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A sensitivity matrix based methodology
for inverse problem formulation

A. Cintrón-Arias, H. T. Banks, A. Capaldi, and A. L. Lloyd

Abstract. We propose an algorithm to select parameter subset combinations that can be estimated
using an ordinary least-squares (OLS) inverse problem formulation with a given data set. First,
the algorithm selects the parameter combinations that correspond to sensitivity matrices with full
rank. Second, the algorithm involves uncertainty quantification by using the inverse of the Fisher
Information Matrix. Nominal values of parameters are used to construct synthetic data sets, and
explore the effects of removing certain parameters from those to be estimated using OLS procedures.
We quantify these effects in a score for a vector parameter defined using the norm of the vector of
standard errors for components of estimates divided by the estimates. In some cases the method
leads to reduction of the standard error for a parameter to less than 1% of the estimate.

Key words. Inverse problems, ordinary least squares, sensitivity matrix, Fisher Information matrix,
parameter selection, standard errors.

AMS classification.34A55, 93E24, 49Q12, 62F07, 62H12, 62G08.

1. Introduction

The question of parameter identifiability/estimation in the context of parameter deter-
mination from system observations or output is at least forty years old and received
much attention in the zenith years of linear system and control theory in the investiga-
tion of observability, controllability and detectability [3, 9, 10, 22, 23, 28, 30, 34, 36].
These early investigations and results were focused primarily on engineering appli-
cations, but much interest in other areas (e.g, oceanography, biology) has prompted
more recent inquiries for both linear and nonlinear dynamical systems [2, 8, 18, 21,
26, 32, 41, 43, 44, 45]. In some of the earliest results, Bellman and Astrom [9] de-
fined the concept of structural identifiability, and provided a theoretical framework to
address, a priori, whether or not it is possible to determine estimates of unknown pa-
rameters from experimental data. Specifically they showed that controllablility (in the
sense of the Kalman [28] controllability matrix possessing full rank) implies identifi-
ability, thereby establishing one of the earliest linear algebraic tests for identifiability.
In another important early linear algebraic effort, Reid [34] defined the termsensitivity
identifiability . If z(θ) denotes the output of a model depending on a parameter vec-
tor θ, then Reid explainssensitivity identifiabilityin the following way. Let∆θ denote
a local perturbation about a nominalθ0, i.e., ∆θ = θ − θ0, which gives rise to local
(small) perturbation∆z in the output, i.e.,∆z = z(θ)− z(θ0). Suppose thatχ = ∂z/∂θ
denotes the sensitivity matrix, i.e., the Jacobian matrix of the output, being evaluated
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at θ0 [4, 6]. Then the first order Taylor approximation (exact for linear dependence on
the parameter)

∆z ≈ χ∆θ. (1.1)

relates the perturbations. A parameter vector is defined assensitivity identifiableif
equation (1.1) can be solved uniquely (in the local sense) for∆θ [18, 34]. In their
review, Cobelli and DiStefano [18] explain that a sufficient condition for sensitivity
identifiability is the nonsingularity of the matrixχT χ or equivalently

det(χT χ) 6= 0.

From this one sees immediately that parameter estimation depends inherently on the
condition number of theFisher Information Matrix(FIM) F = χT χ. Not surprisingly,
subsequent investigations of parameter estimation (in applied mathematics, engineer-
ing, and statistics) have focused on the role of the FIM. It is now well known that this
matrix and its condition number play a fundamental role in a range of useful ideas such
as model comparison [12] (the Akaike Information Criteria, the Takeuchi Information
Criteria, etc.), generalized sensitivity functions [6, 7, 40] and experimental design (du-
ration, frequency, quality, etc., of observations required to reliably estimate parameters)
as well as computation of standard errors and confidence intervals [4, 5, 7, 19].

Brun, et al., [11] and Burth, et al., [13] proposed analyses that use submatrices of
the FIM χT χ. Burth, et al., implement areduced-orderestimation by determining
which parameter axes lie closest to the ill-conditioned directions ofχT χ, and then
by fixing the associated parameter values at prior estimates throughout an iterative
estimation process. Brun, et al., determined identifiability of parameter combinations
using the eigenvalues of submatrices that result from only using some columns ofχT χ.
Motivated by these efforts and those on the relationship between ill-conditioning of
the FIM and quality of parameter estimates investigated in [5, 6, 7], we here use the
sensitivity matrixχ to develop a methodology to assist one in parameter estimation or
inverse problem formulations.

In particular, in this paper we investigate the problem of finding multiple solutions
for unknown parameters from observations with a statistical error structure (a more
practical setting than one assuming noise free observations). We address parameter
identifiability by exploiting properties ofboth the sensitivity matrix and uncertainty
quantifications in the form of standard errors. We propose an algorithm inspired by
[11, 13], to select parameter combinations (vectors) in two stages. In the first stage,
all possible parameter combinations (i.e., subsets of all parameters) are considered and
only those with a full rank sensitivity matrix are selected. In the second stage, a score
involving uncertainty quantification (standard errors) is calculated for each parameter
vector selected in the first stage. Then parameter subset combinations are examined in
view of their score and the condition number of corresponding sensitivity matrices. We
believe that some form of this type ofpractical identifiability analysiscould be carried
out a priori, i.e., before any attempt to solve inverse problems (from experimental ob-
servations) is made. We illustrate the ideas and methodology with a seasonal epidemic
model.

