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1. Introduction

Hamiltonian properties of graphs is one of the fundamental topics in graphs theory
[4, 8]. Besides famous related historical problems (Icosian game, chessboard puzzles,
etc.), it has important practical applications. For example, the traveling salesman
problem [10], which is the most studied problem in combinatorial optimization, asks
for a minimal Hamiltonian cycle in an edge weighted graph. It is well known that
there is no efficient algorithm for deciding whether a graph is Hamiltonian or not.
Therefore it is interesting to ask, given a subclass of graphs, whether the problem
may be solved efficiently by designing a polynomial algorithm or by providing a
characterization of Hamiltonian graphs within the subclass. Graph products are
one of the natural constructions giving more complex graphs from simple ones.
Graph bundles, also called twisted products, are a generalization of product graphs,
which has been (under various names) frequently used as computer topologies or
communication networks, see for example [1]. A famous example is the ILIAC
IV supercomputer [2]. While Hamiltonian properties of the cartesian products are
well studied, much less is known on Hamiltonian properties of direct products and
bundles. The reason may be that the direct product has some, on the first sight not
nice properties, for example the direct product of connected graphs is not necessarily
connected. In this paper, we consider the direct graph bundles of cycles over cycles
and provide a complete characterization of connected and Hamiltonian graphs within
this class. We also give a sufficient condition for connectedness of a more general
class of graph bundles.

Our less general motivation for this research is the following. It is well-known
that the Cartesian product of two Hamiltonian graphs is Hamiltonian, and therefore
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it is interesting to investigate conditions under which the product is Hamiltonian if
at least one of the factors is not Hamiltonian. In 1982, Batagelj and Pisanski [3]
proved that the Cartesian product of a tree T and a cycle Cn has a Hamiltonian
cycle if and only if n ≥ ∆(T ), where ∆(T ) denotes the maximum vertex degree of T .
They introduced the cyclic Hamiltonicity cH(G) of G as the smallest integer n for
which the Cartesian product Cn2G is Hamiltonian. More than twenty years later,
Dimakopoulos, Palios and Paulakidas [5] proved that cH(G) ≤ D(G) ≤ cH(G) + 1,
as conjectured already in [3]. (Here D(G) denotes the minimum of ∆(T ) over all
spanning trees T of G.) These results can be extended in a certain way to Cartesian
graph bundles, see [11] and [9].

It is natural to ask whether a similar theory may be developed for other graph
products. In the case of the direct product, the question of Hamiltonicity seems
to be much more complicated, because even the direct product of two cycles is
not necessarily Hamiltonian ([7] gives a characterization which direct products of
Hamiltonian graphs are Hamiltonian). For example, the direct product of two even
cycles is not connected so it cannot be Hamiltonian. Furthermore, the product of a
tree (on at least 3 vertices) with any graph is not Hamiltonian, However, the direct
graph bundle with even cycles as base and as fiber can be connected. When is it
Hamiltonian?

In this paper, we study connectedness and Hamiltonicity of direct graph bundles.
We give a complete list of necessary and sufficient conditions for connectedness of
graph bundles where the fibers are cycles (Theorem 3). In the special case when
the base graph is also a cycle, a complete list of connected bundles can be written.
More precisely, we prove:

Theorem 1. The direct graph bundle Cs ×α Ct with fiber Ct and base Cs, s, t ≥ 3,
is connected:

1. when t is odd, for any automorphism α ∈ Aut(Ct).

2. when t is even and s is odd, if and only if α is identity, even cyclic ℓ-shift or
reflection with two fixed points ρ2.

3. when t is even and s is even, if and only if α is odd cyclic ℓ-shift or reflection
without fixed points ρ0.

Otherwise, Cs ×α Ct is not connected.

Theorem 1 implies a sufficient condition for connectedness of an arbitrary direct
graph bundle with fiber Ct and connected base (see Theorem 3 in Section 4).

Then we study Hamiltonicity of direct graph bundles where both fibers and
bases are cycles. We prove that all connected direct bundles of cycles over cycles are
Hamiltonian:

Theorem 2. Let X = Cs ×α Ct be a direct graph bundle with fibre Ct and base Cs.
Then X is Hamiltonian if and only if X is connected.

