
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사 학위논문 

 

 

언어 자원이 부족한 언어 쌍에 대한 다국어 사전 추출 

 

 

Multilingual Lexicon Extraction  

under Resource-Poor Language Pairs 

 

 

 

지도교수 김재훈 

 

 

2015 년 8 월 

한국해양대학교 대학원 

컴퓨터공학과 

 

 

서 형 원 

 



 

본 논문을 서형원의 공학박사 학위논문으로 인준함 

 

 

 

위원장  공학박사  박 휴 찬    인 

 

 

위  원  공학박사  류 길 수    인 

 

 

위  원  공학박사  이 장 세    인 

 

 

위  원  공학박사  고 영 중    인 

 

 

지도교수  공학박사  김 재 훈    인 

 

 

 

20015년   6월 29일 

 

한국해양대학교 대학원 

 



 

 

Multilingual Lexicon Extraction  

under Resource-Poor Language Pairs 

 

 

by 

 

Hyeong-Won Seo 

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy  

 

 

Graduate School of Computer Engineering 

Korea Maritime and Ocean University 

 

 

August 2015 

 

 

APPROVED BY: 

Professor Jae-Hoon Kim 

            (Advisor) 

Professor Hyu-Chan Park 

(Chair of Evaluation Committee) 

 

Professor Keel-Soo Rhyu 

 

Professor Jang-Se Lee 

Professor Young-Joong Ko  
 



1 

Abstract 

 

 

 

In general, bilingual and multilingual lexicons are important resources in many natural language 

processing fields such as information retrieval and machine translation. Such lexicons are usually 

extracted from bilingual (e.g., parallel or comparable) corpora with external seed dictionaries. 

However, few such corpora and bilingual seed dictionaries are publicly available for many 

language pairs such as Korean–French. It is important that such resources for these language pairs 

be publicly available or easily accessible when a monolingual resource is considered. 

This thesis presents efficient approaches for extracting bilingual single-/multi-word lexicons 

for resource-poor language pairs such as Korean–French and Korean–Spanish. The goal of this 

thesis is to present several efficient methods of extracting translated single-/multi-words from 

bilingual corpora based on a statistical method.  

Three approaches for single words and one approach for multi-words are proposed. The first 

approach is the pivot context-based approach (PCA). The PCA uses a pivot language to connect 

source and target languages. It builds context vectors from two parallel corpora sharing one pivot 

language and calculates their similarity scores to choose the best translation equivalents. The 

approach can reduce the effort required when using a seed dictionary for translation by using 

parallel corpora rather than comparable corpora. The second approach is the extended pivot 

context-based approach (EPCA). This approach gathers similar context vectors for each source 

word to augment its context. The approach assumes that similar vectors can enrich contexts. For 

example, young and youth can augment the context of baby. In the investigation described here, 

such similar vectors were collected by similarity measures such as cosine similarity. The third 

approach for single words uses a competitive neural network algorithm (i.e., self-organizing maps; 

SOM). The SOM-based approach (SA) uses synonym vectors rather than context vectors to train 

two different SOMs (i.e., source and target SOMs) in different ways. A source SOM is trained in 

an unsupervised way, while a target SOM is trained in a supervised way.  

The fourth approach is the constituent-based approach (CTA), which deals with multi-word 

expressions (MWEs). This approach reinforces the PCA for multi-words (PCAM). It extracts 

bilingual MWEs taking all constituents of the source MWEs into consideration. The PCAM 
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identifies MWE candidates by pointwise mutual information first and then adds them to input 

data as single units in order to use the PCA directly.  

The experimental results show that the proposed approaches generally perform well for 

resource-poor language pairs, particularly Korean and French–Spanish. The PCA and SA have 

demonstrated good performance for such language pairs. The EPCA would not have shown a 

stronger performance than expected. The CTA performs well even when word contexts are 

insufficient. Overall, the experimental results show that the CTA significantly outperforms the 

PCAM.  

In the future, homonyms (i.e., homographs such as lead or tear) should be considered. In 

particular, the domains of bilingual corpora should be identified. In addition, more parts of speech 

such as verbs, adjectives, or adverbs could be tested. In this thesis, only nouns are discussed for 

simplicity. Finally, thorough error analysis should also be conducted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

언어 자원이 부족한 언어 쌍에 대한 다국어 사전 추출 

 

 

서형원 

 

컴퓨터공학과 

한국해양대학교 대학원 

 

초록 

 

일반적으로 다국어 사전은 정보검색, 기계번역과 같은 자연어처리의 연구 분야에서 

주요한 자원으로 사용되고 있다. 이와 같은 다국어 사전을 구축하기 위해서는 

일반적으로 이중언어 말뭉치(bilingual corpora)와 초기 사전(seed dictionary) 

등의 언어 자원이 주로 사용된다. 그러나 초기 사전과 같은 언어 자원은 한 언어 

내에서는 쉽게 구할 수 있으나 언어 쌍(예를 들면, 한국어-불어)에 대한 언어 자원은 

쉽게 구할 수 없는 실정이다. 

이런 환경에서, 본 논문은 이렇게 언어 자원을 쉽게 얻을 수 없는 언어 쌍에 

대하여 다국어 사전을 구축하는 여러 방법들을 제안한다. 본 논문의 목표는 한국어-

불어, 한국어-스페인어와 같은 언어 쌍에 대하여 병렬/비교 

말뭉치(parallel/comparable corpora)로부터 다국어 사전을 최대한 쉽고 효율적으로 

구축하고자 한다. 이를 위해 본 논문에서는 네 가지 방법을 제안한다. 처음 세가지 

방법은 단일단어에 대한 것이고  나머지 한 가지 방법은 다중단어에 관한 것이다. 

첫 번째 방법은 PCA(pivot context-based approach)이라고 하며, 중간언어(pivot 

language)를 이용하여 대상이 되는 두 언어를 연결하는 방법이다. 이 방법은 하나의 

중간언어를 공유하는 두 개의 병렬말뭉치로부터 문맥 벡터를 만들고 이들 벡터 간의 
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유사도를 비교함으로써 대역 단어를 찾는다. 이 방법은 비교 말뭉치 대신에 병렬 

말뭉치를 사용하기 때문에 초기 사전과 같은 외부 자원의 사용을 줄일 수 있다는 

장점이 있다. 두 번째 방법은 EPCA(extended pivot context-based approach)이라고 하며,  

번역하고자 하는 원시 단어와 유사한 문맥 벡터들을 미리 수집하여 번역 단어를 

찾고자 하는 일에 사용한다. 즉, 유사한 단어의 문맥이 번역하고자 하는 원시 단어의 

문맥을 강화한다는 가정으로부터 출발한다. 예를 들어, ‘젊은이’와 ‘아이’가 ‘아이’의 

문맥을 강화하는 데에 쓰인다는 것이다. 세 번째 방법은 SA(SOM-based 

approach)이라고 하며, 신경망 방법 중에 하나인 자기 조직화 지도(self-organizing 

map)를 이용한 방법이다. 이 방법은 문맥 벡터 대신에 유사어 벡터를 이용하여 두 

개의 서로 다른 SOM 을 각각 다른 방식으로 학습시킨다. 네 번째 방법은 

CTA(constituent-based approach)이라고 하며,  단일단어가 아닌 다중단어에 대한 

방법이다. 이 방법은 다중단어를 구성하는 각 구성원들도 유사도를 계산하여 그 

관계를 함께 고려하는 것이 특징이다. 이를 위해, 먼저 다중단어가 될 후보들을 

선정해야 되는데, 이 때 PMI(pointwise mutual information)를 이용하여 먼저 가능한 

후보들을 찾고 이전에 언급했던 PCA 를 그대로 이용하여 다중단어에 대한 번역 사전을 

구축한다. 

실험 결과, 언어 자원이 부족한 환경에서도 본 논문에서 제안하는 방법들은 좋은 

성능을 보였다. 특히, PCA 나 SA 는 탁월한 성능을 보였고 EPCA 와 같은 경우는 

기대만큼 높은 성능을 보이지는 않았다. 마지막으로 CTA 는 단어들의 문맥이 부족한 

경우에 대해서도 높은 성능을 보였다. 

향후에는 동음이의어에 대한 문제가 개선되어야 하고, 말뭉치들 간의 영역문제를 

해결해야 한다. 또한, 더욱 다양한 품사로의 확장과 좀 더 깊은 오류 분석이 요구된다. 
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Chapter 1 

 

 

 

Introduction 

 

 

 

This chapter describes the notion of multilingual lexicons. Based on this notion, this chapter states 

the thesis’ main subject and the research motivations. Several research objectives are outlined, 

and the overall organization of the thesis is presented. 

 

 

 

1.1 Multilingual Lexicon Extraction 

Extraction of bilingual translations of single words from comparable corpora has been studied by 

many researchers (Tanaka & Iwasaki, 1996; Fung, 1998; Picchi & Peters, 1998; Rapp 1999; 

Shahzad et al., 1999; Déjean et al., 2002; Chiao & Zweigenbaum, 2002; Ismail & Manandhar, 

2010; Hazem & Morin, 2012). Such extracted lexicons have been used to construct statistical 

machine translation (SMT) models (Brown et al., 1990; Chen, 1993; Fung & Church, 1994; Kay 

& Roscheisen, 1993; Wu & Xia, 1994) or EM (expectation-maximization)-based models that 

align words in sentence pairs to construct technical terms (Dagan et al., 1993; Dagan & Church, 

1994). Some researchers have compiled bilingual lexicons that consist of technical terms using 
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similarity measures from bilingual lexical pairs (Gale & Church, 1991; Kupiec, 1993; Smadja & 

McKeown, 1996). In addition, other researchers have focused on the alignment of multi-words 

(Kupiec, 1993; Smadja et al., 1996). In most cases, such lexicons have been extracted from 

comparable corpora even though parallel corpora can provide promising results. However, 

collecting parallel corpora is time-consuming. Extracting such lexicons from comparable corpora 

has been studied since the late 1990s (Rapp, 1999; Koehn & Knight, 2002). However, using 

comparable corpora to extract bilingual lexicons yields poor results when orthographic features 

are not used. In such cases, large seed dictionaries can be considered to achieve higher accuracy 

(Koehn & Knight, 2002). Thus, the domains of bilingual corpora should be closely related, or the 

initial seed dictionaries should be of sufficient size. 

Most studies of bilingual lexicon extraction from comparable corpora have used context 

vectors from two different languages. A context-based approach (CA) was proposed (Rapp, 1995; 

Fung, 1998), and many other methods have been derived from this approach. However, the CA 

uses comparable corpora; therefore, the previously mentioned limiting characteristics should be 

considered. To address the limitations related to the usage of seed dictionaries or orthographic 

features, many other studies have considered the entry size of the seed dictionary or similarity 

score measurements (Fung, 1998; Rapp, 1999; Koehn & Knight, 2002; Chiao & Zweigenbaum, 

2002; Daille & Morin, 2005; Prochasson et al., 2009). Alternatively, some researchers (Chatterjee 

et al. 2010; Chu et al., 2014; Kwon et al., 2014) have studied methods of extending seed 

dictionaries by iteratively extracting bilingual lexicons until a reasonable iteration converges. 

Nevertheless, the accuracy of bilingual lexicon extraction via comparable corpora is quite poor 

(Ismail & Manandhar, 2010). Thus, if stronger performance is required, either large-scale 

bilingual (parallel or comparable) corpora or seed dictionaries with sufficient entries should be 

prepared. In addition, most previous studies have dealt with resource-rich language pairs such as 

English to Chinese, Spanish, and German. Accessing or constructing linguistic resources for these 

language pairs is much easier than it is for Korean → French or Spanish. 

This thesis deals with bilingual lexicons from bilingual corpora and adapts the methodology to 

multilingual resources or circumstances. Thus, the thesis provides a comprehensive discussion of 

multilingual lexicon-extraction methods. For simplicity, the names of bilingual lexicon 

extractions rather than multilingual lexicons are used in the remainder of the thesis.  
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1.2 Motivations and Goals 

As mentioned previously, extracting bilingual lexicons requires many linguistic resources when 

comparable corpora are considered. For resource-rich language pairs such as English–* (any 

language), attempts to collect them are not as significant of undertakings as they are for some 

other language pairs such as Korean–*. Publicly accepted linguistic resources for resource-poor 

language pairs such as Korean–French1 and Korean–Spanish are very rare, whereas monolingual 

resources are readily available. Even if such resources for resource-poor language pairs are 

available, they are very small in scale or incomplete. Thus, this thesis focuses on the minimum 

usage of external/extra linguistic resources.  

The primary focus of this thesis is bilingual lexicon extraction specifically when publicly 

available linguistic resources such as bilingual dictionaries are insufficient. Furthermore, single 

words and multi-word expressions (MWEs) are discussed. MWE extraction forms a large 

research field, and MWE lexicons are used for many natural language processing (NLP) domains 

such as building ontologies (Venkatsubramanyan & Perez-Carballo, 2004) and information 

retrieval (Doucet & Ahonen-Myka, 2004). The thesis does not focus on bilingual MWE extraction; 

the primary focus is extracting bilingual single-word or MWE lexicons when only resource-poor 

language pairs are available. 

The main goal of this thesis is to propose effective methods of addressing the limitations of 

earlier methods of extracting multilingual lexicons from resource-poor language pairs. Several 

studies that are closely related to the proposed approaches are reviewed. These studies have 

focused on the extraction of bilingual parallel words, that is, single words or MWEs. Then, several 

approaches to mitigate the limitations of an approach chosen as the baseline (the standard 

approach) are proposed. The proposed approaches are based on several assumptions, which can 

be summarized as follows. 

 Adaptation for resource-poor languages: There are thousands of languages on this 

planet and many linguistic resources. Many people speak English as a native or 

foreign language. Moreover, monolingual resources such as documents in English 

can be easily found online, and bilingual resources for English are very common. 

Unfortunately, bilingual resources for specific language pairs such as Korean–French 

                                                           
1 The symbol “–” indicates bidirectionality; i.e., source to target and target to source. 
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and Korean–Spanish are very rare. This thesis only considers such resource-poor 

language pairs. 

 Minimum usage of resources: This thesis deals with resource-poor languages; 

therefore, excluding external linguistic resources such as a parser and the scale of a 

seed dictionary or their extensions is a crucial point. 

 Simplified experiments for efficiency: This thesis evaluates the effectiveness of 

many approaches. Thus, reducing the effort and time required to perform experiments 

is a consideration. Investigating as many words as possible causes inefficient tests, 

implementations, or evaluations. Thus, the experiments discussed in this thesis focus 

on nouns for bilingual single-word extraction (resp. noun phrases for multi-word 

expression extraction). 

 

 

1.3 Organization 

The remainder of this thesis is organized as follows. Chapter 2 presents detailed reviews of many 

methods that are closely related to the proposed approaches. In particular, several statistical 

extraction methods for single words and multi-words are reviewed. The CA, the extended 

approach (EA), and the iterative approach (IA) are used for single words. An earlier approach for 

multi-words, namely the pivot context-based approach for multi-words (PCAM), which has been 

presented in several previous studies of MWEs, is reviewed. In addition, self-organizing maps 

(SOMs) are briefly reviewed. Finally, several evaluation measures are described. 

Chapter 3 discusses the pivot context-based approach (PCA). The PCA extracts bilingual 

lexicons via a pivot language; therefore, using comparable corpora with insufficient overlapped 

terms or a seed dictionary is unnecessary. Using resource-poor language pairs that share one 

resource-rich language is the key point in this work. In addition, this chapter presents 

experimental results with summarized characteristics. 

Chapter 4 presents the extended pivot context-based approach (EPCA), which was proposed 

to improve the PCA. This approach is based on an earlier one, the EA, which is based on the 

assumption that similar words can reinforce their contexts. The results of several experiments that 

demonstrate the value of the EA are presented and discussed.  

Chapter 5 proposes the SOM-based approach (SA). The SA uses SOMs to improve the CA. 
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This approach is very useful with small seed dictionaries. The SOMs are used in natural and 

slightly abnormal ways. This chapter describes how SOMs can be used to extract bilingual 

lexicons and supports the methodology with reasonable experimental results.  

Chapter 6 presents the constituent-based approach (CTA) for extracting MWEs with reference 

to various earlier studies. Based on in-depth analysis, various associated errors are identified. In 

addition, ways to improve the CTA are described.  

Finally, Chapter 7 summarizes and concludes the thesis and presents suggestions for future 

research. 
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Chapter 2 

 

 

 

Background and Literature Review 

 

 

 

This chapter provides background information and reviews several previous studies closely 

related to the proposed approaches. In particular, this chapter summarizes several statistical 

extraction methods for single words and MWEs. Note that the context-based approach (CA), a 

method for single words (Section 2.1.1) is considered the base approach in this thesis. In addition, 

many previous approaches for extracting MWEs from bilingual corpora are reviewed, and several 

evaluation measures such as accuracy, precision, and rated recall are described. 

 

 

 

2.1 Extraction of Bilingual Translations of Single Words 

There have been many previous approaches for extracting bilingual lexicons from bilingual 

corpora (Tanaka & Iwasaki, 1996; Fung, 1998; Picchi & Peters, 1998; Rapp 1999; Shahzad et al., 

1999). Fung (1998) used aligned parallel corpora and comparable corpora to discuss the paradigm 

change from parallel to comparable corpora. A CA using such comparable corpora has been 

proposed (Rapp, 1995; Fung, 1998). In addition, approaches that use dependency relationships 
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among words to extract more salient contexts have been proposed (Garera, 2009; Yu & Tsujii, 

2009). The dependency-based approach uses external dependency parsers as resources. 

Collecting or building such parsers for language pairs can be a burden. Therefore, this thesis 

focuses on the CA (i.e., the base approach using context vectors) and its improvement.  

The following sections deal with the CA, EA (Déjean & Gaussier, 2002), and the pivot-based 

approach (PA).  

 

 

2.1.1 Context-based approach 

The context-based approach (CA) (Rapp, 1995; Fung, 1998) builds context vectors by 

considering contextually relevant words in small windows. Selecting similar context vectors in 

the source and target languages is the key idea of this approach, which is based on the assumption 

that if two words are mutual translations, then their more frequent collocates are likely to be 

mutual translations as well (Déjean et al., 2002). It is also based on the identification of first-

order affinities for each source and target language. First-order affinities describe what other 

words are likely to be found in the immediate vicinity of a given word (Grefenstette, 1994a, p. 

279). This approach has been widely studied (Ismail & Manandhar, 2010; Hazem & Morin, 2012). 