This manuscript is organized in the following manner. Section 2 introduces the sea-
sonal epidemic model. In Section 3 we explain the statistical model for the observation
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process; we define the ordinary least squares (OLS) estimator and define precisely the
Fisher information matrix. Using a first order Taylor expansion of the model output
we compute the OLS estimator in terms of the sensitivity matrix singular values and
the error in the observation process. Section 4 contains the proposed subset selection
algorithm. In Section 5 some illustrations of the algorithm are discussed, in light of
using both synthetic and observational data sets. We conclude with a brief discussion
in the last section.

2. Motivating seasonal SEIRS model with demography

We introduce a specific model, a standardSusceptible-Exposed-Infective-Recovered-
Susceptible(SEIRS) model, to illustrate the methodology we discuss in this paper.
In particular we consider a seasonal model for disease spread and progression in a
population. Seasonal patterns of disease incidence are observed in epidemics of in-
fluenza [20], meningococcal meningitis [35], measles [1], and rubella [42], to mention
a few. Many temporal factors play a role in the formation of cyclical patterns, for in-
stance [25]: (i) survival of the pathogen outside the host, (ii) host behavior and (iii)
host immune function.

Cyclical incidence patterns are often modeled with a transmission parameter being
a function of time. We denote the time-dependent transmission parameter byβ(t); it is
traditionally defined by [20, 27]

β(t) = β0[1 + β1 cos(2π(t− t0))], (2.1)

whereβ0 is called the baseline level of transmission,β1 is known as the amplitude of
seasonal variation or simply the strength of seasonality, andt0 denotes the transmission
parameter phase shift. We may, for convenience, derive an equivalent formulation.
Because

β1 cos(2π(t− t0)) = a1 cos(2πt) + b1 sin(2πt),

wherea1 = β1 cos(2πt0) andb1 = β1 sin(2πt0), we may re-write equation (2.1) as

β(t) = β0(1 + a1 cos(2πt) + b1 sin(2πt)). (2.2)

The time-dependent transmission parameterβ(t), as defined in equation (2.2), is
used in the seasonal epidemic model introduced here. Four main epidemiological
events are described: latent infection, active infection, recovery, and loss of immu-
nity. It is assumed that individuals becoming infected undergo latency, a period of
time during which they are incapable of effectively transmitting the infectious agent,
before progressing into active infection. People recover from active infection and de-
velop temporary immunity (they will eventually become susceptible once again). Four
epidemiological classes are considered, and at timet the number of: susceptible is
denoted byS(t); latent or exposed is denoted byE(t); infectious is denoted byI(t);
and recovered or temporarily immune is denoted byR(t). The nonlinear differential
equations [29, 39]

dS

dt
=

1
P

N +
1
L

R(t)− β(t)S(t)
I(t)
N

− 1
P

S(t), (2.3)
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dE

dt
= β(t)S(t)

I(t)
N

− 1
M

E(t)− 1
P

E(t), (2.4)

dI

dt
=

1
M

E(t)− 1
D

I(t)− 1
P

I(t), (2.5)

dR

dt
=

1
D

I(t)− 1
L

R(t)− 1
P

R(t), (2.6)

N = S(t) + E(t) + I(t) + R(t), (2.7)

S(t0) = S0, (2.8)

E(t0) = E0, (2.9)

I(t0) = I0, (2.10)

R(t0) = N − S0 − E0 − I0, (2.11)

define the epidemic dynamics known as an SEIRS model. This formulation takes into
account demographic processes (the birth rate isN/P and the average life span isP )
while assuming the total population sizeN remains constant.

The mean latency period is denoted byM , while the average length of active in-
fection is denoted byD. It is also assumed immunity lasts an average ofL units of
time.

In this paper we consider a scenario where the initial conditions of the SEIRS model
(S0, E0, andI0) may be unknown, and may need to be estimated, along with all the
other model parameters. We apply inverse problem methodologies to determine esti-
mates of the vector parameter

θ = (S0, E0, I0, N, L, D, M, P, β0, a1, b1)T ∈ Rp = R11, (2.12)

according to an ordinary least squares criterion (defined in the next section).

3. Statistical model for the observation process

The observation process is formulated assuming the SEIRS model, together with a par-
ticular choice of parameters (the “true” parameter vector denoted asθ0) describes the
epidemic process exactly, but that then longitudinal observations{Yj}n

j=1 are affected
by random deviations (such as measurement errors) from this underlying process. More
precisely, ifz(tj ; θ0) denotes the number of new cases of active infection (also referred
to as the model output) between the observation time pointstj−1 andtj , which is de-
fined as

z(tj ; θ0) =
∫ tj

tj−1

1
M

E(t; θ0) dt, (3.1)

then the statistical model for the observation process is

Yj = z(tj ; θ0) + Ej for j = 1, . . . , n. (3.2)
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The errorsEj are assumed to be random variables satisfying the following assumptions:

(i) the errorsEj have mean zero:E[Ej ] = 0;

(ii) the errorsEj have finite common variance: var(Ej) = σ2
0 < ∞;

(iii) the errorsEj are independent (i.e., cov(Ej , Ei) = 0 wheneverj 6= i) and identi-
cally distributed.

Under these assumptions, we have that the mean of the observation equals the model
output: E[Yj ] = z(tj ; θ0) and the variance in the observations is constant in time:
var(Yj) = σ2

0.