The rest of the paper is organized as follows. In the next section we introduce
terminology and notation, and recall some basic definitions including the definition
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of graph bundles. In Section 3, we consider a simple case, bundles over P2, for a later
reference. In Section 4, we study connectedness of direct bundles: first, a complete
characterization of bundles of cycles over cycles is given, and then a necessary and
sufficient condition for bundles over arbitrary base is proved. Hamiltonicity of direct
graph bundles is discussed in Section 5. Finally, constructions of Hamiltonian cycles
of direct bundles of cycles over cycles are given, first constructions for shifts (Section
6) and then for reflections (Section 7).

2. Terminology and notation

A finite, simple and undirected graph G = (V (G), E(G)) is given by a set of vertices
V (G) and a set of edges E(G). As usual, the edges {i, j} ∈ E(G) are shortly denoted
by ij. Although here we are interested in undirected graphs, the order of the vertices
will sometimes be important, for example when we assign automorphisms to edges
of the base graph. Is such case we assign two opposite arcs {(i, j), (j, i)} to edge
{i, j}.

Two graphs G and H are called isomorphic, in symbols G ≃ H, if there exists
a bijection φ from V (G) onto V (H) that preserves adjacency and nonadjacency. In
other words, a bijection φ : V (G) → V (H) is an isomorphism when: φ(i)φ(j) ∈
E(H) if and only if ij ∈ E(G). An isomorphism of a graph G onto itself is called an
automorphism. The identity automorphism on G will be denoted by idG or shortly
id.

The cycle Cn on n vertices is defined by V (Cn) = {0, 1, . . . , n−1} and ij ∈ E(Cn)
if i = j± 1modn. Denote by Pn the path on n ≥ 1 distinct vertices 0, 1, 2, . . . , n− 1
with edges ij ∈ E(Pn) if j = i+ 1, 0 ≤ i < n− 1. (Note that a subgraph isomorphic
to the path graph is also called a path.)

An arbitrary connected graph G is said to be Hamiltonian if it contains a span-
ning cycle (called a Hamiltonian cycle).
Let G and H be connected graphs. The direct product of graphs G and H is the
graph G×H with a vertex set V (G×H) = V (G)× V (H) and whose edges are all
pairs (g1, h1)(g2, h2) with g1g2 ∈ E(G) and h1h2 ∈ E(H). Other names for the direct
product are [6]: Kronecker product, categorical product, tensor product, cardinal
product, relational product, conjunction, weak direct product or just product and
even Cartesian product. The direct product of graphs is commutative and associative
in a natural way. For more facts on the direct product of graphs and other graph
products we refer to [6].
Let B and G be graphs and Aut(G) the set of automorphisms of G. To any ordered
pair of adjacent vertices u, v ∈ V (B) we will assign an automorphism of G. Formally,
let σ : V (B)×V (B) → Aut(G). For brevity, we will write σ(u, v) = σu,v and assume
that σv,u = σ−1

u,v for any u, v ∈ V (B). Now we construct the graph X as follows.
The vertex set of X is the Cartesian product of vertex sets, V (X) = V (B)× V (G).
The edges of X are given by the rule: for any b1b2 ∈ E(B) and any g1g2 ∈ E(G),
the vertices (b1, g1) and (b2, σb1,b2(g2)) are adjacent in X. We call X a direct graph
bundle with base B and fibre G and write X = B ×σ G.
Clearly, if all σu,v are identity automorphisms, the graph bundle is isomorphic to
the direct product X = B ×σ G = B × G. Furthermore, it is well-known that if
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the base graph is a tree, then the graph bundle is always isomorphic to a product,
i.e. X = T ×σ G ≃ T × G for any graph G, any tree T and any assignment of
automorphisms σ [12].
A graph bundle over a cycle can always be constructed in a way that all but at most
one automorphism are identities. Fixing V (Cn) = {0, 1, 2, . . . , n − 1}, we denote
σn−1,0 = α, σi−1,i = id for i = 1, 2, . . . , n − 1, and Cn ×α G ≃ Cn ×σ G. In this
article we will use this fact frequently.

