

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

• 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer 🖃

공학석사 학위논문

경하상태에서 여객선형의 선회 중 횡경사에 관한 연구

A study on the Turning Heel Angle of Passenger Type Vessel in Lightship Condition

> 지도교수 공 길 영 1945

> > 2016년 8월

한국해양대학교 대학원

항해학과

김홍 범

본 논문을 김홍범의 공학석사 학위논문으로 인준함.

2016년 6월 20일

한국해양대학교 대학원

목 차

List of Tables	iii
List of Figures ····	vi
Abstract ·····	
Nomenclature	
Abbreviations	xii
제1장 서 론	
1.1 연구 배경 및 목적	· 1
1.2 연구 방법 및 내용	· 2
제2장 여객선의 선회 중 횡경사 계산 이론	
2.1 선박 고정 좌표계 정의	. 6
2.1 선박 고정 좌표계 정의 2.2 복원성의 개요	. 6
2.2.1 복원성의 원리와 개념	. 7
2.2.2 초기 복원력	. 8
2.2.3 정적복원력곡선도와 동적복원력	10
2.2.4 IMO 복원성 성능기준	13
2.3 선회 중 횡경사 계산식	14
2.3.1 IMO 복원성 성능기준 선회 중 횡경사 계산식	15
2.3.2 정상 선회 중 외방경사 이론식	16
2.3.3 편각을 고려한 선회 중 외방경사 이론식	18
2.3.4 선회 중 횡경사 계산을 위한 자료	20
제3장 여객선형의 선회 중 횡경사각 계산	
3.1 대상 선박의 제원	21
3.1.1 서경 아일랜드호	21
3.1.2 서경 파라다이스호	23
3.1.3 실습선 한우리호	24
314 식슧서 하바다ㅎ	25

3.2 계산식별 선회 중 횡경사각의 비교 분석	26
3.2.1 서경 아일랜드호의 횡경사각 계산	26
3.2.2 서경 파라다이스호의 횡경사각 계산	30
3.2.3 실습선 한우리호의 횡경사각 계산	33
3.2.4 실습선 한바다호의 횡경사각 계산	36
3.3 GoM, 선속, 속장비에 따른 횡경사각 비교 분석	39
3.3.1 GoM에 따른 횡경사각 계산	39
3.3.2 선속에 따른 횡경사각 계산	47
3.3.3 속장비에 따른 횡경사각 계산	53
제4기 시기 시원 이 도위 기조 미 조원 표정	
제4장 실선 실험을 통한 검증 및 종합 분석	
4.1 실습선 한우리호 실선 실험	
4.1.1 실험 개요 ···································	61
4.1.2 실험 결과	62
4.1.3 실험 당시 횡경사와 각 계산식 계산 결과 비교	
4.2 실습선 한바다호 실선 실험	67
4.2.1 실험 개요	
4.2.2 실험 결과 ·····	68
4.2.3 실험 당시 횡경사와 각 계산식 계산 결과 비교	
4.3 종합 분석	73
4.3.1 GoM과 선속에 따른 횡경사각 계산 종합 분석	73
4.3.2 속장비에 따른 횡경사각 계산 종합 분석	76
제5장 결 론	70
/NUO 但 단	10
창고무허	81

List of Tables

Table	2.1	IMO Intact stability criteria on passenger ship	13
Table	2.2	Data for calculation of ship in turning	20
Table	3.1	General description of Seokung Island	22
		General description of Seokung Paradise	
Table	3.3	General description of Hanwoori	24
Table	3.4	General description of Hanbada	25
Table	3.5	Sailing state of SK Island in lightship condition	27
Table	3.6	Data for calculation turning heel angle of SK Island in lightship	
		condition	28
Table	3.7	condition	29
Table	3.8	Sailing state of SK Paradise in lightship condition	30
Table	3.9	Data for calculation turning heel angle of SK Paradise in lightship	
		condition	31
Table	3.10	Calculation results of SK Paradise's heeling angle in turning	32
Table	3.11	Sailing state of Hanwoori in lightship condition	33
Table	3.12	2 Data for calculation of turning heel angle of Hanwoori in lightship	
		condition	34
Table	3.13	3 Calculation results of Hanwoori's heeling angle in turning	35
Table	3.14	Sailing state of Hanbada in lightship condition	36
Table	3.15	5 Data for calculation of turning heel angle of Hanbada in lightship	
		condition	37
Table	3.16	Calculation results of Hanbada's heeling angle in turning	38
Table	3.17	Numerical analysis on the heeling angle formula during turning of	
		passenger ship based on IMO Stability criteria(GoM)	41
Table	3.18	Numerical analysis on the modified heeling angle formula during	
		turning of passenger ship based on IMO Stability criteria(GoM) ·····	43

List of Tables

Table	3.19	Numerical analysis on the heeling angle formula in steady turning	
		(GoM)	45
Table	3.20	Numerical analysis on formula of heeling angle taken account of	
		drift angle in steady turning(GoM)	47
Table	3.2	Numerical analysis on the modified heeling angle formula during	
		turning of passenger ship based on IMO stability criteria(Speed) \cdots	50
Table	3.22	Numerical analysis on the heeling angle formula in steady turning	
		(Speed) ·····	51
Table	3.23	3 Numerical analysis on formula of heeling angle taken account of	
		drift angle in steady turning(Speed)	53
Table	3.24	4 Applicated value for 3 calculation of heeling angle in turning	
		(Speed length ratio)	60
Table	4.1	Weather and sea state of experimental condition of Hanwoori	61
Table	4.2	Sailing state of experimental condition of Hanwoori	62
Table	4.3	Calculation results of common experimental condition of Hanwoori	
		in turning ———————————————————————————————————	65
Table	4.4	Data for calculation of additional experimental condition of	
		Hanwoori in turning(Rudder order)	66
Table	4.5	Calculation results of turning heel angle of Hanwoori turning	
		(Rudder order)	66
Table	4.6	Weather and sea state of experimental condition of Hanbada	67
Table	4.7	Sailing state of experimental condition of Hanbada	68
Table	4.8	Data for calculation of common experimental condition of Hanbada	
		in turning	71
Table	4.9	Data for calculation of additional experimental condition of	
		Hanbada in turning(Rudder order)	72

List of Tables

Table	4.10	Calculation results of turning heel angle of Hanbada(Rudder	
		order)	72
Table	4.11	Average value of designated vessel in the ship's length by	
		breadth	73
Table	4.12	The result of turning heel angle for passenger type vessel	
		(L/B≒5)	75
Table	4.13	The summary of turning heel angle for passenger type vessel	
		(V/\sqrt{L})	77

List of Figures

Fig.	1.1	Flow chart diagram 5
Fig.	2.1	Ship fixed coordinate system 6
Fig.	2.2	Principle of buoyancy and floatation of ship 7
Fig.	2.3	Principle on force of couple and ship's moment of inertia 8
Fig.	2.4	Relation between GM and GZ9
Fig.	2.5	The trace of point of intersection of successive line action of
		buoyancy by ship's heeling angle10
Fig.	2.6	Example for curve of statical stability
Fig.	2.7	Explanation for Simpson's rule
Fig.	2.8	Explanatory extension of the Simpson's rule 12
Fig.	2.9	Serve wind and rolling 14
Fig.	2.10	Occur centripetal force and centrifugal force 17
Fig.	2.13	L Centrifugal force action on ship's center of gravity 18
Fig.	2.12	2 Outward heel 19
Fig.	3.1	Numerical analysis results on the heeling angle formula during
		turning of passenger ship based on IMO stability criteria(GoM) 40
Fig.	3.2	Numerical analysis results on the modified heeling angle formula
		during turning of passenger ship based on IMO stability criteria
		(GoM) 42
Fig.	3.3	Numerical analysis results on the heeling angle formula in steady
		turning(GoM) 44
Fig.	3.4	Numerical analysis results on formula of heeling angle taken account
		of drift angle in steady turning(GoM) 46
Fig.	3.5	Numerical analysis results on the heeling angle formula during
		turning of passenger ship based on IMO stability criteria(Speed) 48

List of Figures

Fig.	3.6	Numerical analysis results on the modified heeling angle formula	
		during turning of passenger ship based on IMO stability criteria	
		(Speed)	49
Fig.	3.7	Numerical analysis results on the heeling angle formula in steady	
		turning(Speed)	50
Fig.	3.8	Numerical analysis results on formula of heeling angle taken account	
		of drift angle in steady turning(Speed)	52
Fig.	3.9	Numerical analysis results on the modified heeling angle formula	
		during turning of passenger ship based on IMO stability criteria	
		(Speed length ratio)	54
Fig.	3.10	Numerical analysis results on the heeling angle formula in steady	
		turning(Speed length ratio)	55
Fig.	3.1	Numerical analysis results on the formula of heeling angle taken	
		account of drift angle in steady turning(Speed length ratio)	55
Fig.	3.12	2 Numerical analysis results on the modified heeling angle formula	
		during turning of passenger ship based on IMO stability criteria	
		(Speed length ratio)	57
Fig.	3.13	3 Numerical analysis results on the heeling angle formula in steady	
		turning(Speed length ratio)	57
Fig.	3.14	1 Numerical analysis results on the formula of heeling angle taken	
		account of drift angle in steady turning(Speed length ratio)	58
Fig.	3.15	Numerical analysis results on the modified heeling angle formula	
		during turning of passenger ship based on IMO stability criteria	
		(Speed length ratio)	59
Fig.	3.16	Numerical analysis results on the heeling angle formula in steady	
		turning(Speed length ratio)	59

List of Figures

Fig.	3.17	7 Numer	ica	l analysi	s resu	lts o	n form	ula	of heelin	g angle	take	en	
		accour	nt o	of drift	angle i	in ste	eady tu	ırni	ng(Speed	length	ratio))	60
Fig.	4.1	Results	of	heeling	angle	and	radius	of	Hanwoori	(STBD	35)	•••••	63
Fig.	4.2	Results	of	heeling	angle	and	radius	of	Hanwoori	(PORT	35)	•••••	64
Fig.	4.3	Results	of	heeling	angle	and	radius	of	Hanbada	(STBD	35)	•••••	69
Fig.	4.4	Results	of	heeling	angle	and	radius	of	Hanbada	(PORT	35)	•••••	70

A study on the Turning Heel Angle of Passenger Type Vessel in Lightship Condition

Kim, Hong Beom

Department of Navigation Science Graduate School of Korea Maritime and Ocean University

Abstract

Vessels are audited at regular intervals for the maintenance of various functions according to the Ships Safety Act. For a docking survey, the vessel maintains a minimum amount of fuel oil, ballast water, etc. and is in a status similar to a light weight status so has a high center of gravity than a normal sailing condition.

The ship shall undertake the voyage to be docked. The vessel needs to turn due to an action of avoiding the dangerous obstruction that may result from during sailing or due to an action for altering course and may occur to the risk of heeling depending on the degree of turning. If the stability is not good during turning, it may lead to major accidents such as sinking or capsizing.

In this paper, we selected 2 passenger ships(Seokyung Island, Seokyung Paradise) and 2 training ships(Hanwoori, Hanbada) to perform a study on the heeling angle during turing for passenger type vessel in lightship condition.

Of 4 kinds of turnings in the light ship condition of the passenger type vessel, the heeling angle formula (A heeling angle formula during turning of

passenger ship based on IMO stability criteria, modified heeling angle formula during turning of passenger ship based on IMO stability criteria, a heeling angle formula in steady turning and heeling angle formula taken account of drift angle in steady turning) the heeling during turing was calculated according to GoM, the speed, and the speed length ratio.

The heeling angle calculation during turning was verified through an experiment of the real vessel: training ships "Hanwoori" and "Hanbada". Average value was calculated through L/B based on selected vessel, the heeling angle during turning calculated for universalization and the numerical result was compared and analyzed.

The GoM, the speed, and the speed length ratio were presented that can meet the heeling less than 10 degree during turning, presented in the IMO stability criteria in the light ship condition of the G/T 4,000 ~ 6,000 ton class, L/B = 5 passenger type vessel.

KEY WORDS: Turning heel angle, Stability, Trim & stability Booklet, GoM, Speed, Speed length ratio, L/B

1945

Nomenclature

B : 선폭(Breadth)

B : 부심(Center of Buoyancy)

β : 편각(Drift angle)

Bf : 부력(Force of buoyancy)

C : 타의 중심(Center of rudder)

Deq : 상당흘수(Draft about floatation)

 Δ : 배수량(Displacement)

 δ : 타각(Rudder angle)

G : 무게중심(Center of gravity)

g : 중력 가속도(Acceleration of gravity)

k : Yawing의 회전반경(Radius of gyration of yawing)

L : 수선간장(LBP : Length between perpendicular)

LWL : 흘수선 전장(Length water line)

M : 메타센터(Metacenter)

P : 전심(Pivoting point)

R : 선회반경(Radius of turning circle)

θ : 횡경사(Angle of heel)

Wf : 중력(Force of gravity)

V : 선속(Ship's speed)

Abbreviations

BM : Vertical metacenter above center of buoyancy

FSM : Free surface moment

GGo : Free surface effects of liquid in tanks

GM : Transverse metacentric height above center of gravity

GoM : GM corrected for the free surface effects of liquid in tanks

GZ : Righting arm about vertical center of gravity

GoZ : Righting arm corrected for the free surface effects of liquid in

tanks

KB : Vertical center of buoyancy

KG/VCG : Vertical center of gravity

KGo : KG corrected for the free surface effects of liquid in tanks

KN : Righting arm about base line

LCB : Longitudinal center of buoyancy

LCG : Longitudinal center of gravity

LCF : Longitudinal center of floatation

LGC Longitudinal center of gravity about center of rudder

LGP Longitudinal center of gravity about pivoting point

KMT : Transverse Metacenter

TPC: Increase in displacement per 1(one) centimeter immersion

MTC : Moment to change 1(one) centimeter trim

VGC : Vertical center of gravity about center of rudder

제1장 서 론

1.1 연구 배경 및 목적

2014년 4월 16일에 발생한 세월호 사고는 해양 안전에 대한 사회적 인식을 바꿀 만큼 충격적인 사고였다. 지금까지 세월호 전복사고의 주요 원인 중 하나로 복원력 이 부족한 상태에서 과도한 타 사용에 따른 횡경사로 인한 것으로 밝혀져 있다.

이러한 전복사고를 예방하기 위하여 IMO에서는 여객선의 복원성 성능에 대한 기준을 정하고 있다. IMO 복원성 성능기준에 따르면 최소 GoM, 동적복원력, 10도·30도에서의 복원정, 바람에 의한 복원정, 그리고 특별 선형에 관한 규정 등을 기술하고 있다. 특히 여객선에 관하여 추가적으로 여객이 한쪽현으로 몰렸을 때 발생하는 횡경사각 10도 미만과 선회 중 횡경사각 10도 미만을 유지하도록 규정하고 있다.

선박은 선체, 기관 및 제 설비의 안전유지상, 선박안전법이 규정하는 제 검사1)의수검 등으로 여러 가지 목적에서 입거를 한다(김세원과 문성배, 2011). 입거를 위해서는 최소의 연료유만 유지하기 때문에 무게중심이 평상시 운영상태보다 높아서 선박 운항에 있어서 안전에 대한 요구가 극대화되는 상황 중 하나이다. 선박이 입거를 위한 상태와 유사한 경하배수량2) 상태에서 회피 동작 또는 변침시 선회 정도에따라 위험한 횡경사가 발생할 수 있으며, 선회 중 복원성이 좋지 않은 상태라면 전

²⁾ 경하배수량(Light weight displacement): 선체와 기관 등의 설비 및 법정 비품외 물품을 싣지 않은 상태이며, 입거를 위해서는 모든 화물이나 물건을 양륙시키고, 탱크에 포함된 연료유, 평형수 등을 비우기 때문에 평상시 운항 상태보다 높은 무게중심을 갖는다.

¹⁾ 선박안전법이 규정하는 제 검사 : 선박 소유자는 안전 항해를 위하여 선박의 감항능력을 유지시킬 의무가 있다. 이 감항능력의 기초가 되는 것은 선박의 물적 구조로서 선체, 기관 및 각종 설비가 선박안전법에서 정한 법정 기준에 적합하여야 한다. 그리고 선박소유자는 자기 선박의 감항능력과 항해의 적합성을 확인하기 위하여 선박안전법에서 정한 바에 따라서 일정한 기간마다 정부 또는 선급의 선박 검사를 받아야 한다. 종류로는 제조검사, 정기검사, 제1종 중간검사, 제2종 중간검사, 임시검사, 국제 협약검사 등이 있다.

복 또는 침몰과 같은 대형사고로 이어질 수 있다.

본 논문에서는 경하상태에서 여객선형의 선회 중 횡경사 계산식을 이용하여 계산하고, 실선 실험을 통하여 이론식에 대한 검증을 수행하도록 한다. 총톤수 4,000 ~ 6,000톤급 여객선형의 선박이 IMO 복원성 성능기준을 충족하고, 위험 횡경사를 예방할 수 있도록 적절한 GoM, 선속(Ship's speed), 속장비(Speed length ratio)³⁾를 제시하여 항해 안전성을 확보하는데 목적이 있다.

1.2 연구 방법 및 내용

선박의 복원성은 1746년 Bouguer에 의해 대략적인 메타센터 높이(Metacentric height)에 대한 개념을 발전시켰고, 1796년 Atwood에 의해 정적복원력곡선도의 계산 절차가 작성되었으며, 1850년에 Moseley에 의해 동적복원력에 관한 발전을 이룩하였다. 1800년대에는 무게중심에서 경심까지의 길이인 GM을 기초로 하여 복원성성능기준에 대하여 제안하였으며, 1900년대 초에는 복원성 에너지 기준에 대한 연구가 활발하였다.

1939년 Rahola는 GZ를 바탕으로 발틱 선박의 전복을 분석하여 복원성에 관한 연구를 진행하였으며, 1940년대에 미국에서는 바람에 의해 횡경사 되었을 때 요구되어지는 GM을 적용시키면서 오늘날의 바람에 관한 복원성 성능기준이 되었다. 1962년에 IMCO는 최초의 국제 복원성 기준을 의결하였다. 1968년에 IMO는 Rahola의 GZ 기준을 복원성 성능기준으로 채택하였으며, 지속적인 사고 데이터를 분석하여 2008년에는 IS Code(IMO Resolution. MSC.267(85), Adoption of the International Code on Intact Stability, 이하 IMO 복원성 성능기준)가 제정되어 현재의 복원성 성능기준이 되어 선박의 안정성 평가에 활용되고 있다.

이윤석 등(2002; 2003)은 액체화물의 자유표면 영향에 의한 중심 상승과 전진 항해 중에 발생하는 선체 침하와 이로 인하여 선체 트림의 변화 때문에 발생하는 복 원력 감소와 관련하여 경사각에 미치는 영향을 파악하였다.

김민석 등(2004), 안영수 등(2010), 안영화 등(2001), 정창현 등(2008)은 실습선과 해양조사선을 대상으로 조종 성능에 관한 실선 실험을 수행하였으며, 연구 결과 선

³⁾ 속장비(Speed length ratio) : 선박의 길이에 따른 선속의 빠르기를 비교 판단하는 표준값으로 사용한다. (속장비 = \mathbb{V} / \sqrt{L})

회권과 Zig-zag Test 등으로 인한 침로 안정성, 선회성, 추종성의 변화를 분석하였다.

횡동요를 고려한 선박 조종 운동에 관한 연구에는 손경호 등(2003)이 조종 운동을 다루는 4자유도 운동 수학 모델을 검토·분석하고, 이들 실험 자료를 재정리하여 보다 간결하고 실용적인 수학적 모델을 제안하고, 조종 운동 시뮬레이션을 수행하고 실용성을 검증하였다.

본 연구에서는 총톤수 4,000 ~ 6,000톤급 여객선형의 선박 4척을 대상 선박으로 선정하고, 경하상태에서 Trim & Stability Booklet의 데이터를 이용하여 4가지의 선회 중 횡경사 계산식에 적용하여 수치해석 계산을 수행하였다. 경하상태에서의 GoM, 선속은 대상 선박에 설계된 최대 선속, 선회반경은 선박 길이의 2.5배를 적용하여 IMO 복원성 성능기준에 제시된 여객선 선회 중 횡경사각 10도 미만(이하 선회 중 횡경사각 10도 미만 기준)의 충족 여부를 검토하고자 한다. 또한 실선 실험을 통하여 선회 중 횡경사 계산식 결과와 비교·검증하고, 대상 선박을 평균값 L/B에 대하여 경하상태에서 여객선형의 선회 중 발생하는 위험 횡경사로부터 안정성을 확보하기 위한 GoM, 선속, 속장비를 제시하고자 한다.

본 논문의 구성은 5개의 장으로 되어 있으며, 각 장의 상세한 내용은 다음과 같다.

제 1 장은 서론으로 연구의 배경 및 목적, 선행 연구, 경하상태에서 여객선형의 선회 중 횡경사에 대하여 연구 방법 및 내용에 관하여 기술하였다.

제 2 장에서는 선박의 선회 중 횡경사 계산에 필요한 복원성의 원리와 개념, 초기 복원력, 정적복원력곡선도와 동적복원력, IMO 복원성 성능기준에 대하여 기술하였다. 대상 선박이 선회 중 횡경사 계산식인 IMO 복원성 성능기준에서 제시된 선회 중 횡경사 계산식, IMO 조종성능 표준을 고려한 선회반경의 최대값을 적용하여 IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 그리고 선회 중 선박의 선수 침로와 대지 침로의 차에 의한 편각을 고려한 외방경사 이론식의 설명 및 계산 요소의 데이터에 대한 적용 방법을 설명하였다.

제 3 장에서는 본 연구에서 선정된 선박별로 경하상태에서 선회 중 횡경사각 계산을 수행하였다. 대상 선박이 선회 중 횡경사 영향을 미치는 주요 요소인 GoM, 선속에 대하여 수치해석 계산을 수행하면서 선회 중 횡경사각 10도 미만 기준의 충

족 여부 확인 및 선회 중 발생하는 최대 외방경사를 고려한 정상 선회 중 횡경사각 6.66도 미만에 대하여 비교·분석하였다.

제 4 장에서는 실선 실험 통하여 실험 결과와 선회 중 횡경사 계산식과 비교 분석하여 이론식에 대한 검증을 하고, 대상 선박을 L/B 평균값에 대하여 GoM, 선속, 속장비에 따른 선회 중 횡경사 계산에 대하여 종합적으로 분석하였다.

제 5 장에서는 본 논문의 계산식별 수치해석 및 실선 실험 결과로부터 얻어진 계산 결과에 대하여 요약하고, 총톤수 4,000 ~ 6,000톤급 여객선형의 경하상태에서 선회 중 횡경사각 10도 미만을 충족할 수 있는 GoM, 선속, 속장비를 제시하고, 향후연구과제에 대하여 기술하였다.