3.1. Ordinary least squares (OLS)

We consider an ordinary least squares (OLS) formulation of a generic parameter esti-
mation or inverse problem for a vector parameter (θ) dependent system

dx

dt
(t) = g(t, x(t; θ); θ), (3.3)

x(t0) = x0 (3.4)

with observation (or model output) process

z(tj) = F(x(·), θ), j = 1, . . . , n. (3.5)

In this context we consider a given vector of observationsY = (Y1, . . . , Yn)T ,
where eachYj is defined by equation (3.2), and the model output vectorz(θ) =
(z(t1; θ), . . . , z(tn; θ))T for a givenθ. The estimatorθOLS = θn

OLS is a random variable
that minimizes the Euclidian norm (inRn ) square ofY − z(θ), i.e.,θn

OLS minimizes

J(θ|Y ) ≡ |Y − z(θ)|2 = [Y − z(θ)]T [Y − z(θ)] =
n∑

j=1

[Yj − z(tj ; θ)]2 , (3.6)

which impliesθOLS solves the gradient equation

∇θ(|Y − z(θ)|2) = 0. (3.7)

Asymptotic theory can be used to describe the distribution of the estimatorθOLS [4,
19, 37]. Provided that a number of regularity conditions as well as sampling conditions
are met (see [37] for details), it can be shown that, asymptotically (i.e., asn → ∞),
θOLS is approximately distributed according to a multivariate normal distribution, i.e.,

θn
OLS ∼ Np (θ0, Σn

0 ) , (3.8)

whereΣn
0 = σ2

0[nΩ0]−1 ∈ Rp×p and

Ω0 = lim
n→∞

1
n

χn(θ0)T χn(θ0). (3.9)
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We remark that the theory requires that this limit exists and that the matrixΩ0 be non-
singular. The matrixΣn

0 is thep×p covariance matrixcov((θn
OLS)i, (θn

OLS)j), and the
n × p matrix χ(θ0) ≡ χn(θ0) is called thesensitivity matrixof the system, and itsjth
row is equal to∇θz(tj ; θ0). More precisely,

χn
ji(θ0) =

∂z(tj ; θ)
∂θi

∣∣∣
θ=θ0

, 1≤ j ≤ n, 1≤ i ≤ p. (3.10)

For the motivating SEIRS model, the partial derivatives of the state variable vector
x = (S, E, I,R)T with respect toθ can be readily calculated. Ifg = (g1, g2, g3, g4)T

denotes the vector function whose entries are given by the expression on the right sides
of equations (2.3)–(2.6), then we can write the seasonal SEIRS model in the general
vector form (3.3). The sensitivities∂x/∂θ are calculated, for a givenθ = θ̂OLS (defined
below), by solving (see [4, 17] and the references therein) equation (3.3) and then

d

dt

∂x

∂θ
=

∂g

∂x

∂x

∂θ
+

∂g

∂θ
, (3.11)

from t = t0 to t = tn. In equation (3.11) the matrix∂g/∂x is 4× 4, while the matrices
∂x/∂θ and∂g/∂θ are 4× p.

The solution of equation (3.7) obtained using a realizationy = (y1, . . . , yn)T of the
observation processY = (Y1, . . . , Yn)T and denoted as the estimateθ̂OLS = θ̂n

OLS ,
provides a realization of the estimatorθOLS . The estimatêθOLS is used in the calcula-
tion of the sampling distribution for the parameters. The error varianceσ2

0 is approxi-
mated by ˆσ2

OLS , which is calculated as

σ̂2
OLS =

1
n− p

|y − z(θ̂OLS)|2. (3.12)

The covariance matrixΣn
0 is approximated bŷΣn

OLS , which is computed by

Σ̂n
OLS = σ̂2

OLS

[
χ(θ̂n

OLS)T χ(θ̂n
OLS)

]−1
. (3.13)

The approximation [19, 37] of the sampling distribution of the estimator is

θOLS = θn
OLS ∼ Np(θ0, Σn

0 ) ≈ Np(θ̂n
OLS , Σ̂n

OLS). (3.14)

The standard errors for̂θn
OLS can be approximated by taking the square roots of the

diagonal elements of the covariance matrixΣ̂n
OLS . The standard errors are used to

quantify uncertainty in the estimation and are given by

SEk(θ̂n
OLS) =

√
(Σ̂n

OLS)kk, k = 1, . . . , p. (3.15)

3.2. Fisher information matrix

The matrix
F = Fn = χn(θ0)T χn(θ0), (3.16)
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is known as the Fisher information matrix [6, 18]. Below, we use a linearization ar-
gument (similar to that employed in the asymptotic distribution theory for OLS – see
Chapter 12 of [37]) to give a heuristic derivation of an approximate expression for the
estimatorθOLS in terms ofF . This derivation illustrates the role played by the Fisher
information matrix in the estimation of unknown parameters and uncertainty propaga-
tion.

We observe that the gradient ofJ(θ|Y ) as defined in (3.6) is given by

∇θJ(θ|Y ) = −2χn(θ)T [Y − z(θ)] , (3.17)

because by equation (3.10), we know that∇θz(tj ; θ) = χn(θ0)T . Moreover, the Hes-
sian ofJ(θ|Y ) is

∇2
θJ(θ|Y ) = 2χn(θ)T χn(θ)−G(θ), (3.18)

where

G(θ) = 2
n∑

j=1

[Yj − z(tj ; θ)]∇2
θz(tj ; θ).

For the next calculations we tacitly assume thatχn(θ0)T χn(θ0) is nonsingular and
G(θ0) = 0. We consider a linearization of∇θJ(θ|Y ) aroundθ = θ0, which is given by

L(θ) = −2χn(θ0)T [Y − z(θ0)] + 2χn(θ0)T χn(θ0)(θ − θ0). (3.19)

The solution toL(θ) = 0 is, to first order, the minimizerθn
OLS , and we thus have (see

equation (2.15) of [37])

θn
OLS ≈ θ0 +

[
χn(θ0)T χn(θ0)

]−1
χn(θ0)TE , (3.20)

whereE = (E1, . . . , En)T , with Ej = Yj − z(tj ; θ0) for j = 1, . . . , n. The propaga-
tion of uncertainty from the observation process to the estimator is induced byE in
equation (3.20).