3. Bundles over K2

Automorphisms of a cycle are of two types. A cyclic shift of the cycle by ℓ elements
or briefly a cyclic ℓ-shift, 0 ≤ ℓ < n, maps ui to ui+ℓ (index modulo n). As a special
case we have the identity (ℓ = 0). Other automorphisms of cycles are reflections. If
Cn is a cycle on an odd number of vertices, then all the reflections have exactly one
fixed point. If the number n is even, then we have reflections without fixed points
and reflections with two fixed points.

More formally, we define:

• cyclic ℓ-shift σℓ, defined as σℓ(i) = (i+ ℓ)modn for i = 0, 1, . . . , n− 1.

• reflection with no fixed points ρ0, defined as ρ0(i) = n − i − 1 for i =
0, 1, . . . , n− 1. (For n even, there is no fixed point.)

• reflection with one fixed point ρ1, defined as ρ1(i) = n − i − 1 for i =
0, 1, . . . , n − 1. (For n odd, there is exactly one fixed point, ρ1(

n−1
2 ) = n −

n−1
2 − 1 = n−1

2 .)

• reflection with two fixed points ρ2, defined as ρ2(0) = 0 and ρ2(i) = n− i
for i = 1, 2, . . . , n − 1. (For n even, there is the second fixed point ρ2(

n
2 ) =

n− n
2 = n

2 .)

We first show that the graph bundle P2 ×α Ct is either isomorphic to one or to
two cycles. (See also Figures 1 and 2.)

Lemma 1. The direct graph bundle P2 ×α Ct for odd t is isomorphic to the cycle
C2t for every automorphism α of Ct. If t is even, then for every automorphism α
of Ct the graph bundle P2 ×α Ct has two connected components that are isomorphic
to Ct.

Proof. First note that each vertex of P2 ×α Ct is of degree two, hence the graph is
a union of cycles. Now consider vertex (0, i). Observe that the vertices at distance
two are (0, (i+2)mod t) and (0, (i−2)mod t). (Using the fact that (0, i) and (0, (i+
2)mod t) have a common neighbor (1, α((i+1)mod t)) and (0, i) and (0, (i−2)mod t)
have a common neighbor (1, α((i− 1)mod t)).) Hence if t is even, the vertices (0, i)
for even i are on one cycle, and consequently it must be of length t. Similarly,
vertices (0, i) for odd i are on the other cycle of the same length. If t is odd, then
all vertices (0, i) are on the same cycle.

Let us emphasize that the lemma applies to the product (case α = id).
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Remark 1. P2 × Ct ≃ C2t if t is odd and P2 × Ct ≃ 2Ct if t is even.

For a later reference define the two cycles of P2 ×α Ct for even t as follows:

Definition 1. Let t be even. Let C
(0)
t be the component of P2 ×α Ct containing

the vertex (0, 0) ∈ V (P2 ×α Ct) and C
(1)
t the component of P2 ×α Ct containing the

vertex (0, 1) ∈ V (P2 ×α Ct).

Let us write explicitly the vertex sets that induce the cycles C
(0)
t and C

(1)
t .

Denote the subsets of odd and even vertices of Ct by W1 = {1, 3, . . . , 2⌈ t−1
2 ⌉ − 1}

and W0 = {0, 2, 4, . . . , 2⌊ t−1
2 ⌋}, respectively. Hence V (Ct) = W0 ∪ W1, and recall

that V (P2) = {0, 1}. From the proof of Lemma 1 the next two remarks directly
follow.

Remark 2. Let t be even and α an identity, an even shift or reflection ρ2. Then

V (C
(0)
t ) = Z0 = ({0}×W0)∪({1}×W1) and V (C

(1)
t ) = Z1 = ({0}×W1)∪({1}×W0).

Remark 3. Let t be even and α an odd shift or reflection ρ0. Then V (C
(0)
t ) =

{0, 1} ×W0 and V (C
(1)
t ) = {0, 1} ×W1.