Most earlier studies were closely related in their use of comparable corpora, which are defined as 

sets of texts in different languages that are not translations of each other (Bowker & Pearson, 

2002), or of small-scale bilingual seed dictionaries. The use of comparable corpora is generally 

reasonable because parallel corpora for specific language pairs are not widely available. In 

addition, collecting or building parallel corpora for all language pairs is almost impossible. 

However, the use of comparable corpora can lead to poorer performance. However, comparable 

corpora do not always result in performance worse than that attained with parallel corpora. To 

achieve higher performance with comparable corpora, larger-scale corpora are required. The 

structure of the CA is shown in Figure 2.1.  

(1) Building context vectors: First, two types of context vectors should be built from 

monolingual corpora. In this case, contexts presented by vectors indicate that some 

words occur within a fixed window size. At this point, word order is not important for 

counting co-occurrences. After all word co-occurrences have been counted, association 

measures such as log-likelihood (LL) (Dunning, 1993), chi-square (CHI) (Manning & 
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Schütze, 1999), and pointwise mutual information (PMI) (Fano, 1961) are computed. 

Based on these values, context vectors are built for both the source and target languages.  

(2) Translating context vectors: In this step, source context vectors should be translated 

into the target language based on a seed dictionary. In addition, all entries belonging to 

words not found in the target part of the seed dictionary are eliminated. Thus, only target 

words found in the seed dictionary (SL→TL)2 are presented in the vector space. Both 

context vectors, i.e., those of the source and target, are comparable because of the 

translation. 

(3) Computing similarity scores: After all source and target words have been presented 

using the same vector space dimensions, each source context vector is compared with 

all of the target context vectors using a vector distance measure (Manning & Schütze, 

1999) such as cosine similarity or weighted Jaccard indexes (Grefenstette, 1994b). This 

thesis assumes that two words that share similar context words in different languages 

are likely translations.  

(4) Selecting similar context vectors: After all similarity scores have been computed, the 

scores are sorted in descending order. Several target context vectors with the highest 

scores are selected for a single source word. Steps (2) and (3) are repeated for all source 

                                                           
2 The SL (resp. TL) means ‘source language’ (resp. ‘target language’), and the symbol ‘→’ indicates 

unidirectionality, i.e., source to target. 

Figure 2.1: Overall structure of CA 
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words. 

As can be seen, the method is quite simple; however, despite this simplicity, it has 

demonstrated good results with single-word terms from large corpora of several million words. 

Fung (1998) obtained 76% precision for the top 20 candidates from English and Chinese news 

articles. Rapp (1999) improved the precision to 89% for the top 10 candidates from English and 

German news articles. These experimental results indicate that the algorithm is very adaptive to 

various experimental circumstances and language pairs. The important thing is the coverage of 

the seed dictionary. Examples of studies that employed the CA with seed dictionaries as well as 

the features that affected performance are listed as follows:  

 Size of the context window: Three sentences (Daille & Morin, 2005), 25 words 

(Prochasson et al., 2009) 

 Entry size of seed dictionary: 1k (Koehn & Knight, 2002), 16k (Rapp, 1999), around 

2k (Fung, 1998; Chiao & Zweigenbaum, 2002; Daille & Morin, 2005) 

 Similarity score measure: city-block measure (Rapp, 1999), cosine distance measure 

(Fung, 1998; Chiao & Zweigenbaum, 2002; Daille & Morin, 2005; Prochasson et al., 

2009), Dice or Jaccard indexes (Chiao & Zweigenbaum, 2002; Daille & Morin, 2005) 

Comparable corpora and seed dictionaries are essential resources for the CA. It is easier to 

construct comparable corpora than parallel corpora for specific language pairs, which is 

advantageous when extracting bilingual lexicons in resource-poor language pairs such as Korean–

French. However, the accuracy of bilingual lexicon extraction via comparable corpora is quite 

poor (Ismail & Manandhar, 2010). Moreover, extraction with comparable corpora requires an 

additional external linguistic resource, particularly, a seed dictionary. A seed dictionary requires 

approximately 10k to 20k entries to achieve higher accuracy (Fung, 1995; Rapp, 1999). Thus, if 

higher performance is required, larger-scale corpora and sufficient bilingual seed entries should 

be available.  

In the next section, the EA, which attempts to improve the performance of the CA, will be 

presented. 
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2.1.2 Extended approach 

As mentioned previously, the CA relies heavily on the coverage of the seed dictionary. Many 

approaches to reduce the load of the seed dictionary have been proposed. Chiao and 

Zweigenbaum (2002) and Déjean et al. (2002) focused on extending the entries in a seed 

dictionary through specialized dictionaries or multilingual thesauri. Alternatively, Déjean and 

Gaussier (2002) proposed the extended approach (EA), which focuses on enrichment of the 

context words to be translated. The EA assumes that synonyms share the same environments. 

This assumption is based on the identification of second-order affinities in the source language: 

Second-order affinities show which words share the same environments. Words sharing second-

order affinities need never appear together themselves, but their environments are similar 

(Grefenstette, 1994a, p. 280). Figure 2.2 illustrates the overall structure of the EA in more detail. 

 

(1) Building context vectors: This step is very similar to the first step of the CA. All source 

words (resp. target words) are presented using vector-space dimensions. At this point, 

Figure 2.2: Overall structure of EA 
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each element from the vector space is a co-occurred word within a fixed window size. 

First, word co-occurrences are counted, following which an association measure such 

as PMI is computed to define the vector entries. 

(2) Building nearest context vectors: For a source vector 𝑠𝑖  (i denotes a source word 

index), its k nearest context vectors (𝑠̅⃗𝑖,1, 𝑠̅⃗𝑖,2, … , 𝑠̅⃗𝑖,𝑘  ) are collected in this step. As 

described previously, synonyms sharing the same environments can enrich the context 

vectors of the source word to be translated. In other words, enrichment of the context 

of source word s𝑖 by selecting its synonyms (𝑠𝑖̅,1, 𝑠𝑖̅,2, … , 𝑠𝑖̅,𝑘) (i.e., the closest k words) 

can help determine the correct translation of s𝑖 without extending the seed dictionary 

based on an external bilingual dictionary or a multilingual thesaurus. Synonyms are 

generally selected based on similarity scores among source context vectors. These 

similarity scores will be used again in step (4). 

(3) Translating nearest context vectors: All nearest context vectors 𝑠̅⃗𝑖  are translated via 

the seed dictionary (SL→TL). If a source entry has several translations in the seed 

dictionary, only the most frequent translation in the target corpus is considered. Every 

target source entry not found in the seed dictionary is eliminated. 

(4) Computing similarity scores: In this step, the similarity scores between source word 

s𝑖  and target words t are computed. To measure the similarity score sim(𝑠𝑖 , 𝑡𝑗), two 

types of similarity scores, sim(s𝑖 , 𝑠𝑖̅) and sim(𝑠𝑖̿ , 𝑡𝑗), should be computed first. Here 𝑗 

denotes a target word index, 𝑠𝑖̅ = (𝑠𝑖̅,1, 𝑠𝑖̅,2, … , 𝑠𝑖̅,𝑘) denotes the words nearest to the 

source word s𝑖, and 𝑠𝑖̿ denotes the words nearest to 𝑠𝑖̅ translated into the target language. 

Note that similarity scores sim(s𝑖 , 𝑠𝑖̅) have already been computed to obtain the nearest 

context vectors 𝑠̅⃗𝑖 . Therefore, the similarity score sim(s𝑖 , 𝑡𝑗) is defined by Equation 

(2.1).  

sim(𝑠𝑖 , 𝑡𝑗) = ∑ sim(s𝑖 , 𝑠𝑖̅,𝑒  )
𝑘

𝑒=1
× sim(𝑠𝑖̿,𝑒 , t𝑗)                            (2.1) 

 

As can be seen, the k nearest context vectors and their translated vectors strengthen 

common contexts among source word s𝑖  and target word 𝑡𝑗. If the source word has as 

many nearest words as possible, a similarity score between two words can be greater 
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than that computed directly. 

(5) Selecting similar context vectors: After all similarity scores have been computed, 

these scores are sorted in descending order. Several target context vectors with the 

highest scores are selected for a single source word. Steps (2) and (4) are repeated for 

all source words. 

Déjean and Gaussier (2002) discussed the problem of selecting such nearest units. Selection of 

the best translation depends on data. Thus, it is usually defined empirically. Alternatively, another 

scoring method was proposed by Daille and Morin (2005). They collected the leader vectors of 

the x nearest words and then calculated similarity scores between the collected leader vectors and 

target context vectors. This thesis simply refers to the EA and uses the key feature in the EPCA, 

which is described in Chapter 4. 

 

 

2.1.3 Pivot-based approach 

As mentioned previously, the CA (Rapp, 1995; Fung, 1998) uses comparable corpora to extract 

context vectors. Since comparable corpora do not provide clues or traces about contexts, a 

bilingual seed dictionary, which is used to translate the source vector entries into the target 

language, is a very crucial resource. As expected, the applicability and performance of this 

approach depend on the size/coverage of the seed dictionary (Fung 1995; Rapp, 1999). Therefore, 

some researchers have studied the extension of seed dictionaries (Koehn & Knight, 2002; Koehn 

et al., 2003; Tsunakawa et al., 2008). However, extending a seed dictionary is not a fundamental 

solution. As Fung (1995) and Rapp (1999) reported, a seed dictionary requires approximately 10k 

to 20k entries to achieve higher accuracy. In general, the accuracy of bilingual lexicon extraction 

via comparable corpora is quite poor (Ismail & Manandhar, 2010); however, this low accuracy 

does not mean that bilingual lexicon extraction via comparable corpora is a useless approach. If 

parallel corpora are considered to be the input used for bilingual lexicon extraction, corpora of 

sufficient scale should be available. In addition, such corpora are difficult to collect for all 

language pairs. 

To address these problems, some studies (Tanaka & Umemura, 1994; Bond et al., 2001; Paik 

et al., 2001; Shirai & Yamamoto, 2001; Schafer & Yarowsky, 2002; Goh et al., 2005) have 

focused on pivot languages (i.e., pivot-based approach). The key idea of the pivot-based approach 
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(PA) is to construct a bilingual lexicon between the source and target languages by merging two 

different bilingual lexicons that share one pivot language (i.e., source–pivot and pivot–target). 

Figure 2.3 illustrates this process with examples. In this case, two lexicons are passed to a mixing 

model that combines two different entries based on a specific method such as exact string 

matching. 

 

 

However, there is a critical disadvantage, namely, a polysemy problem. To solve this problem, 

Tanaka and Umemura (1994) utilized the structures of dictionaries to measure the nearness of the 

senses of words. Bond et al. (2001) proposed using semantic classes to rank translation 

equivalents; in their method, word pairs with compatible semantic classes are preferred to those 

with dissimilar classes. Shirai and Yamamoto (2001) measured the degree of similarity between 

two words (i.e., in source and target languages) based on the number of pivot words shared by 

the words. Paik et al. (2001) used multiple pivot languages (i.e., English and Chinese) to improve 

the accuracy of bilingual lexicon extraction. The method proposed by Paik et al. is applicable to 

a specific language pair such as Korean–Japanese because Korean and Japanese share Chinese 

characters for most words. Schafer and Yarowsky (2002) presented a method to induce translation 

lexicons without parallel corpora or a direct bilingual seed dictionary by combining iteratively 

trained similarity measures such as string similarity, context similarity, date distributional 

similarity, and the similarity of word frequency and burstiness statistics. Goh et al. (2005) 

attempted to construct a bilingual lexicon between Japanese and Chinese by building a dictionary 

for Kanji words with simple conversion from Kanji to Hanzi. This method begins from the fact 

Figure 2.3: Example of combining two lexicons

: baby 

: child  

 

baby: bébé 

child: enfant 

: bébé 

: enfant 

[Source–Pivot lexicon] [Pivot–Target lexicon] 

[Source–Target lexicon] 

Mixing model 
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that most Japanese Kanji characters are similar to Chinese ideographs. Goh et al. assumed that, 

since most of the kanji characters are originally from China, the usage should remain 

unchangeable in certain contexts. They performed several experiments for nouns and verbal 

nouns and showed that the proposed method could improve performance. 

 

 

2.2 Extraction of Bilingual Translations of Multi-Word Expressions 

Many theoretical and practical studies on multi-word expressions (MWEs) have been undertaken 

(Nunberg et al., 1994; Manning & Schutze 1999; Sag et al., 2002). However, identifying and 

treating MWEs is difficult due to the lack of adequate linguistic resources such as parallel corpora 

in various languages. This problem has increasingly attracted the attention of the NLP community. 

Various NLP applications have been proposed that are based on bilingual MWE lexicons such as 

building ontologies (Venkatsubramanyan & Perez-Carballo, 2004), information retrieval (Doucet 

& Ahonen-Myka, 2004), text alignment (Venkatapathy & Joshi, 2006), and machine translation 

(Baldwin & Tanaka, 2004; Uchiyama et al., 2005). 

An MWE has various definitions depending on the focus. MWEs can be defined as expressions 

that consist of two or more words that correspond to some conventional way of expressing an 

idea (Manning & Schutze, 1999), as the co-occurrence of sequences of words that tend to co-

occur more frequently than chance and are either decomposable into multiple simple words or 

idiosyncratic (Baldwin et al., 2003), and as groups of two or more words or terms in a language 

lexicon that generally convey a single meaning (Monti et al., 2011). The latter definition conveys 

the basic role of MWEs. In human language, MWEs appear very frequently, either verbally or 

literally. They can be noun phrases such as my best friend, a beautiful red dress, and the dog on 

the sofa; collocations such as alcoholic drink and nuclear family; poly-words such as by the way, 

of course, and in a flash; idioms such as take action and pulling my leg; and phrasal verbs such 

as give up and break up. The wide range of possible usages accounts for the various definitions 

of MWEs (Rayson et al., 2009). MWE identification and alignment methods based on identified 

MWE candidates are discussed in the following sections. 
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2.2.1 MWE identification 

Many methods of identifying various types of MWEs in different domains have been proposed. 

Some have focused on collocational behavior of MWEs (Church & Hanks, 1990). Pecina (2008) 

evaluated 55 different association measures such as PMI and mixed them to determine their 

influences on each other. He showed that mixing different types of association measures is more 

effective than using one standard measure. Other studies based on association measures have been 

conducted (Chang et al., 2002; Villavicencio et al., 2007; Bouma, 2010) to determine the measure 

that shows the highest efficiency for identifying several types of MWEs in several languages. 

However, Piao et al. (2003) reported that approximately 68% of MWEs occur only once or twice 

in their corpora; thus, statistical approaches may return less than satisfactory results when 

infrequent MWEs are considered. 

As well as identifying the usage of linguistic properties of MWEs as an important issue, Piao 

et al. (2005) also contended that considering linguistic information and word statistics together is 

better than considering them independently. The research performed by Ramisch et al. (2008) 

supports this idea. Ramisch et al. showed that statistical measures on their own are generally 

sufficient to identify MWEs. However, for different languages and MWE types, such measures 

would have limited success in capturing specific linguistic features such as compositionality. 

Moreover, the study reported that some measures such as PMI usually show good performance; 

however, they may return different results for different types of MWEs. In addition, the study 

reported that adding type-specific linguistic information such as part-of-speech (POS) sequence 

patterns can significantly improve performance over that achievable by considering statistic 

measures alone. 

Several studies concentrated on syntactic or semantic properties of MWEs. Wermter and Hahn 

(2004) explored the (non-)modifiability of preposition–noun–verb combinations in German, and 

Fazly and Stevenson (2006) and Bannard (2007) quantified the syntactic fixedness of English 

verb-noun phrases. Recently, Green et al. (2011) used a parsing module, specifically, tree 

substitution grammars, to identify French MWEs of arbitrary lengths. Using syntactic or semantic 

properties could achieve higher accuracy or better coverage of MWEs. However, such linguistic 

information is highly domain-, language-, or even type-specific; therefore, significant effort 

would be required to adapt such information to different types of MWEs. 

Several studies have addressed specific linguistic features of MWEs (i.e., compositionality and 

non-compositionality). Identification of non-compositional (or idiomatic) MWEs is very 
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important for any computational system (Sag et al., 2002). Recently, many researchers have 

considered this feature of MWEs (Lin, 1999; Baldwin et al., 2003; Moirón & Tiedemann, 2006). 

Katz and Giesbrecht (2006) performed latent semantic analysis (LSA) to distinguish whether the 

meanings of expressions were literal (compositional) or non-literal (non-compositional; 

idiomatic). They estimated that a vector similarity score between an MWE as a whole and its 

constituents can represent a degree of compositionality. For example, the similarity score 

obtained by LSA between the MWE hit the road and the single word leave is much higher than 

scores between the MWE and its constituents. However, all methods have advantages and 

disadvantages. The method proposed by Katz and Giesbrecht (2006) relies on either sufficient 

non-compositional usage of idiomatic MWEs in the corpus or a bilingual dictionary containing 

such MWEs for evaluation; however, such information is generally not available. In addition, the 

performance of this method will be reduced when the (non-)literal meaning is overwhelmingly 

frequent. Manning and Schütze (1999, Chapter 5) argued that a mere co-occurrence measure 

does not well distinguish compositional meaning from non-compositional expressions; therefore, 

to achieve better identification of such idiomatic expressions, external linguistic resources should 

be considered. 

Taken together, many rule-based or hybrid identification studies using syntactic or semantic 

properties of MWEs have shown better results than those obtained using only word statistics. 

However, a particular approach does not always guarantee a successful result. Adapting existing 

language-specific resources to other languages, domains, or even different types of MWEs 

requires considerable time and effort. This adaptation becomes more difficult when dealing with 

resource-poor language pairs such as Korean–French and Korean–Spanish. Linguistic resources 

such as parallel corpora for such pairs are very rare. Therefore, this thesis focuses on using either 

the collocational behavior of MWEs or simple linguistic information such as POS sequence 

patterns corresponding to noun phrases to identify nominal MWEs. In addition, deeper linguistic 

processing such as syntactic parsing and linguistic resources such as bilingual dictionaries are 

ignored. Furthermore, to avoid time-consuming tasks such as building a bilingual dictionary 

containing idiomatic MWEs for evaluation, non-compositional (or idiomatic) MWEs are not 

considered. 

