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A note on normal forms for the closed fragment of system IL
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Abstract. In [8], P. Hájek and V. Švejdar determined normal forms for the system ILF,
and showed that we can eliminate the modal operator ¤ from IL–formulas. The normal
form for the closed fragment of the interpretability logic IL is an open problem (see [13]).
We prove that in some cases we can eliminate the modal operator ¤. We give an example
where it is impossible to eliminate ¤.
AMS subject classifications: 03F45, 03F25
Key words: modal logic, interpretability logic, normal form

1. Introduction

K. Gödel proposed treating a provability predicate as a modal operator. S. Kripke
and R. Montague have taken up the same idea later. The correct choice of axioms,
based on Löb’s theorem, was seriously considered in the mid–seventies by several
logicians independently: G. Boolos, D. de Jongh, R. Magari, G. Sambin and R. Solo-
vay.

Provability logic is a modal description of a natural provability predicate. The
basic system of provability logic is system GL (Gödel, Löb). The system GL is a
modal propositional logic. The axioms of system GL are all tautologies, 2(A →
B) → (2A → 2B), and 2(2A → A) → 2A. The inference rules of GL are modus
ponens and necessitation A/2A. R. Solovay proved arithmetical completeness of
modal system GL w.r.t. Peano Arithmetic in 1976.

A modal GL–sentence is called letterless if it contains no sentence letters, equi-
valently if it is a member of the smallest class containing ⊥, and containing A → B
and 2A whenever it contains A and B. As always, 20A = A and 2i+1A = 22iA.
We shall say that a letterless sentence C is in normal form if it is a truth–functional
combination of sentences of the form 2i⊥. Now, we give the normal form theorem
for a closed fragment of the system GL.

Theorem 1 (see [11]). Let B be a letterless GL–sentence. Then there are numbers
n, k0, . . . , kn, m1, . . . , mn+1 such that

GL ` B ↔
(

2k0⊥ ∨
n∨

i=1

(2ki⊥ ∧ ¬2mi⊥) ∨ ¬2mn+1⊥
)

,
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http://www.mathos.hr/mc c©2012 Department of Mathematics, University of Osijek
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where 0 ≤ k0 < m1 < k1 < . . . < mn < kn < mn+1 ≤ ω and 2ω⊥ = >. Moreover,
expect for the degenerate case in which B is provable, the representation is unique.

It is important to emphasize that in [4] G. Boolos proved that there are no normal
forms in GL for a formula that contains a propositional variable. We would like to
mention that S. N. Artëmov in [1] and L. D. Beklemishev in [2] proved the normal
form theorem for GL using only semantics.

The provability logic of Peano arithmetic, Zermelo–Fraenkel set theory, and
Gödel–Bernays set theory is system GL. It means that provability logic GL can-
not distinguish some properties as e.g. finite axiomatizability, reflexivity, etc. Some
logicians have considered a modal description of other arithmetical properties, for
example interpretability, Πn–conservativity, interpolability, etc. We study inter-
pretability. Modal logics for interpretability were first studied by P. Hájek (1981)
and V. Švejdar (1983). In [12], A. Visser introduced the binary modal logic IL (in-
terpretability logic). The interpretability logic IL results from the provability logic
GL, by adding the binary modal operator ¤. We are only interested in interpretabil-
ity as a system of modal logic, i.e. interpretability logic. We introduce our notation
and some basic facts following [13].

The interpretability logic is a modal logic which describes the relation IntT (A,B)
of relative interpretability between arithmetical theories like T +A and T +B, where
A and B are formulas (for detailed definitions see e.g. [13] or [7]).

The language of the interpretability logic contains the propositional letters p0, p1,
. . . , the logical connectives ¬, ∧, ∨,→ ↔, the unary modal operators 2 and ♦,
and the binary modal operator ¤. We use ⊥ for false and > for true. We read
¤ as binding stronger than binary boolean connectives, and weaker than negation
and unary modal operators. The interpretability logic IL contains all axioms of the
system GL and the following axioms 2(A → B) → A¤B, (A¤B ∧ B¤C) → A¤C,
(A ¤ C ∧ B ¤ C) → (A ∨ B) ¤ C, A ¤ B → (♦A → ♦B), and ♦A ¤ A. The
deduction rules of IL are modus ponens and necessitation.