연구 배경과 목적

- 여객선 입거 전 경하배수량 유사한 상태(무게중심 상승)
- 선회 중 위험 횡경사 발생
- ▷ 선회 중 횡경사 10도 미만 기준 충족하는 GoM, 선속, 속장비 필요

선회 중 횡경사 계산 이론

- 복원성의 개요
- 선회 중 횡경사 이론식
- ▷ IMO 복원성 성능기준 선회중 횡경사 계산식
- ▷ IMO 복원성 성능기준 선회중 횡경사 변형 계산식
- ▷ 정상 선회 중 외방경사 이론식
- ▷ 편각을 고려한 선회 중 외방경사 이론식

선회 중 횡경사각 계산

계산식별 선회 중 횡경사각 계산

- 서경 아일랜드호 횡경사각 계산
- 서경 파라다이스호 횡경사각 계산
- 실습선 한우리호 횡경사각 계산
- 실습선 한바다호 횡경사각 계산

선회 중 횡경사각 비교 분석

- GoM에 따른 횡경사각 계산
- 선속에 따른 횡경사각 계산
- 속장비에 따른 횡경사각 계산
- ▶ 선회 중 횡경사각 10도 미만 기준 충족여부 검토

실선 실험을 통한 횡경사각 검증

- 실습선 한우리호 실선 실험
- 실습선 한바다호 실선 실험
- ▷ IMO 복원성 성능기준 충족
- ▷ 선회 중 횡경사 이론식 검증

L/B≒5 여객선형 경하상태에서 선회 중 횡경사각 10도 미만 충족하는 조건 제시

- 상용 속력에 대하여 선박 길이별 최소 GoM
- GoM에 따른 최대 속장비

Fig. 1.1 Flow chart diagram

제 2 장 여객선의 선회 중 횡경사 계산 이론

2.1 선박 고정 좌표계의 정의

선박 고정 좌표계(Ship Fixed Coordinate System)는 선체에 고정되어 있는 좌표계로서 원점 O은 선체중앙면(Midship plane), 중심면(Center plane), 그리고 자세변화의 초기 상태의 수선면(Water plane)의 교차점에 고정되어 있다. x축은 선수미방향, y축은 선체의 정횡방향, z축은 선박의 상하방향으로 정의한다.

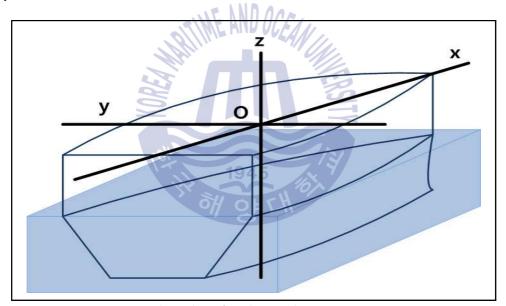


Fig. 2.1 Ship fixed coordinate system

2.2 복원성의 개요

복원성은 선박이 확보해야 할 가장 중요한 안전 요소 중 하나이다. 복원성이 크면 선박의 동요가 빠르게 진행되므로 선내 중량물 이동, 선체나 기관 등의 손상을 입 히며, 승무원의 작업 능률을 떨어뜨리게 된다. 그러나 복원성이 부족하면 외력에 의 하여 선박이 횡경사 되기 쉽고, 되돌아오려는 능력이 떨어져서 지속적인 외력이 발

생하면 전복과 침몰로 인하여 인명 피해, 화물 손실, 선박의 전손 등 큰 재난을 일으키게 된다. 따라서 선박을 운용하는 항해사에게는 복원성에 대한 충분한 지식 습득과 선박의 적절한 복원성 확보가 필요하다.

2.2.1 복원성의 원리와 개념

어떤 직육면체가 물위에 떠있는 이유는 직육면체 표면에 수압이 작용하고 있기때문이다. 수압은 수심에 따라 비례하고, Fig. 2.2(Left)처럼 직육면체 옆면과 밑면에수압이 작용하여 물체를 뜨게 한다(이승건, 2012a). 선박이 물 위에 평형 상태로 떠있다고 한다면 선체 무게만큼 무게중심(G)에서 중력(Wf)이 작용하고, 물에 잠긴 선체 면적에 비례하여 부심(B)에서 부력(Bf)이 작용하여 평형을 이루고 물위에 떠 있게 된다.

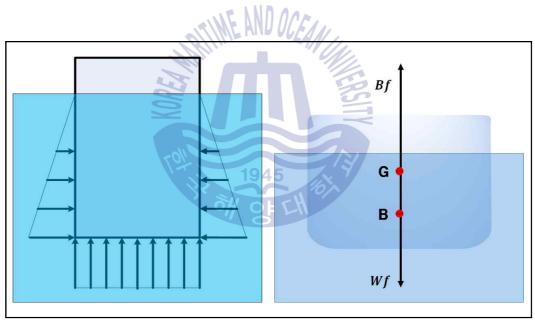
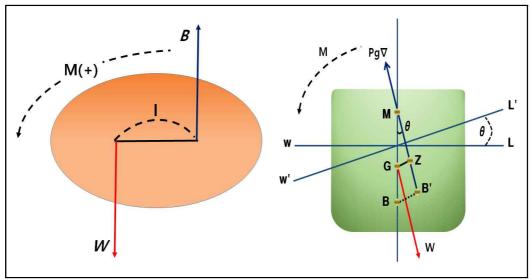



Fig. 2.2 Principle of buoyancy(Left) and floatation of ship(Right)

만약 바람(Wind), 파랑(Wave), 너울(Swell) 등 외력에 의하여 선박이 횡경사가 발생하면 물에 잠긴 면적의 변화가 생긴다. 부심의 위치가 이동하면서 중력의 작용선과 부력의 작용선 사이에는 거리가 생기게 되고, 관성모멘트가 발생하여 회전이 발생한다(이승건, 2012).

Fig. 2.3 Principle on force of couple(Left) and ship's moment of inertia(Right)

복원성(Stability, Righting Moment)은 선박이 외부의 힘에 의하여 옆으로 기울어졌다가 외부의 힘이 사라지면 초기 평형상태로 되돌아오려는 모멘트를 말하며, 다음과 같이 계산한다.

$$Stability = \Delta \times GZ$$
 (2-1) Δ : 배수량 GZ : 복원정

2.2.2 초기 복원력

선박의 복원성은 2차 관성 모멘트 운동과 연관되며, 선박이 경사졌다가 원위치로 돌아오기 위해서는 횡경사 각도에 따라 변화하는 복원정(GZ)의 거리가 매우 중요하다. Fig.2.4와 같이 GZ의 값은 $GM \cdot \sin \theta$ 로 표현할 수 있다.

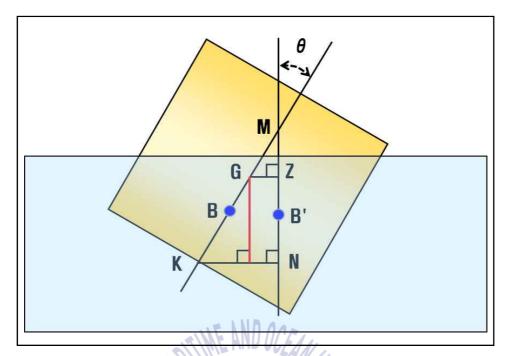
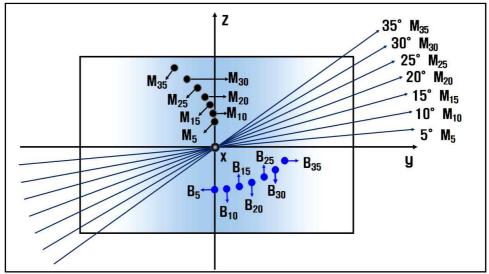



Fig. 2.4 Relation between GM and GZ

GM은 무게중심(G)과 횡메타센터(M) 간의 거리를 나타낸다. 횡메타센터는 초기상 태(Upright)에서 선박의 부력의 작용선과 횡경사가 발생했을 때 부력의 작용선이 만나는 점으로 횡경사각이 10도 미만에서는 **Fig.2.5**와 같이 거의 변하지 않는다(이 규열, 2012).

Fig. 2.5 The trace of point of intersection of successive line action of buoyancy by ship's heeling angle

GM은 공선상태에서 중량물 이동을 통한 경사시험, 배수량등곡선도(Hydrostatic curve) 또는 유체정역학표(Hydrostatic Table)를 이용한 임의의 적화상태에 대한 GM 계산, 횡요주기에 의한 간이 측정법을 통하여 구한다. 선박이 소각도(10도 미만)로 횡경사시 GM이 복원성 평가의 척도가 될 수 있으며, 초기 복원력은 식(2-2) 와 같이 계산한다(양시권 등, 2007).

$$Righting Moment = \Delta \times GZ$$

$$= \Delta \times GM \bullet \sin\theta \qquad (2-2)$$

1945

2.2.3 정적복원력곡선도와 동적복원력

정적복원력곡선도(Curve of statical stability)는 임의의 경사각에 대한 GZ의 값을 곡선으로 나타낸 것을 일컬으며, 선박이 경사졌다가 되돌아오려는 능력을 나타낸다 (Patterson Chris J. & Ridley Jonathan D., 2014). GZ는 식(2-3)과 같다.

$$GZ = KN - KG \bullet \sin\theta$$
 (2-3)

KN: Keel에서 부력의 작용선까지 수직으로 만나는 점까지의 거리

KN은 용골(Keel)에서 부력의 작용선과 수직으로 만나는 점(N) 간의 거리이며,

Trim & Stability booklet의 KN Table에서 구할 수 있다. 정적복원력곡선도를 통하여 임의의 경사각에 대한 GZ값을 찾을 수 있고, 식(2-1)을 이용하여 복원성 계산이가능하며, 최대복원정, 복원력 소실각, 현단몰입각을 알 수 있다(Rhodes Martine A., 2003). 또한 GM은 1Radian(57.3도)에서 수선을 세우고 원점까지 연결하여 초기복원력을 나타낸다(Biran A. B, 2005). 정적복원력곡선도 예시는 Fig. 2.6과 같다.

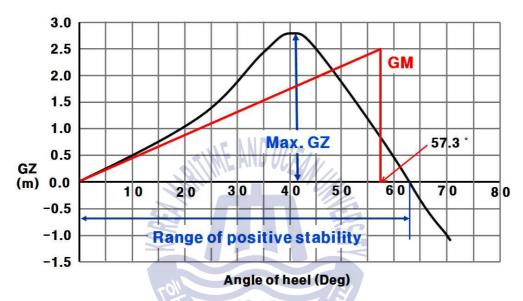


Fig. 2.6 Example for curve of statical stability

동적복원력(Dynamical stability)은 선박이 어떤 각도로 경사지는데 요구되는 일의 양을 말하며, GZ Curve 상 임의의 경사각까지의 Righting Moment의 합이며, 면적을 뜻한다. 정적복원력곡선도가 비선형으로 나타나기 때문에 근사적분법을 이용하여 계산한다(이승건, 2012a).

동적복원력 계산에는 주로 Simpson법칙이 활용되며, Simpson의 제 1 법칙과 제 2 법칙에 대한 식은 (2-4~7)과 같고, 그림으로 나타내면 Fig. 2.7 및 Fig. 2.8과 같다.

1) First rule
$$Area = \frac{1}{3} \times h \times (1A + 4B + 1C) \qquad (2-4)$$

2) Second rule

$$Area = \frac{3}{8} \times h \times (1A + 3B + 3C + 1D)$$
 (2-5)

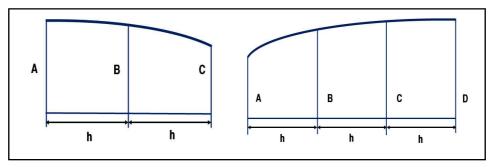


Fig. 2.7 Explanation for Simpson's rule

3) Extension of the first rule

$$Area = \frac{1}{3} \times h \times [(y_1 + y_n) + 4(y_2 + y_4 + \dots + y_{n-1}) \quad (2-6) + 2(y_2 + y_4 + \dots + y_{n-1})]$$

4) Extension of the second rule

$$Area = \frac{3}{8} \times h \times [(y_1 + y_n) \\ +3(y_2 + y_3 + y_5 + y_6 \cdot \dots + y_{n-2} + y_{n-1}) \\ +2(y_4 + y_1 + \dots + y_{n-3})]$$
 (2-7)

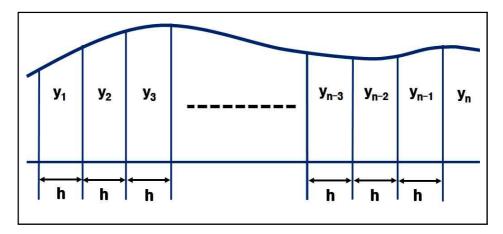
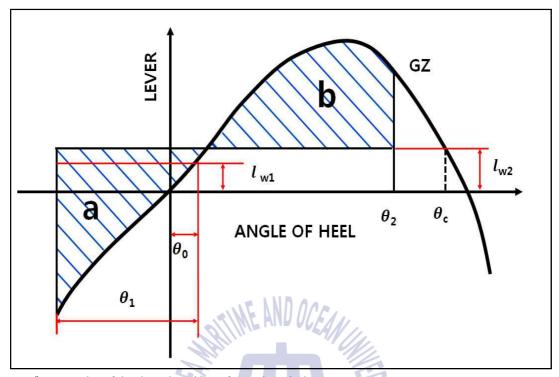


Fig. 2.8 Explanatory extension of the Simpson's rule

2.2.4 IMO 복원성 성능기준

1950년대에 J.Rahola, Watanabe 등이 선박의 복원성에 관하여 통계적, 이론적 연구를 통하여 최소한의 복원성에 관한 기준을 제안하였다. 선종의 다양화, 선박의 크기, 환경적 조건 등을 고려하여 복원성 성능기준이 추가 및 변경되었다. 최근에는 IMO 복원성 성능기준을 코드화하여 선박에 근무하는 선장 및 항해사에게 제공함으로써 선박의 안정성 확보, 인명 보호 및 해양환경보호를 목적으로 활용하고 있다.


IMO 복원성 성능기준은 PART A 강제기준, PART B는 권고사항으로 구성되어 있으며, PART A에서는 선박에 대한 일반적인 기준, 정적복원력곡선도 요소별 기준, 선종별 특별기준(여객선, 재화중량 5,000톤 이상의 오일 탱커, 원목선, 곡물을 운반하는 화물선, 고속선을 포함)을 제시하고 있다(IMO 2008a).

여객선에 대한 IMO 복원성 성능기준은 Table 2.1 및 Fig 2.9와 같다.

Table 2.1 IMO stability criteria on passenger ship

Item	Criteria
경사우력정에 관한 횡경사각 $(heta_0)$	한계경사각보다 미만
10도에서 복원정	선회에 의한 경사우력정 또는 여객이 한쪽현으로 몰렸을 때의 경사우력정 초과
30도에서 복원정	0.20m 이상
최소 GoM	0.15m 이상
동적복원력 0 ~ 30°	0.055m-rad 이상
동적복원력 0 ~ 40°(or θ _f)	0.090m-rad 이상
동적복원력 30 ~ 40°(or θ _f)	0.030m-rad 이상
여객이 한쪽 현으로 몰렸을 때 횡경사각	10도 미만
선회 중 횡경사각	10도 미만
최대 복원정 횡경사각	25도 이상에서 발생
면적비=b/a	1.0 이상

 θ_0 : Angle of heel and action of steady wind

 θ_1 : Angle of roll to windward due teo wave action

 θ_2 : Angle of down-flooding($\theta_{\rm f}$) or 50° or $\theta_{\rm c}$, whichever is less where :

 $\theta_{\rm c}$: Angle of second intercept between wind heeling lever $\mathit{l}_{\rm w2}$ and GZ curve

Fig. 2.9 Serve wind and rolling

2.3 선회 중 횡경사 계산식

항해 중인 선박에서 타 사용에 따른 횡경사 각도를 계산할 수 있는 계산식은 IMO 복원성 성능기준에 제시된 선회 중 횡경사 계산식, IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, Barrass C. B.와 Rhodes Martine A.에 의해 제시된 정상 선회 중 외방경사 이론식, Inoue Kinzo의 일본 선박 조종 및 운용 실무론의 영문판에 기술된 편각을 고려한 선회 중 외방경사 이론식이 있다.

각 계산식에 대한 상세한 내용은 다음과 같다.

2.3.1 IMO 복원성 성능기준 선회 중 횡경사 계산식

여객선은 IMO 복원성 성능기준에 따라 선회 중 횡경사각에 대하여 10도를 초과할 수 없다. 다음 식을 이용하여 복원정과 IMO 복원성 성능기준에 제시된 선회 중 경사우력정은 같다고 계산하여 횡경사각을 계산한다.

$$GZ = 0.02 \times \frac{V^2}{LWL} \times \left(KGo - \frac{Deq}{2} \right)$$

$$GM \times \sin\theta = 0.02 \times \frac{V^2}{LWL} \times \left(KGo - \frac{Deq}{2} \right)$$
(2-8)

$$\therefore \sin\theta = 0.02 \times \frac{V^2}{LWL \times GM} \times \left(KGo - \frac{Deq}{2} \right)$$
 (2-9)

V : 선회시 속력

0.02: 선회성 계수

LWL : 흘수선 전장

Deq : 상당흘수

식(2-8)의 우현식 0.02 선회성 계수는 선회 중 경사우력정 계산식에서 선회경 (Tactical diameter)의 값은 수선간장에 대하여 10배의 값을 적용하였다(SDC, 2014; SDC, 2015). 선회계수 0.02에 대하여 고찰한 결과 고속일 때 타각이 큰 값이 아니며, 일반적인 타각을 사용한 것으로 판단된다. 복원성이 나쁜 선박이 타각을 크게 사용하면 계산 결과 값보다 횡경사가 더 크게 나타날 수 있음을 암시한다. 현재 선회계수 0.02에 대하여 선회반경(Radius of turning circle) 값은 5L을 적용하고 있다. IMO 조종성 표준에서는 전타시 선회경(Tactical diameter)을 선박 길이의 5배로 규정하고 있기 때문에 식(2-8)에서는 선회반경 값 5배가 아닌 2.5배로 수정이 필요하며, 현재 논의중에 있다(Lloyd's Register Marine, 2015).

본 연구에서는 IMO 복원성 성능기준 선회 중 횡경사 변형 계산식으로 정하고 선회 반경 2.5L을 적용하여 선회계수 0.02를 대신하여 0.04를 적용하여 추가로 횡경사각 계 산 후 비교 분석하였다. IMO 복원성 성능기준 선회 중 횡경사 변형 계산식은 식 (2-10)과 같다.

$$\therefore \sin\theta = 0.04 \times \frac{V^2}{LWL \times GM} \times \left(KGo - \frac{Deq}{2} \right) \quad \dots \tag{2-10}$$

V : 선회시 속력

0.04 : 선회성 계수

LWL : 흘수선 전장

Deq : 상당흘수

선회성 계수 0.04에 대하여 풀면 식(2-11)과 같다.

$$\sin\theta = \frac{V^2}{9.8 \times 2.5 \times LBP \times GM} \times \left(KGo - \frac{Deq}{2} \right) \quad \dots \tag{2-11}$$

$$LWL = LBP(L)$$

또한, 속장비에 관하여 식(2-11)을 변형하면 다음과 같다.

$$\therefore \sin\theta = \left(\frac{V}{\sqrt{L}}\right)^2 \times \frac{1}{9.8 \times 2.5 \times GM} \times \left(KG_0 - \frac{Deq}{2}\right) \qquad (2-12)$$

2.3.2 정상 선회 중 외방경사 이론식

항주 중인 선박에 타각을 지시하게 되면 타 직압력에 의하여 선회를 시작하게 된다. 선회 중인 선박은 구심력(Centripetal force)과 원심력(Centrifugal force)에 의하여 횡경사가 발생한다. 구심력은 수면하 기하학적 중심인 부심에 작용하게 되고, 원심력은 선체 무게중심에 작용하게 되며, Fig. 2.10과 같다.

횡경사가 일어나면서 Heeling Moment와 Righting Moment가 동시에 발생하게되고, 그 모멘트의 값은 같으며(Barrass C. B., 2012; Rhodes Martine A., 2003), 식 (2-14)와 같이 나타낼 수 있다.

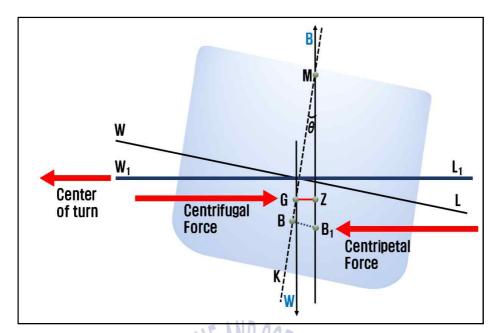


Fig. 2.10 Occur centripetal force and centrifugal force

$$W \times GZ = \frac{MV^2}{R} \times B_1 Z$$

$$MgGZ = \frac{MV^2}{R} \times B_1 Z$$

$$GM \times \sin\theta = \frac{V^2}{gR} \times BG\cos\theta$$

$$\therefore \tan\theta = \frac{V^2 \times BG}{gR \times GM}$$
(2-13)

V : 선회시 속력

R : 선회반경

BG : 부심부터 무게중심까지의 수직 거리

또한, 최대 선회반경(2.5L)을 적용하여 속장비에 관하여 식(2-14)를 변형하면 다음과 같다.

$$\therefore \tan \theta = \left(\frac{V}{\sqrt{L}}\right)^2 \times \frac{BG}{9.8 \times 2.5 \times GM}$$
 (2-15)

2.3.3 편각을 고려한 선회 중 외방경사 이론식

Fig. 2.11 ~ 2.12와 같이 선회가 진행되면서 선박의 편각(Drift angle)이 생기고, 타판에 작용하는 양력과 동시에 원심력이 작용하여 외방경사를 일으키게 된다. 양력의 작용점(C)과 수압의 작용점(Q)의 위치가 거의 같기 때문에 구심력은 무게중심으로부터 거의 타의 중심에서 작용하고, 원심력은 무게중심에서 작용하여 횡경사에 영향을 미친다는 이론이다(Inoue Kinzo, 2013). 여기에서도 Heeling Moment와 Righting Moment를 같은 평행이동방정식으로 계산할 수 있다. 이 이론식은 편각이반영되기 때문에 횡경사가 정상 선회 중 외방경사 이론식보다 더 크게 나타나는 경향을 보인다.

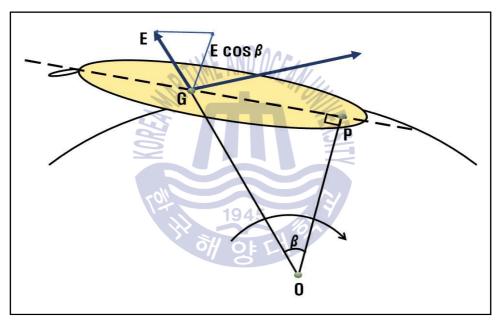


Fig. 2.11 Centrifugal force action on ship's center of gravity

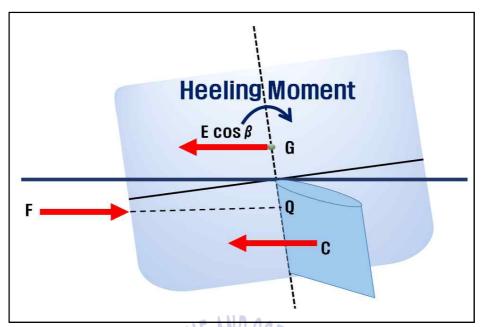


Fig. 2.12 Outward heel

$$\Delta \cdot GM \cdot \sin \theta = \frac{M}{R} V^2 \cdot \cos \beta \cdot GQ - N \cdot \cos \delta \cdot CQ \qquad (2-16)$$

단, CQ = 0

$$\therefore \sin \theta = \frac{V^2 \cdot \cos \beta}{g \cdot R \cdot GM} \times VGC \qquad (2-17)$$

V : 선회시 속력

R : 선회반경

VGC : 타의 중심부터 무게중심까지의 수직거리

 β : 선회 중 편각

또한, 최대 선회반경(2.5L)을 적용하여 속장비에 관하여 식(2-17)을 변형하면 다음과 같다.

$$\therefore \sin\theta = \left(\frac{V}{\sqrt{L}}\right)^2 \times \frac{\cos\beta}{9.8 \times 2.5 \times GM} \times VGC \quad \dots \tag{2-18}$$

2.3.4 선회 중 횡경사 계산을 위한 자료

상기에서 설명한 4가지 선회 중 횡경사 계산식4)을 이용하여 횡경사각을 계산하기 위해서는 Table 2.2에 제시하고 있는 요소들이 필요하다.