It is clear from equation (3.20) that ifFn = χn(θ0)T χn(θ0) is nearly singular then
θOLS may be very sensitive to the observation errorE . Moreover, equation (3.13) sug-
gests that near-singularity (or ill-conditioning [24]) ofFn may also affect the approx-
imation of the covariance matrix̂Σn

OLS , and consequently the calculation of standard
errors and confidence intervals for estimated parameters.

For some time it has been well understood (see [6, 7, 18, 40, 45] and the references
therein) that the information content of measurements can be quantified by the Fisher
information matrix. Thus, efficient experiments can be designed using the Fisher in-
formation matrixFn. As noted in [6], the three most popular design strategies are:
D-optimal design, c-optimal design, and E-optimal design. These strategies involve
the determinant, the inverse, and maximum and minimum eigenvalues ofFn. Our ap-
proach in this paper relies on properties of the sensitivity matrixχ = χn rather thanFn

as well as asymptotic standard errors (which do depend onFn) for parameters. In the
next section we address rank deficiency and the condition number of the sensitivity
matrixχn.
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3.3. Singular value decomposition of the sensitivity matrix

To motivate the role singular value decomposition plays in uncertainty assessment, we
consider another linearization that relates the estimatorθOLS to the singular values
of the rectangular sensitivity matrixχ. (Hereafter we shall suppress the superscripts
denoting dependence onn when no confusion can occur.)

Suppose the model outputz(θ) is well approximated by its linear Taylor expansion
aroundθ0, i.e.,

z(θ) ≈ z(θ0) + χ(θ0)(θ − θ0). (3.21)

This first order Taylor expansion can be used to reduceY − z(θ) to an affine transfor-
mation ofθ, by using equations (3.21) and (3.2):

Y − z(θ) = −χ(θ0)(θ − θ0) + E , (3.22)

whereχ(θ0) ∈ Rn×p, θ − θ0 ∈ Rp, E is anRn-valued random variable, andn > p.
The singular value decomposition (SVD) of the sensitivity matrixχ(θ0) is denoted

as

χ(θ0) = U

[
Λ
0

]
V T , (3.23)

whereU is ann × n orthogonal matrix, i.e.,UT U = UUT = In, with U1 containing
the firstp columns ofU andU2 containing the lastn− p columns,U = [U1 U2]; Λ is a
p × p diagonal matrix defined asΛ = diag(s1, . . . , sp), with s1 ≥ s2 ≥ · · · ≥ sp ≥ 0;
0 denotes an(n − p) × p matrix of zeros; andV denotes an orthogonalp × p matrix,
i.e.,V T V = V V T = Ip (more details about SVD can be found in [24] and references
therein).

The Euclidean norm is invariant under orthogonal transformations. In other words,
for any vectorw ∈ Rn we have that|w|2 = wT w = wT Iw = wT UUT w = |UT w|2.
According to [24, 33] this invariance of the Euclidean norm implies

|−χ(θ0)(θ − θ0) + E|2 =
∣∣UT (−χ(θ0)(θ − θ0) + E)

∣∣2 (3.24)

=

∣∣∣∣∣−
[

Λ
0

]
V T (θ − θ0) +

[
UT

1

UT
2

]
E

∣∣∣∣∣
2

(3.25)

=
∣∣−ΛV T (θ − θ0) + UT

1 E
∣∣2 +

∣∣UT
2 E

∣∣2 . (3.26)

The estimatorθOLS minimizes|Y − z(θ)|2 and according to equations (3.22) and

(3.26) can be calculated by solving
∣∣−ΛV T (θ − θ0) + UT

1 E
∣∣2 = 0, for θ and thus ob-

taining

θOLS = θ0 + V Λ−1UT
1 E = θ0 +

p∑
i=1

1
si

viu
T
i E , (3.27)

wherevi ∈ Rp andui ∈ Rn denote theith columns ofV andU , respectively (the
matrix V has column partitioningV = [v1, . . . , vp] ∈ Rp×p, while U = [u1, . . . , un] ∈
Rn×n).
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There is a similarity between equations (3.20) and (3.27). Again, the randomness of
the observation process is additively propagated into the estimator. In equation (3.27)
we see that ifsi → 0, then the estimatorθOLS is particularly sensitive toE .

At this point we need a couple of definitions. The range of a matrixC ∈ Rn×p

with column partitioningC = [c1, . . . , cp] is defined as the subspace spanned by its
columns, i.e.,

R(C) =
{ p∑

j=1

qjcj ∈ Rn : qj ∈ R
}

. (3.28)

The rank of a matrixC ∈ Rn×p is equal to the dimension ofR(C):

rank(C) = dim(R(C)). (3.29)

If rank(C) < min{n, p} = p (because we are assuming there are more observations
than parameters, i.e.,n > p) the matrixC ∈ Rn×p is said to be rank deficient. On the
other hand, if rank(C) = p we say the matrixC ∈ Rn×p has full (column) rank [24].