Figure 1: The direct graph bundles P2 ×α C5: a) α = id, b) α = σ1 and c) α = ρ1

4. Connectedness of direct graph bundles

The fact that the direct product G × H of connected and bipartite factors G and
H has exactly two components was first proved by Weichsel [13]. Hence if G and
H are bipartite, then G × H cannot be Hamiltonian. In particular, the direct
product Cs × Ct, where Cs and Ct are even cycles, is not connected and hence not
Hamiltonian.

Below we give necessary and sufficient conditions for connectedness of a direct
graph bundle Cs×αCt and for graph bundles with fibre Ct over arbitrary connected
base graph B. The case when t is odd is easier and it is considered first.
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Figure 2: The direct graph bundles P2 ×α C6: a) α = id, b) α = ρ2 and c) α = ρ0

Lemma 2. Let Ct be a cycle on t vertices, where t is odd. Then B×αCt is connected
for every connected base graph B.

Proof. Follows directly from Lemma 1.

As B = Cs is just a special case of interest, we can write

Corollary 1. Let t be odd. The direct graph bundle Cs×αCt is connected for every
automorphism α ∈ Aut(Ct).

We now consider the graph bundles with fiber Ct for even t and this time we start
with the case when the base graph is a cycle. We first observe a subgraph of Cs×αCt

in which the edges corresponding to the only (possibly) nontrivial automorphism are
missing. As the subgraph Ps × Ct is not connected, we have to look at the missing
edges to see whether Cs ×α Ct is connected.

Let us denote V (Ps) = V (Cs) = V0 ∪ V1, where V0 = {0, 2, 4, . . . , 2⌊ s−1
2 ⌋} and

V1 = {1, 3, . . . , 2⌈ s−1
2 ⌉ − 1} are the sets of even and odd vertices. Similarly, write

V (Ct) = W0 ∪W1, a union of odd and even vertices. Furthermore, write

Z0 = (V0 ×W0) ∪ (V1 ×W1)

Z1 = (V0 ×W1) ∪ (V1 ×W0).

Lemma 3. If t is even, then the direct product Ps × Ct has two connected com-
ponents, the first induced by the vertices of Z0 and the second on the vertices from
Z1.

The proof is straightforward and therefore omitted.
For s odd, the graph Cs ×α Ct will be connected exactly when there is an edge

connecting the set {s− 1} ×W0 with {0} ×W1 (or there is an edge connecting the
set {s − 1} × W1 with {0} × W0). This is true exactly when the automorphism α
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is the identity, an even cyclic ℓ-shift or reflection with two fixed points (see Remark
2). On the other hand, when α is an odd cyclic ℓ-shift or reflection without fixed
points, there is no such edge by Remark 3.

By analogous reasoning as above, Cs ×α Ct for even s will be connected exactly
when there is an edge connecting the set {s−1}×W0 with {0}×W0, or {s−1}×W1

with {0}×W1. This is when the automorphism α is an odd cyclic ℓ-shift or reflection
without fixed points (recall Remark 3). On the other hand, if the automorphism α
is either the identity, even cyclic ℓ-shift or reflection with two fixed points, there is
no such edge (by Remark 2), and therefore Cs×αCt is not connected in these cases.

The observations are summarized in Theorem 1 and in Table 4.

t odd for any automorphism α of Ct

t even s odd List 1, L1:
α = id

α = σℓ, ℓ is even
α = ρ2

s even List 2, L2:
α = σℓ, ℓ is odd

α = ρ0

Table 1: Connected direct graph bundles Cs ×α Ct

Recall that all graph bundles with connected base B and fibre Ct for odd t are
connected. We conclude the section stating a necessary and sufficient condition for
connectedness of a graph bundle with connected base B and fibre Ct for even t.

Theorem 3. Let X be a direct graph bundle with fiber Ct and connected base. If Ct

is an odd cycle, then X is connected. If Ct is an even cycle, then X is connected if
and only if there is a cycle C = v1v2 . . . vk in B such that either

• |V (C)| = k is odd and α = σvk,v1◦σvk−1,vk◦· · ·◦σv2v3◦σv1v2 is an automorphism
from L1, or

• |V (C)| = k is even and α = σvk,v1 ◦σvk−1,vk ◦ · · · ◦σv2v3 ◦σv1v2 is an automor-
phism from L2.