LGP는 무게중심(G)부터 전심(P)까지, LGC는 무게중심(G)부터 타의 중심(C)까지의 종방향 거리를 의미한다. k는 Yawing의 회전반경이며, 선박 길이의 0.35배를 적용하였다(Inoue Kinzo, 2013).

Table 2.2 Data for calculation of ship in turning

Item	Result	Explanation
$Displacement(\Delta)$	MT	
Deq	m m	
KGo	E AND UCE m	
GoM	m	
BM	m	130
VGC	m	AL.
Radius(R)	m	$R = 2.5 \times L$
Drift Angle(β)	1945 Deg	$\beta = \sin^{-1}(\text{LGP/R})$
Rudder(δ)	OF CM Deg	
LGP	m	$LGP = k^2 \times LGC$
LGC	m	Midship - AP : m LCG = m
Radius of gyration of yawing(k)	m	$k = 0.35 \times L$
Speed(V)	m/s	knots
LBP(L)	m	

^{4) 4}가지 선회 중 횡경사 계산식: IMO 복원성 성능기준 선회 중 횡경사 계산식, IMO 복원성 성능 기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 선회 중 외방경사 이론식을 일컬음.

제 3 장 여객선형의 선회 중 횡경사각 계산

3.1 대상 선박의 제원

경하상태에서 여객선형의 선박 선회 중 횡경사각의 계산을 수행하기 위하여 활용한 대상 선박은 부산~제주항을 운항하는 카페리인 서경 아일랜드호, 서경 파라다이스호와 여객선과 유사한 선형을 갖고 있는 한국해양수산연수원 실습선 한우리호, 한국해양대학교 실습선 한바다호를 대상 선박으로 선정하였으며, 이들은 총톤수4,000 ~ 6,000톤급 여객선형 선박이다.

3.1.1 서경 아일랜드호

서경 아일랜드호는 1994년 스페인 발렌시아의 Union Naval Levante에서 건조되어 스페인에서 20 여년간 운항하다가 2013년 4월 한국인 선주가 도입하여 부산항~제주항을 운항하는 카페리 연안 여객선이다. 서경 아일랜드호는 여객 880명, 차량 200대, 화물은 1,600톤을 적재할 수 있으며, 서경 아일랜드호의 제원과 실물 이미지는 Table 3.1과 같다.

Table 3.1 General description of Seokyung Island

Ship's Name	Seokyung Island		
Type of Ship	Car Ferry		
Gross Tonnage	5,223 ton		
LOA / LBP	116.798 m / 101.830 m		
Breadth(MLD.)	20.70 m		
Full Loaded Draft(EXT.)	5.412 m		
Displacement at Full Loaded Draft	7,528.058 ton		
Light Weight	5,258.473 ton		
Main Engine(Diesel)	2640 KW × 750 RPM × 2 set		
Speed(Trial MAX.)	15.00 knots		
Date of Launch	1992. 6. 20		
Passenger	880 P		
Crew	34 P		
Total Person	914 P		
Tul			

3.1.2 서경 파라다이스호

서경 파라다이스호는 1987년 일본의 Kurusia 조선소에서 건조되었으며, 여객 613명, 차량 250대, 화물은 3,000톤을 운송할 수 있다. 서경 파라다이스호의 제원과 실물 이미지는 **Table 3.2**와 같다.

Table 3.2 General description of Seokyung Paradise

Ship's Name	Seokyung Paradise
Type of Ship	RO-RO Passenger Ship
Gross Tonnage	6,626 ton
LOA / LBP	132.920 m / 123.000 m
Breadth(MLD.)	23.00 m
Full Loaded Draft(EXT.)	5.467 m
Displacement at Full Loaded Draft	8,094.360 ton
Light Weight	5,688.540 ton
Main Engine(Diesel)	8,200 KW × 350 RPM × 2 set
Speed(Trial MAX.)	19.00 knots
Date of Launch	1987. 4. 9
Passenger	613 P
Crew	40 P
Total Person	653 P

3.1.3 실습선 한우리호

한국해양수산연수원 실습선 한우리호는 1989년 일본 Usuki Shipyard에서 건조된 자동차 전용선 Koyo Maru NO.3를 개조하여 초급 해기사 양성과정 등의 실습 목적으로 한국해양수산연수원에 도입되었다. 한우리호의 제원과 실물 이미지는 **Table** 3.3과 같다.

Table 3.3 General description of Hanwoori

Ship's Name	Hanwoori
Type of Ship	Training ship
Gross Tonnage	4,108 ton
LOA / LBP	87.55 m / 80.00 m
Breadth(MLD.)	16.00 m
Full Loaded Draft(EXT.)	4.610 m
Displacement at Full Loaded Draft	3,113.300 ton
Light Weight	2,090.000 ton
Main Engine(Diesel)	4200 PS × 210 RPM
Speed(MAX.)	17.0 knots
Date of Launch	1989. 8. 5
Cadets	144 P
Crew & Instructor	5 36 P
Total Person	180 P

3.1.4 실습선 한바다호

한국해양대학교 실습선 한바다호는 204명의 학생을 동시에 수용 및 교육 가능한 동양 최대 규모의 실습선으로서 2005년 12월 STX Shipyard로부터 인수되어 한국해양대학교에서 운영 중에 있다(이원주 등, 2014). 한바다호의 제원과 실물 이미지는 Table 3.4과 같다.

Table 3.4 General description of Hanbada

Ship's Name	Hanbada		
Type of Ship	Training ship		
Gross Tonnage	6,686 ton		
LOA / LBP	117.200 m / 104.000 m		
Breadth(MLD.)	17.80 m		
Full Loaded Draft(EXT.)	5.915 m		
Displacement at Full Loaded Draft	6,434.300 ton		
Light Weight	3,798.600 ton		
Main Engine(Diesel)	8,130 BHP × 176 RPM		
Speed(MAX.)	19.08 knots		
Date of Launch	2005. 4. 20		
Cadets	204 P		
Crew & Instructor	5 42 P		
Total Person	246 P		

3.2 계산식별 선회 중 횡경사각의 비교 분석

선박은 선박안전법상 제반검사를 위한 입거를 위해서는 경하상태와 유사한 운항 상태로 항해를 하게 된다. 선박은 항해 중에 충돌의 위협을 느끼거나, 항로 계획상 에 침로 변경 등의 사유로 선회를 하며, 동시에 횡경사가 발생한다. 높은 무게 중심 을 갖고 있는 선박은 항해 중 타 사용과 선속 관리에 집중하여야 하며, 부적절한 선박 조종은 위험한 횡경사를 발생시켜서 전복 또는 침몰의 대형 사고로 이어질 수 있다.

따라서 제 2 장에 제시된 4가지 선회 중 횡경사 계산식을 바탕으로 총톤수 4,000 ~ 6,000톤급 여객선형의 선회 중 횡경사 계산을 수행하였다. 그리고 계산 결과 값을 바탕으로 대상 선박별 상호 비교 분석하여, 계산 결과의 유사성 및 선회 중 횡경사 각 10도 미만 기준 충족 여부를 확인하였다.

3.2.1 서경 아일랜드호의 횡경사각 계산

서경 아일랜드호의 입거상태와 가장 유사한 상태인 경하상태는 **Table 3.5**와 같다. 서경 아일랜드호의 선회 중 횡경사각을 비교하기 위하여 Trim & Stability Booklet 에 제시된 정보를 활용하였고, 배수량은 5,181.683MT, 상당흘수는 4.103m, GoM은 1.629m이다.

1945

Table 3.5 Sailing state of SK Island in lightship condition

Draft at F.P	3.778 m	KMT	11.828 m
Draft at M.S.	4.084 m	KG(Solid)	10.199 m
Draft at A.P	4.390 m	GM(Solid)	1.629 m
Trim (- : By the stern)	-0.612 m	Free Surf. Corr. (GGo)	0.000 m
		GoM(Fluid)	1.629 m
$Displacement(\Delta)$	5,181.683 MT	KGo Actual(Fluid)	10.199 m
Draft at LCF (Deq)	4.103 m	Free Surf. Moment	0.000 t-m
LCB from M.S.	-1.409 m	MTC	100.746 t-m
LCG from M.S.	-2.599 m	LCF from M.S.	-3.114 m

Trim & Stability Booklet에서는 29가지의 Full Load Condition을 제시하고 있다. KGo에 대하여 분석한 결과 출·입항의 평균은 각각 9.235m, 9.937m이고, Full Load Condition에 대한 KGo의 평균은 9.587m이다. 경하상태의 KGo는 10.199m로, 경하상태시 무게중심이 Full Load Condition 평균 무게중심보다 0.612m 상승한 것으로 분석된다.

GoM에 대하여 분석한 결과 출항의 경우 평균 1.670m, 도착의 경우 평균 1.264m 이고, Full Load Condition의 평균 GoM은 1.459m로 경하상태에서의 GoM(1.629m) 보다 0.170m로 더 낮은 것으로 분석되었다. 이는 Full Load Condition에서 흘수에 따른 KMT(평균 11.046m)가 경하배수량의 KMT(11.828m)보다 비교적 낮게 위치되어 있는 이유로 분석된다.

서경 아일랜드호의 경하상태에서 선회 중 횡경사각을 계산하기 위한 자료는 **Table 3.6**과 같다. 용골(Keel)은 타(Rudder) 하방 끝단으로부터 0.352m 하방에 있으며, 타 높이는 3.52m이다. 선속(Speed)은 최고 속력 15.0 knots(7.717m/s), 선회반경

(Radius of turning circle)은 254.575m를 적용하였다.

Table 3.6 Data for calculation of turning heel angle of SK Island in lightship condition

Item	Resul	lt	Explanation
$Displacement(\Delta)$	5,181.683	MT	
Deq	4.103	m	
KGo	10.199	m	
GoM	1.629	m	
BM	9.511	m	
VGC	8.087	m	Rudder height : 3.52m Rudder to keel : 0.352m
Radius(R)	254.575	m	$R=2.5 \times L$
Drift Angle(β)	5.928	Deg	$\beta = \sin^{-1}(\text{LGP}/R)$
Rudder(δ)	35.000	Deg	
LGP	26.290	m \	$LGP = k^2 \times LGC$
LGC	48.316	m	Midship - AP : 50.915 m LCG = - 2.599m
Radius of gyration of yawing (k)	35.641	m	$k = 0.35 \times L$
Speed(V)	7.717	m/s	15.0knots
LBP(L)	101.830	m	

서경 아일랜드호를 4가지 선회 중 횡경사 계산식을 적용하여 계산한 결과는 Table. 3.7과 같다. IMO 복원성 성능기준 선회 중 횡경사 계산식에 따른 횡경사각은 3.353도, IMO 복원성 성능기준 선회 중 횡경사 변형 계산식에 따른 횡경사각은 6.718도, 정상 선회 중 외방경사 이론식에 의한 횡경사각은 6.587도, 편각을 고려한 선회 중 외방경사 이론식에 의한 횡경사각은 6.768도로 계산되었다. IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한

선회 중 외방경사 이론식에서 계산한 결과 값은 IMO 복원성 성능기준 선회 중 횡경사 계산식의 약 2배 값과 유사하게 나타나는 것으로 분석되었다. 3가지 계산식에 대한 선회 중 횡경사각 평균값은 6.697도이며, 4가지 선회 중 횡경사 계산식의 계산결과, 서경 아일랜드호는 선회 중 횡경사각 10도 미만 기준을 충족하였다.

Table 3.7 Calculation results of SK Island's heeling angle in turning

Table 3.7 Calculation results of SK Island's heeling angle in turning					5	
S	Seokyung Island		Seokyung Island Lightship Condition		Condition	
GoM	1.629m	Speed	15.0 Knots	Radiı	us 254.575	m
IMO 복·		19년 에 0 19년	FEHOX		편각을 고려	الرام
성능기준 중 횡경 계산4	사 중 회	5기준 선회 횡경사 변형 계산식	정상 선회 외방경사 이	l 로 시	번작을 끄더 선회 중 외방경사 이론	

계산식

3.353도

6.587도

6.768도

계산식

6.718도

3.2.2 서경 파라다이스호의 횡경사각 계산

서경 파라다이스호의 Trim & Stability Booklet에 제시된 경하상태는 **Table 3.8**과 같으며, 배수량은 5,688.540MT, 상당흘수는 4.224m, GoM은 2.136m이다.

Table 3.8 Sailing state of SK Paradise in lightship condition

Draft at F.P	3.059 m	KMT	12.177 m
Draft at M.S.	4.137 m	KG(Solid)	10.041 m
Draft at A.P	5.215 m	GM(Solid)	2.136 m
Trim (- : By the stern)	-2.156 m	Free Surf. Corr. (GGo)	0.000 m
	AME AN	GoM(Fluid)	2.136 m
Displacement(Δ)	5,688.540 MT	KGo Actual(Fluid)	10.041 m
Draft at LCF (Deq)	4.224 m	Free Surf. Moment	0.000 t-m
LCB from M.S.	-2.254 m	MTC	96.437 t-m
LCG from M.S.	-5.910 m	LCF from M.S.	-4.965 m

Trim & Stability Booklet에서는 36가지의 Full Load Condition을 제시하고 있다. KGo에 대하여 분석한 결과 출·입항의 평균은 각각 9.167m, 9.972m이고, Full Load Condition에 대한 KGo의 평균은 9.569m이다. 경하상태의 KGo는 10.041m로 경하상태시 무게중심이 Full Load Condition 평균 무게중심보다 0.472m 상승한 것으로 분석된다.

GoM에 대하여 분석한 결과 출항의 경우 평균 2.575m, 도착의 경우 평균 1.913m 이고, Full Load Condition의 평균 GoM은 2.233m로 경하상태에서의 GoM(2.136m) 보다 0.097m 더 높은 것으로 분석된다. 이는 Full Load Condition에서 흘수에 따른 KMT(평균 11.803m)가 경하배수량의 KMT(12.177m)보다 비교적 낮게 위치하기 때문으로 분석된다.

서경 파라다이스호의 경하상태에서 선회 중 횡경사 계산식을 적용시키기 위한 자료는 **Table 3.9**와 같다. 용골은 타 하방 끝단으로부터 0.497m 하방에 있으며, 타 높이는 3.28m이다. 선속은 최고 속력 19.0 knots(9.774m/s), 선회반경은 307.5m를 적용하였다.

Table 3.9 Data for calculation of turning heel angle of SK Paradise in lightship condition

Item	Resul	lt	Explanation
$Displacement(\Delta)$	5,688.540	MT	
Deq	4.224	m	
KGo	10.041	m	
GoM	2.136	m	
BM	9.805	m	
VGC	7.904	m	Rudder height : 3.28m Rudder to keel : 0.497m
Radius(R)	307.500	m	$R=2.5 \times L$
Drift Angle(β)	19 6.224	Deg	$\beta = \sin^{-1}(LGP/R)$
Rudder(δ)	35.000	Deg	
LGP	33.339	m	$LGP = k^2 \times LGC$
LGC	55.590	m	Midship - AP : 61.50 m LCG = - 5.910m
Radius of gyration of yawing (k)	43.050	m	$k = 0.35 \times L$
Speed(V)	9.774	m/s	19.0knots
LBP(L)	123	m	

서경 파라다이스호를 4가지 선회 중 횡경사 계산식을 적용하여 계산한 결과는 Table 3.10과 같다. IMO 복원성 성능기준에 의한 선회 중 횡경사각은 3.306도, IMO 복원성 성능기준 선회 중 횡경사 변형 계산식 따른 횡경사각은 6.623도, 정상

선회 중 외방경사 이론식에 의한 횡경사각은 6.495도, 편각을 고려한 선회 중 외방경사 이론식에 의한 횡경사각은 6.697도로 계산되었다. IMO 복원성 성능기준 선회중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 선회 중 외방경사 이론식에서 계산한 결과 값은 IMO 복원성 성능기준 선회 중 횡경사 계산식의 약 2배 값과 유사하게 나타나는 것으로 분석되었다. 3가지 계산식에 대한 선회중 횡경사각 평균값은 6.605도이며, 4가지 선회 중 횡경사 계산식의 계산 결과, 서경 파라다이스호는 선회 중 횡경사각 10도 미만 기준을 충족하였다.

Table 3.10 Calculation results of SK Paradise's heeling angle in turning

Seokyung Paradise Lightship Condition					
GoM					
IMO 복원	IM IM	194 에 영	CEAN CHAIR STATE OF THE STATE O		
IMO 목원 성능기준 / 중 횡경/ 계산식	선회 성능 사 중 회	O 폭천성 ·기준 선회 링경사 변형 계산식	정상 선회 외방경사 이	중 로시	각을 고려한 선회 중 }경사 이론식
3.306도	-	6.623도	6.495도		6.697도

3.2.3 실습선 한우리호의 횡경사각 계산

한국해양수산연수원 실습선 한우리호의 Trim & Stability Booklet에 제시된 정보를 이용하여 경하상태에서의 선회 중 횡경사 계산식을 계산한 결과를 비교 분석하였다. 경하상태에서 한우리호의 운항 상태는 **Table 3.11**과 같으며, 배수량은 2,090.900MT, 상당흘수는 3.457m, GoM은 2.242m이다.

Table 3.11 Sailing state of Hanwoori in lightship condition

Draft at F.P	1.439 m	KMT	9.112 m
Draft at M.S.	3.275 m	KG(Solid)	6.870 m
Draft at A.P	5.112 m	GM(Solid)	2.242 m
Trim (- : By the stern)	-3.673 m	Free Surf. Corr. (GGo)	0.000 m
	REAL WAR	GoM(Fluid)	2.242 m
$Displacement(\Delta)$	2,090.900 MT	KGo Actual(Fluid)	6.870 m
Draft at LCF (Deq)	3.457 m	Free Surf. Moment	0.000 t-m
LCB from M.S.	-6.763 m	MTC	40.700 t-m
LCG from M.S.	-6.544 m	LCF from M.S.	-7.270 m

Trim & Stability Booklet에 6가지의 Loading Condition을 제시하고 있으며, Ballast Condition으로 출항, 중간, 입항, Cadets on board Condition으로 출항, 중간, 입항에 대하여 6가지로 제시하고 있다. KGo에 대하여 Loading Condition을 분석한 결과 6.023m이고, 경하상태의 KGo는 6.870m로 Loading Condition보다 경하상태시 무게중심이 0.847m 상승한 것으로 분석되었다. Loading Condition의 GoM에 대하여 분석한 결과 평균값은 2.128m로 경하상태에서의 GoM(2.242m)보다 0.114m 더 낮은 것으로 분석되었다. 이는 6가지 Loading Condition에서 Draft에 따른 KMT(8.157m)가 경하배수량의 KMT(9.112m)보다 비교적 낮게 위치되어 있는 이

유로 분석되었다.

한우리호 경하상태에서 선회 중 횡경사각 계산을 위한 자료는 **Table 3.12**와 같다. 용골은 기선으로부터 0.400m 하방에 있으며, 타 높이는 4.00m이다. 선속은 최고 속력 17.0knots(8.746m/s), 선회반경은 200.0m를 적용하였다.

Table 3.12 Data for calculation of turning heel angle of Hanwoori in lightship condition

Item	Resul	t	Explanation
Displacement(Δ)	2,090.900	MT	
Deq	3.457	m	
KGo	6.870	m	
GoM	2.242	m	
BM	12.765	m	
VGC	4.71	m	Rudder height : 4.00m Base line to keel : 0.16m
Radius(R)	200.000	m	$R = 2.5 \times L$
Drift Angle(β)	19 6.729	Deg	$\beta = \sin^{-1}(\text{LGP/R})$
Rudder(δ)	35.000	Deg	
LGP	23.434	m	$LGP = k^2 \times LGC$
LGC	33.456	m	Midship - AP : 40.00 m LCG = - 6.544m
Radius of gyration of yawing (k)	28.000	m	$k = 0.35 \times L$
Speed(V)	8.746	m/s	17.0knots
LBP(L)	80.000	m	

한우리호를 4가지 선회 중 횡경사 계산식을 적용하여 계산한 결과는 **Table 3.13** 과 같다. IMO 복원성 성능기준 선회 중 횡경사 계산식에 따른 횡경사각은 2.513도,

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식에 따른 횡경사각은 5.301도, 정상 선회 중 외방경사 이론식에 의한 횡경사각은 4.795도, 편각을 고려한 선회 중 외방경사 이론식에 의한 횡경사각은 4.670도로 계산되었다. IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 선회 중 외방경사 이론식을 계산한 결과 값은 IMO 복원성 성능기준 선회 중 횡경사 계산식의 약 2배 값과 유사하게 나타나는 것으로 분석되었다. 3가지 계산식에 대한 선회중 횡경사각 평균값은 4.832도이며, IMO 복원성 성능기준에 제시된 선회 중 횡경사각 미만을 충족하였다.

Table 3.13 Calculation results of Hanwoori's heeling angle in turning

Hanwoori Lightship Condi					
GoM	2.242m	Speed	17.0 Knots	Radius	200.00 m
GOIVI	Z.Z 4 ZIII	Speed	17.0 Knots	Kaulus	200.00 m
IMO 복원		194 에 영	THE STATE OF THE S		
MO 독선 성능기준 / 중 횡경 계산식	선회 성능 사 중 홍	O 목전성 ·기준 선회 링경사 변형 계산식	정상 선회 외방경사 이	중 로시	각을 고려한 선회 중 상경사 이론식
2.513도		5.301도	4.795도		4.670도

3.2.4 실습선 한바다호의 횡경사각 계산

한국해양대학교 실습선 한바다호의 경하배수량 운항 상태는 **Table 3.14**와 같으며, 배수량은 3,798.600MT, 상당흘수는 3.986m, GoM은 0.777m이다.

Table 3.14 Sailing state of Hanbada in lightship condition

Draft at F.P	2.393 m	KMT	9.477 m
Draft at M.S.	3.943 m	KG(Solid)	8.700 m
Draft at A.P	5.492 m	GM(Solid)	0.777 m
Trim (- : By the stern)	-3.099 m	Free Surf. Corr. (GGo)	0.000 m
	ARTIME A	GoM(Fluid)	0.777 m
$Displacement(\Delta)$	3,798.600 MT	KGo Actual(Fluid)	8.700 m
Draft at LCF (Deq)	3.986 m	Free Surf. Moment	0.000 t-m
LCB from M.S.	1.285 m	MTC	54.600 t-m
LCG from M.S.	-3.948 m	LCF from M.S.	-0.944 m

Trim & Stability Booklet에 5가지의 Loading Condition을 제시하고 있으며, 서경 아일랜드호나 서경 파라다이스호와는 달리 연료유 소비량에 대하여 Full Loaded, 1/3 Consumed, 2/3 Consumed, 3/4 Consumed, 90% Consumed와 같이 5가지로 제시하고 있다. Loading Condition의 GoM에 대하여 분석한 결과 평균값은 1.472m로 경하상태에서의 GoM(0.777m)보다 0.695m 더 높은 것으로 분석되었다.

