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To improve traditional neural networks, the present research used the wavelet net-
work, a special feedforward neural network with a single hidden layer supported by the
wavelet theory. Prediction performance and efficiency of the proposed network were ex-
amined with a published experimental dataset of cross-flow membrane filtration. The
dataset was divided into two parts: 70 samples for training data and 330 samples for test-
ing data. Various combinations of transmembrane pressure, filtration time, ionic strength
and zeta potential were used as inputs of the wavelet network to predict the permeate
flux. The initial network led to a wavelet network model after training procedures with
fast convergence within 30 epochs. Further, the wavelet network model accurately de-
picted the positive effects of either transmembrane pressure or zeta potential on permeate
flux. Moreover, comparisons indicated the wavelet network model produced better pre-
dictability than the back-forward backpropagation neural network and the multiple re-
gression models. Thus the wavelet network approach could be employed successfully in
modeling dynamic permeate flux in cross-flow membrane filtration.
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Introduction

Applications of membrane technology in water
and wastewater treatment have been growing
steadily in recent years (Brindle and Stephenson,1

Liao et al.,2 Visvanathan et al.3). Many full-scale
facilities are running with immersed microfiltration
or ultrafiltration membranes mainly because mem-
branes can offer higher efficiency in liquid-solid
separation (Visvanathan et al.,3 2000). However, the
effectiveness of membrane separation is greatly af-
fected by fouling the decline in permeate flux due
to accumulation of colloidal matter, organic mole-
cules, sparingly soluble inorganic compounds and
microorganisms on membrane surfaces or in mem-
brane pores (Defranceetal.,4 Song,5 Zhang and
Song6). Fouling is an unavoidable deleterious phe-
nomenon in membrane filtration and makes mem-
brane technology less competitive in many applica-
tions. Therefore, understanding membrane fouling
and developing controlling methods are crucial for
the future of membrane technologies. To optimize
the operation of membrane filtration, many model-
ing methods have been used to predict the permeate
flux decline in recent years. Among these methods,
theoretical models have been established using nu-
merous factors, which include feed-water character-
istics, membrane properties and operational condi-
tions (such as trans-membrane pressure, cross-flow
velocity and temperature) (Li and Elimelech7). The-

oretical models can produce highly detailed and
complex descriptions of membrane fouling; how-
ever, they are computationally intensive and de-
mand a high-level modeling expertise (Bowen et
al.8). Moreover, the mechanisms of membrane foul-
ing and the effect of key factors on fouling are
stillunclear or quite controversial (Tarleton and
Wakeman9), which makes theoretical models de-
signed with some necessary assumptions. Such as-
sumptions result in models that are only valid for
certain types of feed-water under certain conditions.
In order to control membrane filtration effectively
and easily, alternative methods are desired. Because
available information often consists of measured
data of several factors and permeate flux, the alter-
natives are expected to depend not on deep insight
into complicated mechanisms, but on full utilization
of available information. Furthermore, such an al-
ternative must have the ability to determine the
connections between input and output only by ana-
lyzing process data. Fortunately, data driven mod-
els, such as artificial neural networks (ANNs),
could act as these alternatives. ANNs are mathe-
matical algorithms that simulate the capacity of the
biological brain to solve complex problems, and
have the ability to approximate almost any function
in a stable and efficient way (Chattopadhyay and
Bandyopadhyay10). ANNs have already been exten-
sively applied to modeling membrane filtration
(Chen and Kim11 Cheng et al.12). In all types of
ANNs, feed-forward back-propagation neural net-
works (BPNNs) and radial basis function networks
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(RBFNs) have been proven the two most attractive
methods for modeling membrane filtration until
now (Al-Abri and Hilal,13 Aydineretal.,14 Sahoo and
Ray15). The BPNN was first used to predict the
dynamic process of membrane fouling during
cross-flow microfiltration of cane sugar. They stud-
ied the effect of the BPNN hidden structure and dif-
ferent distributions of training data on the predict-
ability, and they obtained satisfactory accuracy.
Infollowing studies, BPNNs have been shown to
besometimes better suited and more useful for
highnonlinear processes of membrane filtration
(Chellam,16 Cinar et al.,17 Curcio et al.,18 Ni
Mhurchu and Foley19). Unfortunately, there is a
lack of reliable rules for the choice of the hidden
structure of BPNNs and the common way is by trial
and error. Moreover, initial parameters of BPNNs
are often assigned random values, which cause slow
convergence during the training process. On the
other hand, using the experimental data of Fabish et
al.,20 Chen and Kim11 found that RBFNs achieved
better predictions than BPNNs. However, Sahoo
and Ray16 pointed out that the results of Chen and
Kim12 were obtained through ANNs with un-opti-
mized structures. With the same experimental data
of Fabish et al.,20 they showed that there was no ap-
parent difference in predictability between BPNNs
and RBFNs when the structures of both type of net-
works were optimized by genetic algorithms (GAs).
Although the GA optimized networks may improve
the predictability of ANNs, Cheng et al.12 stated
that the GAs are inclined to encounter the pitfall of
overfitting when the number of neurons is too large
because of their intrinsic randomness. Cheng et
al.12 presented a modified RBFN (MRBFN) which
showed good convergence resulting from a well ini-
tialized structure. They constructed the MRBFN by
choosing neurons from a set of candidate neurons,
which were predetermined according to uniform
partitions of the domain of interest at different lev-
els. However, their method could encounter the
problem of dimension curse when the input dimen-
sion increases, because the increasing dimension
leads to an exponential increase of the uniform par-
titions of the domain. In particular, the dimension
curse becomes more severe when higher levels are
carried out in the case of higher input dimension.
Despite the vast efforts to improve the efficiency of
ANNs in membrane processes as above, there are
still some problems, for instance, lack of specific
methods or the danger of encountering lower effi-
ciency to determine the initial network structures
and the initial parameters. Therefore, a more effi-
cient type of ANNs will be preferred to model the
complex process of membrane filtration. Wavelet
networks have shown to be a promising alternative
to traditional ANNs (Zhang and Benveniste21) and

