

communication value of common cause-related marketing terms (and to provide a method 

for monitoring trends therein). The problem can be understood as follows: identify terms that 

are generally predictive of high ratings, but are also occasionally used by low-rated brands.  
 

We build on traditional feature selection approaches to identify such terms. A common 

approach is to rank features by their correlation with the output variable. While this will 

provide us with terms correlated with health and the environment, terms with similar corre-

lation values may have very different usage among low-rated brands. To distinguish between 

these cases, for each term we also compute the number of brands with a below average 

rating that have used it.  
 

Figure 3 plots these results for the 100 terms with the strongest positive correlation with 

each category. We include a label for 9 terms per plot: the three with the highest correlation, 

the three with the lowest usage by below average brands (smallest x value), and the three 

with the highest usage by below average brands (largest x value).  
 

Term Category  Rating  No. Tweets  Accuracy  

organic  

gmo  

health 

fairtrade 

food  

food  

food  

food  

health  

health  

health  

society  

15988  

3109  

15099  

990  

0.880 ±0.02  

0.858 ±0.03  

0.812 ±0.03  

0.810 ±0.06  
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Table 3: Binary classification results distinguishing different contexts of salient terms.  

 

Examining these plots can provide some insight into the state of lexical usage in a category. 

For example, the term “healthy” has a strong correlation with foods with high health ratings; 

however, it is also used by nearly 130 below average brands. This reinforces the observation 

from the previous section concerning explicit health marketing (e.g., Daisy Brand), which 

dilutes the predictive power of the term “healthy.” In contrast, the term “rt-#fairtrade” 

appears to be a reliable indicator of environmental and social justice ratings — it has both a 

strong correlation and is used by very few below average brands.  
 

We also investigated the context in which high- and low-rated brands used predictive terms. 

For example, the terms “vegan,” “#organic,” and “healthy” are commonly used by healthy 

brands in the context of farming practices, specific vegetables, or grains (e.g., quinoa, tofu); 

in contrast, brands rated as less healthy tend to use these terms to modify foods that are 

typically not healthy (e.g., pie, baking, desserts).  
 

“Sustainable” is used by environmentally-friendly food brands along with words such as 

“petition” and “policy,” suggesting a more engaged, activist approach to environmentalism. 

Low-rated personal care brands tend to use the word “sustainable” with terms like 

“#ecomonday” and “#earthmonth,” suggesting that these brands typically discuss 

sustainability issues in the context of re-occurring events that focus on the environment.  

Disambiguating Terms Based on Context  
 

The preceding analysis presumes the presence of third-party ratings to detect potentially 

misleading uses of terms – we find, for example, that a salient term like “organic” is used by 

brands with very different ratings. However, this approach can only be applied given some 

rated brands. That is, we can use the approach in the preceding section to identify 

potentially misleading terms, but given a new tweet from a new brand, how can we assess 

whether it is misaligned with the rating of the brand?  
 

In this section, we next consider whether the context in which these terms are used can be 

analyzed to infer whether they are being used by high- or low-rated brands. For example, 

consider these four (real) tweets:  
 

 T1. #FillInTheBlank! My favorite healthy lunch to make is ______. 
 

 T2. RT @Qalisto26: @aveda My new year’s resolution is to use more environmentally 

conscious, natural, organic, non-gmo, & sustainable products. 
 

 T3. We believe children should be fed from pure ingredients, which is why we provide 

high quality certified #organic foods that do not use GMOs! 
 

 T4. Resolve to avoid toxic beauty and skin care products. Do something good for you 

and let Aubrey Organics help! http://t.co/HVHjbk3K 
 

nutritious 

foods  

healthy 

chemicals 

organic  

toxic 

food  

food  

food  

personal care 

personal care 

personal care  

health  

health  

health  

health  

health  

health  

897  

10204  

22507  

999  

15988  

858  

0.704 ±0.03  

0.656 ±0.02  

0.652 ±0.02  

0.549 ±0.04  

0.483 ±0.04  

0.457 ±0.07  

   Avg.  0.686  
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Each tweet contains one or more terms correlated with a high rating. However, the usage 

and context is quite different. T1 asks users to respond with healthy lunch items, but does 

not make any claims about a specific product. T2 is a retweet of a user who has mentioned 

a personal care product (Aveda), listing many desirable properties of the brand. This is an 

interesting and common case of a brand retweeting a customer’s tweet to promote a 

product. These differ from T3 and T4, which provide direct statements about the health of a 

product. Indeed, the GoodGuide ratings for the brands of T1 and T2 are lower than those for 

T3 and T4.  
 