한바다호의 선회 중 횡경사 계산식을 적용시키기 위한 자료는 **Table 3.15**와 같다. 용골은 기선으로부터 0.400m 하방에 있으며, 타 높이는 4.90m이다. 선속은 최고 속 력 19.083 knots(9.817 m/s), 선회반경은 260.0m를 적용하였다.

Table 3.15 Data for calculation of turning heel angle of Hanbada in lightship condition

Item	Resul	lt	Explanation
Displacement(Δ)	3798.600	MT	
Deq	3.986	m	
KGo	8.700	m	
GoM	0.777	m	
ВМ	6.452	m	
VGC	5.500	m	Rudder height : 4.90m Baseline to keel : 0.40m
Radius(R)	260.000	m	$R = 2.5 \times L$
Drift Angle(β)	6.089	Deg	$\beta = \sin^{-1}(\text{LGP/R})$
Rudder(δ)	35.000	Deg	.001
LGP	27.573	m	$LGP = k^2 \times LGC$
LGC	1 48.052	m	Midship - AP : 52.00 m LCG = - 3.948m
Radius of gyration of yawing(k)	36.400	m	$k = 0.35 \times L$
Speed(V)	9.817	m/s	19.083knots
LBP(L)	104.000	m	

경하상태에서 한바다호가 4가지 선회 중 횡경사 계산식을 적용하여 계산한 결과는 Table 3.16과 같다. IMO 복원성 성능기준 선회 중 횡경사 계산식에 따른 횡경사 각은 9.206도, IMO 복원성 성능기준 선회 중 횡경사 변형 계산식에 따른 횡경사각은 18.661도, 정상 선회 중 외방경사 이론식에 의한 횡경사각은 17.437도, 편각을 고려한 선회 중 외방경사 이론식에 의한 횡경사각은 15.440도로 계산되었다. IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 선회 중 외방경사 이론식에서 계산한 결과 값은 IMO 복원성 성능기준 선회

중 횡경사 계산식에 비하여 약 2배 값으로 유사하게 나타나는 것으로 분석되었다. 3가지 계산식에 대한 선회 중 횡경사각 평균값은 17.179도이며, IMO 복원성 성능기 준에 제시된 선회 중 횡경사각 10도 미만을 충족하지 못하는 것으로 분석되었다.

Table 3.16 Calculation results of Hanbada's heeling angle in turning					ngle in turning
	Hanbada		Lightship Condition		
GoM	0.777m	Speed	19.1 Knots	Rac	lius 260.00 m
IMO 복원	1성 IN	194 에 영 IO 복원성	CEAN CHAIR STATE OF THE PARTY O		
NNO 국 전 성능기준 / 중 횡경/ 계산식	선회 성능 사 중 3	5기준 선회 황경사 변형 계산식	정상 선회 외방경사 ㅇ		편각을 고려한 선회 중 외방경사 이론식

9.206도

17.437도

15.440도

18.661도

3.3 GoM, 선속, 속장비에 따른 횡경사각 비교 분석

경하상태에서 항해하는 선박이 선회 중 횡경사각에 대하여 영향을 미치는 주요 요소인 GoM과 선속에 대하여 계산을 수행하였다. 또한 3가지 선회 중 횡경사 계산 식5)을 속장비(Speed length ratio)로 변형하여 속장비에 따른 횡경사각 계산을 수행 하였다.

경하상태에서 4척의 대상 선박의 선회 중 횡경사각에 대한 수치해석 조건은 외력이 없는 정수 상태이며, 타각은 35도 사용, 횡경사에 따른 중량물의 이동이 없다고 가정하였다. 제2장에서 제시된 선회 중 횡경사 계산식을 바탕으로 GoM, 선속에 대하여 임의의 수치를 입력하여 선회 중 횡경사각에 대하여 결과 값을 얻은 후, 비교 분석하였다.

선형에 따라 다소 차이는 있지만 최대 외방경사각은 통상적으로 정상 선회 시 외방경사각의 1.3 ~ 1.5배 수준인 것으로 알려져 있다(한국해양대학교, 2015). 최대 외방경사각(정상 선회 중 외방경사각 1.5배)을 고려하여 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족할 수 있는 6.66도(이하 최대 외방경사를 고려한 정상 외방경사 6.66도 미만)와 선회 중 횡경사각 10도 미만 기준을 충족하기위한 대상 선박의 요소별 조건을 제안한다.

1945

3.3.1 GoM에 따른 횡경사각 계산

IMO 복원성 성능기준에서 요구하는 최소 GoM은 0.150m이다. GoM의 변화에 따른 선회 중 횡경사각을 계산하기 위하여 대상 선박 4척에 최소 GoM 0.150m 이상부터 3.00m까지 0.05m 단위로 수치를 입력하고 횡경사각을 계산되었다. 대상 선박별 제원에 제시된 최고 속력과 선회반경은 선박 길이의 2.5배의 값을 사용하였다. Fig. 3.1 ~ 3.4까지 X축은 GoM을 나타내고 있으며, Y축은 횡경사각을 나타내고 있다.

1) IMO 복원성 성능기준 선회 중 횡경사 계산식(GoM)

IMO 복원성 성능기준 선회 중 횡경사 계산식을 바탕으로 GoM별 횡경사각 계산 결과는 Fig. 3.1과 같다. IMO 복원성 성능기준 충족을 위한 최소 GoM은 0.150m부

^{5) 3}가지 선회 중 횡경사 계산식: IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 선회 중 외방경사 이론식을 일컬음.

터 수행해야 하지만, 서경 파라다이스호를 이 계산식에 대입할 경우 Radian값이 1을 초과하여 $(-1 \le \sin \theta \le 1)$ 단위 Degree로 표현이 되지 않기 때문에 GoM 0.200m부터 계산되었다.

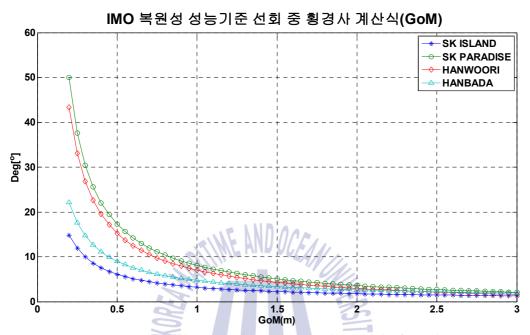


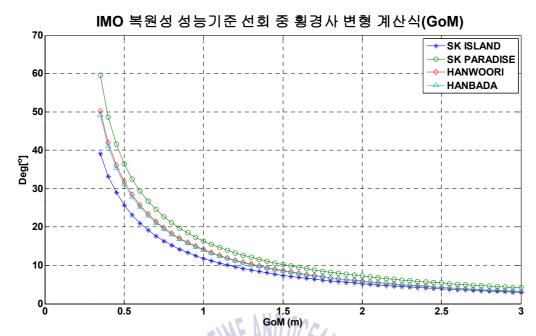
Fig. 3.1 Numerical analysis results on the heeling angle formula during turning of passenger ship based on IMO stability criteria(GoM)

계산 결과를 바탕으로 GoM 0.50m, 0.75m, 1.00m, 선회 중 횡경사각 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.17과 같다.

GoM 0.50m일 때 선회 중 횡경사각은 서경 아일랜드호는 6.089도, 서경 파라다이스호는 17.288도, 한우리호는 15.262도, 한바다호는 8.981도로 분석되었다. GoM 0.75m일 때 선회 중 횡경사각은 서경 아일랜드호는 4.167도, 서경 파라다이스호는 11.125도, 한우리호는 9.737도, 한바다호는 6.152도로 분석되었다. GoM 1.00m일 때 선회 중 횡경사각은 서경 아일랜드호는 3.208도, 서경 파라다이스호는 8.096도, 한우리호는 7.011도, 한바다호는 4.743도로 분석되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위한 GoM은 서경 아일랜드호는 0.300m, 서경 파라다이스호는 0.850m, 한우리호는 0.700m, 한바다호는 0.450m 이상을 유지해야 되는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서 GoM은 서경 아일랜드호는 0.450m, 서경 파라다이스호는 1.200m, 한우리호는 1.050m, 한바다호는 0.700m 이상을 유지해야 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 분석되었다.


Table 3.17 Numerical analysis on the heeling angle formula during turning of passenger ship based on IMO stability criteria(GoM)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
Speed (m/s)	7.717	9.774	8.746	9.871
Radius (m)	254.575	307.500	200.000	260.000
GoM 0.50m (Deg)	6.089	17.288	15.262	8.981
GoM 0.75m (Deg)	4.167	11.125	9.737	6.152
GoM 1.00m (Deg)	3.208	8.096	7.011	4.743
GoM (m), (Less than 10°)	0.300	0.850	0.700	0.450
GoM (m), (Less than 6.66°)	0.450	1945 1.200	1.050	0.700

2) IMO 복원성 성능기준 선회 중 횡경사 변형 계산식(GoM)

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식을 적용하여 대상 선박에 계산한 결과는 Fig. 3.2와 같다. 이 계산식의 계산 결과 서경 아일랜드호는 GoM 0.200m까지, 한우리호와 한바다호는 GoM 0.250m까지, 서경 파라다이스호는 0.300m까지 Radian값이 1을 초과하여($-1 \le \sin\theta \le 1$) 단위 Degree로 표현이 되지 않기 때문에 GoM 0.350m부터 계산을 수행하였다.

Fig. 3.2 Numerical analysis results on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria(GoM)

계산 결과를 바탕으로 GoM 0.50m, 0.75m, 1.00m, 선회 중 횡경사각 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.18과 같다.

GoM 0.50m일 때 선회 중 횡경사각은 서경 아일랜드호는 25.720도, 서경 파라다 이스호는 36.467도, 한우리호는 31.768도, 한바다호는 31.182도로 분석되었다. GoM 0.75m일 때 선회 중 횡경사각은 서경 아일랜드호는 16.351도, 서경 파라다이스호는 22.699도, 한우리호는 19.770도, 한바다호는 19.440도로 분석되었다. GoM 1.00m일 때 선회 중 횡경사각은 서경 아일랜드호는 11.846도, 서경 파라다이스호는 16.359도, 한우리호는 14.130도, 한바다호는 13.907도로 분석되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위한 GoM 값으로 서경 아일랜드호는 1.150m, 서경 파라다이스호는 1.550m, 한우리호와 한바다호는 1.350m 이상을 확보해야 되는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위한 GoM 값으로 서경 아일랜드호는 1.650m, 서경 파라다이스호는 2.150m, 한우리호와 한바다호는 1.850m 이상을 유지해야 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10

도 미만을 충족하는 것으로 분석되었다.

Table 3.18 Numerical analysis on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria(GoM)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
Speed (m/s)	7.717	9.774	8.746	9.871
Radius (m)	254.575	307.500	200.000	260.000
GoM 0.50m (Deg)	25.720	36.467	31.768	31.182
GoM 0.75m (Deg)	16.351	22.699	19.770	19.440
GoM 1.00m (Deg)	11.846	16.359	14.130	13.907
GoM (m), (Less than 10°)	1.150	1.550	1.350	1.350
GoM (m), (Less than 6.66°)	1.650	2.150	1.850	1.850

3) 정상 선회 중 외방경사 이론식(GoM) 945

정상 선회 중 외방경사 이론식을 4척의 대상 선박에 적용하여 GoM에 대하여 계산한 결과는 Fig. 3.3과 같다.

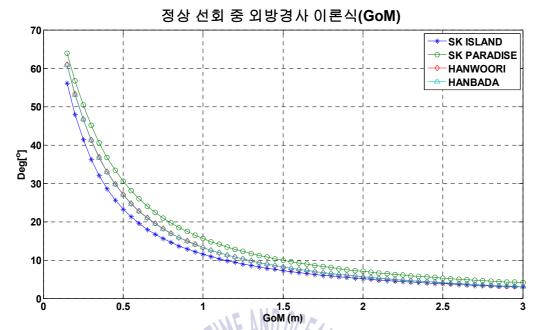


Fig. 3.3 Numerical analysis results on the heeling angle formula in steady turning(GoM)

계산 결과를 바탕으로 GoM 0.50m, 0.75m, 1.00m, 선회 중 횡경사각 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.19와 같다.

GoM 0.50m일 때 선회 중 횡경사각은 서경 아일랜드호는 23.274도, 서경 파라다이스호는 30.543도, 한우리호는 27.114도, 한바다호는 26.978도로 분석되었다. GoM 0.75m일 때 선회 중 횡경사각은 서경 아일랜드호는 15.578도, 서경 파라다이스호는 20.947도, 한우리호는 18.178도, 한바다호는 18.095도로 분석되었다. GoM 1.00m일 때 선회 중 횡경사각은 서경 아일랜드호는 11.482도, 서경 파라다이스호는 15.598도, 한우리호는 13.306도, 한바다호는 13.258도로 분석되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위한 GoM 값은 서경 아일랜드호는 1.150m, 서경 파라다이스호는 1.500m, 한우리호와 한바다호는 1.300m 이상이 요구되는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위한 GoM 값으로 서경 아일랜드호는 1.650m, 서경 파라다이스호는 2.100m, 한우리호와 한바다호는 1.800m 이상을 유지해야 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10

도 미만을 충족하는 것으로 분석되었다.

Table 3.19 Numerical analysis results on the heeling angle formula in steady turning(GoM)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
Speed (m/s)	7.717	9.774	8.746	9.871
Radius (m)	254.575	307.500	200.000	260.000
GoM 0.50m (Deg)	23.274	30.543	27.114	26.978
GoM 0.75m (Deg)	15.578	20.947	18.178	18.095
GoM 1.00m (Deg)	11.482	15.598	13.306	13.258
GoM (m), (Less than 10°)	1.150	1.500	1.300	1.300
GoM (m), (Less than 6.66°)	1.650	2.100	1.800	1.800

4) 편각을 고려한 선회 중 외방경사 이론식(GoM)

편각을 고려한 선회 중 외방경사 이론식에는 선박의 선수방위와 대지침로의 차이인 편각이 포함되어 있다. 편각 값에 대하여 서경 아일랜드호는 5.9도, 서경 파라다이스호는 6.2도, 한우리호는 6.7도, 한바다호는 6.1도가 적용되었다. 편각을 고려한선회 중 외방경사 이론식을 적용하여 GoM에 대하여 계산 결과는 Fig. 3.4와 같다.

편각을 고려한 선회 중 외방경사 이론식(GoM) SK ISLAND SK PARADISE HANWOORI HANBADA 10 0 0 0.5 1 1.5 2 2.5 3

Fig. 3.4 Numerical analysis results on formula of heeling angle taken account of drift angle in steady turning(GoM)

계산 결과를 바탕으로 GoM 0.50m, 0.75m, 1.00m, 선회 중 횡경사 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.20과 같다.

GoM 0.50m일 때 선회 중 횡경사각은 서경 아일랜드호는 25.950도, 서경 파라다이스호는 36.966도, 한우리호는 30.005도, 한바다호는 25.757도로 분석되었다. GoM 0.75m일 때 선회 중 횡경사각은 서경 아일랜드호는 16.488도, 서경 파라다이스호는 22.979도, 한우리호는 18.691도, 한바다호는 16.091도로 분석되었다. GoM 1.00m일 때 선회 중 횡경사각은 서경 아일랜드호는 11.942도, 서경 파라다이스호는 16.554도, 한우리호는 13.336도, 한바다호는 11.448도로 분석되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위한 GoM은 서경 아일랜드호는 1.200m, 서경 파라다이스호는 1.550m, 한우리호는 1.300m, 한바다호는 1.150m 이상이 요구되는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위한 GoM은 서경 아일랜드호는 1.650m, 서경 파라다이스호는 2.150m, 한우리호는 1.750m와 한바다호는 1.550m 이상을 유지해야 IMO 복원성 성능기준에 제시된 선회 중 횡경사각

10도 미만을 충족하는 것으로 분석되었다.

Table 3.20 Numerical analysis results on formula of heeling angle taken account of drift angle in steady turning(GoM)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
Speed (m/s)	7.717	9.774	8.746	9.871
Radius (m)	254.575	307.500	200.000	260.000
GoM 0.50m (Deg)	25.950	36.966	30.005	25.757
GoM 0.75m (Deg)	16.488	22.979	18.691	16.091
GoM 1.00m (Deg)	11.942	16.554	13.336	11.448
GoM (m), (Less than 10°)	1.200	1.550	1.300	1.150
GoM (m), (Less than 6.66°)	1.650	2.150	1.750	1.550

3.3.2 선속에 따른 횡경사각 계산

4가지 선회 중 횡경사 계산식에 대상 선박 중 최고 속력 19.08knots인 한바다호를 고려하여 선속(Speed) 값을 5.0m/s 이상부터 10.0m/s까지 0.1m/s 단위로 수치를 입력하여 선회 중 횡경사각을 계산되었다. 이 때 대상 선박의 Trim & Stability Booklet에 제시된 경하상태에서의 GoM 값이며, 선회반경은 선박 길이의 2.5배의 값을 적용하였다. 선속에 따른 횡경사각 계산 결과는 Fig. 3.5 ~ 3.8과 같으며, X축은 선속을, Y축은 횡경사각을 나타낸다.

1945

1) IMO 복원성 성능기준 선회 중 횡경사 계산식

IMO 복원성 성능기준 선회 중 횡경사각 계산식에 따라 대상 선박에 적용하여 계산 결과는 Fig. 3.5와 같다. 대상 선박 4척의 횡경사 최대값은 선속 19.4knots (10.0m/s)에서 나타났으며, 서경 아일랜드호는 5.637도, 서경 파라다이스호는 3.460도, 한우리호는 3.287도, 한바다호는 9.555도로 계산되었다.

대상 선박의 선속을 19.4knots(10.0m/s)를 적용하여도 선회 중 횡경사각 10도 미만 기준을 모든 대상 선박이 충족한 것으로 분석되었다.

최대 외방경사를 고려한 선회 중 횡경사각 6.66도 미만을 충족하기 위해서 선속은 한바다호는 16.1knots(8.3m/s) 이하를 유지해야 하고, 나머지 3척의 선박에 대하여 선속 19.4knots(10.0m/s) 이하에서는 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 분석되었다.

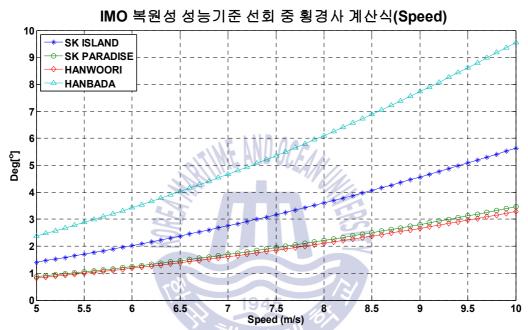


Fig. 3.5 Numerical analysis results on the heeling angle formula during turning of passenger ship based on IMO stability criteria(Speed)

2) IMO 복원성 성능기준 선회 중 횡경사 변형 계산식

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식을 적용하여 대상 선박별로 계산 후 분석하였으며, IMO 복원성 성능기준 선회 중 횡경사 계산식에 선회성 계수에 2배(R = 2.5L)를 적용시켰기 때문에 약 2배 횡경사를 일으키는 것으로 분석되었다. 계산 결과는 Fig. 3.6과 같다.

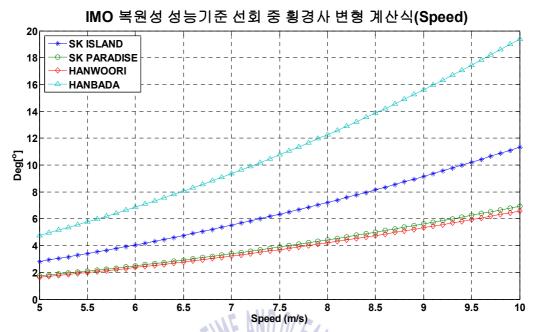


Fig. 3.6 Numerical analysis results on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria(Speed)

계산 결과를 바탕으로 대상 선박별 최고 선속에 대한 횡경사각과 선회 중 횡경사각 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.21과 같다.

대상 선박별 최고 선속을 적용하여 계산된 결과 서경 아일랜드호 6.689도, 서경 파라다이스호 6.658도, 한우리호 4.979도 그리고 한바다호 18.989도로 계산되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 서경 아일랜드호는 18.3knots(9.4m/s), 한바다호는 14.knots(7.2m/s) 이하를 유지하여야 하며, 상대적으로 GoM이 2.0m 이상을 확보한 서경 파라다이스와 한우리호는 19.4knots(10.0m/s)에서도 약 7도를 유지하면서 기준을 충족하는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서 서경 아일 랜드호는 14.8knots(7.6m/s) 이하, 서경 파라다이스호는 18.0knots(9.8m/s) 이하, 한 우리호는 19.4knots(10.0m/s) 이하, 한바다호는 11.5knots(5.9m/s) 이하에서는 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 분석되었다.

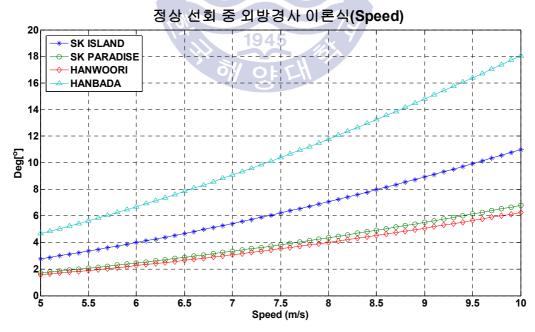


Table 3.21 Numerical analysis on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria(Speed)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
GoM(m)	1.629	2.136	2.242	0.777
Radius (m)	254.575	307.500	200.000	260.000
Angle of heel (°)	6.689	6.658	4.979	18.989
(Max. Speed)	(7.7 m/s)	(9.8 m/s)	(8.7 m/s)	(9.9 m/s)
Speed (m/s), (Less than 10°)	9.4	-	-	7.2
Speed (m/s), (Less than 6.66°)	7.6	9.8	-	5.9

3) 정상 선회 중 외방경사 이론식

정상 선회 중 외방경사 이론식을 적용하여 선속에 대한 계산 결과는 **Fig. 3.7**과 같다.

Fig. 3.7 Numerical analysis results on the heeling angle formula in steady turning(Speed)

계산 결과를 바탕으로 대상 선박별 최고 선속에 대한 횡경사각, 선회 중 횡경사각 10도 미만 기준, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.22와 같다.

대상 선박별 최고 선속을 적용하여 계산된 결과 서경 아일랜드호 6.559도, 서경 파라다이스호 6.528도, 한우리호 4.745도 그리고 한바다호 17.714도로 계산되었다.

선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 서경 아일랜드호는 18.5knots(9.5m/s) 이하, 한바다호는 14.2knots(7.3m/s) 이하가 필요하고, 서경 파라다이스호와 한우리호는 최대 19.4knots(10.0m/s)에서도 기준을 충족하는 것으로 분석되었다.

최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서 서경 아일 랜드호는 15.0knots(7.7m/s) 이하, 서경 파라다이스호는 19.0knots(9.8m/s) 이하, 한 우리호는 19.4knots(10.0m/s) 이하, 한바다호는 11.5knots(5.9m/s) 이하에서 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 분석되었다.