The general method of identifying MWEs (Seo et al., 2014) and other approaches (Daille et 

al., 1994; Piao & McEnery, 2001; Kunchukuttan, 2007) are illustrated in Figure 2.4. 
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In this method, all possible 𝑛-grams (2 ≤ 𝑛 ≤ 3) from each monolingual corpus are extracted 

first. Then, reasonable collocations by an association measure such as PMI are extracted. Finally, 

potential MWE candidates are extracted according to their specific POS sequence patterns. This 

identification method requires only morphological analyzers and noun phrase patterns for each 

language, which are readily available for general languages. This identification method is used in 

the PCAM and is described in the next section. The CTA will be described in Section 6.  

 

 

2.2.2 MWE alignment 

The alignment of MWEs in bilingual parallel corpora is important in NLP domains (Piao & 

McEnery, 2001). Several approaches based on association measures (Smadja et al., 1996), 𝑛-

grams, approximate string matching, finite state automata (McEnery et al., 1997), and bilingual 

parsing matching (Wu, 1997) have been proposed. Piao and McEnery (2001) used 𝑛-grams, 

linguistic POS patterns, and collocation measures together to align nominal MWEs in an English-

Chinese parallel corpus. They assumed that nominal MWEs in the source language generally tend 

to be translated to nominal MWEs in the target language; therefore, their occurrences in the 

parallel corpus are correlated. Based on this assumption, they align nominal MWEs using their 

collocational behavior. This approach aligns nominal English/Chinese MWEs with high precision 

but relatively low recall. 

Recently, Seo et al. (2014) aligned nominal Korean/French MWEs in terms of collocational 

behavior of words. They proposed the pivot context-based approach for multi-words (PCAM), 

which uses a pivot language such as English to bridge the source and target languages. The most 

important reason why the PCAM considers a pivot language is that linguistic resources such as 

bilingual (parallel/comparable) corpora or evaluation dictionaries for resource-poor language 

pairs are very rare and may not be publicly available. Most approaches for extracting various 

types of bilingual MWEs from parallel corpora (Daille et al., 1994; Wu & Xia, 1994; McKeown 

et al., 1996) and comparable corpora (Lu & Tsou, 2009) have been based on resource-rich pairs 

Figure 2.4: General flow of MWE identification
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such as English–French or English–Chinese because most of these language pairs (English–*) 

are readily available online.  

The PCAM considers the collocational behaviors of words to select the greatest number of co-

related words in source and target languages. As Nazar (2008) stated, co-related words in both 

languages can be translations of each other, i.e., if a pair of words co-occurs more often than 

expected by chance in the aligned pair of sentences of both languages, then it is to expect that 

they are translations of each other. To identify potential MWE candidates, the PCAM uses the 

general method described in Figure 2.4. It assumes that extracted MWE candidates are sufficient 

to be treated as actual MWEs. In addition, MWE candidates in a pivot language are nonessential 

because a single word in a pivot language is sufficient to bridge both the source and target words. 

 

After all MWE candidates have been extracted, the actual alignment task, which is derived 

from the PCA (Seo et al., 2013a) is performed with these candidates. The general flow of the 

PCAM is illustrated in Figure 2.5. The PCAM alignment task will be described in more detail in 

Chapter 3. Note that the PCA is used for a single word. Nonetheless, it performs well with MWEs 

because all extracted MWE candidates are transformed into single tokens. These MWE tokens 

are then added to each input corpus. The PCAM assumes that these modified single tokens, which 

are added to each sentence in which they occur, can act as single words. 

A major drawback of the PCAM is that it can have limited success when common context 

words in the pivot language are insufficient, which can occur if the domains of two parallel 

corpora differ or if words do not occur sufficiently frequently to build context vectors in their 

corpora. Several types of errors stem from the deficiency of common context words. First, 
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translation equivalents are similar with a correct translation but incorrect. For example, when 

point de vue (point of view) is given as a source word, the incorrect translation equivalent  

(segyegwan, world view; vue métaphysique, vision du monde3) is extracted. Second, constituents 

of translation equivalents as a part are extracted as the top x translation equivalents. For example, 

when  (eoneohakgwa, department of linguistics) is given as a source word, the 

translation equivalent département (or linguistique) is extracted rather than the MWE 

département de linguistique as a whole. This phenomenon can be observed when the context of 

the MWE (e.g., département de linguistique) has insufficient common contexts, but that of its 

constituents (i.e., département or linguistique) is much richer. Most such MWEs are infrequent 

and originally not enough more than their constituents in a corpus whether the multi-word is a 

high-frequent word. 

In Section 6, this thesis proposes the CTA, which focuses on the latter error types mentioned 

above (i.e., extracting constituents as translation equivalents). Basically, the CTA uses the PCAM; 

however, it reinforces performance by measuring similarity scores for each target constituent. 

 

 

2.3 Self-Organizing Maps 

A SOM (Kohonen, 1982, 1995) can be a general unsupervised or a competitive learning network. 

SOMs are used to visualize large amounts of input data in lower-dimensional space. They can be 

used in pattern recognition (Li et al., 2006; Ghorpade et al., 2010), signal processing (Wakuya et 

al., 2004), multivariate statistical analysis (Nag et al., 2005), data mining (Júnior et al., 2013), 

word categorization (Klami & Lagus, 2006), and clustering (Juntunen et al., 2013). Since the 

training of an unsupervised network is entirely data-driven and no target results for the input 

vectors are provided, a SOM can be used to cluster input vectors and identify features inherent to 

the problem. It can represent high-dimensional data as low-dimensional map units or neurons, 

usually as a two-dimensional lattice. A SOM attempts to maintain the topological properties of 

the input data; therefore, semantically and geometrically similar input vectors are mapped to 

neighboring units. 

                                                           
3 French translations of the Korean word are presented in italics. 
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Figure 2.6 illustrates the overall architecture of a SOM. In this case, the SOM has 𝑝 training 

vectors and 𝑞 units (number of categories). Note that each output unit has its own weight vector 

of length 𝑝 to be compared with input vectors. The overall SOM algorithm for training a two-

dimensional map can be described as follows. 

i. Initialization: Set initial weight vectors 𝑤(0) with small random values [0, 1]. Let 

iteration 𝑡  be 1 and learning rate  𝜂(𝑡)  be a small positive value ( 0 < 𝜂(𝑡) ≤

𝜂(𝑡 − 1) ≤ 1). 

ii. Sampling: Select a sample training input 𝑔𝑖 from the input space, where 𝑖 is the index 

of the input data.  

iii. Competition: Find the winning neuron 𝑐𝑔 using the minimum Euclidean distance as 

the identification criterion. The Euclidean distance 𝑑  between vectors is typically 

measured using Equation 2.2, where 𝑤𝑐,𝑖  is a synaptic weight between input 𝑔𝑖  and 

neuron 𝑐, and 𝑟 is the number of neurons in the SOM. 

𝑑 = ‖𝑔 − 𝑤𝑐‖ = √∑ (𝑔𝑖 − 𝑤𝑐,𝑖)
2𝑝

𝑖=1
,      𝑐 = 1,  … ,  𝑟                    (2.2) 

The neuron whose weight vector with the minimum value at iteration 𝑡, i.e., 𝑐𝒈(𝑡) =

argmin𝑐 {‖𝑔 − 𝑤𝑐(𝑡)‖}, wins.  

iv. Updating: Update weights to all nodes within a topological distance given by 𝑑(𝑡) with 

the update rule given below: 

𝑤𝑐(𝑡 + 1) = 𝑤𝑐(𝑡) +  𝜂(𝑡)  ℎ𝑐(𝑡) [𝑔𝑖(𝑡) − 𝑤𝑐(𝑡)]                             (2.3) 

Figure 2.6: Inputs and outputs of SOM model 
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where ℎ𝑐(𝑡) denotes the Gaussian neighborhood function kernel around the winner-

takes-all neuron 𝑐 at iteration 𝑡. Neighbor weights are updated with values less than that 

of the winning neuron to preserve the topological characteristics of the map. 

v. Continuation: Increment 𝑡 and return to step ii until the weight vector (feature map) 

stops changing. 

When the SOM converges, the weight vector presents crucial statistical characteristics of the 

input space. The SOM algorithm used in the SOM-based approach will be described in Chapter 

5. 

 

 

2.4 Evaluation Measures 

Here, several metrics for evaluating the proposed approaches are described. The metrics are used 

to determine whether the extracted translation equivalents are correct. The metrics used in this 

thesis are accuracy (Chatterjee et al., 2010), precision (Koehn & Knight, 2002; Chatterjee et al., 

2010), recall (Haghighi et al., 2008), mean reciprocal rank (MRR) (Voorhees, 1999; Koehn & 

Knight, 2002; Chatterjee et al., 2010), and rated recall (Seo et al., 2013b). Accuracy and MRR 

are used when there is one correct answer, while the others are closely related to multiple 

translations in evaluation dictionaries. 

In general, accuracy is defined as the rate of correct translations from the given translation 

equivalents. However, in this thesis, the top x accuracy, that is, the rate of correct source words, 

is used. This rate is counted when at least one acceptable translation within the top 𝑥 ranks is 

discovered. Top x accuracy, Accuracy𝑥 , is expressed as follows: 

 

Accuracy𝑥 =
1

𝑁
∑ max

1≤𝑗≤𝑥
𝑧𝑖𝑗

𝑁

𝑖=1

,              where  𝑧𝑖𝑗 = {
1   if 𝑡𝑖𝑗 ∈  𝐴𝑖

 0   otherwise
   ,                      (2.4) 

 

where N denotes the number of evaluated source words 𝑠, 𝐴𝑖 denotes a set of translations for 

source word 𝑠𝑖 in the evaluation dictionary, 𝑡𝑖𝑗 denotes the 𝑗-th translation equivalent for 𝑠𝑖, and 

𝑧𝑖𝑗 denotes the evaluated translation equivalent 𝑡𝑖𝑗 (1 or 0). 

The MRR is derived from question answering (Voorhees, 1999) and the average of the 
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reciprocal ranks of correct translation equivalents, and it takes the best correct translation 

equivalent if there are multiple correct equivalents. An MMR value of 0 is used if there is no 

correct translation equivalent, and greater weights are given to higher ranks than to lower ranks. 

The top x MMR, MRR𝑥  , is expressed as follows:  

 

MRR𝑥 =
1

𝑁
∑ max

1≤𝑗≤𝑥
𝑧′𝑖𝑗

𝑁

𝑖=1

,              where  𝑧′𝑖𝑗 = {
1

𝑖
   if 𝑡𝑖𝑗 ∈  𝐴𝑖

 0    otherwise

  .                           (2.5) 

 

Precision (also known as positive predictive value), which is the rate of correct translation 

equivalents within the top x ranks, is widely used in information retrieval. In contrast to accuracy, 

precision evaluates multiple equivalents. In other words, it allows multiple counts. The top x 

precision, Precision𝑥, is expressed as follows:  

 

Precision𝑥 =
1

𝑁
∑

1

𝑥

𝑁

𝑖=1

∑ 𝑧𝑖𝑗

𝑥

𝑗=1

,              where  𝑧𝑖𝑗 = {
1     if 𝑡𝑖𝑗 ∈  𝐴𝑖

0    otherwise
 .                      (2.6) 

 

Recall (also known as sensitivity) is also widely used in information retrieval and is defined as 

the rate of retrieved translations in the evaluation dictionary. Recall at the top x, Recall𝑥 , is 

expressed as follows:  

 

Recall𝑥 =
1

𝑁
∑

1

|𝐴𝑖|

𝑁

𝑖=1

∑ 𝑧𝑖𝑗

𝑥

𝑗=1

,           where  𝑧𝑖𝑗 = {
1     if 𝑡𝑖𝑗 ∈  𝐴𝑖

 0     otherwise
 .                     (2.7) 

 

While recall projects the rate of retrieved translations in the evaluation dictionary, rated recall 

(RR), which was proposed by Seo et al. (2013b), focuses on how many retrieved translation 

equivalents occur in the corpus. In other words, high-frequency translation equivalents are 

considered more important than rare equivalents. RR adds the frequency rate of a translation 

equivalent in the corpus rather than adding 1 if a translation equivalent is correct. In this case, the 

frequency rate is based on each set of translations 𝐴𝑖  for source word 𝑠𝑖. Note that some examples 

are presented later. RR𝑥  is expressed as follows:  
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RR𝑥 =
1

𝑁
∑ ∑ 𝑧𝑖𝑗𝑟(𝑡𝑖𝑗)

𝑥

𝑗=1

𝑁

𝑖=1

,             where  𝑧𝑖𝑗 = {
1     if 𝑡𝑖𝑗 ∈  𝐴𝑖

 0     otherwise
 .                        (2.8) 

 

Here, 𝑟(𝑡𝑖𝑗) denotes the frequency rate of  𝑡𝑖𝑗 in the evaluation dictionary. Tables 2.1, 2.2, and 

2.3 show examples of how rated recall works. Here, examples of correct Spanish translations for 

the Korean word  (ddeut, sense) are presented with some errors. Table 2.1 presents Spanish 

translations 𝐴𝑖  in the evaluation dictionary and their frequencies. As can be seen, the RR contains 

the meaning in terms of importance (or a weight). Thus, computing averages is again unnecessary 

in this case. Table 2.2 shows the top x translation equivalents for the Korean word with 

correctness. Fortunately, all translations in the evaluation dictionary for  are retrieved by the 

system (i.e., Ranks 1, 2, 6, 7, and 11). In this case, recall for  will be 1 on the top 11 based on 

the formula (4). Each recall (including this result) is presented in Table 2.3. When only the top 1 

is considered, rated recall (0.44) and recall (0.2) express its importance differently. The RR score 

shows that the translation equivalent retrieved from its corpus is more important than any other 

equivalents. In other words, the most important translation is retrieved rather than the five top 

translations.  

 

Table 2.1: Examples of Spanish translations of  with frequency rate 𝑟(𝑡) 

Translation Gloss Frequency 𝒓(𝒕) 

intención intention, intent 3,595 0.44 

voluntad will 2,888 0.36 

propósito purpose, intention    902 0.11 

mente mind    374 0.05 

significado meaning, significance    354 0.04 

Total 5 8,113 1.00 
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Table 2.2: Examples of automatically retrieved translation equivalents of  

Rank T. equivalent Gloss 𝒓(𝒕) Correct 

1 intención intention, intent 0.44 True 

2 propósito purpose, intention 0.11 True 

3 preparación preparation 0.52 False 

… 

5 consideración consideration 0.47 False 

6 voluntad will, intention 0.36 True 

7 mente mind 0.05 True 

… 

11 significado meaning, significance 0.04 True 

 

Table 2.3: Comparison of rated recall and recall 

Rank Rated Recall Recall 

1                        0.44 1/5 = 0.20 

2 0.44 + 0.11 = 0.55 2/5 = 0.40 

6 0.55 + 0.36 = 0.91 3/5 = 0.60 

7 0.91 + 0.05 = 0.96 4/5 = 0.80 

11 0.96 + 0.04 = 1.00 5/5 = 1.00 
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Chapter 3 

 

 

 

Pivot Context-Based Approach 

 

 

 

This chapter discusses the use of the pivot context-based approach (PCA) to construct bilingual 

lexicons efficiently when only resource-poor language pairs are considered. The PCA was 

developed from the CA (Section 2.1.1). The CA constructs context vectors to present the 

characteristics of context words by considering contextually relevant words in a small window. 

However, the CA needs comparable corpora to build context vectors as well as a seed dictionary 

to translate source words into target words. Unfortunately, there is no publicly available 

dictionary for some resource-poor language pairs such as Korean–French and Korean–Spanish. 

In contrast, the PCA uses two parallel corpora with English as a pivot language. Although it relies 

on fragmentarily on the CA, the PCA does not use an external linguistic resource such as a seed 

dictionary. Nonetheless, the PCA has shown good performance. 

 

 

 

3.1 Concept of Pivot Context-Based Approach 

All approaches using a pivot language (Section 2.1.3) combine two existing bilingual lexicons to 
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construct a single lexicon. The performances of these approaches are affected significantly by 

two distant lexicons (i.e., source–pivot and target–pivot languages). However, the PCA does not 

use two existing bilingual lexicons. As mentioned previously, it is based on the CA (Section 

2.1.1). The PCA does not combine existing bilingual lexicons. The approach does not require 

direct parallel corpora or comparable corpora; instead, it uses parallel corpora that share one pivot 

language. Therefore, translation from one to another is unnecessary. Therefore, the PCA can build 

bilingual lexicons without any external linguistic resources. English words are sufficient to 

connect both source and target words. This approach is not a language-specific method; therefore, 

any resource-poor language pair can be considered. 

The overall structure of the approach is illustrated in Figure 3.1. Only two parallel corpora are 

required as input. The sequence of the algorithm can be presented in three steps as follows. 

 

(1) Building context vectors: In this step, context vectors from two parallel corpora are 

collected separately. The overall flow of building a context vector can be summarized 

as follows: POS tagging → co-occurrence counting without stop-words → measuring 

association scores → building vectors based on the scores. The examples presented in 

Figure 3.2 represent co-occurrences of several words from KR–EN parallel corpora. In 

these examples, each corpus contains two sentences and each sentence has underlined 

content words (i.e., nouns, verbs, adverbs, and adjectives). In this work, only content 

words are considered when words are represented in vector spaces. To identify content 

words from the corpus, the raw text should be annotated with POS tags. Then, all stop-

Figure 3.1: Overall structure of the PCA 
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words such as determiners, punctuation, and cardinal numbers are eliminated, and the 

word co-occurrences are counted. When these steps are completed, the window size that 

defines the range of word contexts should be determined. The PCA uses parallel corpora 

that contain parallel sentences; therefore, the context size is set as one sentence. 

Consequently, the co-occurrence is the number of parallel sentences containing both the 

source and target words.  

As shown in Figure 3.2, the source word  (jangreu4, genre, bolded) has several 

co-occurred words in the target languages. The association measure5 can be computed 

based on these numbers and additional information such as the number of observed 

sentences, which is the number of sentences containing source or target words. Of 

course, various association measures such as PMI, LL, and CHI can be considered here. 

After all association scores have been calculated, a context vector is constructed with 

the scores. To calculate the word associations among words in different languages, co-

occurrence frequencies should be counted in each parallel sentence.  

(2) Computing similarity scores: After the context vectors have been built, similarity 

scores between one source word and all target words are computed. Using the previous 

                                                           
4 A gloss is shown in italics in parenthesis.  
5 The specific methods to compute association measures are not described in this thesis. 

 
 
 
 
 
 
 
 
 
 

 … best game genre home movie … 

 (game)  1 1 1 0 0  

 (genre)  1 1 2 0 1  

 (movie)  0 0 1 0 1  

  …
 

        

 

[Raw KR text] 

 

E3 2015

 

 . 