many studies describe wavelet networks as a pow-
erful tool for function approximation (Zhang and
Benveniste,21 Zhang et al.22), system identification
(Billings and Wei,23 Sjoberg et al.24), automatic
control (Sanner and Slotine,25 Oussar et al.26), etc.
Such network is a special 3- layer feed forward net-
work as shown in Fig. 1 which is calculated as fol-
low:
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Where, �y is the output; x is the input; � is the con-
necting weight; � is the hidden-layer neuron; s is
the number of hidden neurons. As a distinguishing
characteristic, � is a wavelet function and is often
called a wavelon. The wavelet is a function that sat-
isfies an admissibility condition and it has a prop-
erty of compact support, namely, nonzero values
only in a finite domain (Daubechies28). A single
wavelet �(x) called a mother wavelet can generate
family of wavelets by dilating and translating itself
as following:
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Where � and � are the dilation and translation step
sizes (typically � = 2, � = 1), respectively, m is the
translation index and n is the dilation level. Each
wavelet in the family (2) has finite support. Support
refers to the region where the function is nonzero.
The wavelet function of the family (2) can exhibit a
support that is compact or rapidly vanishing
(Daubechies27). The wavelet family can be used as
tools for function analysis and synthesis. The con-
cept of a wavelet family is very similar to a set of
sine functions at different frequencies used in Fou-
rier analysis. The family (2) is used as a set of can-
didate wavelets that constitute the original form of
eq. 1, i.e., the initial wavelons are chosen from the
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family (2). For a set of training data, only part of
wavelets in the family (2) are useful for constituting
the wavelet network model because most wavelets
may cover no data due to their compact support
(Zhang28). In addition, the set of training data in
practical cases is sparse, and this sparseness leads
to a further reduction in the number of candidate
wavelets in family (2). Clearly, both the wavelet
compact support and the sparseness of training
data make the selection of initial wavelons in eq. 1
more convenient. Once a given number of initial
wavelons have been chosen, the initial value of the
connecting weight (�) can be determined by linear
regression (Zhang28). Compared with traditional
ANNs, wavelet networks obviously offer a highly
efficient approach for constructing the initial form
of networks. Many studies have exhibited the high
efficiency of wavelet networks according to differ-
ent constructing methods, such as the orthogonal
least square (OLS) algorithm and backward elimi-
nation algorithm (Oussar and Dreyfus,29 Zhang28).
In particular, Zhang28 has reported that wavelet net-
works converged fast during training processes be-
cause of their better initialization, and wavelet net-
works already offered a comparable accuracy even
in their initial form. Specific constructing methods,
better initialization of internal parameters and fast
convergence, all of them make wavelet networks
more suitable than traditional ANNs for modeling
complex nonlinear processes. Although the great
benefit of wavelet networks has been successfully
applied to many fields, any wavelet network appli-
cation to membrane systems has not been reported
yet. In this paper, the wavelet network approach
was used to model a process of cross-flow mem-
brane filtration based on the published data set of
Bowen et al.8 The purpose of the current investiga-
tion was to demonstrate the high efficiency of a
wavelet network; to study its predictability of per-
meate flux under various operating conditions and
to compare its capability with those of BPNN and
the conventional multiple regression (MR) method.