A modal IL–sentence is called letterless if it contains no sentence letters, equiva-
lently if it is a member of the smallest class containing ⊥ and containinig A → B and
A ¤ B whenever it contains A and B. It can be seen that all letterless IL–formulas
can be expressed in reduced language, using only ⊥, →, ¤ and parentheses. That
follows from these equivalences:

¬A ⇐⇒ (A → ⊥)
> ⇐⇒ ¬⊥

A ∨B ⇐⇒ ¬A → B
A ∧B ⇐⇒ ¬(A → ¬B)

A ↔ B ⇐⇒ (A → B) ∧ (B → A)
2A ⇐⇒ ¬A ¤⊥
♦A ⇐⇒ ¬(A ¤⊥)

Let T be an arithmetical theory. The arithmetical interpretation ∗ is a function from
the set of IL–formulas to the set of sentences of theory T such that: (⊥)∗ = (0 = 1)
(A → B)∗ = A∗ → B∗ and (A ¤ B)∗ = IntT (A∗, B∗).
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The system IL is natural from the modal point of view, but arithmetically incom-
plete. For example, IL does not prove the formula W , i.e. (A¤B) → (A¤(B∧2¬A))
(see [6]). But we have T ` W ∗ for every reasonable arithmetical theory T and every
arithmetical interpretation ∗ (see [12]).

Various extensions of IL are obtained by adding some new axioms. These new
axioms are called the principles of interpretability. Principles we shall consider in
this paper are among the following.

M A ¤ B → (A ∧2C) ¤ (B ∧2C) (Montagna’s principle)

P A ¤ B → 2(A ¤ B) (principle of persistency)

F (A ¤ ♦A) → 2(¬A) (Feferman’s principle)

KW1 (A ¤ ♦>) → (>¤ (¬A)) (transposition principle)

If X is a principle of interpretability we will denote by ILX the logic that arises
by adding the princple X to IL. In [8], P. Hájek and V. Švejdar proved the following
normal form theorem for the letterless sentence of the interpretability logic ILF.

Theorem 2 (see [8]). For each letterless IL–formula B there are numbers n, i1, . . .,
in, j1, . . . , jn such that

ILF ` B ↔
n∧

k=1

(2ik⊥ → 2jk⊥),

where 0 ≤ jn < in < . . . i2 < j1 < i1 ≤ ω.

We would like to emphasize that P. Hájek and V. Švejdar proved the theorem
completely syntactically. The theorem is obviously true for systems ILM and ILP
(ILF is a subsystem of ILM and ILP ). But, we do not know a normal form for
systems weaker than ILF. For example, the systems IL and ILKW1 are weaker
than ILF. In [13] A. Visser mentioned the normal form for the system IL as an
open problem.

In [9], J. Joosten emphasizes that we can eliminate modal operator ¤ in the
system ILF, i.e. we have ILF ` A ¤ B ↔ 2(A → (B ∨ ♦B)), for any letterless
IL–formulas A, B.

2. Elimination of modal operator ¤ in some cases

We will give some cases where we can eliminate the modal operator ¤. At the
beginning we define Veltman models. The notion of a Veltman model is defined in
[6].

Definition 1. An ordered triple 〈W,R, (Sw : w ∈ W )〉 is called a Veltman frame if
it satisfies the following conditions:

a) 〈W,R〉 is a GL–frame, i.e. W is a non–empty set, and R is a transitive and
reverse well-founded relation on W;
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b) For every w ∈ W we have Sw ⊆ W [w]×W [w], where W [w] = {u : wRu};
c) The relation Sw is reflexive and transitive on W [w] for every w ∈ W ;

d) If wRuRv, then uSwv.

An ordered quadruple 〈W,R, (Sw : w ∈ W ), °〉 is called a Veltman model if it satisfies
the following conditions:

1) 〈W,R, (Sw : w ∈ W )〉 is a Veltman frame;

2) ° is a forcing relation. We emphasize only the definition

w ° A ¤ B if and only if ∀u((wRu & u ° A) ⇒ ∃v(uSwv & v ° B)).