14 …

[Raw EN text] 

 

Below are our picks for the best games of E3 

2015, sorted by both platform and genre.  
 

Examples of the fourteen basic movie 

genres… 

Figure 3.2: Examples of counting co-occurrences 
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example, the source vector for  and all target words should be considered to extract 

correct translations. More detailed examples of similarity score calculations are 

provided in Figure 3.3. 

As shown in Figure 3.3, similarity scores between source word 𝑠10 and target words 

𝑠33 … 𝑠35  are computed independently. In this case, the similarity scores can be 

calculated because the target vectors are also represented in the pivot language. Most 

measures representing the degree of similarity or difference between two vectors (e.g., 

cosine similarity or Jaccard coefficient) can be considered (cosine similarity is used in 

Figure 3.3). 

(3) Selecting similar context vectors: After all similarity scores for the source word have 

been calculated, the top x candidates are selected and added to the bilingual lexicon. In 

the experiments described in this thesis, x was empirically determined to be 20. 

As shown, the overall sequence of the approach appears to be simple. Since parallel corpora 

share a common pivot language, a seed dictionary is not required. Unfortunately, the approach 

ignores polysemy problems. Therefore, many heuristic techniques or previous studies to solve 

the polysemy problem introduced in Section 3.1 can be considered or adapted here. 

 

 

Figure 3.3: Examples of similarity score calculations 
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Figure 3.3: Examples of similarity score calculations
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3.2 Experiments 

3.2.1 Resources 

Many linguistic resources were used to experimentally evaluate the proposed approach. Three 

parallel corpora (i.e., Korean–English, French–English, and Spanish–English) were used. The 

KMU parallel corpus6 (Seo et al., 2006) for the Korean–English pair, which consists of several 

bilingual news articles and is aligned at a sentence level, was also used.  

The Europarl parallel corpora7 (Koehn, 2005) for French–English and Spanish–English pairs 

extracted from the proceedings of the European Parliament were also used. In this work, sub-

corpora sampled randomly from the Europarl parallel corpora that contained approximately the 

same numbers of sentences as the KMU parallel corpus were used to maintain balance with the 

corpora. The parallel corpora statistics are listed in Table 3.1. 

 

Table 3.1: Parallel corpora statistics 

 Korean–English French–English Spanish–English 

Sentences 433,151 500,000 500,000 

Words 8,283,222 13,381,739 13,292,137 12,750,062 13,196,180 12,713,067 

Types 1,110,499 374,175 185,815 144,457 210,485 145,531 

Avg. words* 19.1 30.9 26.6 25.5 26.4 25.4 

* Avg. words is the average number of words per sentence. 

 

As can be seen in Table 3.1, the distributions of the word types and average numbers of words 

per sentence for the Korean–English pair differ from those for the other language pairs. This 

phenomenon occurs due to a difference between domains (i.e., news articles and European 

parliament proceedings). The average number of words per sentence for Korean is lower due to 

a characteristic of the Korean language. On average, a Korean word usually contains one or more 

morphemes (2.3 morphemes per word in the experiment). The number of morphemes depends on 

the domain or corpus). For example, when the Korean POS tags such as NNG: general noun, 

XSV: verb-derivational suffix, EC: conjunctive ending, VX: auxiliary verb, ETM: adnominal 

ending, NNB: bound noun, VC: predicative case particle, and EF: final ending, are given, Korean 

                                                           
6 https://sites.google.com/site/nlpatkmu/Resources/Corpora 
7 http://www.statmt.org/europarl/ 
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tri-grams  (budamhaeya handaneun geopnida; have to pay) can be 

tagged as /NNG + /XSV + /EC /VX + ㄴ /ETM /NNB + /VC + ㅂ /EF. 

In this example, three Korean words are separated into eight morphemes after POS tags are 

annotated morphologically. Therefore, a Korean word should be separated into several 

morphemes because it contains one or more meanings. 

In addition, two sets of evaluation dictionaries (Korean–French and Korean–Spanish) were 

compiled semi-automatically for this evaluation. That is, only the grammatical correctness of the 

collected entries was determined manually. The primary consideration was whether each sense 

of collected entries was correct and that all translations of source synonyms were included. Each 

dictionary was unidirectional, and all translations were obtained from the Web dictionary8. The 

Web dictionary contains 100 high-frequency words and 100 low-frequency words. The words 

were sampled from parallel corpora randomly based on their frequencies. The statistics of their 

translations in the evaluation dictionaries are presented in Table 3.2. The numbers can be 

considered as the degrees of ambiguity as well as the numbers of polysemous words. 

 

Table 3.2: Evaluation dictionaries statistics for PCA (per one source word in evaluation 

dictionaries) 

 Korean–French Korean–Spanish 

 KR→FR FR→KR KR→ES ES→KR 

HIGH 5.79 10.42 7.36 10.31 

LOW 2.26   6.32 3.12   5.49 

 

Before using the parallel corpora, pre-processing was performed. As mentioned previously, a 

morpheme token is the base unit for Korean, and lemmatized word tokens are the base units for 

the other languages (i.e., English, French, and Spanish). For these languages, lemmas of word 

tokens were collected to reduce the sizes of the context vectors. Note that deeper pre-processing 

such as syntactic or semantic parsing was not necessary; however, morphological analysis with 

POS tagging was performed. The following tools were used to prepare the input materials 

automatically. U-tagger9 (Shin & Ock, 2012) was used to tokenize Korean sentences and induce 

POS tags of morpheme tokens. For the other languages, TreeTagger10 (Schmid, 1994) was used 

                                                           
8 http://dic.naver.com/ 
9 http://nlplab.ulsan.ac.kr 
10 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ 
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to lemmatize the word tokens and induce their POS tags. All word/morpheme tokens were 

annotated and transformed into lowercase letters. The statistics for the preprocessed texts are 

listed in Table 3.3. 

 

Table 3.3: Preprocessed texts statistics 

 Korean–English French–English Spanish–English 

Tokens 19,054,681 15,171,888 15,357,708 14,083,616 14,293,198 14,073,076 

Types 115,628 218,113 70,749 81,607 104,605 81,782 

Avg. tokens 44.0 35.0 30.7 28.2 28.6 28.2 

 

The statistics presented in Table 3.3 differ significantly from earlier statistics in that the 

distributions of the Korean–English corpus are roughly equal to those of the others because the 

Korean words were separated into morpheme tokens. Thus, the number (resp. the average number) 

of tokens for Korean is increased by more than two times from 8,283,222 (avg. 19.1 per sentence) 

to 19,054,681 (avg. 44.0 per sentence). The numbers of word tokens for the other languages are 

also greater after pre-processing. Note that repeatedly used suffixes (Eomi in Korean) are 

separated by words; therefore, the number of word/morpheme types is decreased significantly. 

The tokenizing/lemmatizing/POS-tagging tasks, eliminated all of the words, except for stop-

words and content words (i.e., nouns, verbs, adverbs, and adjectives). 

 

 

3.2.2. Results 

In this section, the experimental results for two language pairs (i.e., Korean–French and Korean–

Spanish) are presented. In addition, the PCA is evaluated from several perspectives. Settings for 

PCA evaluation are as follows. 

i. Association measure 

ii. High- and low-frequency words 

iii. Different language pairs 

Figure 3.4 shows four types of accuracy measurements based on different association measures 

such as CHI, LL, log-odds (LO), and PMI for Korean–Spanish translations when only the top 

translation equivalent is considered. The association measure was used to build the context 
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vectors (step (1), Section 3.1). For appropriate comparison, the other conditions were fixed. As 

can be seen, using context vectors based on CHI scores yielded the highest accuracy, 48%. Based 

on this experiment, the CHI test measures word associations. Of course, this result is not absolute, 

and selecting an appropriate association measurement depends on various factors such as the 

languages, domains, and documents.  

 

 

The proposed approach was evaluated by using the CHI test for different language pairs and 

different word distributions. Figures 3.5 and 3.6 present four accuracies for different language 

settings. In this work, as mentioned in Section 2.4, accuracy is defined as the percentage of the 

number of source words that have at least one correct translation within a specified rank. The 

highest accuracy (88.1%) was obtained for Spanish → Korean translations. The accuracies for 

high-frequency words at the top 20 in Figures 3.5 (b) and 3.6 (b) show higher performance than 

the opposite cases. Note that the fact that more translations are included in the * → Korean 

evaluation dictionaries (Table 3.2) than opposite cases can affect these results. This difference 

indicates that Korean translation equivalents are more likely to be recognized as correct 

translations than are Korean → * translations. 

Another characteristic is that, for * → Korean translations (Figures 3.5 (b) and 3.6 (b)), the 

gaps between high-frequency words and low-frequency words are greater than those for other 

language settings (Figures 3.5 (a) and 3.6 (a)). In addition, the overall accuracies for low-

frequency words within the top 20 are somewhat lower than they are for Korean → * translations. 

Because low-frequency words have relatively meager contexts, the availability of many more 

48%

44%

42%
41%

CHI LL LO PMI

Figure 3.4: Comparison of accuracy measurements by different association measurements
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translations in the * → Korean evaluation dictionaries could not affect performance11. 

 

Figures 3.7 and 3.8 present the MRR results of the proposed approach. As mentioned 

previously, the MRR takes the best rank when there are multiple correct translations. Although 

some translation equivalents at the highest ranks among multiple correct equivalents are taken, 

four MRR results exhibit unimpressive curves. All graphs gently rise over the entire region. In 

                                                           
11 As mentioned in Section 3.2.1, the number of Korean morphemes (opposite to French or Spanish words) is 

larger than others. That is, more candidates lead to confusion. 
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Figure 3.5: Accuracies for Korean–French translations 
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Figure 3.6: Accuracies for Korean–Spanish translations 
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particular, the curves for the top 2 and 3 for all language settings rise very gradually. This trend 

indicates that most of the correct translations along with the most frequent translations in each 

corpus are found within the top 2 or 3. In other words, translation equivalents over the top 3 or 

maybe 5 are very rare. Thus, the proposed approach is promising. 

Different characteristics are observed when precision is considered. Since precision is closely 

related to the number of translations in evaluation dictionaries, the performance of multiple 

correct translations can be used as a precision measure (Figures 3.9 and 3.10). Except for Figure 
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Figure 3.7: MRRs for Korean–French translations 
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Figure 3.8: MRRs for Korean–Spanish translations 
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3.9 (a), high-frequency words at the top 1 show accuracies greater than 50%. This characteristic 

indicates that translation equivalents for over 50% of high-frequency source words can be found 

by the proposed approach. In contrast, when more translation candidates are considered (i.e., not 

the top 1 but the top 20), performance decreases. This phenomenon is caused by the rich 

translations in the evaluation dictionaries (Table 3.2). The proposed approach does not consider 

homonym (i.e., homograph) problems. Another proof is that the recalls of low-frequency words 

for * → Korean translations are generally lower than those for Korean → * translations. The 

results are directly proportional to the distributions in Table 3.2 (i.e., the average number of 
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Figure 3.9: Precisions for Korean–French translations
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Figure 3.10: Precisions for Korean–Spanish translations 
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Korean translations is higher than those of the other translations). Therefore, rich translations in 

evaluation dictionaries were contrary to what was expected. 

Nonetheless, multiple translations in evaluation dictionaries are not useless or meaningless. 

Figures 3.11 and 3.12 present recalls for different language settings. Recall in this work means 

the percentage of the translations in an evaluation dictionary that are recalled by the system along 

with the translation equivalents. As can be seen in Figures 3.11 and 3.12, when more candidates 

are considered, recall is higher. Of course, it is obvious that steeply rising curves cannot be 
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Figure 3.11: Recalls for Korean–French translations 
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Figure 3.12: Recalls for Korean–Spanish translations 
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confirmed. 

To address this issue, RRs are provided. RRs adapt distributions of recalled translations in their 

corpora. In other words, an RR reveals the degree to which translation equivalents appear in a 

corpus. The evaluation dictionaries contain translations that do not appear in the parallel corpora. 

From this perspective, having proper translations as entries in evaluation dictionaries is 

meaningless because the translations are not in the parallel corpora. RR reveals this phenomenon 

and assigns higher weights to more frequent translations. For example, the French word 

législation has several translations (Table 3.4) in the French → Korean evaluation dictionary. 

Each translation has its own frequency, and its percentage based on its frequency in the corpus is 

annotated. Thus, each translation can have an independent percentage depending on the source 

words. RR can reveal how frequent words are recalled/retrieved by adding such percentages 

rather than adding the integer 112. 

 

 

 

Regarding the performance at the top 1, all graphs in Figures 3.13 and 3.14 show much better 

results than those for recall in Figures 3.11 and 3.12. This difference indicates that recalled 

translations are more often high-frequency words than other translations in evaluation dictionaries. 

Therefore, regarding the percentages of words occurring in corpora, the proposed approach can 

                                                           
12 In general, a recall measurement sums integer 1 when a retrieved word is relevant. 

Table 3.4: Korean translations for French word législation in evaluation dictionary 

Korean Translations Frequency Rated Recall 

 (beop, law, rule) 6784 0.847 

 (ipbeop, legislation) 818 0.102 

 (beopje, legislation, the legislative system) 230 0.029 

 (beophak, law, jurisprudence) 120 0.015 

 (ipbeopgwon, legislative power) 61 0.008 

 (beopjeron, theory of legislation) 0 0.000 

Total 8013 1.000 
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also recall many meaningful translation equivalents.  

In summary, the PCA shows the highest accuracy (88%) for Spanish–Korean translations. 

Through precision scores, translations that occur only several times in evaluation dictionaries can 

disrupt rather than improve overall performance. Moreover, the proposed approach can also 

retrieve most high-frequency words in the corpora through MRRs and RRs. 

Based on these experimental results, four types of errors are described and examples of errors 

are provided. The error types can be summarized as follows. 
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Figure 3.13: Rated recalls for Korean–French translations 
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Figure 3.14: Rated recalls for Korean–Spanish translations 
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i. Homonyms (i.e., homographs) 

ii. Synonyms and weak gold standard 

iii. Transliterated words 

iv. Word segmentations and compound nouns 

First, many homonyms have more than two senses in different concepts. A Korean word is 

usually derived from hanja-eo (i.e., a compound of a Chinese character word) which consists of 

its own meaning. In fact, the use of hanja-eo out of Korean in real life is specified to be 66.3% 

(Heo, 2010).  Derivations from hanja-eo result in many ambiguity problems. For example, the 

Korean word  (gwajang, section chief, exaggeration, overstatement) has two different 

meanings, 課長 (section chief) in Chinese and 誇張 (exaggeration, overstatement) in Chinese. 

Thus, some translation equivalents with poor contexts could not be retrieved even though other 

translation equivalents with different contexts are marked as correct. Unless rich word context is 

considered, the proposed approach did not extract all translation equivalents correctly. However, 

context is closely related to the domains of the corpora. If the domains of two parallel corpora are 

the same, the senses of each word are in common use, and this type of problem can be handled. 

Second, using weak evaluation dictionaries as gold standards can result in false positive results. 

For example, the Korean word 13 (dangpa, faction) (Table 3.5) has the meaning of the word 

faction. However, this translation is evaluated as incorrect because the evaluation dictionaries 

only include the synonymous entry  (pa, group, party, sect, faction). For the same reason, 

(byeongryeok, troop) is treated as an incorrect answer. The weakness of gold standards results 

from one of the base limitations of the proposed approach; in bilingual lexicon extraction, there 

is no publicly acceptable gold standard. Therefore, as mentioned in Section 3.2.1, in this work, 

practical evaluation dictionaries were constructed semi-automatically (Section 3.2.1) and were 

therefore incomplete. If synonyms for all words occurring in the corpora are considered as much 

as possible, then this type of problem can be handled. 

Third, there are transliterated words. For example, the Korean word  (geurup, group) 

(Table 3.5) is retrieved from actual text; however, it does not exist in the gold standard (i.e., the 

French → Korean evaluation dictionary). This type of error occurs infrequently; therefore, 

eliminating it or compensating for it either automatically or manually is difficult.  

                                                           
13  Literally,  (黨派 in Chinese) consists of two characters;  (黨, political party) and (派, group). 
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Finally, there is a word segmentation problem. As can be seen in Table 3.5, both the Korean 

words (i.e.,  (gipdanhwaldong, group activity) and  (jaseondanche, charity 

organization)) should be separated into several words (i.e., → (gipdan, group, 

mass, organization) + (hwaldong, activity), →  (jaseon, charity, 

philanthropy, benevolence) + (danche, group, organization, party)), because both words 

are compound nouns. This type of problem can be handled by performing word segmentation in 

a different way or by exercising human judgement. However, manual methods (i.e., human 

judgement) are time-consuming; therefore, other methods (e.g., multi-word expression 

identification or evaluation via a different method) should be considered. 

 

 

 

3.3 Summary 

This chapter presents the PCA. The PCA builds comparable context vectors from two parallel 

corpora sharing an intermediary language. The proposed approach constructs two types of context 

vectors: one from a source–pivot parallel corpus and one from a target–pivot parallel corpus. 

Then, an association measure such as CHI can be considered to present the vector entries. The 

experimental results indicate that the CHI method performed better than LL, LO, and PMI. This 

Table 3.5: Examples of translation equivalents for the French word groupe 

Korean (Romanization) Gloss Correct Type 

 (danche) group, organization, party True right answer 

 (hwaldong) activity False true negative 

 (dangpa) faction, party False synonym 

 (byeongryeok) troop False synonym 

 (geurup) group False transliterated 

 (gipdanhwaldong) group activity False compound word 

 (jaseondanche) charity organization False compound word 

Korean translations  

for groupe  

in evaluation dictionary 

(muri, group, crowd),  (tte, flock, herd),  (gipdan, 

group, mass, organization),  (danche, group, organization, 

party),  (giphap, gathering, meeting, set),  (pa, group, 

party, sect, faction),  (gyeyeol, affiliation, faction) 
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is a type of language-/domain-specific matters; therefore, it depends on the environment or 

problem considered. Following this, comparable context vectors are compared using a vector 

distance measure such as cosine similarity or the Jaccard coefficient. Based on their similarity 

scores, the most similar x translations were selected to be included in a bilingual lexicon.  