Materials and methods

Experimental data

This study used the experimental data pub-
lished in Bowen et al.30 In the experiments, spheri-
cal silica colloids with a mean particle diameter of
65 nm were used to perform cross-flow membrane
ultrafiltration at five different combinations of pH
and ionic strength (I). For each combination of pH
and I, the permeate flux was measured under five
different transmembrane pressures (�P) as shown
in Fig. 4. In this paper, I, �, �P and time (t) acted as
the input of wavelet networks to predict the dy-

namic permeates flux. Out of 400 data samples, 70
samples were chosen as training data such that
more samples were located in regions of greatest
curvature, as shown in Fig. 3. The other 330 sam-
ples were used as testing data. Prior to being put in
the wavelet network, the values of all experimental
data were normalized between –1 and 1 as below:

x
x x
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Where, xcent = (xmax + xmin)/2 is the center of variable
Interval, xhalf = (xmax + xmin)/2 is the half of interval
length, xmax is the maximum value of a variable and
xmin is the minimum value of a variable. On the
other hand, a corresponding denormalization was
done to achieve a reasonable permeate flux after an
output of the network was attained. The normaliza-
tion method was derived from Z-score normaliza-
tion (Priddy and Keller30). Such normalization can
minimize bias within the wavelet network for one
feature over another. It can also speed up training
time by starting the training process for each fea-
ture within the same scale.

Constructing and training the wavelet
network

According to eq. 1, a so-called Mexican hat
wavelet (Zhang28) was chosen as a mother wavelet
with the following form:
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Where, d is the dimension of x, ||x||2 = xxT. Then a
family of candidate wavelets was determined by the
mother wavelet and the training data. Then, further
development was done by selecting different num-
bers of wavelons from the candidate family accord-
ing to the OLS algorithm and then, the number
of wavelons was determined by the generalized
cross-validation (GCV) criterion. The GCV, a mod-
ified form of cross-validation, is a popular method
for choosing the smoothing parameter. An impor-
tant early reference is Craven and Wahba.31 The
GCV criterion consists of estimating the expected
performance of the model evaluated with fresh data
based on the required data (Zhang28). Thus an
initial form of the wavelet network model was
achieved. In the end, the initial wavelet network
was trained to get the final wavelet network model.
The detailed steps are listed below:

1) Definition of wavelet support: For �m,n(x) in
the family (2), denoted by Sm,n its support, i.e.,

S x R x xm n
d

m n m n, , ,{ :| ( )| . max | ( )| }� 	 �� �0662 (5)
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2) Generating the family of candidate wavelets:
With the definition of Sm,n, each training point xk

among N training points is examined within five di-
lation levels (n = 0, 1, 2, 3, 4) to find the wavelets
whose supports contain xk. Then the index set of the
found wavelet, Ik, is defined by:

I m n x Sk k m n� 	{( , ) : }, (6)

The union of Ik for all xk in the family (2) gives
the indices of candidate wavelets whose supports
contain at least one training data point. This results
in the family of candidate wavelet

W m n I I Im n N� 	 � �{ :( , ) },� 1 2 (7)

Let L be the number of wavelets in W. For
convenience of the following presentation, the
double index (m, n) is replaced by a single index
j = 1, 2, …, L, i.e.,

W L� �{ , , }� � �1 2 (8)

3) Determination of the initial wavelet net-
work: The initial wavelet network is achieved by a
hybrid algorithm (Zhang28) where, the OLS algo-
rithm determines the relative optimal combination
of a certain number of candidate wavelets and then
the GCV criterion points out the most reasonable
combination of a certain number of candidate
wavelets. The hybrid algorithm can be done as fol-
lows:

Algorithm:
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which is the resulting wavelet network;
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End loop:

s GCV
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As a result, the initial wavelet can be achieved
with the form of eq. 1.