Proof. (sketch) If the fibre Ct is an odd cycle, X is clearly connected.

Let Ct be an even cycle. (1) First assume that X is connected. Let T be an
arbitrary spanning tree of B. Then the subgraph spanned by edges of T , T×σCt has
two connected components, V1 and V2. There must be an edge e = (b1, g1)(b2, g2) in
X that connects two vertices from different components V1 and V2. Let p(e) = b1b2
be the projection of this edge to B. There is a unique path P that connects b1 and
b2 in T . The subgraph of X over the cycle C = P ∪ p(e), C ×σ Ct, is connected,
hence the automoprhism on the edges of C must be as claimed.

(2) Now assume there is a cycle C in X that fulfills the conditions given in the
theorem. Then C×σCt is connected, which directly implies that X is connected.
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5. Hamiltonicity of the direct graph bundles

Obviously, a Hamiltonian graph is connected, so from now on we will only be in-
terested in the direct graph bundles that are connected graphs. Among connected
graphs, we can easily exclude the direct graph bundles over trees. One can easily
prove that the direct product of a tree T ̸≃ P2 and an arbitrary graph G is not
Hamiltonian. The statement also holds for graph bundles:

Lemma 4. Let T ̸≃ P2 and let G be an arbitrary connected graph. Then the direct
graph bundle T ×σ G is not Hamiltonian.

Proof. Let G be a graph on n vertices. Suppose for contradiction that the bundle
T×σG is Hamiltonian and let C be a Hamiltonian cycle. Projection of C to the base
graph T spans all vertices of T . Let us walk along C and count how many times each
vertex of T is visited and how many times edges will be traversed. Let u be a vertex
of T of degree one. As T ̸≃ P2, u has a neighbor, say v, with degree more than one.
The vertex u has to be visited exactly n times, hence the edge uv is traversed n
times in each direction. As v has other neighbors, there is an edge vw that is used
at least once, but then the vertex v was visited more than n times, or, equivalently,
at least one of the vertices (v, ⋆) has been visited twice in C. Contradiction.

Therefore we will start with direct graph bundles of cycles over cycles. In the
next two sections several constructions of Hamiltonian cycles will be given, which
will prove that all connected graph bundles X = Cs ×α Ct with fibre Ct and base
Cs are Hamiltonian. Formally, the constructions that will be given in the last two
sections will imply Theorem 2:
Let X = Cs ×α Ct be a direct graph bundle with fibre Ct and base Cs. Then X is
Hamiltonian if and only if X is connected.

We postpone the proof of this theorem to the last two sections.
This theorem, together with Theorem 1, implies

Theorem 4. Let B and F be Hamiltonian graphs, with t = |V (F )| odd. Then any
direct graph bundle X with fiber F and base graph B is Hamiltonian.

Proof. Consider the subgraph CB×σCF of X that has vertex set V (CB)×V (CF ) =
V (B)× V (F ) and edges defined by the rule: for any b1b2 ∈ E(CB) and any g1g2 ∈
E(CF ), the vertices (b1, g1) and (b2, σb1,b2(g2)) are adjacent. Clearly, CB ×σ CF

is Hamiltonian by Theorem 2 and because it is a spanning subgraph of X, X is
Hamiltonian.

For t = |V (F )| even we are only able to state sufficient conditions for Hamil-
tonicity.

Theorem 5. Let B and F be Hamiltonian graphs, with t = |V (F )| even. Then we
have:

• Let s = |V (B)| be odd. A direct graph bundle X with fiber F and base graph
B is Hamiltonian if there is a Hamiltonian cycle CB = v1v2 . . . vs in B such
that α = σvs,v1 ◦ σvs−1,vs ◦ · · · ◦ σv2v3 ◦ σv1v2 is an automorphism from L1.
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• Let s = |V (B)| be even. A direct graph bundle X with fiber F and base graph
B is Hamiltonian if there is a Hamiltonian cycle CB = v1v2 . . . vs in B such
that α = σvs,v1 ◦ σvs−1,vs ◦ · · · ◦ σv2v3 ◦ σv1v2 is an automorphism from L2.