For a full rank sensitivity matrixχ(θ0) ∈ Rn×p (assuming rank(χ(θ0)) = p and
s1 ≥ s2 ≥ · · · ≥ sp > 0) its condition numberκ is defined as the ratio of the largest to
smallest singular value [24]:

κ(χ(θ0)) =
s1

sp
. (3.30)

We note that if the matrixχ(θ0) has full rank and a large condition number (a feature
known as ill-conditioning [24]), then the Fisher information matrixF = χ(θ0)T χ(θ0)
inherits a large condition number. Equation (3.23) implies the SVD ofχ(θ0)T χ(θ0) is

χ(θ0)T χ(θ0) = V Λ2V T , (3.31)

and therefore

κ(χ(θ0)T χ(θ0)) =
s2

1

s2
p

=
[

s1

sp

]2

= κ(χ(θ0))2. (3.32)

As discussed in [24], if the columns ofχ(θ0) are nearly dependent thenκ(χ(θ0)) is
large. In other words, ifκ(χ(θ0)) is not large (the matrixχ(θ0) is well-conditioned)
then the columns of the sensitivity matrix are not nearly dependent, suggesting one
could use the condition number ofχ(θ0) as a criterium to select parameter combina-
tions.

In the next section we propose an algorithm for parameter selection which is based
on the rank and condition number of the sensitivity matrix rather than the Fisher infor-
mation matrix.

4. Subset selection algorithm

The identifiability analyses developed by Brun, et al., [11], and Burth, et al., [13], moti-
vate the subset selection algorithm introduced in this section. Both of these approaches
use submatrices of the Fisher information matrix in their selection procedures. Burth,
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et al., implemented a reduced-order estimation by determining which parameter axes
lie closest to the ill-conditioned directions of the Fisher information matrix, and then
by fixing the associated parameter values at priori estimates throughout an iterative es-
timation process. The subset selection keeps the well-conditioned parameters (those
that can be estimated with little uncertainty from given measurements) active in the
optimization, subject to having the corresponding Fisher information submatrix with a
small condition number. Brun, et al., determine identifiability of parameter combina-
tions using the eigenvalues of submatrices that result from excluding columns out of
the Fisher information matrix. They quantify the near dependence of columns in the
sensitivity submatrix using the smallest eigenvalue of the Fisher information subma-
trix.

We propose an algorithm that searches all possible parameter combinations and se-
lects some of them, based on two main criteria: the full rank of the sensitivity matrix,
and uncertainty quantification as embodied in asymptotic standard errors.

Our approach is numerical and we illustrate its use with the SEIRS model introduced
earlier. To carry out the algorithm we require prior knowledge of nominal variance
and nominal parameter values. We assume the observation error variance isσ2

0 =
500, and assume the following nominal parameter values for the SEIRS model:S0 =
2.78 · 105 (people),E0 = 1.08 · 10−1 (people),I0 = 1.89 · 10−1 (people),N =
1.00·106 (people),L = 5.00 (years),D = 9.59·10−3 (years),M = 5.48·10−3 (years),
P = 75.00 (years),β0 = 375.00 (years−1), a1 = 2.00 · 10−2, b1 = −2.00× 10−2.

Henceforth, we use the terms “parameter combination” and “parameter vector” in-
terchangeably. Parameter vectorsθ ∈ Rp will be considered for different fixed values
of p. Whenp = 11 the parameter combination

θ = (S0, E0, I0, N, L, D, M, P, β0, a1, b1) ∈ R11, (4.1)

with the nominal parameter values given above, produces a rank deficient sensitivity
matrix χ(θ) for the SEIRS model. Forp = 3 the only parameter combination consid-
ered here is that of the transmission parameters, i.e.,

θ = (β0, a1, b1) ∈ R3. (4.2)

Other parameter vectors for fixed values ofp = 4, . . . , 10 are considered in the fol-
lowing way. For each fixedj = 1, . . . , 7, and therefore fixedp = 3 + j, we explore
parameter vectors of the form

θ = (λ1, λ2, . . . , λj , β0, a1, b1) ∈ Rp, (4.3)

where fork = 1, . . . , j,

λk ∈ {S0, E0, I0, N, L, D, M, P} = I,

such that no entries ofθ in equation (4.3) are repeated.
The set

Sp = {θ = (λ1, λ2, . . . , λj , β0, a1, b1) ∈ Rp = R3+j

| λk ∈ I, λk 6= λm∀ k, m = 1, . . . , j} (4.4)

collects the parameter vectors explored by a combinatorial search.
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We define the set

Θp = {θ | θ ∈ Sp ⊂ Rp, rank(χ(θ)) = p}, (4.5)

whereχ(θ) denotes then × p sensitivity matrix, and its rank is defined by equa-
tion (3.29). By construction, the elements ofΘp are parameter vectors that give sensi-
tivity matrices with independent columns.

An important step in the selection procedure involves the calculation of standard
errors (uncertainty quantification) using the asymptotic theory described in Section 3.1.
For everyθ ∈ Θp, we define a vector ofcoefficients of variationν(θ) ∈ Rp such that
for eachi = 1, . . . , p,

νi(θ) =
√

(Σ(θ))ii

θi
,

and
Σ(θ) = σ2

0

[
χ(θ)T χ(θ)

]−1 ∈ Rp×p.

In other words, the components of the vectorν(θ) are the ratios of each standard
error for a parameter to the corresponding nominal parameter value. These ratios are
dimensionless numbers that allow comparison even when parameters have substan-
tially different units and scales (e.g.,N is on the order of 106, while a1 is on the order
of 10−2). Next, define

α(θ) = |ν(θ)| .
We callα(θ) theparameter selection score, and remark thatα(θ) near zero indicates
lower uncertainty possibilities in the estimation while large values ofα(θ) suggest that
one could expect to find wide uncertainty in at least some of the estimates.

In the optimization literature the term “feasible” usually denotes a vector satisfying
inequality or equality constraints. Here we use this term in the context of identifiability:
a feasible parameter vector denotes a combination that can be estimated from data with
reasonable to little uncertainty. More precisely, we say a givenθ ∈ Θp is a feasible
parameter vectorif both α(θ) andκ(χ(θ)) are relatively small.