4) Training the wavelet network: A common
backpropagation training method is applied to fit
the training data, as well as possible in this paper.
The details about back-propagation method can be
found in Haykin.32 The performance of the training
process is evaluated with normalized square root of
mean square (NSRMSE)
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K y y

K y y

k kk

K

kk

K
�

�

�

�

�

�

�

1

1

1

1

/ ( � )

/ ( )

with y
K

y k

k

K

�
�

�1

1

.

In addition, the NSRMSE was used as the stop-
ping criteria for training ANN, and it was also a
performance index of model prediction in this pa-
per.

Results and discussion

The wavelet network model

By examining each training input xk consisting
of I, � , �P and t, a family of 152 candidate wave-
lets was achieved and each of the wavelets had a
support covering at least one training input. By
comparison, the number of candidate wavelets
would be: (24)0+ (24)1+ (24)2+ (24)3+ (24)4 = 69905.
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If the candidate wavelets were attained by the
technique of uniform partition of input space that
was described in Cheng et al.12 Note that the expo-
nent 4 of 24 in parenthesis is the dimension of input
xk. Clearly, the number of 69905 wavelets would be
a dimension curse. Therefore, even if generating the
69905 wavelets was not tedious, the big number
would certainly cause higher cost of computation in
the following selection of network neurons. How-
ever, with the number of 152 candidate wavelets in
this paper, the proposed method was not very sen-
sitive to the input dimension of training data. In
fact, such insensitivity resulted from the compact
support of wavelets and the sparseness of training
data, both of which were useful in avoiding the su-
perfluous wavelets to be included in the candidate
family.

Fig. 2 shows the varying GCV with respect to
the number of selected wavelons according to the
OLS algorithm. The GCV criterion was applied to
the number of the selected wavelets, which was a
model order determination problem. This criterion
of minimum GCV avoided the danger of overfitting
the training data. The minimum GCV was attained
at the number 12, i.e., the combination of the cho-
sen 12wavelets were used to constitute the initial
wavelet network with a relative optimal approxima-
tion. Because it would be very tedious to tell the
optimal combination of a certain number of wave-
lets from all the subsets of the same size of the can-
didate family, the chosen 12 wavelets were deter-
mined by stepwise selection method. This method
first selected one wavelet which was optimal for fit-
ting the training data, then the second one such that
it was optimal while cooperating with the first se-
lected one, then the third one which was similarly
selected, and so on. In this way, the stepwise selec-
tion by the OLS algorithm successfully made a
trade-off between optimality and efficiency.

The obtained initial network fitted the training
data with an NSRMSE of 0.103. Such smaller

NSRMSE agrees with Zhang28 who reported that
the OLS strategy could offer satisfactory accuracy.
Consequently, the OLS strategy and the GCV crite-
rion could lead to an efficient constructing proce-
dure and a better initialization for the wavelet net-
work. With the initial wavelet network, the com-
mon backpropagation was used as the training
method. During the training procedure, NSRMSE
drastically dropped during the first 30 epochs (Fig.
3). Clearly, the training process converged so fast
even in an ordinary back-propagation training
method. The fast convergence verified again the
better initialisation of the wavelet network ap-
proach.

With the initial wavelet network, the common
back-propagation was used as the training method.
During the training procedure, NSRMSE drastically
dropped during the first 30 epochs (shown in Fig.
3). Clearly, the training process converged so fast
even in an ordinary back-propagation training
method. The fast convergence verified again the
better initialization of the wavelet network ap-
proach.
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rameters on the flux