Proof. (sketch) Consider the spanning subgraph CB ×σ CF of X as in the proof
of Theorem 4. Observe that CB ×σ CF ≃ CB ×α CF , where α = σvs,v1 ◦ σvs−1,vs ◦
· · · ◦ σv2v3 ◦ σv1v2 and all other automorphisms are identities. If s is even, then by
Theorem 1, CB ×α CF is Hamiltonian exactly when α is an odd cyclic ℓ-shift or
reflection without fixed points, as claimed.

The same Theorem implies the condition for odd s.

The next two sections provide proofs (constructions) that together imply correct-
ness of Theorem 3. We start with shifts and first give a construction that provides a
union of cycles which cover Cs ×α Ct with p cycles. When p > 1, another construc-
tion will be used to combine the p cycles into one Hamiltonian cycle. Reflections will
be considered in the last section: four different constructions will cover all possible
cases.

6. Hamiltonicity of the direct graph bundles - cyclic shifts

Construction 1. Let X̄ be the subgraph of a connected direct graph bundle X =
Cs ×σℓ Ct in which only edges (i, j)(i + 1, (j + 1)mod t), i = 0, 1, . . . , s − 2, j =
0, 1, . . . , t− 1 and (s− 1, j) (0, (j + 1+ ℓ)mod t), j = 0, 1, . . . , t− 1 are present.

Informally, one can also say that in X̄, reading from left to right, only edges
directed “up” are taken from X.

Lemma 5. Let Cs ×σℓ Ct be a connected direct graph bundle. Let X̄ be obtained by
Construction 1. Then X̄ is isomorphic to a union of p cycles of length st

p . Moreover,

p is an odd number and the i-th cycle meets the first fibre in vertices (0, (i+p)mod t).

Proof. Obviously, vertices of X̄ are of degree two, so X̄ is a union of cycles. More-
over, X̄ is a union of p = gcd((s + ℓ)mod t, t) cycles of length st

p . If p is even,

then both t and (s + ℓ)mod t must be even. Hence s and ℓ are of the same par-
ity and Cs ×σℓ Ct is not connected (see Table 4). It follows that p is odd. Due
to obvious symmetry, the cycle containing the vertex (0, i) also contains the vertex
(0, (i+ p)mod t).

If p = 1, then X̄ gives a Hamiltonian cycle of X, but this is of course not always
the case. (Examples with p = 1 and p = 3 are given in Figure 4.a) and b).) Now we
will show how one can always combine the cycles into one by replacing only a few
edges.

Construction 2. Let X̄ be the subgraph ofX that is a union of cycles. Delete edges
(1, i)(2, i+1) and (0, i+1)(1, (i+2)mod t) and replace them with edges (0, i+1)(1, i)

and (1, (i+ 2)mod t)(2, i+ 1) for i = 0, 1, 2, . . . , p− 2 to obtain X̃.
Assuming that the edges of X̄ between fibres 0,1, and 2 are as given by Con-

struction 1, (i.e. all edges go “up”) we have the situation in Figure 3a) and 3b).
The result of Construction 2 on the graph from Figure 4.b) is given in Figure 4.c).
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By Lemma 5, the edges (1, i)(2, i + 1) and (0, i + 1)(1, (i + 2)mod t) are on the
i − 1-th and i + 1-th cycle. The replacement thus combines the two cycles into a
larger one. Note that the edges involved in Construction 2 for different i are disjoint.
Therefore

Lemma 6. Let X̄ be obtained by Construction 1 and assume it has p > 1 cycles.
Then X̃, the result of Construction 2 (replacing p− 1 pairs of edges) gives a Hamil-
tonian cycle.

Figure 3: a) A switch that joins two parallel cycles into one cycle, b) p − 1 switches that connect
p parallel cycles into one (Hamiltonian) cycle

Figure 4: a) X̄ is a Hamiltonian cycle in C4×σ2 C5, b) X̄ in C3×C6 has 3 cycles, c)a Hamiltonian
cycle in C3 × C6

7. Hamiltonicity of the direct graph bundles - reflections

In this section we give constructions of Hamiltonian cycles for connected graph
bundles of cycles over cycles where the nontrivial automorphism is a reflection. The
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four propositions treat cases according to parity of the lengths of cycles, s and t.