Table 3.22 Numerical analysis on the heeling angle formula in steady turning(Speed)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada
GoM(m)	1.629	2.136	2.242	0.777
Radius (m)	254.575	307.500	200.000	260.000
Angle of heel (°)	6.559	6.528	4.745	17.714
(Max. Speed)	(7.7 m/s)	(9.8 m/s)	(8.7 m/s)	(9.9 m/s)
Speed (m/s), (Less than 10°)	9.5	-	-	7.3
Speed (m/s), (Less than 10°)	7.7	9.8	-	5.9

4) 편각을 고려한 선회 중 외방경사 이론식

편각 값(서경 아일랜드호 5.9도, 서경 파라다이스호 6.2도, 한우리호 6.7도, 한바다호 6.1도)을 적용하여 편각을 고려한 선회 중 외방경사 이론식을 적용하여 선속에

대한 계산 결과는 Fig. 3.8과 같다.

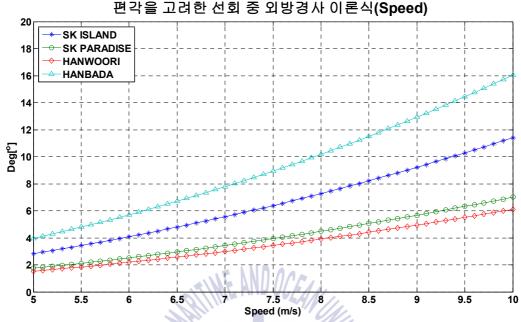


Fig. 3.8 Numerical analysis results on formula of heeling angle taken account of drift angle in steady turning(Speed)

계산 결과를 바탕으로 대상 선박별 최고 선속에 대한 횡경사각, 선회 중 횡경사 10도 미만 기준과 최대 외방경사를 고려한 정상 외방경사 6.66도 미만에 대하여 분석한 결과는 Table 3.23과 같다.

대상 선박별 최고 스피드를 적용하여 계산된 결과 서경 아일랜드호 6.739도, 서경 파라다이스호 6.733도, 한우리호 4.621도 그리고 한바다호 15.708도로 계산되었다.

선회 중 횡경사각 10도 미만을 충족하기 위해서는 서경 아일랜드호는 18.1knots (9.3m/s), 한바다호는 15.4knots(7.9m/s) 이하가 요구되며, 서경 파라다이스호와 한 우리호는 19.4knots(10.0m/s)에서도 횡경사각 10도 미만이 나타나는 것으로 분석되었다.

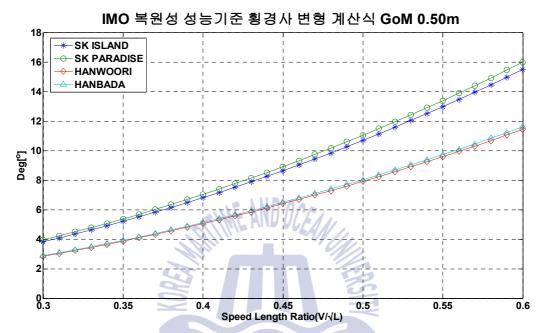
최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위하여 서경 아일 랜드호는 14.8knots(7.6m/s) 이하, 서경 파라다이스호는 18.9knots(9.7m/s) 이하, 한 우리호는 19.4knots(10.0m/s) 이하, 한바다호는 12.4knots(6.4m/s) 이하로 운항하여 야 IMO 복원성 성능기준 선회 중 횡경사각 10도 미만 기준을 충족하는 것으로 분석되었다.

Table 3.23 Numerical analysis on formula of heeling angle taken account of drift angle in steady turning(Speed)

ITEM	SK Island	SK Paradise	Hanwoori	Hanbada	
GoM(m)	1.629	2.136	2.242	0.777	
Speed (m/s)	7.717	9.774	8.746	9.871	
Angle of heel (°)	6.739	6.733	4.621	15.708	
(Max. Speed)	(7.7 m/s)	(9.8 m/s)	(8.7 m/s)	(9.9 m/s)	
Speed (m/s), (Less than 10°)	9.3	-	-	7.9	
Speed (m/s), (Less than 6.66°)	7.6	9.7	-	6.4	
RETIME AND OCEAN					

3.3.3. 속장비에 따른 횡경사각 계산

대상 선박 4척의 경하상태에서의 속장비에 대하여 선회 중 횡경사각 계산을 수행하였다. IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사이론식, 편각을 고려한 선회 중 외방경사이론식에 대하여 일반 선박들이 갖는 GoM을 고려하여 0.50m, 0.75m, 1.00m에 대하여 수행하였다.


GoM 0.5m의 경우 속장비 0.300부터 0.600까지 0.010단위로 수행하였으며, 3가지 선회 중 횡경사 계산식을 적용하였다. 속장비에 따른 대상 선박별 횡경사각 계산 결과는 Fig. 3.9 ~ 3.11과 같으며, X축은 선속을, Y축은 횡경사각을 나타낸다.

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식으로 계산할 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 속장비는 0.590에서 0.690의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.380에서 0.450의 범위를 가져야 되는 것으로 분석되었다.

정상 선회 중 외방경사 이론식으로 계산할 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 속장비는 0.480에서 0.560의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비가 0.390에서 0.450의 범위를 가져야 되는 것으로 분석되었다.

편각을 고려한 선회 중 외방경사 이론식으로 계산할 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 속장비는 0.470에서 0.570의 범위를 가지며, 최대외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.380에서 0.470의 범위를 가져야 되는 것으로 분석되었다.

Fig. 3.9 Numerical analysis results on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria(Speed length ratio)

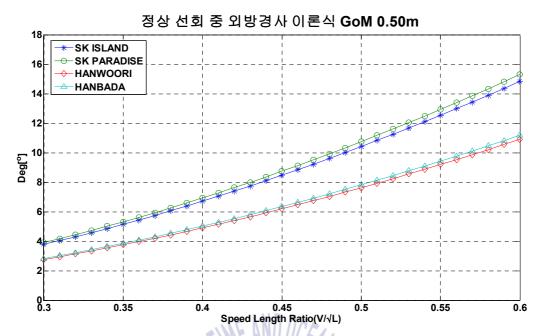
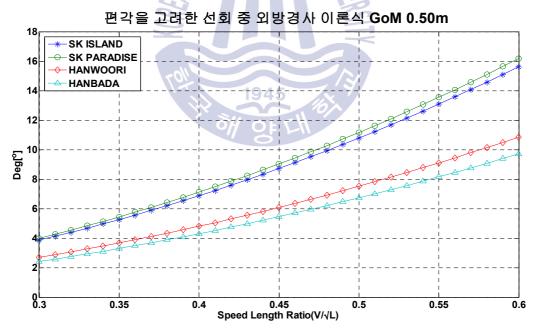



Fig. 3.10 Numerical analysis results on the heeling angle formula in steady turning(Speed length ratio)

Fig. 3.11 Numerical analysis results on the formula of heeling angle taken account of drift angle in steady turning(Speed length ratio)

GoM 0.75m의 경우 속장비 0.400부터 0.800까지 0.010단위로 수행하였으며, 3가지 선회 중 횡경사 계산식을 적용하였다. 속장비에 따른 대상 선박별 횡경사각 계산 결과는 Fig. 3.12 ~ 3.14와 같으며, X축은 선속을, Y축은 횡경사각을 나타낸다.

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.590에서 0.690의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.480에서 0.560의 범위를 가져야 되는 것으로 분석되었다.

정상 선회 중 외방경사 이론식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.590에서 0.700의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.480에서 0.570의 범위를 가져야 되는 것으로 분석되었다.

편각을 고려한 선회 중 외방경사 이론식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.580에서 0.710의 범위가 존재하며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.480에서 0.580의범위를 가져야 되는 것으로 분석되었다.

1945

IMO 복원성 성능기준 횡경사 변형 계산식 GoM 0.75m ***SK ISLAND ***SK PARADISE ***HANWOORI ***HANBADA** 10 8 6 12 0.4 0.45 0.55 0.65 0.65 0.7 0.75 0.8 Speed Length Ratio(V/\L)

Fig. 3.12 Numerical analysis results on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria (Speed length ratio)

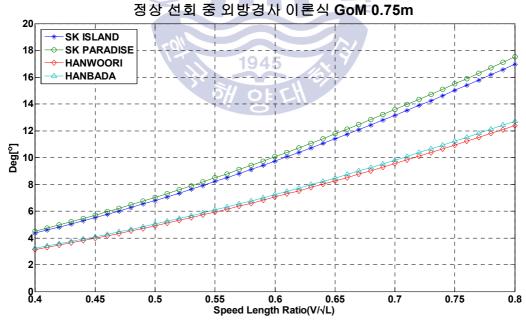


Fig. 3.13 Numerical analysis results on the heeling angle formula in steady turning(Speed length ratio)

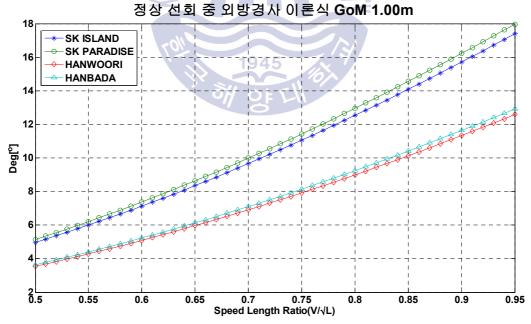
편각을 고려한 선회 중 외방경사 이론식 GoM 0.75m 20 18 SK ISLAND 16 HANWOORI 17 HANBADA 18 SK PARADISE 18 HANBADA 19 HANBADA 10 No. 10 N

Fig. 3.14 Numerical analysis results on the formula of heeling angle taken account of drift angle in steady turning(Speed length ratio)

Speed Length Ratio(V/√L)

GoM 1.00m의 경우 속장비 0.500부터 0.950까지 0.010단위로 수행하였으며, 3가지 선회 중 횡경사 계산식을 적용하였다. 속장비에 따른 대상 선박별 횡경사각 계산 결과는 Fig. 3.15 ~ 3.17과 같으며, X축은 선속을, Y축은 횡경사각을 나타낸다.

IMO 복원성 성능기준 선회 중 횡경사 변형 계산식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.690에서 0.810의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.560에서 0.660의 범위를 가져야 되는 것으로 분석되었다.


정상 선회 중 외방경사 이론식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.700에서 0.830의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비 0.560에서 0.670의 범위를 가져야 되는 것으로 분석되었다.

편각을 고려한 선회 중 외방경사 이론식의 경우, 선회 중 횡경사각 10도 미만 기준을 충족하기 위한 속장비는 0.680에서 0.840의 범위를 가지며, 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 속장비가 0.550에서 0.690의 범위를 가져야 되는 것으로 분석되었다.

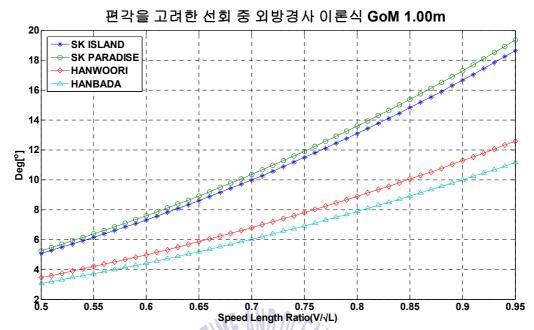


Fig. 3.15 Numerical analysis results on the modified heeling angle formula during turning of passenger ship based on IMO stability criteria (Speed length ratio)

Fig. 3.16 Numerical analysis results on the heeling angle formula in steady turning(Speed length ratio)

Fig. 3.17 Numerical analysis results on formula of heeling angle taken account of drift angle in steady turning(Speed length ratio)

Fig. 3.9 ~ 3.17과 같이 서경 아일랜드호와 서경 파라다이스호는 유사한 횡경사를 가지는 그래프를 나타내는 반면, 한우리호와 한바다호는 서경 아일랜드호와 서경 파라다이스호에 비하여 낮은 횡경사각으로 나타난다. IMO 복원성 성능기준 횡경사변형 계산식에서는 KGo값, 정상 선회 중 외방경사 이론식 BG값, 편각을 고려한 선회 중 외방경사 이론식에서는 VGC의 적용값 차이에 의한 것으로 분석되며, 적용된 값은 Table 3.24와 같다.

Table 3.24 Applicated value for 3 calculation of heeling angle in turning(Speed length ratio)

	ITEM		SK Island	SK Paradise	Hanwoori	Hanbada
GoM	KGo	(m)	11.328	11.677	8.977	8.612
	BG	(m)	9.014	9.306	6.561	6.729
0.50m	VGC	(m)	9.216	9.540	6.452	5.777
GoM	KGo	(m)	11.078	11.427	8.362	8.727
	BG	(m)	8.760	9.056	6.311	6.479
0.75m	VGC	(m)	8.966	9.290	5.527	6.202
GoM	KGo	(m)	10.828	11.177	8.112	8.477
	BG	(m)	8.510	8.806	6.601	6.229
1.00m	VGC	(m)	8.716	9.040	5.952	5.277

제 4 장 실선 실험을 통한 검증 및 종합 분석

본 장에서는 제 3 장에서 제시한 계산 결과를 검증하기 위하여 실습선 한우리호와 한바다호의 실험 결과를 비교분석하였다. 또한 선회 중 횡경사 이론식에 대하여실험 검증을 통하여 L/B≒5 여객선형 선박의 선회 중 횡경사 계산에 대하여 종합적 분석을 수행하였다.

4.1 실습선 한우리호 실선 실험

4.1.1 실험 개요

2014년 6월 6일 한국해양수산연수원 실습선 한우리호는 남해안 갈도 부근에서 실험을 수행하였다. Maneuvering Full Ahead 상태에서 우현 타각 35도, 좌현 타각 35를 지시하였을 때의 횡경사각을 측정하였다. 당시 해면 상태 및 기상 상태는 **Table** 4.1과 같다.

TIME AND OCFA

Table 4.1 Weather and sea state of experimental condition of Hanwoori

Date	203	14. 6. 6	Position	5' off SW f	rom Gal-do
Weather	Sea	Rel. Wind Dir./Speed	True Wind Dir./Speed	Temp.	Depth
bc	calm sea	WSW/12(kts)	SE / 6(kts)	23.5℃	50(m)

실험 당시 실습선 한우리호의 배수량은 3,150.786MT, 4.614m의 상당흘수, KMT는 8.019m, 유동수의 영향으로 인한 GGo는 0.496m, GoM은 1.940m이였으며, 운항상태는 Table 4.2와 같다.

Table 4.2 Sailing state of experimental condition of Hanwoori

Draft at F.P	4.31 m	KMT	8.019 m
Draft at M.S.	4.65 m	KG(Solid)	5.584 m
Draft at A.P	4.98 m	GM(Solid)	2.436 m
Trim (- : By the stern)	-0.67 m	Free Surf. Corr. (GGo)	0.496 m
		GoM(Fluid)	1.940 m
$Displacement(\Delta)$	3,150.786 MT	KGo Actual(Fluid)	6.080 m
Draft at LCF (Deq)	4.614 m	Free Surf. Moment	3604.185 t-m
LCB from M.S.	-1.629 m	LCF from M.S.	-4.393 m

4.1.2 실험 결과

실습선 한우리호의 선회 중 횡경사 시험 중 타 사용은 우현 35도, 좌현 35도로 총 2회 수행되었으며, 실험 결과는 Fig. 4.1 ~ 4.4와 같다. 배수량은 3,150.786MT, GoM 은 1.94m에서 타 우현 35도로 지시하였다. 선회 중 선속은 8.5knots(4.351m/s)였으며 선회반경은 129.6m로 측정되었다. 최대 외방경사는 좌현 6.0도로 측정되었으며, 외방경사 평균 값은 좌현 2.21도이다. 또한 타 좌현 35도 지시 후 선회 중 선속은 7.6knots(3.885m/s)였으며, 선회반경은 99.0m로 측정되었다. 최대 외방경사 우현 4.0도, 외방경사 평균 값은 우현 1.76도이다. 한우리호는 GoM 1.94m에서 Maneuvering Full ahead 상태에서 좌우현 35도의 전타를 사용하여도 선회 중 횡경사각 10도 미만 기준을 충족하고 있다.

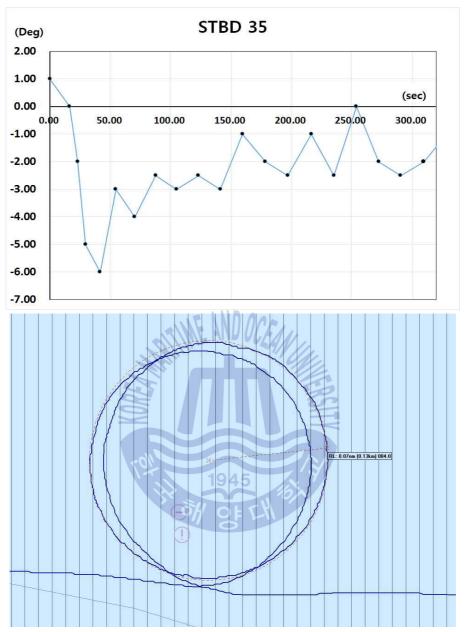


Fig. 4.1 Results of heeling angle and radius of Hanwoori (STBD 35)

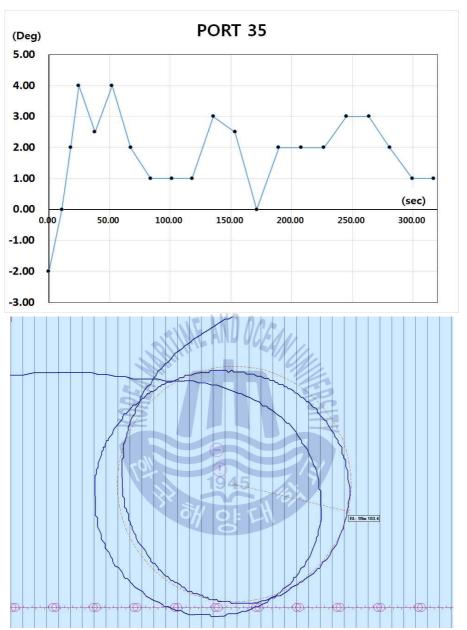


Fig. 4.2 Results of heeling angle and radius of Hanwoori (PORT 35)

4.1.3 실험 당시 횡경사와 각 계산식 계산 결과 비교

실습선 한우리호의 실험 당시 측정된 횡경사와 선회 중 횡경사 계산식 계산 결과를 상호 비교 분석을 위한 자료는 Table 4.3 ~ 4.4와 같다. Table 4.3은 선회 중 횡경사 계산식의 계산을 위한 공통 자료이며, VGC(무게중심부터 타중심까지 수직거

리)는 3.920m, LGC(무게중심부터 타중심까지 종방향 거리)는 37.037m이다.

Table 4.3 Data for calculation of common experimental condition of Hanwoori in turning

Item	Value		Explanation
$Displacement(\Delta)$	3,150.786	MT	
Deq	4.614	m	
KGo	6.080	m	
GoM	1.940	m	
BM	5.374	m	
VGC	3.920	m	Rudder height : 4.00m Baseline to keel : 0.16m
LGP	21.168	m	$LGP = k^2 / LGC$
LGC	37.037	m	Midship - AP : 40.00 m LCG = - 2.963m
Radius of gyration of yawing(k)	28.000	m	$k = 0.35 \times L$
LBP(L)	80.000	m	

Table 4.4는 전타 사용에 따른 선회반경, 편각, 선속을 측정한 자료이다. 우현 35도의 경우 선회반경은 129.6m, 편각은 9.398도, 선속은 8.5knots(4.351m/s)로 측정되었다. 좌현 35도로 지시하였을 때 선회반경은 99.0m, 편각은 12.346도 선속은 7.6knots(3.885m/s)로 측정되었다.

Table 4.4 Data for calculation of additional experimental condition of Hanwoori in turning(Rudder order)

Item	STBD 35	PORT 35
Radius(R, m)	129.6	99.0
Drift Angle(β , Deg)	9.398	12.346
Speed(V, m/s)	4.351	3.885

실습선 한우리호의 실험 당시 측정된 횡경사와 4가지 선회 중 횡경사 계산식 계산 결과 비교는 Table 4.5와 같다. IMO 복원성 성능기준 선회 중 횡경사 계산식에서 최소 횡경사각은 우현 35도일 때 0.527도, 좌현 35도일 때 0.420도이고, 최대값은 편각을 고려한 선회 중 외방경사 이론식에서 우현 35도일 때 1.700도, 좌현 35도일 때 1.758도로 나타났다. 실험에 의해 측정된 선회 중 횡경사각은 편각을 고려한 외방경사 이론식 계산 결과와우현 35도일 때 0.490도, 좌현 35도일 때 0.002도 차이로 가장 근사한 것으로 분석되었다.

Table 4.5 Calculation results of turning heel angle of Hanwoori(Rudder order)

Item [0] 194	STBD 35	PORT 35
IMO 복원성 성능기준 선회 중 횡경사 계산식	0.527	0.420
IMO 복원성 성능기준 선회 중 횡경사 변형 계산식	1.054	0.840
정상 선회 중 외방경사 이론식	1.500	1.567
편각을 고려한 선회중 외방경사 이론식	1.700	1.758
실험 결과	2.210	1.760

4.2 실습선 한바다호 실선 실험

4.2.1 실험 개요

한국해양대학교 실습선 한바다호는 2015년도 11월 30일 부산 남항 부근에서 Navigation Full Ahead 상태에서 우현 타각 35도, Maneuvering Full Ahead 상태에서 작현 타각 35도를 지시하였을 때 횡경사각의 변화를 실험하였다. 당시 해면 상태 및 기상 상태는 Table 4.6과 같다.

Table 4.6 Weather and sea state of experimental condition of Hanbada

Date	2015.11.30		Position	Near Busan port		oort
Weather	Sea	Rel. Wind Dir./Speed	True Wind Dir./Speed	Temp.	Current	Depth
bc	calm sea	E / 7~8(kts)	NE / 5~7(kts)	13	East	100(m)

실험 당시 실습선 한바다호는 배수량은 5,544.9MT, 상당흘수는 5.268m, KMT는 8.834m, 유동수의 영향으로 인한 GGo는 0.650m, GoM은 1.169m이였으며, 운항상태는 Table 4.7과 같다.

1945

Table 4.7 Sailing state of experimental condition of Hanbada

Draft at F.P	2.53 m	KMT	8.834 m
Draft at M.S.	5.17 m	KG(Solid)	7.015 m
Draft at A.P	5.80 m	GM(Solid)	1.819 m
Trim (- : By the stern)	-1.27 m	Free Surf. Corr. (GGo)	0.650 m
		GoM(Fluid)	1.169 m
$Displacement(\Delta)$	5,544.9 MT	KGo Actual(Fluid)	7.665 m
Draft at LCF (Deq)	5.268 m	Free Surf. Moment	3604.185 t-m
LCB from M.S.	0.566 m	LCF from M.S.	-3.074 m

4.2.2 실험 결과

실습선 한바다호의 선회 중 횡경사 실험 중 Navigation Full Ahead 상태에서 타는 우현 35도, Maneuvering Full Ahead 상태에서 좌현 35도로 수행되었으며, 실험 결과는 Fig. 4.3 ~ 4.4와 같다. 배수량은 5,544.9MT, GoM은 1.169m 상태에서 타 우현 35도로 지시하였다. 선회 중 선속은 9.8knots(5.064m/s)이였으며, 선회반경은 249.8m로 측정되었다. 최대 외방경사 좌현 7.0도로 측정되었으며, 외방경사 평균값은 좌현 3.255도로 측정되었다. 또한 타 좌현 35도로 지시 후 선회 중 선속은 7.8knots(4.032m/s)이였으며, 선회반경은 221.7m로 측정되었다. 최대 외방경사는 우현 3.3도, 외방경사 평균값은 1.941도이다. 한바다호는 GoM 1.169m, Navigation Full Ahead 상태에서 타는 우현 35도, Maneuvering Full Ahead 상태에서 좌현 35도의 전타를 사용하여도 선회 중 횡경사각 10도 미만 기준을 충족하였다.