Effect of I, � and �P on permeate flux

Fig. 4 shows the measurements and the predic-
tions of the wavelet network model for permeate
flux during cross-flow ultrafiltration of silica
colloids at five pressures for each of the five combi-
nations of pH and I. The wavelet network model
excellently offered predictions for both training and
testing data. Moreover, the nonlinearity of the flux
time profiles was well reproduced by the wavelet
network. As shown in Fig. 4, the predictions, as
well as the measurements accurately described per-
meate flux behavior greatly changing with the vari-
ations of �P, pH, and I. The same plot could have
been generated for each scenario but it has been
confined to one case to show the trend. For each
combination of pH and I, the permeate flux was
proportional to �P and the ultimate flux at higher
transmembrane pressure was higher. These phe-
nomena are due to the greater driving force for per-
meate flux by higher �P (Faibishet al.20). Mean-
while, higher �P led to the steeper flux decline at
the earlier stage of the filtration. This trend is attrib-
uted to the higher convective mass of colloids to-
ward the membrane surface and a more densely
packed cake layer at higher pressure (Faibish et
al.20). On the other hand, for each combination of
pH and I, the lowest P was observed with the least
flux decline for both experimental data and predic-
tions. This observation is an index of operation ap-
proaching the critical flux below which colloids do
not deposit on the membrane surface (Faibish et
al.30). The predictions also accurately described the
positive effect of � on permeate flux. Also, an in-
creasing flux followed a decreasing I with the same
pH and, in the latter, the enhancement in permeate
flux was preceded by an increasing pH with the
same I. In fact, both of the above operations led
to an increasing � (not considering the sign) of
colloids (Bowen et al.8). The enhancements in per-
meate flux by � in Fig. 4, all the results are in quali-
tative agreement with the published reports by
Huisman et al.33 and McDonogh et al.34). These au-
thors explained the effect of � qualitatively by rea-
soning that high zeta potentials increase inter-parti-

cle repulsion, thus causing less deposition (thinner
cake layers) and more permeable cake layers.

Consequently, the thinner and more permeable
cake layers lead to an enhancement of permeate
flux. Such an enhancement became more signifi-
cant in this paper because of the colloidal particles
with a smaller mean diameter 65 nm. Faibish et
al.20 have reported that for particles with diameters
smaller than about 100 nm, the effect of interaction
repulsion on permeate flux becomes dominant.
Among all the predictions and experiments, the com-
bination of pH = 9, I = 0.030 M and � = –80.5 mV
led to the highest permeate flux for each �P in ear-
lier stage. Besides, the effect of the highest �, lower
I also enhanced the permeate flux for case E, which
is in accordance with the report by Elzo et al.35 who
stated that lower I corresponds to larger distances
between particles and such distance results in more
permeable cake layers. The predictions in case E
agree well with the theoretical explanation. All the
case scenarios are listed below.

Case A: pH = 4, I = 0.072 M, � = 6.3 mV (Fig. 4)

Case B: pH = 4, I = 0.030 M, � = 17.9 mV

Case C: pH = 4, I = 0.0077 M, � = 24.0 mV

Case D: pH = 7, I = 0.031 M, � = 46.7 mV

Case E: pH = 9, I = 0.030 M, � = 80.5 mV

Performance comparison

This section describes the superiority of the
wavelet network over BPNN under the same mod-
eling conditions. The BPNN model used the tanh
function as hidden neurons. Moreover, a compari-
son with the conventional MR method was used to
show the better initialization of the wavelet net-
work. Two MR models were built with the identical
training data. One is a linear regression equation
with the following form:

J = 2.488 · 10–2 – 2.401 · 10–1{I} –

– 2.230 · 10–4{�} + 1.376 · 10–4{�P} –

– 8.353 · 10–4{t}.
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T a b l e 1 – Comparisons of R2 and NSRMSE for different models

Model type
R2 NSRMSE

training data testing data training data testing data

Initial wavelet network

The wavelet network model

The BPNN model

The linear MR model

The nonlinear MR model

0.990

0.997

0.997

0.752

0.809

0.685

0.965

0.914

0.800

0.848

0.685

0.965

0.068

0.494

0.433

0.610

0.196

0.294

0.480

0.492



Another is a nonlinear multiple equation with
the following form:

J = 2.956 · 10–2 – 2.312 · 10–1{I} –

– 2.235 · 10–4{�} + 1.467 · 10–4{�P} –

– 2.747 · 10–4{t} + 6.288 · 10–5{t2}.