Proposition 1. Let Cs, Ct be two cycles, where s, t ≥ 3 and s is odd and t even.
Let α = ρ2 be a reflection with two fixed points. Then Cs ×α Ct is Hamiltonian.

Proof. The Hamiltonian cycle is constructed as follows. Form t disjoint paths of
length s−1 from (0, j) to (s−1, j), j = 0, 1, . . . , t−1, by taking (for example) edges
(i, j)(i + 1, (j + 1)mod t)) for even i and edges (i, j)(i + 1, (j − 1)mod t) for odd i

(and j = 0, 1, . . . , t− 1). The edges between fibres s− 1 and 0 are chosen from C
(0)
t :

(0, i)(1, ρ2(i+1)), i ∈ W0, and from C
(1)
t : (0, i)(1, ρ2(i−1)), i ∈ W1, or, equivalently,

from C
(0)
t : (0, i)(1, ρ2(i)− 1), i ∈ W0, and from C

(1)
t : (0, i)(1, ρ2(i) + 1), i ∈ W1

(recall the partition of edges of P2 ×ρ2 Ct from Remark 2), see Figure 5.)
The claim that these edges form a Hamiltonian cycle is easy to check, for example

by observing that the edges (0, i)(1, ρ2(i)−1), i ∈ W0, and (0, i)(1, ρ2(i)+1), i ∈ W1,
give rise to a permutation of the set {0, 1, . . . , t − 1} with one cycle. We omit the
details.

Figure 5: Hamiltonian cycle in the direct graph bundle C3 ×ρ2 C6 (left), and the cycles C
(0)
6 , C

(1)
6

(right) (note that edges of the bundle which are not on the Hamiltonian cycle are not drawn)

Proposition 2. Let Cs, Ct be two cycles, where s, t ≥ 3 and both s and t are even.
Let α = ρ0 be a reflection without fixed points. Then Cs ×α Ct is Hamiltonian.

Proof. The subgraph induced on two consecutive fibres i and i+1 (for i = 0, 1, . . . , s−
2) has two connected components (the first on the vertices from Z0 and the second
on the vertices from Z1) that are isomorphic to Ct. One of this cycles contains the
edge (i, t

2 )((i+ 1)mod s, t
2 − 1), the other the edge (i, t

2 − 1)((i+ 1)mod s, t
2 ).

Deleting edges (i, t
2 )((i+1)mod s, t

2 −1) and (i, t
2 −1)((i+1)mod s, t

2 ) thus gives
two disjoint paths, that span all vertices (and all edges except the two deleted) of
fibres i and i+ 1.

Furthermore, the subgraph induced on fibres s − 1 and 0 has two connected
components that are isomorphic Ct, by Lemma 1. The first is induced by the
vertices of {s− 1, 0}×W0, the second by the vertices of {s− 1, 0}×W1, by Remark
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3. Two disjoint paths that span all vertices (and all edges but two) of fibres s−1 and
0 can be constructed by deleting the edges (s−1, t

2 )(0,
t
2 ) and (s−1, t

2 −1)(0, t
2 −1)

(because ρ0(
t
2 − 1) = t

2 and ρ0(
t
2 ) =

t
2 − 1).

A Hamiltonian cycle on Cs ×α Ct is constructed as follows. On each of the pairs
of fibres: 1 and 2, 3 and 4,. . . , s− 3 and s− 2, we take the two spanning paths. Add
the edges ((i+1)mod s, t

2 − 1)((i+2)mod s, t
2 ) and the edges ((i+1)mod s, t

2 )((i+
2)mod s, t

2 − 1).