We summarize the steps of the algorithm as follows:

1. Combinatorial search. For a fixedj = 1, . . . , 7, and hence fixedp = 3 + j,
calculate the set

Sp = {θ = (λ1, λ2, . . . , λj , β0, a1, b1) ∈ Rp | λk ∈ I, λk 6= λm∀ k, m = 1, . . . , j}.

The setSp collects all the parameter vectors obtained from a combinatorial search.
2. Full rank test . Calculate the set of viable parametersΘp as

Θp = {θ| θ ∈ Sp ⊂ Rp, rank(χ(θ)) = p}.

3. Standard error test. For everyθ ∈ Θp calculate a vector of coefficients of variation
ν(θ) ∈ Rp by

νi(θ) =
√

(Σ(θ))ii

θi
,

for i = 1, . . . , p, and Σ(θ) = σ2
0

[
χ(θ)T χ(θ)

]−1 ∈ Rp×p. Calculate the parameter
selection score asα(θ) = |ν(θ)| .
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Figure 1. Parameter selection scoreα(θ) versus the condition numberκ(χ(θ)) of the
n × p sensitivity matrix, for all parameter vectorsθ ∈ Θp with p = 5. Logarithmic
scales are used on both axes

To illustrate the algorithm we consider several values ofp, while using the MATLAB
(The Mathworks, Inc.) routinerank (this routine computes the number of singular
values that are greater than “machine tolerance”).

Results forp = 5 (using the nominal parameter values) are displayed in Figure 1
(on logarithmic scales), whereα(θ) is depicted as a function ofκ(χ(θ)) for all θ ∈ Θ5.
The pairs in the lower-left corner of Figure 1 correspond to feasible parameter vectors,
becauseα(θ) andκ(χ(θ)) are here relatively small.

The subset selection algorithm was applied forp = 4, . . . , 10, while using the nom-
inal variance and parameter values. We find that there is not a single parameter com-
bination withp = 10 that has a full rank sensitivity matrix. Forp = 9, only three
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Parameter vectorθ Condition numberκ(χ(θ)) Selection scoreα(θ)

(L, β0, a1, b1) 2.047·105 5.019·10−2

(M,β0, a1, b1) 1.420·105 6.386·10−2

(P, β0, a1, b1) 3.176·105 7.044·10−2

(L,D, β0, a1, b1) 4.034·106 1.332·10−1

(D,M, β0, a1, b1) 1.233·107 1.897·10−1

(D,P, β0, a1, b1) 7.781·106 2.987·10−1

(N,L,D, β0, a1, b1) 1.829·1010 1.670·10−1

(S0, N, D, β0, a1, b1) 1.454·1010 2.026·10−1

(S0, L,D, β0, a1, b1) 1.828·1010 2.375·10−1

(S0, D,M, β0, a1, b1) 2.152·1010 3.301·10−1

(S0, D, P, β0, a1, b1) 1.828·1010 4.832·10−1

(N,D,M, β0, a1, b1) 2.166·1010 5.739·10−1

(N,D,P, β0, a1, b1) 1.829·1010 9.658·10−1

(N,L,D,M, β0, a1, b1) 2.166·1010 5.960·100

(S0, L,D,M, β0, a1, b1) 2.167·1010 5.970·100

(N,D,M,P, β0, a1, b1) 2.166·1010 1.153·101

(S0, D, M, P, β0, a1, b1) 2.167·1010 1.159·101

(S0, N, L, D, M, β0, a1, b1) 6.333·1012 5.044·101

(S0, N, D, M, P, β0, a1, b1) 6.561·1012 2.950·102

Table 1. Feasible parameter vectors obtained while applying the subset selection algo-
rithm for p = 4, . . . , 8, using nominal values as listed earlier in the text. For each se-
lected parameter vectorθ ∈ Θp the condition number of the sensitivity matrixκ(χ(θ)),
and the selection scoreα(θ) are displayed

parameter vectors pass the full rank test, and none of which can be considered feasible.
We summarize the feasible parameter vectors in Table 1 forp = 4, . . . , 8, where each
feasibleθ ∈ Θp is displayed along withκ(χ(θ)) andα(θ). The cutoffs used to se-
lect the parameter combinations in Table 1 were somewhat arbitrary but relative to the
smallest values computed for the two criteria (condition number and selection score)
in each example.

5. Applications of the subset selection algorithm to synthetic
and observed data sets

The subset selection algorithm is illustrated first by solving inverse problems from syn-
thetic observations. To construct a synthetic data set we suppose a nominal parameter
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vector and a nominal error variance are equal toθ0 (true parameter vector) andσ2
0 (true

variance), respectively. Random noise is then added to the model output as follows:

Yj = z(tj ; θ0) + σ0Vj , (5.1)

whereVj is a standard normal random variable, i.e.,Vj ∼ N (0, 1). A realizationyj of
the observation processYj , is calculated by drawing independent samplesvj from the
standard normal distribution so that

yj = z(tj ; θ0) + σ0vj for j = 1, . . . , n.

The OLS inverse problems were solved by implementing a subspace trust region
method (based on an interior-reflective Newton method [33]). We used the MATLAB
(The Mathworks, Inc.) routinelsqnonlin . For the purposes of this demonstration
we initialized every optimization routine at the nominal parameter vectorθ0.