The most prominent advantage of this approach is that it does not use linguistic resources such 

as a seed dictionary because it uses parallel corpora sharing an intermediary language. Of course, 

bilingual lexicon extraction using parallel corpora generally does not require seed dictionaries to 

translate from one corpus to another. However, such parallel corpora are usually not available to 

the public. Furthermore, in resource-poor language pairs such as Korean–French and Korean–

Spanish the situation is even more serious. However, since two parallel corpora sharing one pivot 

language such as English are considered, the proposed approach can extract bi-/multi-lingual 

corpora easily. This idea is very useful even though resource-poor language pairs are considered. 

Therefore, the proposed method is very attractive when public bilingual corpora between two 

languages are unavailable but public parallel corpora, e.g., with English as one language, are 

available. 

However, the proposed approach also has a few disadvantages. The first challenge involves 

homonyms. The proposed approach is based on context vectors; therefore, the impact of related 

contexts is very important. Consequently, homonyms can result in context vectors that have 

several types of meanings or contexts. If all the contexts were strong or the domains of the two 

parallel corpora were the same, the situation would not be problematic. However, if the domains 

were to differ, the translation equivalents would not be retrieved. Unfortunately, the parallel 

corpora used in the experiments had different domains (i.e., news articles for Korean–English 

parallel corpora and European parliament proceedings for French–/Spanish–English parallel 

corpora). Therefore, this problem was evident in the experimental results. Second, neither rich 

gold standards to cover most synonyms nor specific evaluation measures to consider false positive 

translation equivalents exist. To consider these issues, all evaluation dictionaries must be 

constructed manually by experts, or external linguistic resources such as well-made thesauri are 

required. For these reasons, evaluation dictionaries should be extended automatically in the future. 

Third, there are several transliterated words in the corpora. This type of error occurs infrequently; 

therefore, dealing with it would be difficult. In addition, many compound nouns were not handled 

by the word segmentation task. Since the number of compound nouns has been increasing, adding 

all compound nouns to evaluation dictionaries for every language pair would be extremely 
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difficult. Therefore, other evaluation metrics or segmentation skills to handle compound nouns 

and MWE identification should be considered. Some disadvantages mentioned here are addressed 

in the following chapters.  
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Chapter 4 

 

 

 

Extended Pivot Context-Based Approach 

 

 

 

This chapter presents the extended pivot context-based approach (EPCA). The EPCA combines 

the PCA (Chapter 3) with the EA (Section 2.1.2) to improve performance. The EA extracts 

bilingual words from comparable corpora, and its goal is to reduce dependence on initial seed 

dictionaries. However, the PCA uses parallel corpora to extract such lexicons. Nevertheless, the 

main idea of the EA is to reinforce context vectors. The experimental results demonstrate that the 

proposed approach can extract the most proper translation equivalents and increase the ranks of 

such equivalents. 

 

 

 

4.1 Concept of Extended Pivot Context-Based Approach 

The EPCA was derived from the PCA to improve performance. As mentioned in the previous 

chapter, the PCA has some weaknesses (i.e., lack of contexts). To overcome this problem, the 

proposed approach described in this chapter considers similar context vectors. The basic idea 

originates from the EA (Section 2.1.2). The core idea of the EA is the assumption that synonyms 
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share the same contexts (Déjean & Gaussier, 2002). In fact, the EA reduces the load of seed 

dictionaries. However, the PCA qualitatively differs from the EA. The former uses parallel 

corpora, while the latter uses comparable corpora. Therefore, seed dictionaries are unnecessary 

when the PCA is used. However, the core idea of the EA can be used to augment the density of 

context vectors. 

The overall flow of the EPCA can be presented in three steps (Figure 4.1).  

 

(1) Building context vectors: Two types of context vectors are constructed separately from 

two parallel corpora (i.e., 𝑠  from source–pivot corpus and  𝑡  from target–pivot corpus). 

This task is exactly the same as step (1) in Section 3.1. All entries of the context vectors 

are presented in the pivot language and weighted via word association scores between 

source/target words and pivot words. The CHI method is used to calculate associations 

among words in different languages.  

(2) Building the nearest source context vectors: For the source vector s𝑖⃗⃗⃗, its k nearest 

context vectors {s̅𝑖,1
⃗⃗ ⃗⃗ ⃗⃗ , s̅𝑖,2

⃗⃗ ⃗⃗ ⃗⃗ , … , s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗ } are collected in this step. For example, let the Korean 

word  (agi, baby) be s𝑖; then its nearest words could be  (jeolmeum, youth), 

 (jeolmeuni, young), and  (ai, child). The k nearest vectors are several vectors 

presenting such nearest words in vector spaces. As mentioned in step (1), all source 

vectors are weighted with association scores between the source words and pivot words. 

Figure 4.1: Overall structure of EPCA 

 



57 

By computing similarity scores among source vectors 𝑠 via a vector distance measure 

such as cosine similarity cosθ =
𝑎⃗∙𝑏⃗

‖𝑎⃗‖‖𝑏⃗‖
 , the k nearest context vectors s̅𝑖

⃗⃗⃗ that satisfy the 

threshold condition are identified. Figure 4.2 shows these nearest context vectors.  

 

 

In Figure 4.2, several Korean words (i.e., those from the source language) are given 

and their relations are indexed. The given context vectors show their association scores 

for three pivot words (i.e., baby, youth, and child). As shown, these scores have the 

highest values when the source word and component of the vector are closely related. 

The cosine similarity scores between the source word and its neighbors are also shown 

in Figure 4.2. These similarity scores demonstrate how closely they are related. The k 

nearest words for each source word are determined based on these scores.  

Basically, this thesis assumes that the collected k nearest words are semantically 

related and can augment the similarity score between s𝑖⃗⃗⃗ and target context vectors t⃗.  

(3) Computing similarity scores: After the k nearest context vectors s̅𝑖
⃗⃗⃗ for the source word 

s𝑖  have been collected, the similarity score sim(s𝑖⃗⃗⃗, t𝑗⃗⃗⃗ ) should be calculated. Here, two 

similarities, sim(s𝑖⃗⃗⃗, s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗ ) and sim(s̅𝑖,𝑘

⃗⃗ ⃗⃗ ⃗⃗ , t𝑗⃗⃗⃗), are considered, where 𝑘  is the number of 

nearest context words for  s𝑖 . The final score among the similarity scores can be 

calculated by Equation 4.1: 

sim(s𝑖⃗⃗⃗, t𝑗⃗⃗⃗) = ∑ sim(s𝑖⃗⃗⃗, s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗ ) × sim(s̅𝑖,𝑘

⃗⃗ ⃗⃗ ⃗⃗ , t𝑗⃗⃗⃗).                           (4.1) 

Figure 4.2: Examples of nearest context vectors 
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Using Equation 4.1, all similarity scores between a source word s𝑖  and all target 

equivalents t  can be computed. As stated previously, the top k nearest context 

vectors s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗  can reinforce the similarity score sim(s𝑖⃗⃗⃗, t𝑗⃗⃗⃗). Here, the similarity scores 

were calculated by using cosine similarity; however, other measures could also be 

considered. Note that the similarity score sim(s𝑖⃗⃗⃗, s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗ ) was already calculated, as shown 

in Figure 4.2. Therefore, the scores sim(s̅𝑖,𝑘
⃗⃗ ⃗⃗ ⃗⃗ , t𝑗⃗⃗⃗) should be computed first in this step. 

 

 

Figure 4.3 shows the relationships between the k nearest vectors and a target word. 

Note that all target words should be considered; however, in this example, only one 

target word is considered. Based on both Figures 4.2 and 4.3, calculating the similarity 

scores can be represented as shown in Figure 4.4. Here, all similarity scores described, 

including sim(s1, t23), can be represented as follows. 

 

 𝐬𝐢𝐦(𝐬𝟏 , 𝐭𝟐𝟏) = sim(s1 , s̅1,1) × sim(s̅1,1, t21)  +  sim(s1 , s̅1,2) × sim(s̅1,2, t21) +

 sim(s1 , s̅1,3) × sim(s̅1,3, t21) = 0.972 × 0.1 + 0.962 × 0.05 + 0.993 × 0.1 = 𝟎. 𝟐𝟒 

 𝐬𝐢𝐦(𝐬𝟏 , 𝐭𝟐𝟐) = sim(s1 , s̅1,1) × sim(s̅1,1, t22)  +  sim(s1 , s̅1,2) × sim(s̅1,2, t22) +

 sim(s̅1, s1,3) × sim(s̅1,3, t22) = 0.972 × 0.1 + 0.962 × 0.1 + 0.957 × 0.2 = 𝟎. 𝟑𝟖 

 𝐬𝐢𝐦(𝐬𝟏 , 𝐭𝟐𝟑) = sim(s1 , s̅1,1) × sim(s̅1,1, t23)  +  sim(s1 , s̅1,2) × sim(s̅1,2, t23) +

 sim(s1 , s̅1,3) × sim(s̅1,3, t23) = 0.972 × 0.935 + 0.962 × 0.984 + 0.957 × 0.993 = 𝟐. 𝟖𝟎 

Figure 4.3: Examples of relationship between nearest vectors and the target vector 
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(4) Selecting similar context vectors: After all similarity scores for a single source word 

and all target words have been calculated, the top x translation equivalents with the 

highest scores are selected and added to the bilingual lexicon as bilingual pairs. 

 

 

4.2 Experiments 

4.2.1 Resources 

The same corpora described in Section 3.2.1 were used to evaluate the EPCA. Here, the two sets 

of parallel corpora (i.e., for the Korean–English pair), the KMU parallel corpus (Seo et al., 2006) 

consisting of news articles and that for French–/Spanish–English pairs, and the Europarl parallel 

corpora (Koehn, 2005) consisting of European parliament proceedings are used. All content 

words (nouns, verbs, adjectives, and adverbs) were POS-tagged, and all stop-words (EN, KR, and 

FR) were removed (Section 3.2.1).  

Because the evaluation dictionaries mentioned in the previous chapter have only 100 entries, 

the test sets could be considered slightly insufficient. Therefore, the test sets were renewed using 

other corpora. To cover domain-specific terms, comparable corpora in the new domains14 were 

included. The corpora shown in Table 4.1 originated from international news domains dealing 

with the same events. Articles published over a two-year period (2011.10.28–2013.11.4) were 

collected. The Korean and French corpora each contain almost 400k sentences, and the Spanish 

corpus has approximately 270k sentences. The average numbers of words per sentence are 

relatively larger than those of the parallel corpora discussed in Section 3.2.1. 

                                                           
14 Korean: http://www.naver.com, French: http://www.lemonde.fr, Spanish: http://www.abc.es 
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Table 4.1: Comparable corpora statistics 

 Korean French Spanish 

Sentences 418,474 426,341 268,384 

Types 214,484 153,083 112,534 

Avg. words/sentence 35.65 32.12 31.89 

 

Consequently, 200 entries were randomly sampled from these corpora based on their 

frequencies in the corpora. All source entries were required to occur in the parallel corpora so that 

they could be retrieved by the proposed approach. The collected test sets are compared with those 

of the parallel corpora in Table 4.2. The average numbers of translations mostly increased, 

particularly for low-frequency words. The next section discusses the overall experimental results 

by comparing them with those of the PCA. 

 

Table 4.2: Evaluation dictionaries statistics for EPCA 

 Korean–French Korean–Spanish 

 KR→FR FR→KR KR→ES ES→KR 

Avg. # of translations (100 entries from parallel corpora)   

HIGH 5.79 10.42 7.36 10.31 

LOW 2.26 6.32 3.12 5.49 

Avg. # of translations (200 entries from comparable corpora)  

HIGH 8.42 10.79 10.35 12.03 

LOW 6.90 7.15 5.43 6.72 

 

 

4.2.2 Results 

This section compares the previously reported results (i.e., for the PCA) to those of the proposed 

approach in order to demonstrate the performance of the latter. The following figures present 

several accuracies for various language settings. Translation equivalents within the top 20 ranks 

are considered in order to observe the overall characteristics.  

As shown in Figures 4.5–4.8, there appears to be no significant difference in terms of 

performance. The performance of the proposed approach decreases slightly in the lower ranks. 
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However, there is little improvement in the highest rank. The proposed approach augment 

similarity scores between source word and target equivalents by its nearest words. In addition, it 

shows the worst performance over the top 10 and better performance within the top 2. In other 

words, the EPCA performs better than the PCA mostly at the top 1 or 2. Initially, it is difficult to 

observe the advantages of the EPCA. Thus, the following figures describe the MRR results. 
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Figure 4.5: Accuracies for Korean → French translations 
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Figure 4.6: Accuracies for French → Korean translations 
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Figures 4.9 and 4.10 show the MRR results for Korean–French translations, and Figures 4.11 

and 4.12 show the MRR results for Korean–Spanish translations. As can be seen in Figures 4.9 

and 4.10, the MRR results for Korean–French translations of the EPCA show better performance 

than the PCA. In fact, the numbers of high rankings increase, while the numbers of correct 

translation equivalents in low ranks decrease (Figures 4.5–4.8). These characteristics indicate that 

the proposed approach reinforces the similarity scores of several low rankings. 
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Figure 4.7: Accuracies for Korean → Spanish translations 
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Figure 4.8: Accuracies for Spanish → Korean translations 
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Figure 4.9: MRRs for Korean → French translations 
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Figure 4.10: MRRs French → Korean translations 
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On the other hand, the performance for Korean–Spanish translations is mostly equal or less 

than that achieved by the PCA (not among the top 5 of the LOW for Korean → Spanish and top 

4 and 5 of the HIGH for Spanish → Korean). The proposed approach appears to perform poorly 

for Korean–Spanish translations. However, in terms of RR, the EPCA is meaningful. With the 

exception of the translation equivalents at the top 1 of the LOW (Figures 4.13 and 4.14), the 

EPCA generally shows better performance. Thus, the proposed approach mainly demonstrates 

lower accuracies for Korean–Spanish translations. In fact, it yields important (or more frequent) 

translation equivalents with higher similarity scores. However, considered collectively, the 

performance of the EPCA is lower than expected. Nevertheless, the proposed approach can 

perform meaningful jobs, particularly augmenting similarity scores supposed to be much lower. 
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Figure 4.12: MRRs for Spanish → Korean translations 
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Thus, translation equivalents that would occur in low ranks can be retrieved at higher ranks. To 

improve performance, the qualities of the contexts should be augmented. In addition, the domains 

of the parallel corpora should be identified. 

 

 

4.3 Summary 

In this chapter, the EPCA was proposed to improve the performance of the PCA. The proposed 

approach collects k nearest context words of source words and adds their similarities and all 

translation equivalents. While the EA (Section 2.1.2) requires both comparable corpora and a 

seed dictionary, the EPCA requires only parallel corpora as linguistic resources. Thus, the overall 

structure of the proposed approach is much simpler than that of the EA. However, the 

performance is poorer than expected. For Korean–French translations, the accuracy is high. 

However, for Korean–Spanish translations, the accuracy is somewhat low. Nevertheless, the 

performance in terms of how important translation equivalents are retrieved is very meaningful. 

Obviously, meticulous error analysis is required (particularly for Korean–Spanish translations). 

Furthermore, different domains should be unified unless synonyms from corpora are extended. 

The next chapter describes the SOM-based approach, which avoids the strong dependence 

upon word context. This approach uses SOMs (Section 2.3) and trains feature maps that represent 

the properties of words to extract bilingual pairs. 
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Chapter 5 

 

 

 

SOM-Based Approach 

 

 

 

This chapter presents an approach that extracts multilingual lexicons using a SOM, which is an 

artificial neural network algorithm. This SOM-based approach (SA) is very similar to the CA 

(Section 2.1.1) in terms of its comparison of two types of vectors and use of the same types of 

linguistic resources (i.e., comparable corpora and seed dictionaries). To estimate the SA, various 

experiments using Korean–French/–Spanish translations were performed, and the proposed 

approach demonstrated very good performance.  

 

 

 

5.1 Concept of SOM-Based Approach 

To apply the SOM algorithm to the main problem (i.e., finding translations in different languages), 

this thesis assumes that similar words have a common winner (i.e., neuron or unit) and that these 

words are mapped nearby when semantically or geometrically similar. Based on this property, 

the SA constructs two types of SOMs (i.e., source and target SOMs) and ensures that two words 

in different languages have one common winner through the SOMs. Each map is trained in a 
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unique manner; however, they are not necessarily independent. The two different SOMs are 

trained interactively. Figure 5.1 illustrates the overall flow of the SA.  

 

 

The overall structure is organized in six steps. 

(1) Building synonym vectors: Two types of synonym vectors should be built from 

monolingual corpora. In this case, synonym vectors are not the same as the nearest 

context vectors discussed in the previous chapter. Essentially, constructing synonym 

vectors begins by finding similar context vectors. Figure 5.2 illustrates a difference 

between the (nearest) context vectors and the synonym vectors from the previous 

example.  

Figure 5.1: Overall structure of SA
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As shown, a synonym vector consists of similarity scores among source/target context 

vectors rather than association scores between source/target words and pivot words. To 

build synonym vectors, monolingual context vectors (i.e., in a source or target language, 

a pivot language is not considered) should be constructed first. All entries of the context 

vectors are weighted by association scores such as CHI values. The method of building 

context vectors differs from that discussed in Section 3.1. Primarily, the context vectors 

are constructed from comparable corpora rather than parallel corpora. Thus, the context 

window size should be adjusted. Based on the empirical results, the context window 

size was determined to be 5 in this work. After co-occurrences have been counted and 

all association scores among words have been determined, context vectors are built on 

the basis of these scores. This step represents the most significant difference between 

the construction of context vectors from comparable corpora and from parallel corpora 

(resp. described here and in the PCA). Then, the similarity scores among the context 

vectors can be calculated by cosine similarity to build synonym vectors. Finally, 

synonym vectors are composed with these similarity scores. At this point, a specific 

threshold should be considered to eliminate irrelevant words. This method reduces the 

dimensions of the vector. 

Note that synonym vectors in both the source and target languages are not comparable 

(i.e., each vector entries indicates different senses). In other words, a seed dictionary 

should be available when the vectors are compared. These synonym vectors are not 

Figure 5.2: Synonym vector examples 
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comparable; however, two different SOMs (i.e., source and target SOMs) can generate 

different forms of vectors (i.e., a SOM vector) based on the synonym vectors. To 

achieve this objective, these synonym vectors should be represented semantically. 

Consequently, building synonym vectors is very important in the SA. 

(2) Unsupervised training – source SOM: After synonym vectors are built, all source 

synonym vectors s⃗ are taken as inputs for the source SOM. Figure 5.3 depicts the input 

and output of the SOM (which is also partly included in Figure 5.1).  