Figure 6: Hamiltonian cycle in the direct graph bundle C6 ×ρ0 C6. Note that edges of the bundle
which are not on the Hamiltonian cycle are not drawn

Observation that the edges connect vertices from Z0 with vertices from Z0 (and
vertices from Z1 with vertices from Z1) for i = 1, 3, . . . , s − 3 and that the edges
between fibres s−1 and 0 connect Z0 to Z1 and Z1 to Z0 implies that a Hamiltonian
cycle is constructed (see Figure 6).

Proposition 3. Let Cs, Ct be two cycles, where s, t ≥ 3 and s is even and t odd.
Let α = ρ1 be a reflection with one fixed point. Then Cs ×α Ct is Hamiltonian.

Proof. Note that the edges between two consecutive fibres i and i + 1 (for i =
0, 1, . . . , s − 2) form a cycle of length 2t, because the subgraph induced on two
consecutive fibres is isomorphic to P2 × Ct. Also the subgraph induced on fibres
s− 1 and 0 is isomorphic to P2 ×ρ1 Ct ≃ C2t, by Lemma 1.

Each of these subgraphs contains the two edges (i,
⌊
t
2

⌋
)((i + 1)mod s,

⌊
t
2

⌋
+ 1)

and (i,
⌊
t
2

⌋
+ 1)((i+ 1)mod s,

⌊
t
2

⌋
).

Deleting edge (i,
⌊
t
2

⌋
)((i + 1)mod s,

⌊
t
2

⌋
+ 1) thus gives a path that spans all

vertices (and all edges except the deleted) of fibres i and i+ 1.
Now we can construct a Hamiltonian cycle on Cs ×α Ct by taking the spanning

paths on pairs of fibres 1 and 2, 3 and 4, . . . , s− 2 and s− 1 and 0, and connecting
them with edges (i,

⌊
t
2

⌋
+ 1)(i+ 1,

⌊
t
2

⌋
), i = 0, 2, 4, . . . , s− 2 (see Figure 7.)

Proposition 4. Let Cs, Ct be two cycles, where s, t ≥ 3 and both s and t are odd.
Let α = ρ1 be reflection with one fixed point. Then Cs ×α Ct is Hamiltonian.
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Figure 7: Hamiltonian cycle in the direct graph bundle C6 ×ρ1 C5. Note that edges of the bundle
which are not on the Hamiltonian cycle are not drawn

Figure 8: Hamiltonian cycle in the direct graph bundle C5 ×ρ1 C5. Note that edges of the bundle
which are not on the Hamiltonian cycle are not drawn

Proof. Consider the following subset of edges (all additions in the second coordinate
are modulo t):

(a) (i, j)(i+ 1, j + 1) for i = 0, 1, 3, 5, . . . , s− 2 and j = 0, 1, . . . , t− 1,

(b) (i, j)(i+ 1, j − 1) for i = 2, 4, 6, . . . , s− 3 and j = 0, 1, . . . , t− 1, and

(c) (s− 1, j)(0, ρ1(j − 1)) for j = 0, 1, . . . , t− 1.

Observe that edges from (a) and (b) form t parallel paths that join (0, j) with
(s− 1, (j +2)mod t). As ρ1(j − 1) = t− (j − 1)− 1 = t− j, the edges defined in (c)
can be written simpler as (s− 1, j)(0, t− j).

Clearly, the edges meet each vertex exactly twice, so they form a union of cycles.
More precisely, we have one (short) cycle

(s− 1, 1) → (0, t− 1) = (0,−1) → · · · → (s− 1, 1)



34 I. Hrastnik Ladinek and J. Žerovnik

and ⌊ t
2⌋ longer cycles, namely for j = 2, 3, . . . , ⌊ t

2⌋,⌈
t
2⌉

(s− 1, j) → (0, t− j) → · · · → (s− 1, t− j + 2) → (0, t− (t− j + 2) = (0, j − 2) →

→ · · · → (s− 1, j).

Note that by construction each of the ⌈ t
2⌉ cycles, for j = 1, 2, . . . , ⌈ t

2⌉, includes a
path (0, (j − 2)mod t) → (1, j − 1) → (2, j). Hence we can use the same idea as
before (Construction 2 in Section 6) to obtain a Hamiltonian cycle from the ⌈ t

2⌉
“parallel” cycles.

An example is given in Figure 8.
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