We denote a Veltman model 〈W,R, (Sw : w ∈ W ),°〉 shortly by W. In [6], D.
de Jongh and F. Veltman proved completeness of the system IL w.r.t. Veltman
semantics.

Let W be a Veltman model. A terminal world in model W is w ∈ W such that
there is no v ∈ W with wRv. A terminal world is also called a world of type 1.
We say that a world is of type 2 if it is nonterminal, and all its R–successors are
terminal.

Note that the analogous definition of a “world of type 3” as a world that is not
terminal, and all its R-successors are of type 2, is not meaningful, because such a
world cannot exist in any Veltman model: if w is such a world, then it must have an
R-successor u of type 2, and so u must have an R-successor v of type 1. But then
v is also an R-successor of w by transitivity, and it cannot be of type 2 since it is
terminal.

The following lemma will be very useful.

Lemma 1. Every world in every Veltman frame is either of type 1, of type 2, or it
has some R–successor of type 2.

Proof. Suppose that a world w0 is neither of these types. That in particular means
w0 has a nonterminal R–successor w1. Since w1 is a R–successor of w0, it must not be
of type 2, and since it is nonterminal, w1 must have a nonterminal R–successor also;
let’s denote it by w2. Because R is transitive, w2 is also a nonterminal R–successor
of w0, and must have a nonterminal R–successor w3, which is also a R–successor of
w0. . . Continuing in this way, we obtain a sequence of worlds w0Rw1Rw2Rw3R . . . ,
and that is a contradiction since the relation R must be reversely well-founded.

Corollary 1. Let 〈W,R, (Sw : w ∈ W )〉 be a Veltman frame, and w ∈ W nonter-
minal. There exist u, v ∈ W such that the following three conditions hold:

(i) wRu or w = u,

(ii) uRv, and

(iii) every v′ such that vSuv′ is terminal.
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Proof. By using Lemma 1 we have that the world w is or type 2 or it has some
R–successor of type 2. If w is of type 2, set u := w, else set u to be some R–successor
of w of type 2. Either way, u is of type 2, so it is nonterminal. Set v to be any of
its R–successors. Since every v′ such that vSuv′ must also be an R–successor of u,
it must be terminal and the corollary is proved.

In [3], one can find the definitions of local and global semantic consequences.
In [10], M. Kracht considers modal consequence relations. Now, we repeat the
definitions of local and global equivalence.

We will say that some formulas ϕ and ψ are locally equivalent if we have W,w ° ϕ
if and only if W,w ° ψ, for every Veltman model W and every world w ∈ W. We
denote local equivalence by ϕ ⇐⇒ ψ.

Let W be a Veltman model and ϕ a formula. If we have W,w ° ϕ for every
w ∈ W, then we will write W ° ϕ. We will say that formulas ϕ and ψ are globally
equivalent if we have W ° ϕ if and only if W ° ψ, for every Veltman model W. We
denote global equivalence by ϕ

g⇐⇒ ψ.
Local equivalence is surely better because it is stronger, and it has the property

that any subformula B of A can be replaced by a locally equivalent formula B′, and
we get A′ = A(B′|B) which is locally equivalent to A. Global equivalence generally
does not have that property.

It is interesting to see that being locally equivalent to > and being globally
equivalent to > means the same: being modally valid. In fact, local equivalence of
ϕ and ψ can be stated as (global or local) equivalence of ϕ ↔ ψ and >.

Intuitively, using local equivalence we characterize worlds on which a formula
holds, while using global equivalence we characterize models in which a formula
holds (on every world).

Besides equivalence to >, we will consider these global equivalence properties:
property of being globally equivalent to ⊥, which means a formula cannot hold in
any (nonempty) model, and being globally equivalent to 2⊥, which means a formula
holds only in models with empty accessibility relation R.

Our results will be of type: every formula that has some general form, is locally
or globally equivalent to some simpler formula, for some definition of simplicity.
Usually that simple formula will be ⊥, >, 2⊥ or 22⊥ (note that all of them are of
the main “form” 2n⊥, for n ∈ {ω, 0, 1, 2} — in particular, none of them use binary
modal operator ¤).