 

 

As can be seen, the SOM is trained on the basis of the input synonym vector for 𝑠1. The 

SOM updates weights by choosing a winner and its neighbors based on their Euclidean 

distances. The neuron with the minimum score wins the competition for the input. 

Following this, the weights of the winner and its neighbors are updated by using 

Equation 2.3. The updating process, in which weights are updated immediately when a 

winner is chosen, is called an online mode. In addition, these selection and updating 

processes are repeated until a specific iteration converges. In the experiments described 

in this work, the source SOM training used unsupervised learning because it updated 

itself without indicating a winner. After the source SOM has been trained, the SOM 

vectors can be constructed based on the source SOM. As can be seen in Figure 5.3, 

entries in the SOM vectors originate from the dot product of two vectors (i.e., an input 

vector and each weight vector corresponding to every neuron). Note that the meaning 

of each entry is not estimated. In addition, the source SOM vectors should be 
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constructed based on a well-trained source SOM. 

(3) Teaching source winners to target SOM: After the source SOM has converged at a 

specific iteration, well-trained weight vectors in the source language are preserved to 

train the target SOM with specific winners. The specific winners correspond to source 

words included in the seed dictionary. If a source word (i.e., an input sample of the 

source SOM) is included in the seed dictionary, its winning neuron is preserved for 

training its translation in the dictionary in the next step. 

(5) Supervised training – target SOM: In this step, the target SOM is trained in a 

supervised manner. If a target word is contained in the seed dictionary as a translation 

of a source word, the target input is learned based on the winner of the parallel source 

word in a supervised fashion. This process is illustrated in Figure 5.4. 
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As shown in Figure 5.4, the target SOM can be affected by the source SOM. If target 

words are in the seed dictionary, the target SOM is not updated in a natural way. 

Accordingly, target topologies of the map increasingly resemble those of the source 

SOM. This approach assumes that two words in different languages have the same 

winner when they are translations. Furthermore, this feature is the key characteristic of 

the SA. 

(6) Computing similarity scores: After SOM vectors have been built, similarity scores 

between one source SOM vector and all target SOM vectors are computed. This step is 

exactly the same as step (2) in Section 3.1. 

(7) Selecting similar context vectors: After all similarity scores for the source word have 

been calculated, the top x candidates are selected and added to the bilingual lexicon. 

This step is exactly the same as step (3) in Section 3.1. 

As shown, generating two different words to face one winner is the most important issue in this 

approach. If both SOMs are well trained, they and their semantic neighbors can be located in the 

same position of the SOM. Several experimental settings and results using the proposed approach 

are presented in the next section. 

 

 

5.2 Experiments 

5.2.1 Resources 

In this chapter, the proposed approach is evaluated using the same language pairs as in the 

previous experiments (i.e., Korean–French and Korean–Spanish). For comparison, the CA 

discussed in Section 2.1.1 is implemented as the baseline. 

Two types of linguistic resources were used to analyze the proposed approach. First, three 

comparable corpora (Kwon et al., 2014) (i.e., Korean, French, and Spanish) were used. Each 

corpus contained 800k sentences from the Web. The Korean corpus consisted of news articles 

combined with other news corpus (Seo et al., 2006), and the others consisted of either news 

articles or European parliament proceedings (Koehn, 2005). The statistics of the comparable 

corpora are described in Table 5.1. The table presents the statistics of news articles both before 
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and after being combined with comparable external corpora. As can be seen, newly gathered news 

articles contain greater numbers of average words per sentence. 

 

Table 5.1: Combined comparable corpora statistics 

 Korean French Spanish 

Before combined (only news articles) 

Sentences for news 418,474 426,341 268,384 

Word types 214,484 153,083 112,534 

Avg. words per sentence       35.7       32.1       31.9 

After combined (news articles with non-category news & Europarl corpora) 

Sentences 800,000 800,000 800,000 

Word types 281,026 179,389 184,963 

Avg. words per sentence       16.2       15.9       16.1 

 

As mentioned previously, nouns were the focus of the investigations. Table 5.2 presents the 

total frequencies of words in each corpus and the distributions of nouns. As can be seen in Table 

5.2, the rates of nouns for each corpus can be predicted. A striking point is that Korean nouns 

comprise approximately one-third of the total words. This rate is a well-marked difference 

between the corpora. 

 

Table 5.2: Statistics of nouns and their frequencies 

 Korean French Spanish 

Word types     281,026     179,389     184,963 

Total word frequency 33,067,681 28,793,031 22,750,343 

Noun types      192,268         46,643       58,324 

Noun frequency 10,268,456    5,795,622   4,743,043 

 

This thesis defines sections of word frequencies to determine the effect of seed dictionary size. 

This is presented in Table 5.3. For Korean, 11,910 of 192,268 nouns are contained in 95% of the 

total words in the corpus. That is, 180,358 nouns (i.e., approximately 94% of nouns) are contained 

in only 5% of the corpus. Only 6% of nouns (17.4% for French and 12.8% for Spanish) are high-

frequency words; the rest are extremely rare (i.e., low-frequency words) in the corpus. There are 

two issues. The first involves theme unity, which can be lessened by including many different 
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news article subjects even though the documents come from common keywords. Many articles 

deal with various themes; therefore, a great variety of rare nouns can be collected, for example, 

hapax-legomenons, neologisms, compound nouns, and transliterated words. The second issue 

relates to errors in a corpus, for instance, segmentation errors and POS-tagging errors such as 

named entities annotated as general nouns. These issues occur more frequently in the Korean 

comparable corpus than in the others.  

 

Table 5.3: Number of seed words in each interval (except 200 high-frequency test words) 

Frequency intervals 85% 90% 95% 

Korean  2,536 4,794 11,910 

Korean–French    296    787   2,399 

Korean–Spanish    563 1,388   4,387 

French  1,833 3,404   8,105 

French–Korean    388    835   2,138 

Spanish  1,805 3,240   7,458 

Spanish–Korean    345    736   1,813 

 

The other striking point is that very few entries are actually extracted in seed dictionaries 

because the true translations do not appear in their corpora. Thus, 11,910 to 2,399 entries (i.e., 

source words) for Korean–French translations (4,387 for Korean–Spanish translations) were 

extracted. Based on these numbers of nouns, both seed dictionaries and evaluation dictionaries 

were built. Each evaluation dictionary contained 200 source words. The statistics of the 

evaluation dictionaries are presented in Table 5.4.  

 

Table 5.4: Evaluation dictionaries statistics for SA 

Language pairs Korean-French Korean–Spanish 

Source language KR FR KR ES 

# of source words 200 200 200 200 

# of translations 447 209 456 509 

# of translation types 420 189 369 421 

 

As can be seen in Table 5.4, there are several duplicate translations in the evaluation 

dictionaries, indicating that no heuristic process to make each source word have a unique sense, 
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winner, or translation was used in advance. This thesis assumes that one translation can be a part 

of two different source words even if the words are similar. Finally, the accuracies of the proposed 

approach were methodically evaluated on the basis of these resources. 

 

 

5.2.2 Results 

Unfortunately, there are no publicly accepted gold standards or experimental guides. In fact, the 

best performance depends on the experimental settings, including the languages, document 

domains, seed dictionaries, and so on. Above all, the input samples and the relationship between 

seed words and evaluation words are the most important factors that determine the quality of the 

results. Input samples should semantically related, i.e., synonyms can be extracted on the basis 

of the synonym vectors (Section 5.1). Alternatively, the relationship between seed words (i.e., 

training data) and evaluation words (i.e., test data) is also very important. They should be close 

in the vector space to retrieve correct translation equivalents. However, the similarity scores 

between these words were not considered in this study; only their frequencies in the corpora were 

considered. 

Since all parameters such as the learning rate, Gaussian functions, epochs, and SOM size 

cannot be tuned simultaneously, the following three experimental settings were selected.  

i. Size of SOMs 

ii. Epoch 

iii. Comparisons with the base approach (i.e., the CA) 

In this study, the most efficient learning rates were briefly investigated. Figure 5.2 presents the 

accuracies according to learning rates in the top 20 for French → Korean translations where the 

size of the SOM is 300 and the epoch is 2000. Based on this result, the learning rate is fixed at 

0.1 in the following discussion. 
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To demonstrate the differences in performance according to the SOM size, the proposed 

approach was evaluated for 200 high-frequency words, where the size of the seed words was 90% 

(787 source words; Table 5.3) for Korean–French translations and the epoch was fixed at 2000. 

In addition, the learning rate was fixed at 0.1, and the Gaussian size was fixed at 25 (5×5).  

As can be seen in Figure 5.3, the biggest SOM does not always yield the best performance. On 

average, sizes of 600 and 800 show reasonable performances within the top 10. Over the top 10, 

sizes of 700 and 800 exhibit adequate performances on average. Based on these results, it is 

difficult to see direct or inverse proportions in these experiments. In addition, it is difficult to 

observe a direct relationship between the SOM size and the Gaussian function. In order to check 

this feature, various experiments using different Gaussian functions should be performed. 

Unfortunately, the objective of the work described in this thesis was not fine-tuning to achieve 

the best performance. In this sense, the main conclusion is that too enough size of SOMs is rather 

wasteful. Furthermore, the Gaussian function should be modified to handle larger SOMs. The 

sizes of the SOM and Gaussian function have some specific relationships that have not been 

determined yet (these relationships will be considered in future work). However, it is known that 

this relationship depends on data in some manner.  

 

Figure 5.5: Accuracies according to learning rates (𝑥-axis: rank, 𝑦-axis: accuracy)
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In this work, an epoch is defined as the moment in time at which every source word (resp. 

target words) participates in the source (resp. target) SOM training. If sufficient epochs are given, 

every single weight must be converged. This section focuses on how the epoch affects the 

performance.  
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Figure 5.6: Accuracies according to SOM size (𝑥-axis: rank, 𝑦-axis: accuracy)
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Figure 5.4 shows accuracies according to different epochs. This experiment was conducted for 

Spanish → Korean translations (SOM size: 300, learning rate: 0.1). As can be seen in the figure, 

higher performance on average is obtained when more epochs are considered. Of course, this 

performance depends on the data. Therefore, adaptive tuning tasks should be considered to 

achieve optimum performance. 

Figures 5.5–5.16 describe the accuracies for two sets of language pairs, Korean–French and 

Korean–Spanish, where different numbers of nouns are considered. Each percentage is the 

percentage of word frequency in a corpus. For example, 90% indicates that 90% of all words in 

a certain corpus (duplication is allowed) are considered, and all nouns of the 90% are considered 

to be seed words. Therefore, seed words for the same percentages actually present different forms 

according to the given corpus.  

As can be seen in Figures 5.5–5.16, the SA outperforms the CA when the same linguistic 

resources are considered. Based on these results, it is considered that the proposed approach is 

valid for resource-poor language pairs. In addition, the sizes of SOMs are slightly smaller in most 

cases than the numbers of considered seed words, with the exception of the French–Korean 

translations (835 seed nouns in 90% of the total words). This case does not represent the optimum 

performance because fine-tuning of various parameters has not been considered. The best tuning 

depends on many factors such as the sizes of the Gaussian filter and SOM. Thus, the tuning 

settings can be improved. Previously reported results (i.e., for the SOM sizes) indicate that 

Figure 5.7: Accuracies according to epochs (𝑥-axis: rank, 𝑦-axis: accuracy)
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somewhat duplicated input samples for each winner result in better performance than unique 

winners that correspond to each sample. Basically, the Gaussian function controls many 

neighbors around centroids for each iteration, and similar seed words should adjust their weights 

reciprocally. Thus, the area under the Gaussian function should be sufficiently wide for this 

interactive process. However, in these experimental conditions (i.e., 5 × 5 for various SOM sizes), 

somewhat small SOM sizes would yield better performance. Of course, the performance depends 

on the data. 
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Figure 5.9: ACC for KR → FR (787 nouns)
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Figure 5.8: ACC for KR → FR (296 nouns)
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Figure 5.10: ACC for KR → FR (2399 nouns)
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Figure 5.11: ACC for FR → KR (388 nouns)
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Figure 5.12: ACC for FR → KR (835 nouns)
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Figure 5.13: ACC for FR → KR (2138 nouns)
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Figure 5.14: ACC for KR → ES (563 nouns)
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Figure 5.15: ACC for KR → ES (1388 nouns)
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Figure 5.16: ACC for KR → ES (4387 nouns)
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Figure 5.17: ACC for ES → KR (345 nouns)
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5.3 Summary 

This chapter has presented a method of extracting multilingual lexicons from comparable corpora 

using a machine learning technique (i.e., the SOM) in unsupervised and semi-supervised manners. 

The key idea is to set two types of SOM vectors for comparison.  

First, the proposed approach builds two types of synonym vectors from each monolingual 

corpus. These synonym vectors come from context vectors weighted by a word association 

measure such as the CHI value. The k nearest context vectors with the highest similarity scores 

are considered synonyms. Thus, these synonym vectors are weighted by their similarity scores. 

In this investigation, it was expected that semantically similar words could be collected via these 

synonym vectors. After the synonym vectors have been built in the proposed approach, the source 

SOM is trained using the source synonym vectors in an unsupervised fashion. That is, the winner 

(i.e., winning neurons, nodes, or units) with the minimum Euclidean distance score in each phase 

is selected in a natural manner. After a single winner is selected, the weights for the winner and 

its neighbors are updated in an online mode. After the SOM reaches convergence at a specific 

iteration, the weight vectors are preserved to train the target SOM with specific winners. If there 

is no corresponding translation for a source word in the seed dictionary, the target words are 

essentially trained in an unsupervised fashion. However, target words with corresponding source 

entries in the seed dictionary are trained in a supervised fashion. All winners whose words are 

included in the seed dictionary are updated in an online mode. Thus, the target SOM can be treated 
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Figure 5.19: ACC for ES → KR (1813 nouns)
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Figure 5.18: ACC for ES → KR (736 nouns)
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as a supervised model. In this sense, this method assumes that two words in different languages 

are translations and that each has the same winner. After the SOM vectors have been built, 

similarity scores between one source word and all target words are computed by cosine similarity. 

Finally, after all similarity scores for the source word have been calculated, the top x candidates 

are selected and added to the bilingual lexicon. 

The most prominent advantage of the proposed approach is that it outperforms the CA under 

the same experimental settings, specifically, the same seed dictionaries and corpora. Our 

experimental results show that the proposed approach can extract multilingual lexicons for 

resource-poor language pairs. However, there is some room for improvement with various 

parameter factors such as the size of the SOM, learning rate, Gaussian function, and epochs.  

Tuning such parameters to obtain optimal performance is planned for future work. Furthermore, 

in our simplified experiments, only nouns were used; thus, other parts of speech could also be 

considered in future. Finally, thorough error analysis is also required.  
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Chapter 6 

 

 

 

Constituent-Based Approach 

 

 

 

This chapter addresses a method that automatically extracts bilingual MWEs in resource-poor 

language pairs such as Korean–French/–Spanish. The PCAM is used as the baseline, and the 

performance of the PCAM is reinforced. The PCAM has difficulty when the MWE contexts are 

insufficient. To mitigate its shortcomings, a method to compute constrained similarity scores 

between source words and translation equivalents and between source words and constituents of 

the translation equivalents is presented. Based on this idea, the reinforced approach (the 

constituent-based context approach) significantly outperforms the baseline in terms of accuracy. 

This chapter also evaluates the proposed approach through several types of tests. 

 

 

 

6.1 Concept of Constituent-Based Approach 

As mentioned in Section 2.2, the earlier approach (i.e., PCAM) results in several types of errors. 

The CTA described in this chapter focuses on one of the error types. That is, the CTA solves the 

problem in which one of the constituents from a translation equivalent is extracted as the top x 



83 

translation equivalent. For the previous example, the translation equivalent département (or 

linguistique) is extracted as a single result when département de linguistique should be extracted 

for the source word  (eoneohakgwa, department of linguistics). This type of error can 

be caused when MWEs have poor contexts in common but contain constituents with much richer 

independent contexts. Most MWEs of this type are infrequent and originally not significantly 

more than their constituents in a corpus whenever the multi-word is a high-frequency word. 

The contribution of the CTA is that it considers the relationships between source MWEs and 

translation equivalents and between the MWEs and constituents of the translation equivalents. 

This primarily occurs for low-frequency words because their context vectors are not sufficient to 

yield high similarity scores. Note that this thesis defines a source MWE as a landmark case; 

therefore, the constituents of source MWEs are ignored. That is, only target constituents are 

considered. The overall structure of the CTA is illustrated in Figure 6.1. 

 

 

As can be seen in Figure 6.1, the structure of the proposed approach is very similar to that of the 

PCA. 

(1) MWE identification: First, MWE candidates should be extracted via the identification 

method described in Section 2.2.1 (see Figure 2.4 for more detail). Then, all possible 𝑛-

grams (2 ≤ 𝑛 ≤ 3) can be independently extracted from each of the monolingual corpora 

(i.e., the source and target languages). Next, reasonable collocations are extracted from 

Figure 6.1: Overall structure of CTA
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the 𝑛-grams by an association measure (PMI was empirically determined in this work). 

Some collocations with scores lower than a specific threshold are eliminated. After that, 

several POS sequence patterns are provided to remove irrelevant MWE candidates. This 

identification method requires morphological analyzers and noun phrase patterns for 

each language. Removing irrelevant MWE candidates is relatively easy because this 

information is readily available for general languages. This thesis assumes that 

extracted MWE candidates are accepted as actual MWEs.  

(2) Building context vectors: After the MWE candidates have been extracted, context 

vectors from two parallel corpora are constructed separately. This process is the same 

as that described in step (1) in Section 3.1. Note that added MWE candidates are also 

involved in building context vectors before extraction. The MWE candidates are first 

converted to single tokens by concatenating them with a specific symbol such as “_” 

Such converted MWEs are treated the same as other single words in this work. As 

mentioned in Section 2.2.2, MWEs in the pivot languages are unnecessary. Single pivot 

words are sufficient to connect the source and target languages. 

(3) Computing similarity scores: After the context vectors have been built, similarity 

scores between one source word and all target words are computed. Note that this step 

differs from step (2) in Section 3.1, while the PCAM uses the same step. The biggest 

difference between the PCAM and the CTA is whether or not all constituents of 

translation equivalents are considered. The CTA considers all constituents when 

similarity scores are measured. This method is not measure-specific; therefore, any 

similarity measurement can be used. In this thesis, only cosine similarity is considered. 

The modified measurement is described below. 