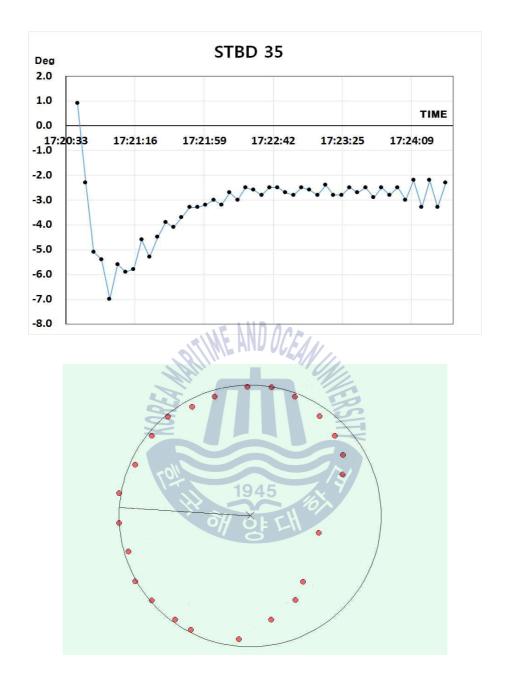


Fig. 4.3 Results of heeling angle and radius of Hanbada in turning(STBD 35)

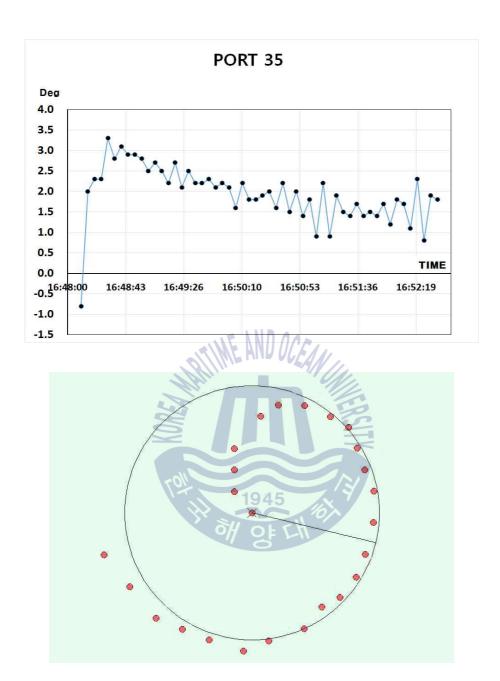


Fig. 4.4 Results of heeling angle and radius of Hanbada in turning(PORT 35)

4.2.3 실험 당시 횡경사와 각 계산식 계산 결과 비교

실습선 한바다호의 실험 당시 횡경사와 선회 중 횡경사 계산식과 상호 비교 분석을 위한 자료는 Table 4.8 ~ 4.9와 같다. Table 4.8은 선회 중 횡경사 계산식의 계

산을 위한 공통 자료이며, VGC(무게중심부터 타 중심까지 수직거리)는 4.465m, LGC(무게중심부터 타 중심까지 종방향 거리)는 50.772m이다.

Table 4.8 Data for calculation of common experimental condition of Hanbada in turning

Item	Value	е	Explanation
$Displacement(\Delta)$	5544.900	MT	
Deq	5.268	m	
KGo	7.665	m	
GoM	1.169	m	
BM	5.834	m	P.
VGC	4.465	m	Rudder height : 4.90m Baseline to keel : 0.40m
LGP	26.096	m	$LGP = k^2 / LGC$
LGC FOIL	50.772	m	Midship - AP : 52.00 m LCG = - 1.228m
Radius of gyration of yawing(k)	36.400	m	$k = 0.35 \times L$
LBP(L)	104.000	m	

Table 4.9는 전타 사용에 따른 선회반경, 편각, 정상 선회 중 선속을 계산한 자료이다. 우현 35도의 경우 선회반경 249.8m, 편각은 5.997도, 선속은 9.8knots (5.064m/s)로 측정되었다. 좌현 35도로 지시하였을 때 선회반경은 221.7m, 편각은 6.760도, 선속은 7.8knots(4.032m/s)로 측정되었다.

Table 4.9 Data for calculation of additional experimental condition of Hanbada in turning(Rudder order)

Item	STBD 35	PORT 35
Radius(R, m)	249.8	221.7
Drift Angle(β, Deg)	5.997	6.760
Speed(V, m/s)	5.064	4.032

실습선 한바다호의 실험 당시 측정된 횡경사와 4가지 선회 중 횡경사 계산식의계산 결과 비교는 Table 4.10과 같다. IMO 복원성 성능기준 횡경사 계산식에서 최소 횡경사각은 우현 35도일 때 1.277도, 좌현 35도일 때 0.771도이고, 최대값은 우현 35도의 경우 IMO 복원성 성능기준 선회 중 횡경사 변형 계산식에서 2.433도이고, 실험에 의해 측정된선회 중 횡경사각은 3.255도로, 실험 결과와 0.822도 차이를 나타냈으며, 좌현 35도의 경우정상 선회 중 외방경사 이론식에서 1.711도이고, 실험에 의해 측정된 선회 중 횡경사각은 1.941도로, 실험 결과와 0.230도 차이가 나는 것으로 분석되었다.

Table 4.10 Calculation results of turning heel angle of Hanbada(Rudder order)

Item 1945	STBD 35	PORT 35
IMO 복원성 성능기준 선회 중 횡경사 계산식	1.277	0.771
IMO 복원성 성능기준 선회 중 횡경사 변형 계산식	2.433	1.542
정상 선회 중 외방경사 이론식	2.394	1.711
편각을 고려한 선회중 외방경사 이론식	2.280	1.626
실험 결과	3.255	1.941

4.3 종합 분석

4.3.1 GoM과 선속에 따른 선회 중 횡경사각 계산 종합 분석

선박의 복원성은 선박 폭의 영향을 받기에 선박 길이를 선폭으로 나눈 비(L/B)로 표현하여 대상 선박의 평균값을 구하였으며, **Table 4.11**과 같다. 대상 선박은 총톤수 4,000톤에서 6,000톤급 여객선형의 선박으로서 L/B비는 약 5이다.

Item	SK Island	SK Paradise	Hanwoori	Hanbada
Ship length (m)	101.83	123.00	80.00	104.0
Ship breadth (m)	20.70	23.00	16.00	17.80
ship's L/B	4.92	5.35	5.00	5.84

Table 4.11 Average value of designated vessel in the ship's length by breadth

총톤수 4,000 ~ 6,000톤급, L/B≒5인 여객선형의 선박에 대하여 3가지 선회 중 횡 경사 계산식으로 계산한 결과는 **Table 4.12**와 같다.

Deq, KMT, KGo, BG, VGC는 대상 선박별 계산 자료 평균값을 사용하였으며, 편각(Drift angle)은 일반 선박이 선회 중 발생하는 최대값으로 10도를 적용시켰다. 또한 선회반경은 최대값인 선박길이의 2.5배를 적용시켰다.

L/B≒5 여객선형의 선박으로 연안 여객선의 선박 길이를 고려하여 80m, 100m, 120m, 140m에 대하여 선박의 상용 속력 10.0knots, 12.5knots, 15.0knots, 일반 선박이 갖는 GoM 0.50m, 0.75m, 1.00m, 1.25m에 적용시켜 3가지 선회 중 횡경사 계산식을 이용하여 횡경사각을 구한 후 종합적 분석을 수행하였다.

L/B≒5 여객선형의 경하상태에서 전타시 선회 중 횡경사각 10도 미만 기준을 유지하기 위해서는 선속 10.0knots로 운항 시 길이 80m의 선박은 GoM 0.50m 이상을 유지, 길이 100m이상의 선박은 GoM 0.50m 이상을 유지해야 되는 것으로 분석되었다. 선속 12.5knots로 운항 시 길이 80m의 선박은 GoM 1.00m 이상을 유지, 길이 100m이상의 선박은 GoM 0.75m 이상, 길이 140m 이상의 선박은 GoM 0.50m 이상을 확보하여야 선회 중 횡경사각 10도 미만 기준을 충족하는 것으로 분석되었

다. 또한, 선속 15.0knots로 운항 시 길이 80m의 선박은 GoM 1.25m 이상, 길이 100m 이상의 선박은 GoM 1.00m 이상, 길이 140m 이상의 선박은 GoM 0.75m 이상을 확보해야 되는 것으로 분석되었다.

L/B≒5 여객선형의 경하상태에서 선회 중 최대 외방경사를 고려한 정상 외방경사 6.66도를 충족하기 위해서 선속 10.0knots로 운항 시 길이 80m의 선박은 GoM 1.00m 이상, 길이 100m 이상의 선박은 GoM 0.70m 이상, 길이 140m 이상의 선박은 GoM 0.50m 이상을 유지해야 되는 것으로 분석되었다. 선속 12.5knots로 운항시 80m인 선박은 GoM 1.25m 이상을 유지, 길이 100m 이상의 선박은 GoM 1.00m 이상, 길이 140m 이상의 선박은 GoM 0.75m 이상을 확보해야 되는 것으로 분석되었다. 선속 15.0knots로 운항시 길이 120m 이상의 선박은 GoM 1.25m 이상, 길이 140m 이상인 선박은 GoM 1.00m 이상을 확보해야 최대 외방경사가 발생하여도 선회 중 횡경사각 10도 미만 기준을 충족하는 것으로 분석되었다.

Table 4.12 The result of heeling angle calculation for passenger type vessel(L/B≒5) in turning

				Val	lue for	calcula	ation				
]	Deq		3.9	43 m			BG		6.6	60 m	
ŀ	(MT	1	10.6	49 m			VGC		6.5	05 m	
I	KGo		8.9	07 m		Dri	ft angl	e(β)	10.0	00 De	g
7	VCB		2.2	47 m							
		R	Result o	f the l	neeling	angle	in turr	ning(De	g)		
S	peec	d		0.0knot 5.14m/:			2.5kno 6.43m/			5.0knot 7.72m/:	
Coı	nditi	on	A	В	С	A	В	С	A	В	С
		80m	10.6	10.2	10.0	16.7	15.7	15.7	24.4	22.0	22.9
GoM		100m	8.4	8.2	8.0	13.3	12.7	12.5	19.3	17.9	18.1
0.50m		120m	7.0	6.8	6.6	11.0	10.6	10.4	16.0	15.1	15.0
		140m	6.0	5.9	5.7	9.4	9.1	8.9	13.7	13.0	12.9
		80m	7.0	6.8	6.6	11.0	10.6	10.4	16.0	15.1	15.0
GoM		100m	5.6	5.5	5.3	8.8	8.5	8.3	12.7	12.2	12.0
0.75m		120m	4.7	4.6	4.4	7.3	7.1	6.9	10.6	10.2	10.0
	L	140m	4.0	3.9	3.8	6.3	6.1	5.9	9.1	8.8	8.5
	L	80m	5.3	5.1	5.0	8.2	8.0	7.8	11.9	11.4	11.2
GoM		100m	4.2	4.1	4.0	6.6	6.4	6.2	9.5	9.2	9.0
1.00m		120m	3.5	3.4	3.3	5.5	5.4	5.2	7.9	7.7	7.5
		140m	3.0	2.9	2.8	4.7	4.6	4.4	6.8	6.6	6.4
		80m	4.2	4.1	4.0	6.6	6.4	6.2	9.5	9.2	9.0
GoM		100m	3.4	3.3	3.2	5.3	5.1	5.0	7.6	7.4	7.2
1.25m		120m	2.8	2.7	2.6	4.4	4.3	4.1	6.3	6.2	6.0
		140m	2.4	2.4	2.3	3.8	3.7	3.5	5.4	5.3	5.1

A : IMO 복원성 성능기준 선회중 횡경사 변형 계산식

B : 정상 선회 중 외방경사 이론식

C : 편각을 고려한 선회 중 외방경사 이론식

: 선회 중 횡경사 10도 미만 기준

: 최대 외방경사를 고려한 정상 외방경사 6.66도

4.3.2 속장비에 따른 선회 중 횡경사각 계산 종합 분석

총톤수 4,000 ~ 6,000톤급 여객선형 선박의 경하상태에서 속장비에 따른 3가지 선회 중 횡경사 계산식을 통하여 속장비 0.400부터 1.000까지 계산을 수행하였으며, 결과를 요약한 표는 **Table 4.13**과 같다.

Deq, KMT, KGo, BG, VGC는 대상 선박별 계산 자료 평균값을 사용하였으며, 편각(Drift angle)은 일반 선박이 선회 중 발생하는 최대값으로 10도를 적용시켰다. 또한 선회반경은 최대값인 선박길이의 2.5배를 적용시켰다.

총톤수 4,000 ~ 6,000톤급 여객선형 선박이 입거를 위하여 GoM 0.50m의 경우 속장비 0.555 이하, GoM 0.75m의 경우 속장비 0.685 이하, GoM 1.00m의 경우 속장비 0.790 이하, GoM 1.25m의 경우 속장비 0.880 이하를 유지하여야 선회 중 횡경사 10도 미만 기준을 충족한다. 또한 최대 외방경사를 고려한 선회 중 횡경사 6.67도 미만을 충족하기 위해서는 GoM 0.50m의 경우 속장비 0.455 이하, GoM 0.75m의 경우 속장비 0.555 이하, GoM 1.00m의 경우 속장비 0.645 이하, GoM 1.25m의 경우 속장비 0.720 이하를 유지하여야 IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 분석되었다.

1945

Table 4.13 The summary of heeling angle calculation for passenger type vessel in turning($V\!/\sqrt{L}$)

				Valu	e fo	or calc	ulation				
De	eq		3.943	m			BG		6.	660 m	
KM	1T		10.649	m			VGC		6.	505 m	
KC	30		8.907	m		Dr	ift angl	e(β)	10.	000 De	g
VC	СВ		2.247	m		Ave	rage V	$\sqrt{\sqrt{L}}$	0.	897	
		R	esult of	the he	elir	ig ang	le in tu	ırning(l	Deg)		
			$\theta < 6.67$)		<6.67° <10.0°	(9 < 10.0)°	Ave- rage	
V/\sqrt{J}	\overline{L}	0.455	6.645	0.720	0	.555	6.685	0.790	0.880	0.897	1.000
C-M	A	6.6	13.3	16.7		9.8	15.1	20.3	25.4	26.5	33.7
GoM 0.50m	В	6.4	12.7	15.7		9.5	14.3	18.7	22.8	23.6	28.5
0.50111	С	6.2	12.6	15.7		9.3	14.2	19.0	23.9	24.9	31.5
GoM	A	4.4	8.9	11.1		6.5	10.0	13.3	16.6	17.3	21.7
0.75m	В	4.2	8.6	10.6		6.4	9.7	12.7	15.7	16.3	19.9
0.75111	С	4.1	8.3	10.4		9 6.6	9.4	12.6	15.7	16.3	20.4
GoM	A	3.3	6.6	8.3	#	24.9	7.5	10.0	12.4	12.9	16.1
1.00m	В	3.2	6.5	8.0		4.8	7.3	9.6	11.9	12.3	15.2
1.00111	С	3.1	6.2	7.8		4.6	7.0	9.4	11.7	12.1	15.2
GoM	A	2.7	5.3	6.6		3.9	6.0	8.0	9.9	10.3	12.8
1.25m	В	2.6	5.2	6.4		3.8	5.8	7.7	9.6	9.9	12.3
1.20111	С	2.5	5.0	6.2		3.7	5.6	7.5	9.3	9.7	12.1

A : IMO 복원성 성능기준 선회중 횡경사 변형 계산식

B : 정상 선회 중 외방경사 이론식

C : 편각을 고려한 선회 중 외방경사 이론식

: 선회 중 횡경사 10도 미만 기준

: 최대 외방경사를 고려한 정상 외방경사 6.66도

제 5 장 결 론

본 연구에서는 경하상태의 여객선형에서 선박에서 선회 중 발생하는 횡경사각을 계산되었다. 이 계산을 위해 총톤수 4,000 ~ 6,000톤급 4척의 대상 선박을 선정하고, 4가지의 선회 중 횡경사 계산식을 이용하였다.

선회 중 횡경사에 영향을 미치는 요소인 GoM, 선속, 속장비에 대하여 상호 비교하여 분석하였다. 이 과정에서 2척의 실선 실험을 수행하였고, 이를 바탕으로 4가지의 선회 중 횡경사 계산식 중에서 3가지 계산식 결과를 통하여 검증을 수행하였다. 또한 총톤수 4,000 ~ 6,000톤급 4척의 대상 선박의 평균 L/B에서 GoM, 선속, 속장비에 따른 선회 중 횡경사 계산 결과 값을 바탕으로 종합적 분석을 수행하였다.

대상 선박의 경하상태에서의 GoM, 최대 선속, 선회반경은 선박길이의 2.5배에 해당하는 선회반경으로, 선회할 때 발생하는 횡경사각이 10도 미만인 기준과 최대 외방경사를 고려한 정상 외방경사각 6.66도 미만을 만족하기 위한 계산식별 결과를 GoM, 선속, 속장비에 대하여 정리하면 다음과 같다.

- (1) 대상 선박의 경하상태의 4가지 선회 중 횡경사 계산식을 이용하여 비교 분석한 결과, 서경 아일랜드호, 서경 파라다이스호, 한우리호는 선회 중 횡경사각 10도미만 기준을 충족하였다. 그러나 한바다호는 다른 3척보다 낮은 GoM(0.777m)과 높은 속력(19knots)으로 인하여 3가지 선회 중 횡경사 계산식에서 약 17도 이상 횡경사가 발생하는 것으로 계산되었다. 또한 4가지 선회 중 횡경사 계산식 중에서 IMO복원성 성능기준 선회 중 횡경사 계산식을 제외하고 IMO 복원성 성능기준 선회 중 횡경사 변형 계산식, 정상 선회 중 외방경사 이론식, 편각을 고려한 외방경사 이론식의 계산 결과 값이 약간의 오차는 있지만 유사하게 나타났음을 확인하였다.
- (2) 대상 선박의 GoM에 따른 선회 중 횡경사각 수치해석 결과는, 선회 중 횡경사 10도 미만 기준을 충족하기 위해서 서경 파라다이스호(선속 9.774m/s와 선회반경 307.5m)는 IMO 복원성 성능기준 선회 중 횡경사 변형 계산식과 편각을 고려한 선회 중 외방경사 이론식에서 최소 GoM 1.550m로 가장 높은 최소 GoM이 요구되었

다.

(3) 선회반경은 선박 길이 2.5배를 고려한 대상 선박별 선속에 따른 선회 중 횡경사 10도 미만 기준의 충족여부를 검토한 결과는 다음과 같은 조건이 필요하다.

즉, 서경 파라다이스호와 한우리호는 선속 19.4knots(10m/s) 이하에서도 충족하였으나, 서경 아일랜드호는 18.5knots(9.5m/s) 이하, 한바다호는 14.2knots(7.3m/s) 이하가 필요한 것으로 분석되었다. 최대 외방경사를 고려한 정상 외방경사 6.66도 미만을 충족하기 위해서는 서경 아일랜드호는 14.8knots(7.6m/s) 이하, 서경 파라다이스호는 18.9knots(9.7m/s) 이하, 한우리호는 19.4knots(10m/s) 이하, 한바다호는 11.5knots(5.9m/s) 이하의 선속이 요구되는 것으로 분석되었다.

4척의 대상 선박의 평균 L/B는 약 5정도 이다. L/B≒5 여객선형이 선박이 길이에 따라 약간 차이는 있지만, 경하상태에서 선회 중 횡경사 10도 미만 기준 및 정상 외방경사 6.66도 미만을 충족하여 위험 횡경사를 예방할 수 있는 선속에 따른 선박 길이별 최소 GoM과 속장비를 다음과 같이 제안할 수 있다.

- (1) L/B≒5 여객선형의 선박이 선회 중 횡경사각 10도 미만 기준을 유지하기 위해서는 선속 10.0knots일 때, 길이 80m인 선박은 GoM 0.50m 이상, 길이 100m 이상의 선박은 GoM 0.50m 이상, 길이 100m 이상의 선박은 GoM 1.00m 이상, 길이 100m 이상 선박은 GoM을 0.75m 이상, 길이 140m 이상의 선박은 GoM 0.50m 이상의 확보가 필요하다. 또한, 선속 15.0knots로 운항시 길이 80m인 선박은 GoM 1.25m 이상, 길이 100m 이상의 선박은 GoM 1.0m 이상, 길이 140m 이상의 선박은 GoM 1.75m 이상의 확보가 필요하다.
- (2) L/B≒5 여객선형 선박의 경하상태에서 선회 중 최대 외방경사를 고려한 정상 외방경사 6.66도를 충족하기 위해서는 선속 10.0knots일 때, 길이 80m인 선박은 GoM을 1.00m 이상, 길이 100m 이상의 선박은 GoM 0.70m 이상, 길이 140m 이상의 선박은 GoM 0.50m 이상의 최소 GoM이 필요하다. 선속 12.5knots로 운항 시 80m인 GoM 1.25m 이상을 유지, 길이 100m이상인 선박은 GoM 1.00m 이상, 140m 이상의 선박은 GoM 0.75m 이상의 확보가 요구된다. 선속 15.0knots로 운항 시 길이 120m의 선박은 GoM 1.25m 이상, 길이 140m 이상의 선박은 GoM 1.0m 이상을 확보해야 최대 외방경사가 발생하여도 선회 중 횡경사각 10도 미만 기준을 충족하는 것으로 판단된다.

(3) 경하상태에서 총톤수 4,000 ~ 6,000톤급 여객선형 선박이 선회 중 횡경사각 10도 미만 기준을 충족하기 위해서는 GoM 0.50m의 경우에는 속장비 0.555 이하, GoM 0.75m의 경우에는 속장비 0.685 이하, GoM 1.00m의 경우에는 속장비 0.790이하, GoM 1.25m의 경우에는 속장비 0.880 이하를 유지할 것을 제안한다.

또한 최대 외방경사를 고려한 선회 중 횡경사 6.66도 미만을 충족하기 위해서는 GoM 0.50m의 경우 속장비 0.455 이하, GoM 0.75m의 경우 속장비 0.555 이하, GoM 1.00m의 경우 속장비 0.645이하, GoM 1.25m의 경우 속장비 0.720 이하를 유지하여야 IMO 복원성 성능기준에서 제시된 선회 중 횡경사각 10도 미만을 충족하는 것으로 판단된다.

IMO 복원성 성능기준에 제시된 선회 중 횡경사각 10도 미만의 기준은 적절한 GoM과 선속 유지, 상황을 고려한 올바른 타각 사용을 통하여 선회 중 발생할 수 있는 위험 횡경사를 예방할 수 있다. 운항 여건에 따라 적절한 GoM 확보가 부족할 때 선속의 감소와 소각도의 타 사용으로 선회반경의 값을 높여서 선회 중 횡경사에 따른 전복위험을 피할 수 있음을 본 연구를 통하여 확인하였다.

본 연구를 바탕으로 주어진 GoM과 항해속력(Service speed)에서 IMO 복원성 성능기준에 제시된 여객선형의 선회 중 횡경사각 10도 미만을 유지할 수 있는 유효한타각을 제안함으로써 위험 횡경사로부터 항해 안정성 제고에 기여할 것으로 판단된다.