In this section, we build a classifier to distinguish between these two types of contexts. We 

borrow ideas from word-sense disambiguation (Stevenson and Wilks, 2003), a common 

natural language processing task to identify the sense of a term (e.g., bass the fish or bass 

the musical instrument). While here the terms are not expected to have different senses in 

the NLP sense, we do expect the contexts to differ based on the rating of the brand.  
 

Thus, we can view this as a supervised learning task: the training data consist of a list of 

(term, context) pairs; each point is assigned a label that is positive if the term is used by a 

high-rated brand, and negative if the term is used by a low-rated brand. Once we fit a 

classifier, we can then apply it to new tweets (with unknown ratings) in order to determine 

whether the author is a brand with a high or low rating.  
 

To binarize the ratings, we consider brands with ratings above 5.5 to be positive, and those 

below 4.5 to be negative (to filter neutral ratings). We then fit a logistic regression classifier7
 

using the same term list use in the previous regression analysis. The primary difference is 

that here we are classifying individual tweets containing a specific keyword, rather than 

estimating the rating of a brand based on all of that brand’s tweets.  
 

Table 3 displays the average accuracy of 10-fold cross-validation. To better estimate 

generalization accuracy, we have ensured that a tweet from the same brand cannot occur in 

both a training and testing split in the same fold. (This is to confirm the classifier is not 

simply learning to associate brand-identifying terms with the class label.)  
 

We can see that the difficulty of this classification task varies by keyword, ranging from 88% 

accuracy for tweets containing the word “organic,” to only 46% accuracy for tweets 

containing the term “toxic.” Averaged over all terms, the classifier is 68.6% accurate at 

determining whether a tweet originated from a high- or low-rated brand, given that the tweet 

contains a keyword known to correlate with high ratings. This indicates that there exist 

contextual clues that may sometimes reveal the rating of a brand.  
 

We also examined how Twitter-specific behavior differs between the two contexts. Specif-

ically, we investigate whether usage of retweets, hashtags, urls, and mentions differs 

between high- and low-rated brands. Table 4 displays how often each Twitter feature was 

among the top 10 most highly-correlated features for high- and low-rated brands. We can 

see that the behavior varies considerably depending on the term. For example, the use of 

hashtags is strongly correlated with high-rated food brands mentioning the term “organic,” 

but the use of hashtags is correlated with low-rated food brands mentioning the term 

“health.” We can see that the feature that displays the most consistent signal is retweeting 

— for 7 of 10 terms, it is strongly correlated with low-rated brands. For example, if the term 

“organic” appears in a retweet, it is more likely to be from a low-rated brand. This suggests 

that retweets may be a way for low-rated brands to align themselves with a particular cause.  
 

Examining other highly weighted terms reveals another interesting insight: for the term 
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”GMO,” the highest weighted term is certified. This labeling carries a stronger, official 

meaning (“certified GMO-free”) and so is likely to be used by high-rated brands to distinguish 

their products.  

 
Table 4: The number of terms in Table 3 for which each feature was among the top 10 most highly correlated 

features for a high or low rating. While hashtags, mentions, and urls are strongly predictive of class, which 

class that is varies depending on the term. On the other hand, retweets containing salient terms are a fairly 

reliable indicator of low-rated brands. 

Conclusion and Future Work  
Using text regression, we have found that the textual content of brands’ tweet can, to some 

extent, predict their ratings with respect to three different concerns (health, environment, 

social justice). Furthermore, we have found that such a model can then be applied to 

identify patterns that might suggest misleading or conflicting messages. Finally, we have 

provided a method to explore terms that are used in conflicting contexts. We expect the 

presented findings and approaches can be useful towards promoting transparency in online, 

cause-related marketing. Such transparency and accountability is necessary for values-

based leadership to flourish, enabling values-based decisions to be effectively 

communicated to consumers, empowering consumers to make more informed decisions, 

and enabling marketing researchers and policy-makers to track trends cause-related 

advertising practices.  
 

There are a number of limitations with this work: a brand must have an active social media 

presence and the model requires ratings from third-party sources for training. In future work, 

we will explore: (1) adapting this methodology to other social media platforms; (2) more 

sophisticated linguistic analysis beyond unigrams; and (3) improved monitoring of the 

marketplace for greenwashing brands and terms that have weakened messaging value.  
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