 

cosθ = sim(s, t) = α (
s⃗ ∙ t⃗

|s⃗||t⃗|
) + 𝛽 (

1

|t|
∑

s⃗ ∙ 𝑡𝑜

|s⃗||𝑡𝑜|

|t|

𝑜=1

)                            (6.1) 

 

As can be seen in Equation 6.1, this measure computes the similarity between two 

vectors (i.e., s⃗  and  t⃗ ), where |t|  denotes the number of translation equivalent 

constituents. For example, the similarity score sim ( , département de 

linguistique) between the Korean word  (eoneohakgwa, department of 
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linguistic) and the French word département de linguistique can be scored as follows 

(note that two parameters are empirically determined as α = 0.6, 𝛽 = 0.4):  

 

sim( , 𝑑é𝑝𝑎𝑟𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑒 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑞𝑢𝑒) =                                                    

0.6 × (

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 ∙  𝑑é𝑝𝑎𝑟𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑒 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑞𝑢𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

| |𝑑é𝑝𝑎𝑟𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑒 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑞𝑢𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
) + 

0.4 ×
1

2
(

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 ∙ 𝑑é𝑝𝑎𝑟𝑡𝑒𝑚𝑒𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

||𝑑é𝑝𝑎𝑟𝑡𝑒𝑚𝑒𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|
+  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 ∙ 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑞𝑢𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

|
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

||𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑞𝑢𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|
).    

 

As can be seen, only content words (i.e., nouns, verbs, adjectives, or adverbs) are 

included in the translation equivalents. This measurement, which considers constituents 

to augment the MWE scores, is the key feature of the CTA. 

(4) Selecting similar context vectors: After all similarity scores for each source word have 

been computed, the top x candidates are selected and added to the bilingual lexicon. 

This step is exactly the same as step (3) in Section 3.1. 

 

 

6.2 Experiments 

6.2.1 Resources 

To implement the CTA, several linguistic resources (i.e., stemmers, lemmatizers, POS taggers, 

and parallel corpora for the source–pivot and pivot–target language pairs) were required. For the 

Korean–English pair, the KMU parallel corpus (Seo et al., 2006) was used. For the French–

English and Spanish–English pairs, Europarl parallel corpora (Koehn, 2005) were used. The 

parallel corpora used in these experiments were the same as those used for the PCA (see Table 

3.1 in Section 3.2.1 for more details). 

As can be seen from Table 3.1, the distributions of word types and of the average number of 

words per sentence for the Korean–English pair differ from those of the other language pairs, as 

a result of the difference between their domains (i.e., news articles and European parliament 

proceedings). The average number of words per sentence for Korean is less than it is for any of 



86 

the other languages due to a particular characteristic of Korean. On average, a Korean word 

usually contains one or more morphemes (2.3 morphemes per word in this experiment), 

depending on the domain or corpus. 

Before using the corpora, the same pre-processing tasks as those conducted for the PCA were 

performed. POS tagging for Korean morphemes and lemmatizing for English, French, and 

Spanish were performed using the following tools15: the U-tagger was used to tokenize sentences 

and induce POS tags of morpheme tokens in Korean, and the TreeTagger was used to lemmatize 

word tokens and induce their POS tags in other languages. All word/morpheme tokens were 

annotated and then transformed to lowercase letters. The statistics for the pre-processed texts are 

listed in Table 3.2. 

After the texts had been pre-processed, the MWE candidates were extracted. Note that only the 

MWE candidates for Korean, French, and Spanish were collected. For this task, all stop-words, 

numeric strings, or punctuation marks were excluded. Then, word/morpheme n-grams (1 ≤ 𝑛 ≤

 3) that occurred three or more times in each monolingual corpus (i.e., in Korean, French, and 

Spanish) were extracted by applying light POS filters and computing the association scores 

between them. This identification method is described in step (1) in Section 6.1. As mentioned 

previously, only noun phrases are considered as MWEs to simplify large-scale experiments. The 

POS filters used to extract noun phrases are listed in Table 6.1.  

 

Table 6.1: Noun phrase patterns for three languages 

Korean French and Spanish 

N-N / N-N-N N-N / N-N-N 

V-E-N J-N / N-J 

J-E-N J-N-J / N-N-J / N-J-J 

N-G-N N-P-N 

 

The noun phrase patterns used in this work for French originated from the approach proposed 

by Bouamor et al. (2012), and those for Spanish/Korean were based on the French list. The French 

list was adapted to that of Korean in order to extract as many similar POS sequences as possible 

by considering Korean characteristics. As shown in Table 6.1, the POS filter for Korean contains 

five patterns, while that for French/Spanish contains eight patterns where N is a noun, G is a 

                                                           
15 Both tools are described in Section 3.3. 
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genitive case marker, V is a verb, J is an adjective, E is an adnominal ending, and P is a preposition. 

Most French/Spanish patterns consist of a noun and an adjective. To maintain balance with the 

French filter, the Korean filter was designed to include as many similar POS sequences as possible. 

The Korean bigrams V-E, J-E, and N-G usually function as noun modifiers such as unconjugated 

adjectives. Thus, this thesis assumes that these Korean POS sequences can act as POS filters that 

extract Korean MWE candidates similar to extracted French/Spanish MWE candidates. Finally, 

single content word/morpheme tokens (i.e., nouns, verbs, adjectives, or adverbs) including 

extracted MWE candidates (i.e., POS sequences listed in Table 6.1) remained as the input text. 

The input text statistics are listed in Table 6.2. 

 

Table 6.2: Input text statistics 

 Korean–English French–English Spanish–English 

Single-words 43,550 41,626 22,364 18,299 28,722 18,126 

Multi-words 3,640 - 1,606 - 1,345 - 

 

For evaluation, dictionaries that consisted of source MWEs and target translations, which were 

manually constructed from the Web16 dictionary, were necessary. Four evaluation dictionaries, 

specifically, Korean → French, French → Korean, Korean → Spanish, and Spanish → Korean, 

were constructed. The form A → B indicates that A is a source word and B is its translation(s). 

The case of “one source MWE: one target translation or more” was considered as the evaluation 

set, whereas the target translation could be a single word or an MWE. Compiling the evaluation 

dictionaries involved the following steps. 

i. All noun words from the source monolingual corpora (resp. target monolingual corpora) 

were extracted. 

ii. Extracted nouns were queried to the Web dictionary, and the results were collected. 

iii. Pre-processing was performed with some heuristics to fit the collected results to the 

experimental data. 

The query results had the form “one French/Spanish single-/multi-word or more: one Korean 

single-/multi-word or more.” In addition, the results presented all entries containing the queried 

                                                           
16 http://dic.naver.com 
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words and consisted of noun compounds, idioms, adages, and so on. Thus, the results should be 

focused to extract correct pairs in an appropriate manner. After all pairs had been extracted, pre-

processing (i.e., tokenizing/lemmatizing and POS tagging) was performed to extract the same 

POS sequences as those of the MWEs of the input texts. Finally, some of the morphologically 

constructed source MWEs collected from the Web dictionary were selected for evaluation. In this 

work, source MWEs from the evaluation dictionaries that occurred at least once in the source 

corpora were selected. In this case, one of the translations was required to also occur in the target 

corpora. However, it was not necessary for all of the translations to occur in the target corpora. 

The number of source MWEs used for evaluation and the average numbers of their translations 

are listed in Table 6.3.  

 
Table 6.3: Source MWEs in evaluation dictionaries statistics 

 Korean–French Korean–Spanish 

Collected 15,287 28,961 8,489 15,540 

Selected 754 630 426 529 

Avg. translations 1.6 1.2 1.4 1.2 

 

 

6.2.2 Results 

In this section, the results of experiments conducted on the parallel corpora for MWE extraction 

are presented. The experiments were performed with the source MWEs in the evaluation 

dictionaries described in Table 6.3. Note that the MWEs and their translations were neither 

domain-specific nor over-fitted (i.e., they are considered general terms) because the source 

MWEs originated from Web dictionaries. Therefore, the MWEs could occur frequently or 

infrequently in their corpora; however, each MWE and at least one of its translations were 

required to occur at least once. 

To simplify the comparison, the PCAM (Seo et al., 2014) is referred to as the baseline in the 

remainder of this section. The PCAM measures a general cosine similarity score between two 

context vectors (i.e., similarity scores for constituents are ignored). Alternatively, the CTA 

considers the relationship between one source word and the constituents of the translation 

equivalent. Figure 6.2 (resp. Figure 6.3) shows the accuracy from the top 1 to 20 for a Korean–

French pair (resp. Korean–Spanish pair), that is, the percentage of source words that had at least 
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one exact translation in the top x candidate translations.  

As can be seen in Figures 6.2 and 6.3, the CTA significantly outperforms the PCAM for the 

Korean–French pair. With regard to Korean → French translations, the best accuracy, 61.3%, 

(455 out of 754 Korean source MWEs) was obtained in the top 20 by the CTA, while 48.7% (367 

out of 754 Korean source MWEs) was obtained by the PCAM. For French → Korean translations, 

the best accuracy, 52.4%, (330 out of 630 French source MWEs) was obtained in the top 20 by 

the CTA, while 44.4% (280 out of 630 French source MWEs) was obtained by the PCAM. These 

results are very meaningful because they clearly demonstrate that considering constituents 

improve the PCAM performance.  
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Figure 6.2: Accuracy results for Korean–French parallel corpora
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Figure 6.3: Accuracy results for Korean–Spanish parallel corpora 
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The experimental results for the Korean–Spanish pair also support this claim. The results for 

the Korean–Spanish pair (Figure 6.3) show better performance than those for the Korean–French 

pair. The best accuracy, 69.3%, (295 out of 426 Korean source MWEs) was obtained on the top 

20 by the CTA, while 56.8% (242 out of 426 Korean source MWEs) was obtained by the PCAM. 

For Spanish → Korean translations, the best accuracy, 53.7%, (284 out of 529 Spanish source 

MWEs) was obtained on the top 20 by the CTA, while 45.6% (241 out of 529 Spanish source 

MWEs) was obtained by the PCAM. These results indicate that the CTA generally shows the best 

performance. Note that the evaluated words were not high-frequency words or were general terms 

not fitted to specific domains. 

Table 6.4 shows the overall error statistics from the evaluated methods for two parallel corpora. 

The statistics are observed where accuracies on top 20 are considered. On average, the CTA 

reduced errors by 10.4%, indicating that considering constituents can improve the MWE 

alignment performance for resource-poor language pairs, even if the approach generates other 

types of errors.  

 

Table 6.4: Error statistics for evaluated methods 

 Korean–French Korean–Spanish 

# of source MWEs 754 630 426 529 

# of source MWEs with no translation 

     from the PCAM 387 (51.3%) 354 (56.2%) 184 (43.2%) 288 (54.4%) 

     from the CTA 292 (38.7%) 300 (47.6%) 131 (30.8%) 245 (46.3%) 

 

Even though the CTA outperformed the PCAM in the experiments, the performance of 

proposed approach still requires improvement. In particular, generating Korean translations, 

specifically, French/Spanish → Korean translations, is comparatively more difficult (47.6% error 

rate for French → Korean, 46.3% for Spanish → Korean translations; Table 6.4) than generating 

Korean → French translations (38.7% error rate) and Korean → Spanish translations (30.8% error 

rate). 

There are several reasons for this problem. First, Korean translations in the evaluation 

dictionaries are insufficient compared to French/Spanish translations. In the dictionaries, each 

French (resp. Spanish) source MWE has on average 1.17 (resp. 1.18) Korean translations, while 

each Korean source MWE has on average 1.59 French translations (resp. 1.36 Spanish 
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translations). These numbers are only slightly different; nevertheless, French and Spanish source 

MWEs have less opportunity to be identified as correct. Second, the number of types of Korean 

MWE candidates (i.e., 3,640; Table 6.2) is relatively higher than those of the other languages: 

1,606 for French and 1,345 for Spanish. Therefore, in French and Spanish, there are more source 

MWEs that can be aligned with target candidate translations than vice versa. Of course, if robust 

contexts for MWE candidates are supported, having various types of candidates is not particularly 

significant. To investigate how robust the contexts of MWE candidates are in the corpora, the 

error frequencies for MWE candidates were analyzed. Here, frequency is regarded as the number 

of sentences containing a specific MWE. The erroneous MWE candidate statistics are listed in 

Tables 6.5 and 6.6. Note that the frequency 𝒇 in Tables 6.5 and 6.6 indicates the number of 

sentences containing a specific MWE.  

For the PCAM, as shown in Tables 6.5 and 6.6, over 94% of erroneous source MWEs for 

Korean–French pairs (resp. over 98% for Korean–Spanish pairs) occur at most 100 times in their 

Table 6.5: MWE error statistics for Korean–French translations 

 Configuration 𝒇 ≤ 𝟏𝟎  𝒇 ≤ 𝟏𝟎𝟎 𝟏𝟎𝟎 < 𝒇 Max 𝒇 Avg. 𝒇 

K
o

re
a

n
 t

o
 F

re
n

ch
 

PCAM (387 errors): frequency (%) 

KR source MWEs 233 (60.2) 366 (94.6) 21 (5.4) 1067  33.1 

Top 1 FR equivalent 196 (50.7) 277 (71.6) 110 (28.3) 8195  346.5 

FR translations 107 (27.7) 223 (57.6) 164 (42.3) 24064  1019.4 

CTA (292 errors): frequency (%) 

KR source MWEs 159 (54.5) 271 (92.8) 21 (7.2) 1067  39.6 

Top 1 FR equivalent 87 (29.8) 137 (46.9) 155 (53.1) 34317  1509.4 

FR translations 74 (25.3) 158 (54.1) 134 (45.9) 11268  827.1 

F
re

n
ch

 t
o

 K
o

re
a

n
 

PCAM (354 errors): frequency (%) 

FR source MWEs 185 (52.3) 333 (94.1) 21 (5.9) 3587  45.5 

Top 1 KR 

equivalent 
223 (63.0) 296 (83.6) 58 (16.4) 13549  207.7 

KR  translations 160 (45.2) 276 (78.0) 78 (22.0) 14209  276.7 

CTA (300 errors): frequency (%) 

FR source MWEs 162 (54.0) 281 (93.7) 19 (6.3) 3587  42.0 

Top1 KR equivalent 110 (36.7) 166 (55.3) 134 (44.7) 20519  1564.9 

KR  translations 106 (35.3) 222 (74) 78 (26.0) 14209  315.5 
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corpora. It is difficult to define what constitutes a small number; however, this thesis assumes 

that only 100 out of nearly 0.4 million Korean sentences (resp. 0.5 million for French and Spanish 

sentences) is a very low number. In addition, over 50% of erroneous source MWEs (except for 

those occurring in Spanish → Korean translations) occur only 10 times in their corpora, and this 

number is extremely small. More importantly, nearly 95% of erroneous source MWEs might have 

very narrow contexts. In contrast, approximately 5% of errors might have relatively sufficient 

contexts. This phenomenon is also evident in the CTA configuration. 

For the CTA, similar distributions, as well as a clear difference from the former method (i.e., 

the PCAM), are evident. Almost 93% of erroneous source MWEs occur at most 100 times for 

Korean–French pairs (resp. almost 92% for Korean–Spanish pairs). These distributions are 

similar to those of the former method. On the other hand, although MWEs that occur at most 100 

times are considered low-frequency MWEs in the rest of this section, various types of low-

frequency MWEs from the CTA decrease no matter what the types of MWEs are. Moreover, the 

Table 6.6: MWE error statistics for Korean–Spanish translations 

 Configuration 𝒇 ≤ 𝟏𝟎  𝒇 ≤ 𝟏𝟎𝟎 𝟏𝟎𝟎 < 𝒇 Max 𝒇 Avg. 𝒇 

K
o

re
a

n
 t

o
 S

p
a

n
is

h
 

PCAM (184 errors): frequency (%) 

KR source MWEs 100 (54.3) 182 (98.9) 2 (1.1) 795 36.2 

Top 1 ES equivalent 95 (51.6) 149 (81.0) 35 (19.0) 27903  563.5 

ES translations 73 (39.7) 162 (88.0) 22 (12.0) 26828  428.0 

CTA (131 errors): frequency (%) 

KR source MWEs 70 (53.4) 120 (91.6) 11 (8.4) 596  32.0 

Top 1 ES equivalent 35 (26.7) 62 (47.3) 69 (52.7) 37580  2949.9 

ES translations 51 (38.9) 104 (79.4) 27 (20.6) 26828  582.1 

S
p

a
n

is
h

 t
o

 K
o

re
a

n
 

PCAM (288 errors): frequency (%) 

ES source MWEs 126 (43.8) 283 (98.3) 5 (1.7) 1188  44.8 

Top 1 KR 

equivalent 
194 (67.4) 255 (88.5) 33 (11.5) 9958  302.8 

KR  translations 110 (38.2) 264 (91.7) 24 (8.3) 10908  216.4 

PCA (245 errors): frequency (%) 

ES source MWEs 111 (45.3) 227 (92.7) 18 (7.3) 880  35.4 

Top1 KR equivalent 95 (38.8) 152 (62.0) 93 (38.0) 39357  1050.6 

KR  translations 88 (35.9) 187 (76.3) 58 (23.7) 4648  768.3 
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number of MWEs that occur more often than low-frequency MWEs increases. 

For this frequency alone, it not possible to predict how many content words composing context 

vectors are around the MWE. In addition, whether decreasing low-frequency erroneous MWEs 

is worthwhile has not been determined. However, it is assumed that most errors result from lack 

of context. Here, lack of context is defined as a context that does not include sufficient common 

features of the source and target words to allow them to be aligned correctly. 