The nominal error variance and nominal parameter values are those given in the pre-
vious section. The parameter vectors estimated from synthetic data are those appearing
on top of each subtable in Table 2, for each value ofp, where parameter combinations
are sorted in ascending order of their selection score (from top to bottom). In other
words, all the parameter vectors estimated from synthetic observations have reason-
able condition numbers and relatively small selection scores. Five inverse problems
(for p = 8, 7, 6, 5, 4) were solved from the same realization of the observation process,
to estimate the parameter vectors

θ = (S0, N, L, D, M, β0, a1, b1),
θ = (N,L,D,M, β0, a1, b1),

θ = (N,L,D, β0, a1, b1),
θ = (L,D, β0, a1, b1),
θ = (L, β0, a1, b1).

Results of these numerical experiments are summarized in Table 2.
We analyze the results using the coefficient of variation: standard error (SE) divided

by estimate (Est). For instance in Table 2, whenθ = (S0, N, L, D, M, β0, a1, b1) it
is seen forD that the standard error is nearly one third of the estimate, suggesting
lower uncertainty. For the other parametersS0, N , L, M , β0, a1, andb1 the standard
error can be nearly four times (and up to eleven times) the estimate (forb1 its SE is
|4× Est|, becauseb1 < 0). This feature denotes substantial uncertainty. Figure 2(a)
displays the residual plot (see [4] for a discussion of the effective use of residual plots)
for this parameter combination:yj − z(tj ; θ̂OLS) versus timetj , wherej = 1, . . . , n.
The temporal pattern in the residuals together with large standard errors suggest that
estimation of this parameter combination from observations (with a statistical error
structure) would be meaningless.

The residual plots for all the other parameter combinations in Table 2 do not have
temporal patterns. For the sake of illustration we display in Figure 2(b) the residuals
versus time forθ = (L,D, β0, a1, b1).



A sensitivity matrix based methodology 15

Parameter vectorθ = (S0, N, L, D, M, β0, a1, b1)
S0 N L D M β0 a1 b1

Est. 2.8e5 1.0e6 5.0e0 9.6e−3 5.5e−3 3.7e2 2.0e−2 -2.0e−2

S.E. 1.5e6 5.0e6 4.5e1 3.1e−3 6.2e−2 3.4e3 7.7e−2 8.4e−2

C.V. 5.5e0 5.0e0 9.1e0 3.2e−1 1.1e1 9.0e0 3.8e0 -4.2e0

Parameter vectorθ = (N,L,D,M, β0, a1, b1)
Est. 1.0e6 5.0e0 9.6e−3 5.5e−3 3.7e2 2.0e−2 -2.0e−2

S.E. 2.7e4 2.7e0 2.5e−3 2.2e−2 5.9e2 3.1e−2 2.5e−2

C.V. 2.7e−2 5.4e−1 2.6e−1 4.1e0 1.6e0 1.6e0 -1.3e0

Parameter vectorθ = (N,L,D, β0, a1, b1)
Est. 1.0e6 5.0e0 9.6e−3 3.8e2 2.0e−2 -2.0e−2

S.E. 2.7e4 1.7e−1 5.8e−4 1.5e1 1.3e−3 1.2e−3

C.V. 2.7e−2 3.4e−2 6.1e−2 3.9e−2 6.3e−2 -6.1e−2

Parameter vectorθ = (L,D, β0, a1, b1)
Est. 5.0e0 9.6e−3 3.8e2 2.0e−2 -2.0e−2

S.E. 7.4e−2 5.8e−4 9.8e0 1.2e−3 1.2e−3

C.V. 1.5e−2 6.1e−2 2.6e−2 6.2e−2 -6.0e−2

Parameter vectorθ = (L, β0, a1, b1)
Est. 5.0e0 3.8e2 2.0e−2 -2.0e−2

S.E. 1.4e−2 2.6e0 2.0e−4 7.9e−4

C.V. 2.7e−3 6.8e−3 9.9e−3 -4.0e−2

Table 2. Results of solving five inverse problems from a single synthetic data set gen-
erated as described in the text using nominal values listed earlier. For each parameter
combination we display the estimate (Est.), the standard error (S.E.) and the coefficient
of variation (standard error divided by the estimate, C.V. = S.E./Est.). For notational
convenience we use here the notatione to denote exponentiation to the base 10; i.e.,
2.8e5 denotes 2.8 · 105, etc.

Improvements in uncertainty quantification are observed with the removal of some
key parameters. We think it is not just reducing the numberp of parameters, but rather
which parameters are to be estimated that really counts. The near dependence in the
columns of the sensitivity matrixχ reflects correlations between parameter estimates
which make a parameter combination unsuitable for estimation. For instance, consider
the removal ofS0 from the estimation, and compareθ = (S0, N, L, D, M, β0, a1, b1)
with θ = (N,L,D,M, β0, a1, b1) in Table 2. The standard error forN is seen to drop
from 500% to approximately 3% of the estimate. Another substantial improvement
when droppingS0 is obtained forL, for which its standard error reduces from being
nine times the estimate to one half of its value. Lower uncertainty improvements are
also obtained for the parametersM , β0, a1, andb1.
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Figure 2. Residual plots:yj − z(tj ; θ̂OLS), versus time,tj , for j = 1, . . . , n. Graph
(a) displays residuals obtained forθ = (S0, N, L, D, M, β0, a1, b1), while Graph (b)
depicts residuals forθ = (L,D, β0, a1, b1)

The next numerical experiment considered here is the removal ofS0 and M .
We compare the results forθ = (S0, N, L, D, M, β0, a1, b1) with those for θ =
(N,L,D, β0, a1, b1), in Table 2. There are uncertainty improvements for all param-
eters. The least (but still substantial) improvement is forD, where its standard error
drops from being nearly 30% to being just 6% of the estimate. For the parametersN ,
L, β0, a1, andb1 an improvement of two orders of magnitude is seen. Improvements in
uncertainty are more pronounced after removingS0, N , andM : for this we compare
θ = (S0, N, L, D, M, β0, a1, b1) andθ = (L,D, β0, a1, b1) in Table 2.