Definition 2. An affirmative formula is a formula that holds on every terminal
world. A negative formula is the one that holds on no terminal world. We denote
formulas by letters F, G, H; affirmative formulas by A, B C; and negative formulas
by N, M, P. We also distinguish cross formulas, those are of the form ¬(A ¤ N);
we denote them by letters X, Y, Z.

Lemma 2. These kinds of formulas are given by the following productions in the
grammar of our reduced language:

F ::= A | N
A ::= F ¤ G | N → F | F → B
N ::= ⊥ | A → M
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This is just a concise way of writing that every (letterless) formula of some kind
is of one of enumerated forms. For example, the third claim says: every negative
formula is either ⊥, or an implication whose left-hand side is an affirmative formula,
and the right-hand side is a negative formula.

Proof. By induction on complexity of formulas. Evidently, ⊥ is a negative formula.
Also, any formula of the form F ¤ G is affirmative: if w is terminal, there is no v
such that w R v ° F holds, so we have w ° F ¤ G vacuously.

The only case remaining to be considered is F → G. By induction hypothesis on
F , we know that F is either affirmative or negative. In the latter case (F = N), if
w is terminal, we cannot have w ° N , so we have w ° N → F vacuously.

In the former case (F = A), by induction hypothesis on G we have that G is
either affirmative or negative. If G is affirmative (G = B) and w is terminal, we
have w ° B and so w ° F → B. If G is negative (G = M) and w terminal, we
must have w ° A, but we cannot have w ° M , so w ° A → M cannot hold, and so
A → M is a negative formula. Since that exhausts all cases, the inductive step is
proved.

As we have seen, every letterless formula is either affirmative or negative. So, all
terminal worlds are modally equivalent w.r.t. letterless sentences.

Our main result is the following theorem.

Theorem 3. Let F be an IL–formula, A an affirmative formula, N a negative
formula, and X a cross formula. Then we have

⊥¤F ⇐⇒ >
F ¤A ⇐⇒ >
A ¤⊥ ⇐⇒ 2⊥
N ¤X ⇐⇒ >
X ¤⊥ ⇐⇒ 22⊥

N
g⇐⇒ ⊥

X → ⊥ g⇐⇒ 2⊥
Since there are no worlds on which ⊥ holds, we have that formula ⊥¤F is valid,

for each formula F. The other equivalences from the above theorem we will prove by
the following propositions.

Proposition 1. For every formula F and every affirmative formula A, formula
F ¤ A is valid.

Proof. Let w be any world, and let v be any R–successor of w such that v ° F.

v is terminal ⇒ v ° A (because A is an affirmative formula)
⇒ w ° F ¤ A (by reflexivity od the relation Sw)

v is nonterminal ⇒ ∃u(vRu and u is a terminal)
⇒ u ° A (because A is an affirmative formula)
⇒ w ° F ¤ A (by wRvRu we have vSwu)
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Proposition 2. If A is an affirmative formula, then the formula A ¤ ⊥ is locally
equivalent to 2⊥.

Proof.

w is terminal ⇒ w ° 2⊥ and w ° A ¤⊥

w is nonterminal ⇒ ∃u(wRu and u is terminal) and w 6° 2⊥
⇒ u ° A(because A is an affirmative formula)
⇒ w 6° A ¤⊥

Proposition 3. If N is a negative formula, and X is a cross formula, then N ¤ X
is valid.

Proof. Let w be any world, and w′ some R–successor on which N holds. That
means w′ is nonterminal, so by Corollary 1, there exist worlds u and v such that
w′Ru or w′ = u, then uRv, and last, every Su–successor of v is terminal. From
the first property we have either wRw′Ru, so w′Swu, or wRw′ = u, so w′Swu by
reflexivity, because they are the same. We must show u ° X.

We know that X is of the form ¬(A ¤ M), for some affirmative formula A and
negative formula M . Suppose the contrary, that u ° A ¤ M . Since uRv and v
is terminal, therefore v ° A, there would have to be a world v′ such that vSuv′

and v′ ° M . But since all such v′s are terminal, M cannot hold on any of them.
Therefore, u ° X, which combined with w′Swu gives the claim w ° N ¤ X. Since
w was arbitrary, N ¤ X is valid.