Coefficients of both equations were proven sig-
nificant by the t-statistic. Several other multiple
polynomial regression models were also tested, but
their coefficients showed worse significance by the
t-test. Table 1 shows the coefficients of multiple de-
termination R2 and the NSRMSE for permeate flux
obtained with the initial wavelet network, the wave-
let network model, the BPNN model, the linear MR
model and the nonlinear MR model. The wavelet
network model not only provided better results in
fitting, but also the best in prediction, with a R2 of
0.997 for the training data and 0.965 for the testing
data. The BPNN model provided results much
better than the MR models. The nonlinear MR
model slightly improves in the basis of the linear
MR model, but its prediction ability is not compara-
ble to the BPNN and wavelet networks. This sup-
poses that the existing high non-linearity of mem-
brane filtration is a challenge for the MR method.
In particular, it can be stated that the NSRMSE ob-
tained by the wavelet network model is much
smaller than that obtained with the other three
methods. The superiority of the wavelet network
model in fitting and prediction resulted from its
better initialization, because the initial wavelet net-
work has already provided better results with a R2

of 0.990 and an NSRMSE of 0.103 for the training
data. Moreover, the number of wavelons of the ini-
tial wavelet network, which was evaluated by GCV
criterion, led to good generalization performance of
the wavelet network model with an NSRMSE of
0.196 for the testing data.

Fig.4 (case A) shows the predicted versus mea-
sured flux for the initial wavelet network, the wave-
let network model, the BPNN model, and the MR

models. Most of the data shown in case B fall
within the lines with ±10 % relative error. Only 12
out of 330 predicted testing data lie outside the re-
gion enclosed by the dotted lines, indicating that
96.4 % of the data are within the ± 10 % relative er-
ror range. In case C, 81 out of 330 predicted testing
data is not confined within the two dotted lines. In
case D, only 40 % of the data lie within the ±10 %
relative error range, which is mainly because the
complex nonlinear membrane filtration process
could not be presented by a simple linear method.

Moreover, the simple linear description led to 9
negative results. Although the nonlinear MR model
was slightly better than the linear MR model, it pro-
vided 13 negative predictions, which suggest that
the MR method could not rationally depict the
membrane filtration.

Conclusion

The present study shows that a wavelet net-
work approach could be used to predict permeate
flux decline of cross-flow ultrafiltration of colloidal
suspensions as a function of operating conditions.
The wavelet network approach provided the benefit
of efficient constructing procedures by fully utiliz-
ing the sparseness of training data and the compact
support property of wavelets. In particular, in case
of multiple input dimensions (4 dimensions in this
paper), this approach could avoid the curse of
dimensionality for the choice of hidden neurons.
Moreover, a better initialization with an NSRMSE
of 0.103 by the OLS algorithm and GCV selection
criterion led to fast convergence within 30 epochs
during the training procedure. The wavelet network
model excellently described the nonlinear variation
of permeate flux under different operating condi-
tions. The predictions described the positive effect
of �P on permeate flux, and moreover, an increas-
ing � was followed by an enhancement in permeate
flux. Such an accurate prediction ability of wavelet
networks could certainly be helpful in optimizing
practical operations of membrane filtration. Further,
the wavelet network model offered such satisfac-
tory accuracy that almost 96.4 % of predictions for
the testing data deviated measured data within the
± 10 % relative error range. Meanwhile, the com-
parisons of the performances of the initial wavelet
network, the wavelet network model, the BPNN
model, the linear MR model, and the nonlinear MR
model confirmed the superiority of wavelet net-
works.

As it is shown, efficient construction, better
initialization, faster convergence and higher accu-
racy, all have proved that the wavelet network is a
promising alternative to traditional ANNs in model-
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ing complex membrane filtration processes. As a
modeling tool, wavelet networks could be used for
both observation of membrane system performance
and evaluation of experimental conditions. In addi-
tion, this modeling technique could be applied as a
simulation tool to improve the operating conditions
of other water and wastewater treatment systems
that involve highly nonlinear processes.

N o m e n c l a t u r e

�y � output

x � input

� � connecting weight

� � hidden-layer neuron

� and � � dilation and translation step sizes d: dimen-
sion of x

L � number of wavelets

NSRMSE � performance index of model prediction

s � number of hidden neurons

xcent = (xmax + xmin)/2� center of variable

xhalf = (xmax + xmin)/2 � half of interval length
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