Undoubtedly, the best case scenario of uncertainty quantification we obtained is that
of estimatingθ = (L, β0, a1, b1) from the same synthetic data set. In Table 2, it is seen
that the standard errors reduce to less than 1% of the estimates forL, β0, anda1, and
to 4% from nearly 400% of the estimate forb1.

As a final note in this section, we present results obtained from solving the OLS
problem while using observations of an influenza-like-illness in France [38]. Some of
the parameters were fixed to values suggested in [15, 16, 20]:S0 = 1.56·107 (people),
E0 = 6.44 (people),I0 = 12.88 (people),N = 6.40 · 107 (people),L = 6.00 (years),
D = 1.10 · 10−2 (years),M = 5.50 · 10−3 (years),P = 80.87 (years).

The inverse problem was solved withθ = (β0, a1, b1). Simple inspection of the
standard errors in Table 3 does not seem to immediately suggest there is a poor fit
(not displayed here). Roughly speaking, the standard error is: 13% of the estimate
for β0; 30% of the estimate fora1; 45% of the estimate forb1. These calculations
give an indication of wide uncertainty, but they are not as extreme as the results for
θ = (S0, N, L, D, M, β0, a1, b1) in Table 2. One can easily be misled by invalid uncer-
tainty quantification in the absence of residual analysis. Residual plots (not displayed
here) in this case have systematic patterns, suggesting that either the statistical model
(equation (3.2)) may be incorrect, or more likely, the SEIRS model fails to adequately
describe the underlying process.
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Parameter Estimate Standard error Unit Coefficient of variation

β0 3.100×102 4.055×101 years−1 1.308×10−1

a1 1.539×10−2 4.588×10−3 1 2.981×10−1

b1 -2.406×10−2 1.090×10−2 1 -4.530×10−1

Table 3. Estimates from influenza-like-illness observations, whereθ = (β0, a1, b1).
The coefficient of variation is defined as the standard error divided by the estimate

6. Discussion

We have discussed a computational methodology for inverse problem formulation in
the context of parameter identifiability. Using an OLS scheme based on a constant
variance statistical model for the observation process and a seasonal SEIRS epidemics
model for illustration, we have proposed a prior-analysis algorithm that we believe
might profitably precede efforts on parameter estimation from data. The algorithm can
be used if reasonable ranges for the sought after parameters are either known a priori,
or can be assumed by the user much in the same way one must assume reasonable
ranges in inverse problem formulations and initiation of algorithms for the resulting
estimation procedures.

The subset selection [31] algorithm given in Section 4 is based on two main crite-
ria for a fixed number of parameters: (i) full rank of the sensitivity matrix; and (ii)
calculation of standard errors. We proposed to first select according to the sensitivity
matrix rank, because those parameter combinations for whichχ has full rank will have
a non-singular Fisher information matrixχT χ, and its inverse is used in the calculation
of the standard errors (see equation (3.13)).

The near dependence of the sensitivity matrix columns can be a fingerprint of pa-
rameter correlations–a pertinent feature for subset selection [31]. Capaldi, et al., [14]
determine identifiability of parameters in a simple SIR model, and show how correla-
tion between parameter estimates can impede the estimation of other parameters and
parameter combinations, such as the basic reproductive number. Moreover, Brun, et al.,
[11] explain that if the columns ofχ are nearly dependent, then changes in the model
output due to small changes in a single parameter can be compensated by appropriate
changes in other parameters.

We have presented illustrations of the how the removal of nearly dependent columns
of the sensitivity matrix can provide substantial improvements in uncertainty quantifi-
cation. This feature involves more than just reducing the numberp of parameters, it
relates to excluding certain key parameters. For instance, if we assume a linear Taylor
expansion of the model output, the estimatorθOLS ∈ Rp is given by equation (3.27),
where the sensitivity matrixχ(θ0) has singular valuess1 ≥ · · · ≥ sp−1 ≥ sp > 0.
If sp ≈ 0 andsp−1 > 1, then submatrices with singular valuess2 ≥ · · · ≥ sp > 0,
ands1 ≥ · · · ≥ sp−1, have different conditioning when quantifying the sensitivity of
reduced orderestimations that only involvep−1 parameters. The condition number of
the former submatrix iss2/sp, which is large ifsp ≈ 0, while for the latter submatrix
the condition number satisfies 1≤ s1/sp−1 < s1, becausesp−1 > 1.
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In our numerical experiments, we calculate sensitivity matricesχ(θ) evaluated at
different realizations of the estimatorθ = θ̂OLS . Whenθ = (S0, N, L, D, M, β0, a1, b1)
the singular values of the sensitivity matrix range from 4.7× 106 to 4.6× 10−6 while
for θ = (L, β0, a1, b1) the singular values ofχ(θ̂OLS) range from 1.9×106 to 9.3×100.

The smallest singular value changes from 4.6× 10−6 to 9.3× 100 while the largest
remain on the order of 106. This improvement in conditioning is reflected in the the
standard error forL, β0, anda1, which reduces to less than 1% of the estimate, from
nearly 900% and 380% (see Table 2).

Although in this paper we only discuss OLS, the selection algorithm can be easily
applied when using a generalized least squares scheme [4]. We also carried out numer-
ical experiments (for brevity not discussed here) involving use of synthetic nonconstant
variance data sets in GLS formulations, and obtained results absolutely consistent with
those of the OLS formulation presented here (Section 5).
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