참고문헌

- [1] 길기정, 2006. *형동요에 기인하는 전복에 대한 1-자유도계 모형의 이론적 해석*. 석사학위논문. 대전: 충남대학교대학원.
- [2] 김대해, 2014. AHRS 기반의 선체운동모니터링시스템 개발을 통한 항해안전성 평가에 관한 연구. 박사학위논문. 부산: 한국해양학교대학원.
- [3] 김민석, 신현옥, 강경미, 김민선, 2005. *타각과 선속에 따른 선회권의 변화 실습선 가야호 -* : 한국어업기술학회지, 제41권, 제2호, p.156~164.
- [4] 김세원, 문성배, 2011. 선체구조정비론. 개정판. 다솜출판사: 부산
- [5] 김순갑, 공길영, 이윤석 등, 2012. 선박항해 용어사전. 다솜출판사.
- [6] 김성욱, 2007. *과도한 횡동요에 기인하는 선박의 전복 발생확률*. 석사학위논문. 대전: 충남대학교대학원.
- [7] 김성훈, 2004. *주기적 복원력 모델을 이용한 선박의 횡파 중 전복 확률 계산*. 박사학위논문. 서울: 서울대학교대학원.
- [8] 나진영, 2007. *메개기진에 기인하는 선박의 횡동요에 대한 이론적 해석.* 석사학위논문. 대전: 충남대학교대학원.
- [9] 손경호, 김용민 2003. *형동요를 고려한 선박조종운동의 새로운 수학 모델에 관한 연구*. 한국항해항만학회지, 제27권, 제5호, p.451~458.
- [10] 신찬익, 2014. 조선기하학_선박설계의 기초지식. 초판. 동명사: 경기 파주
- [11] 안양호, 박명호, 최찬문, 정용진 2001. 실습선 아라라호 조종성능에 관한 연구. 한국어업기술학회지, 제37권, 제4호, p.275~284.
- [12] 안영수, 배광민, 장충식 등, 2010. *해양조사선 참바다호의 조종성능에 관한 연구*. 한국어업기술학회지, 제46권, 제1호, p.56~59.

- [13] 양시권, 김순갑, 2011. 선박적화. 7판. 해인출판사: 부산
- [14] 염덕준, 2012. 선박의 운동과 조종. 초판. 울산대학교 출판부: 울산
- [15] 윤점동, 2016. 선박조종의 이론과 실무. 2016년도 개정판. 세종출판사: 부산
- [16] 이규열 등, 2012. 선박계산. 텍스트북스.
- [17] 이승건, 2012a. 선박의 기초계산 및 복원성. 초판. GS 인터비전: 서울.
- [18] 이승건, 2012b. 선박운동역학. 2판. 부산대학교출판부: 부산.
- [19] 이윤석, 김철승, 히로유키 사다카테, 2012a. 선회 중 전복한 저건현 내항 탱커의 복원성에 관한 연구(1): 한국항해항만학회지, 제26권, 제1호, p.1~7.
- [20] 이윤석, 김철승, 이상민, 2012b. 선회 중 전복한 저건현 내항 탱커의 복원성에 관한 연구(2) 갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사: 한국항해항만학회지, 제27권, 제5호, p.455~471.
- [21] 이원주, 최재혁, 조권회, 2015. 선박용 디젤엔진에서 이단지연분사에 따른 배기 배출물 저감에 관한 실험 연구. 한국마린엔지니어링학회지, 39호, p.419.
- [22] 이성균, 이재훈, 이기표, 최진우, 2012. *크루즈선의 횡동요 제어시스템에 미치는* 포드 각속도의 영향. 대한조선학회 논문집, 제49권, 제1호, p.187~197.
- [23] 이재훈, 김용환, 2015. *준해석적 방법을 통한 파라메트릭 횡동요 해석*: 대한조선 학회 논문집 제52권, 제3호, p.187~197.
- [24] 정창현, 이형기, 공길영, 2008. 실습선 한바다호의 운항성능에 관한 연구(Ⅲ) 실선시험을 통한 조종성능 평가 : 한국항해항만학회지, 제32권, 제6호, p.439~445.
- [25] 한국해양대학교, 2015. 세월호 참사 원인에 관한 고찰, 부산:한국해양대학교.
- [26] Barrass C. B., 2004. *Ship Design and Performance for Masters and mates.* 1st Edition. Elsevier Butterworth-Heinemann: Oxford
- [27] Barrass C. B., Derrett D. R., 2012. *Ship Stability for Master and Mates.* 2nd Edition. Elsevier Butterworth-Heinemann: Oxford
- [28] Biran A. B, 2005. *Ship Hydorstatics and Stability*. 2nd Edition. Elsevie Butterworth -Heinemann: Oxford

- [29] Clark Ian, 2005. *Ship Dynamaics for Mariners*. 1st Edition. The Nautical Institute: London.
- [30] Inoue Kinzo, 2013. *Theory and Practice of Ship Handling*. 1st Edition. Sang Hak Dang: Seoul.
- [31] IMO, 2008a. Resolution. MSC.267(85), Adoption of the International Code on Intact Stabiltiy, 2008(2008 IS Code). p. 1-14.
- [32] IMO, 2008b. MSC.1 /Circ.1281, Explanatory Notes to the International Code on Intact Stability, 2008. p. 5-21.
- [33] IMO Sub-Committee in Ship Desing and Construction (SDC), (2014). Amendments to the Criterion for Maximum Angle of Heel in Turns of the 2008 IS Code, Sub-Committee in Ship Design and Construction, pp. 2.
- [34] IMO Sub-Committee in Ship Desing and Construction (SDC), (2015). Report to the Maritime Safety Committee 2nd session Agenda item 25, Sub-Committee in Ship Design and Construction, pp. 17-18.
- [35] Lloyd's Register Marine, 2008b. *Lloyd's Register Briefing Note SDC 2 Summary Report*, pp. 2.
- [36] Newman J. N., 1982. *Marine Hydrodynamics*. 4th Edition. The Massachusetts Institute of Technology: London
- [37] Patterson Chris J., Ridley Jonathan D., 2014. *Reeds Marine Engineering and Technology Ship Stability, Powering and Resistance.* 1st Edition. Adlard Coles Nautical: London
- [38] Rhodes Martine A., 2003. Ship Stability for Mates Masters. 1st Edition. Seamanship International Ltd.: Scotland, p. 86.

부 록

【부록 1】대상별 모델링 요소 수치해석 - GoM

【부록 2】대상별 모델링 요소 수치해석 - Speed

【부록 3】대상별 모델링 요소 수치해석 - Speed length ratio

[부록 1] 대상별 모델링 요소 수치해석 - GoM

SK Paradise Hanwoori Hanbada Islan 11.977 8.912 9.277 14.81 11.927 8.862 9.227 11.9 11.827 8.812 9.177 9.9 11.827 8.762 9.027 7.53 11.777 8.662 9.027 7.53 11.627 8.662 9.027 6.08 11.627 8.562 8.927 5.12 11.527 8.462 8.877 4.44 11.477 8.362 8.727 4.16 11.377 8.362 8.627 3.39 11.377 8.262 8.677 3.92 11.277 8.262 8.577 3.35 11.277 8.162 8.577 3.35 11.177 8.162 8.577 3.35 11.177 8.162 8.477 3.35 11.177 8.062 8.477 3.07 11.177 8.062 8.477 3.07 11.177]	,	18,0,1,7,1,7 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
8.912 9.277 8.862 9.227 8.812 9.177 8.762 9.127 8.662 9.027 8.662 9.027 8.662 8.927 8.462 8.827 8.412 8.877 8.312 8.677 8.362 8.577 8.262 8.577 8.162 8.527 8.162 8.477 8.062 8.477 8.062 8.377	SK SK Island Paradise		Hanwoori	Hanbada
8.862 9.227 8.812 9.127 8.762 9.127 8.662 9.027 8.612 8.977 8.562 8.927 8.462 8.827 8.362 8.777 8.312 8.677 8.262 8.627 8.162 8.527 8.162 8.477 8.062 8.477 8.062 8.477 8.062 8.377	14.858 50.019		43.376	22.109
8.812 9.177 8.762 9.127 8.662 9.077 8.662 9.077 8.662 9.077 8.662 8.977 8.412 8.877 8.362 8.777 8.362 8.777 8.362 8.577 8.262 8.577 8.112 8.577 8.112 8.477 8.062 8.427 8.012 8.377	11.906 37.582		33.066	17.635
8.762 9.127 8.672 9.027 8.662 9.027 8.612 8.977 8.462 8.877 8.412 8.877 8.312 8.677 8.262 8.577 8.262 8.577 8.162 8.527 8.162 8.477 8.162 8.477 8.062 8.477 8.062 8.427 8.012 8.377	9.956 30.375		26.839	14.715
8.662 9.077 8.662 9.027 8.612 8.977 8.562 8.927 8.412 8.877 8.312 8.677 8.362 8.627 8.112 8.577 8.112 8.477 8.102 8.577 8.103 8.577 8.104 8.505 8.105 8.477 8.105 8.427 8.106 8.427 8.107 8.417	8.571 25.544		22.597	12.653
8.662 9.027 8.612 8.977 8.512 8.877 8.462 8.827 8.362 8.727 8.312 8.627 8.262 8.527 8.112 8.527 8.112 8.477 8.062 8.427 8.012 8.377	7.535 22.047		19.502	11.118
8.612 8.977 8.562 8.927 8.462 8.877 8.412 8.777 8.362 8.727 8.262 8.677 8.262 8.527 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	6.731 19.386		17.134	9.929
8.562 8.927 8.412 8.877 8.412 8.777 8.362 8.777 8.312 8.677 8.212 8.677 8.112 8.577 8.162 8.527 8.162 8.527 8.162 8.527 8.162 8.527 8.162 8.527 8.162 8.527 8.162 8.527 8.162 8.527	6.089 17.288		15.262	8.981
8.512 8.877 8.462 8.827 8.362 8.727 8.312 8.677 8.262 8.627 8.112 8.577 8.112 8.477 8.062 8.477 8.012 8.377	5.564 15.590		13.743	8.208
8.462 8.827 8.412 8.777 8.362 8.727 8.312 8.677 8.212 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	5.127 14.186		12.485	7.564
8.412 8.777 8.362 8.727 8.312 8.677 8.212 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	4.758 13.004		11.425	7.020
8.362 8.727 8.312 8.677 8.262 8.627 8.162 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	4.441 11.996		10.519	6.555
8.312 8.677 8.262 8.627 8.212 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	4.167 11.125		9.737	6.152
8.262 8.627 8.212 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	3.927 10.365		9.053	5.799
8.212 8.577 8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	3.716 9.696		8.452	5.488
8.162 8.527 8.112 8.477 8.062 8.427 8.012 8.377	3.528 9.102		7.917	5.212
8.062 8.477 8.012 8.377	3.359 8.572		7.440	4.965
8.062 8.427 8.012 8.377	3.208 8.096		7.011	4.743
8.012 8.377	3.071 7.665		6.623	4.542
	2.947 7.274		6.271	4.360
11.027 7.962 8.327 2.83	2.833 6.917		5.949	4.193

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

KGo 변화欲
SK Paradise Hanwoori
10.977 7.912
10.927 7.862
10.877 7.812
10.827 7.762
10.777 7.712
10.727 7.662
10.677 7.612
10.627 7.562
10.577 7.512
10.527 7.462
10.477 7.412
10.427 7.362
10.377 7.312
10.327 7.262
10.277 7.212
10.227 7.162
10.177 7.112
10.127 7.062
10.077 7.012
10.027 6.962

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

Collection @ kmou

SK SK Hanwoorf Hanbada Island Paradise 1Sland 9.977 6.912 7.277 1.640 3.184 9.628 9.977 6.812 7.277 1.640 3.184 9.528 9.927 6.862 7.127 1.584 3.095 9.478 9.827 6.712 7.177 1.532 2.923 9.428 9.727 6.662 7.027 1.507 2.944 9.378 9.677 6.612 6.977 1.464 2.644 9.278 9.677 6.612 6.977 1.440 2.564 9.278 9.677 6.462 6.877 1.440 2.556 9.178 9.527 6.462 6.877 1.419 2.429 9.178 9.477 6.412 6.777 1.399 2.429 9.028 9.477 6.312 6.677 1.343 2.254 8.978 9.277 6.262 6.277 1.343 2.254	GoM		KGo	변화값		용늄 OMI	복원성 성능기준	선희 중 형경/	횡경사 계산식
9,628 9,977 6,912 7.277 1,640 9,578 9,927 6,862 7.227 1,611 9,528 9,877 6,812 7.177 1,584 9,478 9,827 6,762 7,127 1,584 9,428 9,777 6,612 7,077 1,532 9,378 9,777 6,662 7,027 1,484 9,228 9,677 6,612 6,977 1,484 9,278 9,627 6,522 6,927 1,440 9,128 9,577 6,462 6,877 1,440 9,178 9,477 6,462 6,877 1,419 9,078 9,477 6,412 6,777 1,399 9,028 9,377 6,362 6,677 1,343 8,978 9,277 6,262 6,677 1,343 8,878 9,277 6,122 6,577 1,343 8,878 9,277 6,162 6,577 1,343 8,878 9,177 6,162 6,577 1,343 8,878 9,177	(m)	SK Island	SK Paradise	Hanwoori	Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
9,578 6,862 7,227 1,611 9,528 9,877 6,812 7,177 1,584 9,478 9,827 6,762 7,127 1,532 9,428 9,777 6,712 7,077 1,532 9,378 9,777 6,662 7,027 1,507 9,328 9,677 6,612 6,977 1,484 9,278 9,677 6,612 6,977 1,484 9,228 9,677 6,512 6,877 1,440 9,178 9,577 6,462 6,877 1,440 9,078 9,477 6,462 6,877 1,349 9,078 9,427 6,362 6,777 1,339 8,978 9,377 6,362 6,677 1,343 8,978 9,277 6,212 6,577 1,343 8,878 9,277 6,162 6,577 1,309 8,878 9,177 6,112 6,577 1,309 1,329 1,339 1,339 1,339	2.200	9.628	9.977	6.912	7.277	1.640	3.184	2.582	2.444
9.528 9.877 6.812 7.177 1.584 6.762 7.127 1.557 1.484 <td< td=""><td>2.250</td><td>9.578</td><td>9.927</td><td>6.862</td><td>7.227</td><td>1.611</td><td>3.093</td><td>2.500</td><td>2.401</td></td<>	2.250	9.578	9.927	6.862	7.227	1.611	3.093	2.500	2.401
9.478 9.827 6.762 7.127 1.557 9.428 9.777 6.712 7.077 1.532 9.378 9.727 6.662 7.027 1.507 9.328 9.677 6.612 6.977 1.484 9.278 9.627 6.562 6.927 1.461 9.128 9.577 6.512 6.877 1.440 9.128 9.477 6.462 6.777 1.399 9.028 9.477 6.362 6.777 1.349 8.978 9.327 6.262 1.343 1.343 8.878 9.277 6.162 6.577 1.343 8.8878 9.277 6.162 6.577 1.343 8.828 9.177 6.112 6.577 1.309	2.300	9.528	9.877	6.812	7.177	1.584	3.006	2.422	2.361
9.428 9.777 6.662 7.077 1.532 9.378 9.727 6.662 7.027 1.507 9.328 9.677 6.612 6.977 1.484 9.278 9.627 6.562 6.927 1.440 9.228 9.577 6.462 6.877 1.440 9.128 9.477 6.412 6.777 1.399 9.078 9.427 6.362 6.777 1.379 8.978 9.377 6.362 6.677 1.343 8.978 9.277 6.262 6.577 1.343 8.878 9.277 6.162 6.577 1.335 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.162 6.577 1.309	2.350	9.478	9.827	6.762	7.127	1.557	2.923	2.347	2.322
9.378 9.727 6.662 7.027 1.507 9.328 9.677 6.612 6.977 1.484 9.278 9.627 6.562 6.927 1.484 9.228 9.577 6.512 6.877 1.440 9.178 9.577 6.412 6.777 1.399 9.078 9.477 6.362 6.777 1.379 9.028 9.377 6.362 6.677 1.343 8.978 9.277 6.262 6.577 1.343 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.112 6.577 1.309	2.400	9.428	9.777	6.712	7:077	1.532	2.844	2.275	2.284
9.328 9.677 6.612 6.977 1.484 9.278 9.627 6.562 6.927 1.461 9.228 9.577 6.512 6.877 1.440 9.178 9.527 6.462 6.827 1.419 9.128 9.477 6.412 6.777 1.399 9.028 9.377 6.362 6.727 1.361 8.978 9.277 6.262 6.677 1.343 8.928 9.277 6.212 6.577 1.343 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.112 6.577 1.309	2.450	9.378	9.727	6.662	7:027	1.507	2.768	2.207	2.249
9.278 9.627 6.562 6.927 1.461 9.228 9.577 6.512 6.877 1.440 9.178 9.527 6.462 6.827 1.419 9.128 9.477 6.412 6.777 1.399 9.078 9.427 6.362 6.727 1.379 8.978 9.377 6.262 6.677 1.343 8.928 9.277 6.212 6.577 1.343 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.112 6.477 1.292	2.500	9.328	6.677	6.612	6.977	1.484	2.694	2.141	2.214
9.228 9.577 6.512 6.877 1.440 9.178 9.527 6.462 6.827 1.419 9.128 9.477 6.412 6.777 1.399 9.078 9.427 6.362 6.727 1.379 9.028 9.377 6.362 6.677 1.343 8.978 9.277 6.212 6.577 1.343 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.112 6.477 1.292	2.550	9.278	9.627	6.562 0%	6.927	1.461	2.624	2.077	2.181
9.178 9.527 6.462 6.827 1.419 9.128 9.477 6.412 6.777 1.399 9.078 9.427 6.362 6.727 1.379 8.978 9.377 6.262 6.677 1.343 8.978 9.277 6.262 6.577 1.343 8.878 9.277 6.162 6.577 1.309 8.828 9.177 6.112 6.477 1.292	2.600	9.228	9.577	6.512		1.440	2.556	2.016	2.149
9.128 9.477 6.412 6.777 1.399 9.078 9.427 6.362 6.727 1.379 9.028 9.377 6.312 6.677 1.361 8.978 9.327 6.262 6.627 1.343 8.928 9.277 6.162 6.577 1.325 8.878 9.277 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.650	9.178	9.527	6.462		1.419	2.491	1.957	2.119
9.078 9.427 6.362 6.727 1.379 9.028 9.377 6.312 6.677 1.361 8.978 9.327 6.262 6.627 1.343 8.928 9.277 6.212 6.577 1.325 8.878 9.227 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.700	9.128	9.477	6.412	6.777	1.399	2.429	1.901	2.089
9.028 9.377 6.312 6.677 1.361 8.978 9.327 6.262 6.627 1.343 8.928 9.277 6.212 6.577 1.325 8.878 9.227 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.750	9.078	9.427	6.362	6.727	1.379	2.368	1.846	2.061
8.978 9.327 6.262 6.627 1.343 8.928 9.277 6.212 6.577 1.325 8.878 9.227 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.800	9.028	9.377	6.312	6.677	1.361	2.310	1.794	2.034
8.928 9.277 6.212 6.577 1.325 8.878 9.227 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.850	8.978	9.327	6.262	6.627	1.343	2.254	1.743	2.007
8.878 9.227 6.162 6.527 1.309 8.828 9.177 6.112 6.477 1.292	2.900	8.928	9.277	6.212	6.577	1.325	2.200	1.694	1.982
8.828 9.177 6.112 6.477 1.292	2.950	8.878	9.227	6.162	6.527	1.309	2.147	1.647	1.957
	3.000	8.828	9.177	6.112	6.477	1.292	2.097	1.601	1.934

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

변형 계산식	Hanbada	49.073	41.031	35.409	31.182	27.861	25.169	22.937	21.054	19.440	18.041	16.816	15.734	14.771	13.907	13.129	12.423	11.781	11.193	10.653	10.156
중 형경사	Hanwoori	50.220	41.887	36.102	31.768	28.369	25.618	23.338	21.416	19.770	18.343	17.095	15.991	15.010	14.130	13.337	12.618	11.964	11.365	10.816	10 200
성능기준 선희	SK Paradise	59.588	48.653	41.595	36.467	32.514	29.349	26.746	24.562	22.699	21.090	19.684	18.445	17.344	16.359	15.471	14.668	13.937	13.269	12.656	12.002
IMO 복원성	SK Island	39.049	33.251	28.998	25.720	23.103	20.962	19.173	17.656	16.351	15.216	14.220	13.338	12.552	11.846	11.210	10.632	10.105	9.624	9.181	8 773
	Hanbada	9.127	9.077	9.027	8.977	8.927	8.877	8.827	8.777	8.727	229.8	8.627	8.577	8.527	8.477	8.427	8.377	8.327	8.277	8.227	0 177
변화값	Hanwoori	8.762	8.712	8.662	8.612	8.562	8.512	8.462	8.412 0/	8.362	8.312	8.262	8.212	8.162	8.112	8.062	8.012	7.962	7.912	7.862	7 812
KGo 1	SK Paradise	11.827	11.777	11.727	11.677	11.627	11.577	11.527	11.477	11.427	11.377	11.327	11.277	11.227	11.177	11.127	11.077	11.027	10.977	10.927	10.877
	SK Island	11.478	11.428	11.378	11.328	11.278	11.228	11.178	11.128	11.078	11.028	10.978	10.928	10.878	10.828	10.778	10.728	10.678	10.628	10.578	10 528
GoM	(m)	0.350	0.400	0.450	0.500	0.550	0.600	0.650	0.700	0.750	0.800	0.850	0.900	0.950	1.000	1.050	1.100	1.150	1.200	1.250	1 300

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

IMO 목원성
Hanbada
8.127
8.077
8.027
7.977
7.927
7.877
7.827 6.615
7.777
7.727 6.159
7.677
7.627
7.577
7.527
7.477
7.427
7.377
7.327
7.277
7.377
7.327

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

GoM		KGo	世 화 弘		IMO 복원성	성능기준 선회	중 형경사	변형 계산식
(m)	SK Island	SK Paradise	Hanwoori	Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
2.200	9.628	6.977	6.912	7.277	4.620	6.377	5.170	5.108
2.250	9.578	9.927	6.862	7.227	4.488	6.195	5.006	4.947
2.300	9.528	9.877	6.812	7.177	4.361	6.021	4.849	4.793
2.350	9.478	9.827	6.762	7.127	4.239	5.854	4.698	4.645
2.400	9.428	6.777	6.712	7.077	4.123	5.695	4.555	4.504
2.450	9.378	9.727	6.662	7.027	4.011	5.542	4.417	4.368
2.500	9.328	6.677	6.612	6.977	3.904	5.395	4.284	4.238
2.550	9.278	9.627	6.562 0//	6.927	3.801	5.254	4.157	4.113
2.600	9.228	9.577	6.512	6.877	3.702	5.118	4.035	3.993
2.650	9.178	9.527	6.462	28.9	3.606	4.987	3.917	3.877
2.700	9.128	9.477	6.412	2229	3.515	4.862	3.804	3.766
2.750	9:078	9.427	6.362	6.727	3.426	4.741	3.694	3.659
2.800	9.028	9.377	6.312	6.677	3.341	4.624	3.589	3.555
2.850	8.978	9.327	6.262	6.627	3.259	4.511	3.488	3.455
2.900	8.928	9.277	6.212	6.577	3.179	4.403	3.390	3.359
2.950	8.878	9.227	6.162	6.527	3.103	4.298	3.295	3.266
3.000	8.828	9.177	6.112	6.477	3.029	4.196	3.203	3.176