If the relationship between a frequency and a context size is observed, their effect on errors can 

be estimated. Figure 6.4 presents the MWE frequencies (dotted line) and context sizes (solid line) 

for French → Korean translation. As can be seen, the context size is not always directly 

proportional to the MWE frequency. A very small number of MWEs have context sizes smaller 

than their frequencies. Nevertheless, in general, as MWE frequency increases, context size also 

increases and does so at a faster rate.  In addition, when MWE frequency is low, the gap between 

the frequency and context size is small. This phenomenon is very natural because context 

originates from sentences whose lengths are fixed or limited. Of course, a high-frequency MWE 

has abundant opportunities to obtain essential contexts. However, it is not possible to confirm 

that a low-frequency MWE has no alternative but to have a poor context. If a low-frequency 

MWE has certain crucial or essential contexts and shares them with its translation, alignment of 

the MWE can be performed successfully.  
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Figure 6.4: Comparison of frequency and context size for French → Korean translations 
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This investigation estimated the numbers of common contexts to reveal the relationship 

between common contexts and errors. Common context means that a common pivot (e.g., English) 

word exists in two monolingual corpora, for example, from the English corpus in the Korean–

English parallel corpus and another English corpus in the French–English parallel corpus. It is 

assumed that, as the number of common contexts increases, MWE alignment errors become less 

frequent. The statistics for such common contexts are listed in Table 6.7. The table contains the 

numbers of common contexts between source MWEs and their target translations in the 

evaluation dictionary, denoted |source MWE ∩ translation| and (a), (b), or (c) according to the 

frequency, as well as between the translations and the top 1 equivalents, denoted as |Top 1 

equivalent ∩ translation| and (d), (e), or (f) according to the frequency. Note that, if the number 

of common contexts between a source MWE and its translations is 0 such as in case (a), correct 

alignment can never be achieved using the context-based method. For example, 105 source 

MWEs share no common contexts with their translations when the PCAM for Korean → French 

translations is considered. With the PCAM, on average, 27.8% of errors for Korean–French pairs 

(resp. 21.5% for Korean–Spanish pairs) are included in this case. When the CTA is considered in 

case (a), the percentages (with regard to no common context) are reduced (27.1% to 22.6% for 

Korean → French translations, 28.5% to 19.0% for French → Korean translations, 22.8% to 16.8% 

for Korean → Spanish translations, and 20.1% to 19.6% for Spanish → Korean translations). 

Table 6.7: Statistics of intersections between contexts in errors 

 | src MWE ∩ translation | | Top 1 equivalent ∩ translation | 

Freq. (case) 0 (a) ≤ 100 (b) > 100 (c) 0 (d) ≤ 100 (e) > 100 (f) 

Korean to French 

PCAM (387) 105 (27.1%) 374 (96.6%) 13 (3.4%) 106 (27.4%) 339 (87.6%) 48 (12.4%) 

CTA (292) 66 (22.6%) 278 (95.2%) 14 (4.8%) 49 (16.8%) 208 (71.2%) 84 (28.8%) 

French to Korean 

PCAM (354) 101 (28.5%) 347 (98.0%) 7 (2.0%) 68 (19.2%) 343 (96.9%) 11 (3.1%) 

CTA (300) 57 (19.0%) 288 (96.0%) 12 (4.0%) 69 (23.0%) 234 (78.0%) 66 (22.0%) 

Korean to Spanish 

PCAM (184) 42 (22.8%) 180 (97.8%) 4 (2.2%) 57 (31.0%) 171 (92.9%) 13 (7.1%) 

CTA (131) 22 (16.8%) 128 (97.7%) 3 (2.3%) 24 (18.3%) 105 (80.2%) 26 (19.8%) 

Spanish to Korean 

PCAM (288) 58 (20.1%) 278 (96.5%) 10 (3.5%) 80 (27.8%) 277 (96.2%) 11 (3.8%) 

CTA (245) 48 (19.6%) 237 (96.7%) 8 (3.3%) 59 (24.1%) 213 (86.9%) 32 (13.0%) 
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Thus, the CTA is considered an effective way to reduce such errors. It can also improve the 

alignment of low-frequency MWEs and consequently improve accuracy.  

The top 1 equivalent listed in Table 6.7 is most likely considered a translation of a source MWE 

because it has the highest similarity score of the top x equivalents. It comes from system results; 

therefore, it can be considered an evaluation criterion to determine if the method improves 

performance. If the number of the cases of (d), which have no common context between a top 1 

equivalent and a target translation in an evaluation dictionary, is reduced by the CTA compared 

to when the PCAM is used, then the CTA can help reduce errors. Except for French → Korean 

translations, the CTA generally reduces the number of errors in (d). Therefore, at minimum, 

source MWEs are more likely to be correctly aligned to translation equivalents by using the CTA. 

On the other hand, the cases of (c), in which there are more than 100 common contexts between 

source MWEs and target translations, or (f) for the top 1 equivalents and target translations, show 

that the CTA clearly extracts equivalents with rich contexts. Moreover, their parallel source 

MWEs also have rich contexts. Thus, the CTA volumizes the contexts of the MWE candidates, 

which improves the performance of the approach. However, there is also an adverse effect. 

To analyze the overall impact of the CTA, all errors obtained by the two methods are addressed 

with reference to three cases: (I) the translation equivalent is a reference translation that is not 

included in an evaluation dictionary; (II) there is no correct translation; however, a translation 

equivalent and a translation in an evaluation dictionary originate from a same domain; and (III) 

the translation equivalent is one constituent of a correct MWE translation. These error types will 

be discussed and several examples will be provided. The statistics of these error types are 

presented in Table 6.8. 
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Table 6.8: Error-type statistics 

 

The results (except for French → Korean translations) corresponding to Type I errors obtained 

by the CTA show higher percentages, specifically, 2.3% to 4.5% for Korean → French 

translations, 6.0% to 9.9% for Korean → Spanish translations, and 6.6% to 15.1% for Spanish → 

Korean translations. Two examples are presented to illustrate these results. First, the Korean → 

French translation pair  (bisang satae, state of emergency) → état d’urgence already 

exists in the evaluation dictionary. The French word état d’urgence has related meanings for 

synonyms (or reference translations of ) such as situation d’urgence (emergency 

situation), situation critique (plight), and situation de danger (dangerous situation). However, the 

acceptable translation equivalents situation d’urgence, situation critique, and situation de danger 

would be marked as incorrect because the evaluation dictionary contains neither synonyms of 

translations nor reference translations of source MWEs. If the evaluation dictionaries are 

extended either manually or automatically, the performance of the approach could be improved 

significantly. Alternatively, col blanc (white collar) has Korean translations for the literal 

meaning of (hayansaek git) as well as for the idiomatic meaning of  (samu 

jikwon, clerical worker, office worker). As mentioned previously, such idiomatic expressions are 

ignored in this work; therefore, the latter example cannot be resolved with the CTA. 

Type II errors indicate that extracted translation equivalents are incorrect; however, they 

achieve correct translation of a same topic. For example, when the Korean → Spanish evaluation 

dictionary includes the pair  (mingan hanggong, civil aviation) → aviación civil, 

Spanish translation equivalents such as avión (plane), aeronave (aircraft), and línea internacional 

(international line), are extracted as the top x equivalents. All of these equivalents, the target 

Language Pair Method Type I Type II Type III 

Korean → French 
PCAM (387) 9 (2.3%) 80 (20.7%) 144 (37.2%) 

CTA (292) 13 (4.5%) 110 (37.7%) 187 (64.0%) 

French → Korean 
PCAM (354) 54 (15.3%) 156 (44.1%) 96 (27.1%) 

CTA (300) 35 (11.7%) 150 (50.0%) 69 (23.0%) 

Korean → Spanish 
PCAM (184) 11 (6.0%) 59 (32.1%) 64 (34.8%) 

CTA (131) 13 (9.9%) 58 (44.3%) 89 (67.9%) 

Spanish → Korean 
PCAM (288) 19 (6.6%) 89 (30.9%) 48 (16.7%) 

CTA (245) 37 (15.1%) 149 (60.8%) 47 (19.2%) 
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translation aviación civil, and the source MWE  are related to the same topic, “a flight.” 

In other words, these words share common context words in the pivot language, English such as 

flight, airplane, international, domestic, and so forth. However, the exact target translation 

aviación civil does not exist in the target monolingual corpus or has very poor context even though 

it exists. This shortcoming could be due to misalignment of parallel sentences or mismatching of 

domains between the source and target corpora. As mentioned in Section 6.2.1, each parallel 

corpus shares the same domain; however, the source/target monolingual (i.e., Korean/French or 

/Spanish, and vice versa) corpora do not. Fortunately, the CTA extracts words sharing common 

topics much more frequently than does the baseline. With regard to the number, the listed 

numbers obtained by the CTA decrease slightly (e.g., 156 to 150 and 59 to 58) or increase 

significantly (e.g., 80 to 110 and 89 to 149). However, the percentages indicate that the claim is 

true. Considering these results, it is evident that the CTA gathers increasingly more equivalents 

that share contexts that are as similar as possible.  

Type III errors are also referenced in the second example in Section 6.1. This work attempts to 

improve this type of error. As mentioned previously, Type III indicates that an equivalent is not 

extracted as a whole; however, its constituent parts are extracted as the top x equivalents. Note 

that this phenomenon occurred the most frequently when the contexts of a translation equivalent 

as a whole were very poor and the contexts of the constituent parts were rich. Usually, low-

frequency words exhibit this type of error. As can be seen from Type III in Table 6.5, the results 

(except for French → Korean translations) obtained by the CTA show higher percentages than 

do the results obtained from the baseline, specifically, 37.2% to 64.0% for Korean → French 

translations, 34.8% to 67.9% for Korean → Spanish translations, and 16.7% to 19.2% for Spanish 

→ Korean translations. Taken as part of the error types, these results seem rather poor. However, 

taken as a whole, the error rates are decreased by the CTA. 

 

 

6.3 Summary 

This chapter has presented an efficient method for bilingual MWE alignment in resource-poor 

language pairs such as Korean–French/–Spanish. In general, bilingual corpora are essential to 

perform bilingual lexicon extraction; however, parallel corpora are unavailable for many domains. 

To address this issue, the PCAM, which uses two parallel corpora sharing one pivot language 
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(e.g., English), was proposed by Seo et al. (2014). This idea is reasonable because corpora for 

certain language pairs such as English–* are available online. With two parallel corpora, the 

approach identifies MWE candidates in each monolingual corpus by a general collocation 

measure such as PMI and then aligns these candidates on the basis of the similarity scores of their 

context vectors. The PCAM performs well even without an external language resource such as a 

seed dictionary to translate from one language to another. However, alignment of bilingual 

MWEs in parallel corpora using the PCAM is difficult when the context words of either the source 

or target MWEs as a whole are insufficient. In this case, the context indicates that a single pivot 

word co-occurs with source or target MWEs in the aligned pair of sentences of both languages. 

This thesis assumes that single words in a pivot language are sufficient to act as bridges that 

connect the source and target languages. Therefore, extracting pivot MWEs is not required. The 

translation equivalent accuracy may decrease because of lack of context, and this shortcoming 

should be addressed. 

In a situation like this, the CTA adequately addresses the poor-context problem. More 

specifically, it calculates vector similarity scores between source MWEs and complete translation 

equivalents and between source MWEs and the constituents of translation equivalents. The 

similarity scores are not considered independently; instead, they are summed into a single score 

that indicates which of translation equivalent as a whole. Again, with this approach, complete 

translation equivalent, rather than parts of equivalents, generally obtain higher similarity scores 

because this thesis assumes that, if a source word is a multi-word, its translation equivalent is also 

more likely to be a multi-word. 

In the experiments, the CTA significantly outperforms the PCAM (baseline) in accuracy. For 

the CTA, the highest accuracy, 61.3%, was obtained using the top 20 for Korean → French 

translations and 52.4% for French → Korean translations. In addition, the CTA obtained the 

highest accuracy, 69.3%, using the top 20 for Korean → Spanish translations and 53.7% for 

Spanish → Korean translations. The proposed approach was evaluated with reference to three 

types of errors. Type I error occurs when an extracted equivalent is one of the reference 

translations excluded from the evaluation dictionary; thus, correctness could not be estimated. 

Type II error occurs when an extracted equivalent hints a same domain with a correct translation. 

Type III error occurs when only one constituent of a target translation is extracted rather than a 

complete translation. Note that all of the error types result from lack of contexts. Type I can be 

easily improved if evaluation dictionaries are extended. The other types of errors could be solved 
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if the domains of two parallel corpora were the same or if the size of the corpora were increased. 

However, the experimental results indicate that the CTA performs very well for MWE alignment 

for resource-poor language pairs. 

Of course, there are many opportunities for improvement. An important area for further 

research is fine-tuning of the parameters α and β (Section 6.2.2) to maximize accuracy. In addition, 

the evaluation dictionaries could be extended by extracting synonyms of target translations or by 

collecting reference translations of source MWEs. 
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Chapter 7 

 

 

 

Conclusions and Future Work 

 

 

 

This final chapter concludes the thesis by summarizing the approaches that were investigated. 

Moreover, future research related to each approach is suggested.  

 

 

 

7.1 Conclusions 

In this section, all of the approaches proposed in this thesis are summarized and compared. The 

main issue addressed in this thesis was the lack of availability of direct linguistic resources such 

as bilingual corpora or bilingual seed dictionary. For example, Korean, French, and Spanish are 

resource-rich languages. However, when paired, they are resource-poor. This thesis has proposed 

several approaches to improve upon earlier methods when applied to resource-poor language 

pairs under various conditions. 
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Table 7.1: Comparison of characteristics for all approaches 

 Corpora* Seed Dict Pivot  
Word 

Type 

Vector 

Type 
Key Features 

Earlier approaches 

CA CC o x single context Baseline 

EA CC o x single context CA + Nearest vectors 

PA x o o single x Word-alignment models 

PCAM PC x o multi context 
MWE identification + 

PCA 

Proposed approaches 

PCA PC x o single context CA + Pivot language 

EPCA PC x o single context PCA + Nearest vectors 

SA CC o x single synonym CA + SOM algorithm 

CTA PC x o multi context 
PCAM with constrained 

similarity measurement 

* CC: comparable corpora, PC: parallel corpora 

 

Table 7.1 presents the detailed characteristics of the proposed approaches. As can be seen, four 

different approaches have been proposed, and four earlier related approaches have been reviewed. 

The CA was identified as the baseline, and it directly influenced many of the approaches 

described here. The CA is highly dependent on the coverage of a seed dictionary. To address this 

limitation, many revised approaches have been proposed. The extended approach (EA) collects 

the k nearest words to augment context vectors and reduce the dependence on the seed dictionary. 

The proposed pivot-based approach (PA) collects bilingual lexicons when most language pairs 

are unavailable. This approach combines existing lexicons that share one pivot language (SL–PL 

and PL–TL). The PA uses some word-alignment models such as exact merging to generate a 

bilingual lexicon for SL–TL. However, it is not an effective solution because it starts with 

resource-poor languages. Furthermore, building or collecting such lexicons would be a huge 

burden. 

The PCA, which extracts bilingual lexicons for resource-poor language pairs, has also been 

proposed. It gathers contextually relevant words from parallel corpora to compare two different 

types of context vectors (i.e., SL–PL and PL–TL). Such vectors are comparable because they are 

built from two parallel corpora sharing one common pivot language. In addition, external 
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linguistic resources such as a seed dictionary are unnecessary. Based on the experimental results, 

the PCA performs well for resource-poor language pairs, particularly for Korean–French/–

Spanish translations. 

As can be seen in Table 7.1, the EPCA collects the k nearest context words for each source 

word to improve the PCA. All of the collected nearest vectors satisfying a specific threshold are 

added to the similarity computation task to enrich the contexts of words to be compared. The 

EPCA uses parallel corpora rather than comparable corpora; therefore, translating source context 

vectors into a target language is unnecessary. However, the EPCA did not perform as expected 

due to the lack of contexts for the experimental data sets, particularly for different domains of 

two parallel corpora. The overall accuracy for Korean–French was reasonable; however, the 

accuracy for Korean–Spanish was somewhat low. Nonetheless, in terms of obtaining translation 

equivalents to higher ranks, the performance of the proposed approach was meaningful.  

The SOM-based approach (SA) extracts bilingual lexicons from comparable corpora using 

SOMs in an unsupervised or a semi-supervised fashion. The most prominent advantage of this 

approach is that it outperforms the CA under the same experimental conditions, that is, when the 

same seed dictionaries and corpora are used. The experimental results show that the proposed 

approach is sufficient for extracting multilingual lexicons from resource-poor language pairs. 

However, it should be noted that there is room for improvement in the parameter tuning. 

The proposed constituent-based approach (CTA) handles MWEs for resource-poor language 

pairs. The CTA was compared to the PCAM, which was modified to consider MWEs. First, the 

PCAM identifies MWE candidates according to their PMI and then adds them into the input data 

to build context vectors as single units. Then, similar to the PCA, it computes similarity scores. 

It performs well even without an external linguistic resource such as a seed dictionary. However, 

PCAM has difficulties when the pivot context words of either the source or target MWEs as a 

whole are insufficient. The most important issue is that the translation equivalent accuracy is 

reduced due to the lack of contexts. The CTA can address this issue even though there are 

insufficient contexts. The experimental results show that the CTA significantly outperforms the 

PCAM. The best accuracy (69.3%) was obtained using the top 20 for Korean → Spanish 

translations. 
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7.2 Future Work 

The PCA performs well for resource-poor language pairs; however, it has several limitations. 

First, homonyms (particularly homographs) such as lead or tear are troublesome. If all context 

types are strong and the domains of two parallel corpora are the same, this problem can be solved. 

Second, there are neither rich gold standards to cover most synonyms nor specific evaluation 

measures to consider false positive translation equivalents. To address this issue, manually 

created evaluation dictionaries or external linguistic resources such as a well-made thesaurus are 

required. However, this is a case of the tail wagging the dog. Thus, other alternatives are required. 

Third, there are several transliterated words in the corpora. This type of error is only a small 

minority; thus, attempting to overcome it either automatically or manually seems difficult. Fourth, 

many compound nouns are missed by the word segmentation task. To address these problems, 

other evaluation metrics, extra segmentations, or MWE identification should be considered in 

future work. 

The most significant problem with the EPCA is that the collected nearest context vectors cannot 

augment the centroid vector. In other words, the k nearest context vectors should be used to obtain 

the similarity score between the centroid, that is, a source word, and a target equivalent. However, 

the set of the k nearest context vectors cannot reinforce the analysis to find appropriate translation 

equivalents due to the lack of context vectors. To use the proposed approach, a sufficient number 

of context words or synonyms should be prepared or supported, and, at least, their domains should 

be unified, unless many synonyms are extended in the corpora. 

For the SA, diverse/incoherent parameters for acceptable performance could be problematic. 

In future work, the parameters, such SOM size, learning rate, Gaussian function, and epoch, 

should be optimized. In addition, different parts of speech such as verbs, adjectives, and adverbs 

should be considered, because only nouns were considered in this work. Moreover, additional 

experiments for MWEs could be valuable. Most importantly, more thorough error analysis should 

be conducted.  

Most errors in the CTA result from the lack of contexts. Performance should be extended at 

least by extending the evaluation dictionaries. In addition, the domains of two parallel corpora 

should be the same, and their sizes should be increased. Furthermore, fine-tuning of Equation 6.1 

should be performed for each variation. 
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