Lemma 3. Any cross formula holds on every world of type 2.

Proof. Let w be a world of type 2, and X = ¬(A ¤ N) be a cross formula.

w is nonterminal ⇒ ∃u(wRu and u is terminal)
⇒ u ° A (because A is an affirmative formula)
⇒ w ° ¬(A ¤ N)

If we suppose w ° A ¤ N , there would have to be a world v such that uSwv
and v ° N . However, from uSwv we would have wRv, and so v would be terminal
(since all R–successors of w are terminal). But then v ° N is a contradiction, since
N cannot hold on terminal worlds.

Proposition 4. If X is a cross formula, then the formula X¤⊥ is locally equivalent
to 22⊥.

Proof.
x ° X ¤⊥ ⇔ By Lemma 3
w has no R successors of type 2 ⇔ By Lemma 1
w is of type 1 or type 2 ⇔
w ° 22⊥
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Proposition 5. Every negative formula is globally equivalent to ⊥.

Proof. Let N be a negative formula, and let w be any world.

w is terminal ⇒ w 6° N and w 6° ⊥

w is nonterminal ⇒ ∃u(wRu and u is terminal)
⇒ v 6° N

Proposition 6. The negation of any cross formula is globally equivalent to 2⊥.

Proof.

w 6° 2⊥ ⇔ w is nonterminal
⇒ w is of type 2 or ∃v(wRv and v is of type 2) (by Lemma 1
⇒ w ° X or v ° X

Example 1 (A calculation example).

(
(A ¤ N) → M

)
¤⊥⇐⇒ (¬(A ¤ N) ∨M

)
¤⊥

⇐⇒ (X ∨M) ¤⊥ ⇐⇒ (X ¤⊥) ∧ (M ¤⊥) ⇐⇒ 22⊥ ∧2¬M

⇐⇒ 2(2⊥ ∧ ¬M) ⇐⇒ 2(2⊥ ∧B) ⇐⇒ 22⊥

3. Non–eliminability of modal operator ¤ in general setting

In this section, we give a formula from which it is impossible to eliminate ¤. So,
for the closed fragment of the interpretability logic IL there are no normal forms
without using the modal operator ¤. At the beginning we define two very simple
Veltman frames.

W := {1, 2, 3} W ′ := W
R := {(1, 2), (2, 3), (1, 3)} R′ := R
S1 := {(2, 2), (3, 3), (2, 3)} S′1 := {(2, 2), (3, 3), (2, 3), (3, 2)}
S2 := {(3, 3)} S′2 := S2

S3 := ∅ S′3 := S3

So, we define two Veltman frames M and M′, where M = 〈W,R, (S1, S2, S3)〉 and
M′ = 〈W ′, R′, (S′1, S

′
2, S

′
3)〉.

We illustrate the frames by the following pictures.
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M

1

2

3

S1

S1

S2

S1

M
′

1

2

3

S
′

1

S
′

1

S
′

1

S2

S
′

1

Let ϕ be the following formula

ϕ := ♦♦> → (>¤ ♦>)

Obviously we have M, 1 ° ♦♦>, and M, 1 6° >¤♦>. So, M 6° ϕ. It is easy to see that
M′ ° ϕ. Let us suppose that there is a GL–formula ψ such that ψ ⇐⇒ ϕ. We denote
a Kripke frame (W,R) by N. If N ° ψ, then obviously M ° ϕ, a contradiction. If
N 6° ϕ, then obviously M′ 6° ϕ, and we get a contradiction again.

As Example 1 shows, we can simplify many other forms of IL–formulas, if we
use axioms and local equivalences given in Theorem 3. One can consider those equi-
valences as “atoms” from which more complicated equivalences can be constructed,
using the property that any subformula can be replaced by a locally equivalent one.

We think, although such a claim is still too vague to be strictly proved, that those
equivalences listed in Theorem 3 are essentially the only cases where ¤ as a main
operator can be eliminated (and its operands are logically independent). However,
we know that the modal operator ¤ cannot always be eliminated, as shown in Section
3.
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