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

SK SK Hanwoori Hanbada Island Paradise 9360 9656 6.911 7.079 56.123 6.3895 9360 9.656 6.811 7.029 48.013 56.706 9310 9.606 6.861 7.029 48.013 56.706 9200 9.556 6.811 6.979 41.480 50.470 9100 9.456 6.701 6.829 36.233 45.130 9110 9.456 6.711 6.879 31.993 45.130 9100 9.456 6.611 6.779 28.529 45.740 9000 9.356 6.611 6.779 25.667 33.390 8800 9.256 6.511 6.679 18.023 24.064 8800 9.156 6.411 6.579 18.023 24.064 8800 9.156 6.411 6.579 18.578 20.947 8800 9.056 6.211 6.429 18.558 19.641	MoD		₽ BG	변화값		K~	정상 선희 중 요	외방경사 이론식	ফা
9.360 9.656 6.911 7.079 56.123 63.895 9.310 9.606 6.861 7.029 48.013 56.706 9.260 9.556 6.811 6.979 41.480 50.470 9.210 9.506 6.761 6.929 36.233 45.130 9.110 9.456 6.761 6.879 31.993 40.581 9.110 9.406 6.661 6.829 36.704 40.581 9.010 9.356 6.611 6.779 25.667 33.390 9.010 9.306 6.561 6.779 25.667 33.390 8.906 9.256 6.511 6.729 21.249 25.940 8.810 9.206 6.461 6.629 19.517 25.940 8.810 9.156 6.411 6.579 18.578 20.947 8.810 9.056 6.211 6.479 15.578 20.947 8.610 8.906 6.211 6.479 14.568 <td< th=""><th>(m)</th><th>SK Island</th><th>SK Paradise</th><th>Hanwoori</th><th>Hanbada</th><th>SK Island</th><th>SK Paradise</th><th>Hanwoori</th><th>Hanbada</th></td<>	(m)	SK Island	SK Paradise	Hanwoori	Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
9.310 9.606 6.861 7.029 48.013 56.706 9.260 9.556 6.811 6.979 41.480 50.470 9.210 9.556 6.811 6.929 36.233 45.130 9.210 9.456 6.761 6.829 36.233 45.130 9.110 9.406 6.661 6.829 36.529 36.704 9.060 9.356 6.611 6.729 25.667 33.390 9.010 9.306 6.561 6.629 12.249 28.081 8.960 9.256 6.411 6.679 18.023 24.064 8.810 9.106 6.301 6.529 16.721 25.940 8.810 9.056 6.311 6.479 14.568 19.641 8.810 9.056 6.311 6.479 14.568 19.641 8.810 9.066 6.261 6.479 14.568 19.641 8.860 8.956 6.211 6.479 14.568 <td< td=""><td>.150</td><td>9.360</td><td>9:656</td><td>6.911</td><td>7.079</td><td>56.123</td><td>63.895</td><td>60.916</td><td>60.742</td></td<>	.150	9.360	9:656	6.911	7.079	56.123	63.895	60.916	60.742
9.260 9.556 6.811 6.979 41.480 50.470 9.210 9.506 6.761 6.929 36.233 45.130 9.160 9.456 6.711 6.879 31.993 40.581 9.110 9.406 6.661 6.829 28.529 36.704 9.000 9.356 6.611 6.779 25.667 33.390 9.010 9.306 6.561 6.779 25.667 33.390 8.960 9.256 6.511 6.679 21.249 28.081 8.810 9.156 6.411 6.579 18.023 24.064 8.760 9.056 6.411 6.579 14.568 19.641 8.760 9.066 6.261 6.479 14.568 19.641 8.760 8.560 6.211 6.379 14.568 19.641 8.560 8.856 6.111 6.279 12.138 16.464 8.560 8.806 6.061 6.229 11.482 <td< td=""><td>.200</td><td>9.310</td><td>909.6</td><td>6.861</td><td>7.029</td><td>48.013</td><td>56.706</td><td>53.239</td><td>53.047</td></td<>	.200	9.310	909.6	6.861	7.029	48.013	56.706	53.239	53.047
9.210 9.506 6.761 6.929 36.233 45.130 9.160 9.456 6.711 6.879 31.993 40.581 9.110 9.406 6.661 6.829 28.529 36.704 9.000 9.356 6.611 6.779 25.667 33.390 9.010 9.306 6.561 6.779 25.667 33.390 8.960 9.256 6.511 6.679 21.249 28.081 8.810 9.106 6.411 6.679 19.517 25.940 8.810 9.106 6.411 6.579 18.023 24.064 8.710 9.056 6.311 6.479 14.568 19.641 8.710 9.066 6.261 6.429 14.568 19.641 8.600 8.956 6.211 6.329 12.863 17.418 8.510 8.806 6.061 6.229 11.482 15.598 8.400 8.756 6.011 6.179 10.864 <td< td=""><td>.250</td><td>9.260</td><td>9.556</td><td>6.811</td><td>6.979</td><td>41.480</td><td>50.470</td><td>46.752</td><td>46.558</td></td<>	.250	9.260	9.556	6.811	6.979	41.480	50.470	46.752	46.558
9.160 9.456 6.711 6.879 31.993 40.581 9.110 9.406 6.661 6.829 28,529 36.704 9.060 9.356 6.611 6.779 25,667 33.390 9.010 9.306 6.511 6.679 23,274 30.543 8.960 9.256 6.511 6.679 21.249 28.081 8.810 9.206 6.411 6.679 19.517 25.940 8.810 9.106 6.411 6.529 16.721 25.940 8.870 9.066 6.361 6.529 15.728 20.947 8.710 9.066 6.261 6.479 14.568 19.641 8.600 8.956 6.211 6.379 12.683 17.418 8.510 8.856 6.011 6.279 12.138 16.464 8.540 8.756 6.011 6.279 11.482 14.809 8.440 8.756 6.011 6.129 10.342 <td< td=""><td>.300</td><td>9.210</td><td>9.506</td><td>6.761</td><td>6.929</td><td>36.233</td><td>45.130</td><td>41.329</td><td>41.141</td></td<>	.300	9.210	9.506	6.761	6.929	36.233	45.130	41.329	41.141
9.110 9.406 6.661 6.829 28.529 36.704 9.060 9.356 6.611 6.779 25.667 33.390 9.010 9.356 6.611 6.779 25.667 33.390 8.960 9.256 6.511 6.679 21.249 28.081 8.910 9.206 6.461 6.679 19.517 25.940 8.810 9.156 6.411 6.579 18.023 24.064 8.810 9.106 6.311 6.479 15.748 25.940 8.760 9.056 6.311 6.479 15.578 20.947 8.760 8.560 6.261 6.429 14.568 17.418 8.860 6.161 6.329 12.863 17.418 8.560 8.806 6.061 6.279 11.482 15.598 8.460 8.756 6.011 6.129 10.342 14.805	.350	9.160	9.456	6.711	6.879	31.993	40.581	36.804	36.627
9.060 9.356 6.611 6.779 25.667 33.390 8.901 9.256 6.511 6.679 23.274 30.543 8.902 9.256 6.511 6.679 21.249 28.081 8.810 9.206 6.411 6.679 18.023 24.064 8.810 9.156 6.411 6.579 18.023 24.064 8.810 9.056 6.311 6.479 16.721 22.412 8.700 9.056 6.311 6.479 14.568 19.641 8.600 8.956 6.211 6.329 12.863 17.418 8.500 6.161 6.329 12.863 17.418 8.500 6.161 6.229 11.482 15.598 8.460 8.756 6.011 6.279 11.482 14.869 8.460 8.756 6.011 6.179 10.886 14.809	.400	9.110	9.406	6.661	6.829	28.529	36.704	33.016	32.853
9.010 9.306 6.561 6.729 23.274 30.543 8.960 9.256 6.511 6.679 21.249 28.081 8.810 9.206 6.461 6.629 19.517 25.940 8.810 9.156 6.411 6.579 18.023 24.064 8.810 9.106 6.361 6.479 15.578 20.947 8.760 9.056 6.261 6.429 14.568 19.641 8.600 8.956 6.211 6.379 12.683 17.418 8.500 6.161 6.279 12.138 16.464 8.510 8.806 6.061 6.229 11.482 15.598 8.440 8.756 6.011 6.179 10.886 14.809 8.410 8.756 6.011 6.129 10.342 14.085	.450	090.6	9.356	6.611	6.779	25.667	33.390	29.824	29.675
8.960 9.256 6.511 6.679 21.249 28.081 8.910 9.206 6.461 6.629 19.517 25.940 8.860 9.156 6.411 6.579 18.023 24.064 8.810 9.056 6.361 6.579 16.721 22.412 8.760 9.056 6.311 6.479 15.578 20.947 8.600 8.956 6.211 6.379 13.668 18.471 8.610 8.956 6.111 6.279 12.138 16.464 8.550 6.111 6.279 11.482 15.598 8.460 8.756 6.011 6.179 10.886 14.809 8.440 8.756 6.011 6.179 10.342 14.809	.500	9.010	9.306	6.561 0//	6.729	23.274	30.543	27.114	26.978
8.910 9.206 6.461 6.629 19.517 25.940 8.860 9.156 6.411 6.579 18.023 24.064 8.810 9.106 6.361 6.479 16.721 22.412 8.760 9.056 6.311 6.429 14.568 19.641 8.600 8.956 6.211 6.329 12.863 17.418 8.500 6.161 6.329 12.863 16.464 8.560 8.856 6.111 6.279 11.482 16.464 8.460 8.756 6.011 6.179 10.886 14.809 8.460 8.756 6.011 6.129 10.342 14.809	.550	8.960	9.256	6.511		21.249	28.081	24.794	24.670
8.860 9.156 6.411 6.579 18.023 24.064 8.810 9.056 6.351 6.479 15.73 22.412 8.760 9.056 6.311 6.479 14.568 20.947 8.710 9.006 6.261 6.429 14.568 19.641 8.660 8.956 6.211 6.379 12.683 17.418 8.510 8.856 6.111 6.279 11.482 15.598 8.460 8.756 6.011 6.179 10.342 14.809 8.410 8.706 5.961 6.129 10.342 14.085	.600	8.910	9.206	6.461		19.517	25.940	22.792	22.680
8.810 9.106 6.361 6.529 16.721 22.412 8.760 9.056 6.311 6.479 15.578 20.947 8.710 9.006 6.261 6.429 14.568 19.641 8.660 8.956 6.211 6.379 13.668 18.471 8.560 8.856 6.111 6.279 12.138 16.464 8.510 8.806 6.061 6.229 11.482 15.598 8.460 8.756 6.011 6.179 10.886 14.809 8.410 8.706 5.961 6.129 10.342 14.085	.650	8.860	9.156	6.411	6.579	18.023	24.064	21.050	20.949
8.760 9.056 6.311 6.479 15.578 20.947 8.710 9.006 6.261 6.429 14.568 19.641 8.660 8.956 6.211 6.379 13.668 18.471 8.510 8.856 6.161 6.279 12.138 16.464 8.510 8.806 6.061 6.229 11.482 15.598 8.460 8.756 6.011 6.179 10.886 14.809 8.410 8.706 5.961 6.129 10.342 14.085	.700	8.810	9.106	6.361	6.529	16.721	22.412	19.524	19.432
8.710 9.006 6.261 6.429 14.568 19.641 19.641 8.660 8.956 6.211 6.379 13.668 18.471 13.668 18.471 13.668 17.418 17.418 17.418 17.418 17.418 17.418 17.418 16.464	.750	8.760	9:026	6.311	6.479	15.578	20.947	18.178	18.095
8.660 8.956 6.211 6.379 13.668 18.471 13.668 18.471 13.668 18.471 13.668 18.471 13.668 17.418 17.418 17.418 17.418 17.418 16.464 16.464 16.464 16.464 16.598 16.464 15.598 16.464 16.598 14.809	.800	8.710	9.006	6.261	6.429	14.568	19.641	16.982	16.907
8.610 8.906 6.161 6.329 12.863 17.418 17.418 8.560 8.856 6.111 6.279 12.138 16.464 16.464 8.510 8.806 6.061 6.229 11.482 15.598 1 8.460 8.756 6.011 6.179 10.886 14.809 1 8.410 8.706 5.961 6.129 10.342 14.085 1	.850	8.660	8.956	6.211	6.379	13.668	18.471	15.915	15.847
8.560 8.856 6.111 6.279 12.138 16.464 16.464 8.510 8.806 6.061 6.229 11.482 15.598 1 8.460 8.756 6.011 6.179 10.886 14.809 1 8.410 8.706 5.961 6.129 10.342 14.085 1	.900	8.610	8.906	6.161	6.329	12.863	17.418	14.956	14.895
8.510 8.806 6.061 6.229 11.482 15.598 15.598 8.460 8.756 6.011 6.179 10.886 14.809 7 8.410 8.706 5.961 6.129 10.342 14.085 7	.950	8.560	8.856	6.111	6.279	12.138	16.464	14.091	14.036
8.460 8.756 6.011 6.179 10.886 14.809 8.410 8.706 5.961 6.129 10.342 14.085	.000	8.510	8.806	6.061	6.229	11.482	15.598	13.306	13.258
8.410 8.706 5.961 6.129 10.342 14.085	.050	8.460	8.756	6.011	6.179	10.886	14.809	12.592	12.549
	.100	8.410	8.706	5.961	6.129	10.342	14.085	11.940	11.901

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

(E))		,		0 0 1 - 1 0 0		
- ·	SK Island	SK Paradise	Hanwoori	Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
1.150	8.360	8.656	5.911	620.9	9.844	13.421	11.341	11.307
1.200	8.310	8.606	5.861	6.029	9.386	12.809	10.790	10.760
1.250	8.260	8.556	5.811	5.979	8.963	12.243	10.282	10.255
1.300	8.210	8.506	5.761	5.929	8.572	11.719	9.811	9.788
1.350	8.160	8.456	5.711	5.879	8.210	11.232	9.374	9.354
1.400	8.110	8.406	5.661	5.829	7.872	10.777	8.967	8.950
1.450	8.060	8.356	5.611	5.779	7.558	10.353	8.587	8.573
1.500	8.010	8.306	5.561 0//	5.729	7.264	9.957	8.232	8.220
1.550	7.960	8.256	5.511	5.679	986.9	9.585	7.899	7.890
1.600	7.910	8.206	5.461	6292	6.730	9.235	7.586	7.580
1.650	7.860	8.156	5.411	5.579	6.487	8.906	7.292	7.288
1.700	7.810	8.106	5.361	5.529	6.258	8.596	7.015	7.013
1.750	7.760	8.056	5.311	5.479	6.042	8.303	6.754	6.754
1.800	7.710	8.006	5.261	5.429	5.838	8.026	6.507	6.508
1.850	7.660	7.956	5.211	5.379	5.644	7.764	6.272	6.276
1.900	7.610	7.906	5.161	5.329	5.461	7.515	6.050	950.9
1.950	7.560	7.856	5.111	5.279	5.287	7.278	5.840	5.847
2.000	7.510	7.806	5.061	5.229	5.122	7.054	5.639	5.648
2.050	7.460	7.756	5.011	5.179	4.964	6.840	5.449	5.458
2.100	7.410	7.706	4.961	5.129	4.814	6.636	5.267	5.278

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

(m) Isl 2.150 7.2 2.200 7.2 2.350 7.2 2.350 7.2 2.400 7.2 2.450 7.6 2.550 6.8 2.600 6.8	SK Island 7.360 7.310 7.260 7.260 7.210 7.110 7.100	SK Paradise 7.656 7.606			ХK	710		
	360 310 260 210 1160 .060	7.656	Hanwoori	Hanbada	JSland	5K Paradise	Hanwoori	Hanbada
	.260 .210 .160 .110 .060	7.606	4.911	5.079	4.671	6.441	5.093	5.106
	.260 .210 .160 .110 .060		4.861	5.029	4.535	6.255	4.928	4.942
	.210 .160 .110 .060	7.556	4.811	4.979	4.404	6.077	4.769	4.785
	.160 .110 .060	7.506	4.761	4.929	4.279	5.907	4.618	4.634
	.110	7.456	4.711	4.879	4.160	5.744	4.473	4.490
	090	7.406	4.661	4.829	4.045	5.587	4.334	4.352
		7.356	4.611	4.779	3.935	5.437	4.200	4.220
	7.010	7.306	4.561 0,	4.729	3.829	5.293	4.072	4.092
	096.9	7.256	4.511	4.679	3.728	5.155	3.949	3.970
	6.910	7.206	4.461	4.629	3.630	5.021	3.830	3.853
	098.9	7.156	4.411	4.579	3.536	4.893	3.716	3.739
2.700 6.8	6.810	7.106	4.361	4.529	3.445	4.770	3.606	3.630
2.750 6.7	092:9	7.056	4.311	4.479	3.358	4.650	3.500	3.525
2.800 6.7	6.710	7.006	4.261	4.429	3.274	4.535	3.398	3.424
2.850 6.0	099:9	6.956	4.211	4.379	3.193	4.425	3.300	3.326
2.900 6.0	6.610	6.906	4.161	4.329	3.114	4.317	3.205	3.232
2.950 6.5	6.560	6.856	4.111	4.279	3.038	4.214	3.113	3.140
3.000 6.1	6.510	908.9	4.061	4.229	2.965	4.114	3.024	3.052

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

	NGC	C 电学公		면각을	- 고려한 선회	중 외방경사 이론식	이론식
SK Island	SK Paradise	Hanwoori	Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
9.366	069.6	6.602	5.927	39.442	60.759	46.971	39.562
9.316	9.640	6.552	5.877	33.567	49.425	39.404	33.546
9.266	9.590	6.502	5.827	29.265	42.196	34.053	29.145
9.216	9.540	6.452	5.777	25.950	36.966	30.005	25.757
9.166	9.490	6.402	5.727	23.306	32.944	26.814	23.056
9.116	9.440	6.352	5.677	21.143	29.727	24.222	20.846
990.6	9.390	6.302	5.627	19.337	27.084	22.070	19.002
9.016	9.340	6.252	5.577	17.805	24.868	20.251	17.437
996.8	9.290	6.202	5.527	16.488	22.979	18.691	16.091
8.916	9.240	6.152	5.477	15.342	21.347	17.339	14.921
8.866	9.190	6.102	5.427	14.337	19.923	16.153	13.895
8.816	9.140	6.052	5.377	13.447	18.667	15.106	12.986
8.766	6.090	6.002	5.327	12.654	17.552	14.173	12.175
8.716	9.040	5.952	5.277	11.942	16.554	13.336	11.448
999:8	8.990	5.902	5.227	11.300	15.655	12.582	10.791
8.616	8.940	5.852	5.177	10.717	14.842	11.898	10.196
8.566	8.890	5.802	5.127	10.185	14.101	11.275	9.653
8.516	8.840	5.752	5.077	669'6	13.425	10.706	9.156
8.466	8.790	5.702	5.027	9.253	12.805	10.182	8.700
8.416	8.740	5.652	4.977	8.841	12.233	9.700	8.279

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

[부록 1] 대상별 모델링 요소 수치해석 - GoM(continued)

Collection @ kmou

I	SK id Paradise 5 7.890 5 7.840 5 7.790 5 7.740	Hanwoori		120	710		
			Hanbada	SK Island	SK Paradise	Hanwoori	Hanbada
		4.802	4.127	4.792	6.642	4.966	4.140
		4.752	4.077	4.652	6.449	4.802	3.997
		4.702	4.027	4.518	6.265	4.645	3.860
		4.652	3.977	4.390	6.088	4.496	3.729
	5 7.690	4.602	3.927	4.268	5.920	4.352	3.603
	5 7.640	4.552	3.877	4.150	5.758	4.215	3.483
	5 7.590	4.502	3.827	4.037	5.603	4.084	3.368
2.500 7.216	5 7.540	4.452 0//	3.777	3.929	5.455	3.957	3.257
2.550 7.166	5 7.490	4.402	3.727	3.825	5.312	3.836	3.151
	5 7.440	4.352	229.8	3.725	5.174	3.719	3.049
2.650 7.066	5 7.390	4.302	3.627	3.629	5.042	3.607	2.951
2.700 7.016	5 7.340	4.252	3.577	3.537	4.915	3.499	2.856
2.750 6.966	5 7.290	4.202	3.527	3.448	4.793	3.395	2.765
2.800 6.916		4.152	3.477	3.362	4.674	3.294	2.677
2.850 6.866	5 7.190	4.102	3.427	3.279	4.560	3.198	2.592
2.900 6.816		4.052	3.377	3.199	4.450	3.104	2.510
2.950 6.766	5 7.090	4.002	3.327	3.121	4.344	3.014	2.431
3.000 6.716	5 7.040	3.952	3.277	3.047	4.241	2.926	2.355

【부록 2】대상별 모델링 요소 수치해석 - Speed

Cmood	IMO 복유	원성 성능기준	선회 중 횡경	사 계산식
Speed (m.6)	SK	SK	Hanwoori	Hanbada
(m/s)	Island	Paradise	Tianwoon	Tanbada
5.000	1.407	0.865	0.821	2.378
5.100	1.464	0.900	0.854	2.475
5.200	1.522	0.935	0.888	2.573
5.300	1.581	0.971	0.923	2.673
5.400	1.641	1.008	0.958	2.774
5.500	1.703	1.046	0.994	2.878
5.600	1.765	1.085	1.030	2.984
5.700	1.829	1.124	1.067	3.092
5.800	1.894	1.163	1.105	3.201
5.900	1.960	1.204	1.144	3.313
6.000	2.027	1.245	1.183	3.426
6.100	2.095	1.287	1.222	3.541
6.200	2.164	1.329	1.263	3.659
6.300	2.234	1.373	1.304	3.778
6.400	2.306	1.417	1.346	3.899
6.500	2.379	1.461	1.388	4.022
6.600	2.452	1.507	1.431	4.147
6.700	2.527	1.553	1.475	4.273
6.800	2.603	1.599	1.519	4.402
6.900	2.681	1.647	1.564	4.533
7.000	2.759	1.695	1.610	4.666
7.100	2.838	1.744	1.656	4.800
7.200	2.919	1.793	1.703	4.937
7.300	3.001	1.843	1.751	5.075
7.400	3.084	1.894	1.799	5.215
7.500	3.168	1.946	1.848	5.358

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	IMO 복	원성 성능기준	선회 중 횡경	사 계산식
Speed(m/s)	SK	SK	Hanwoori	Hanbada
	Island	Paradise	Hallwoon	Папраца
7.600	3.253	1.998	1.898	5.502
7.700	3.339	2.051	1.948	5.648
7.800	3.426	2.105	1.999	5.796
7.900	3.515	2.159	2.051	5.946
8.000	3.605	2.214	2.103	6.099
8.100	3.695	2.270	2.156	6.253
8.200	3.787	2.326	2.209	6.409
8.300	3.880	2.383	2.264	6.566
8.400	3.975	2.441	2.318	6.726
8.500	4.070	2.499	2.374	6.888
8.600	4.166	2.559	2.430	7.052
8.700	4.264	2.619	2.487	7.218
8.800	4.363	2.679	2.545	7.386
8.900	4.463	2.740	2.603	7.556
9.000	4.564	2.802	2.662	7.727
9.100	4.666	2.865	2.721	7.901
9.200	4.769	2.928	2.781	8.077
9.300	4.874	2.992	2.842	8.255
9.400	4.979	3.057	2.904	8.434
9.500	5.086	3.123	2.966	8.616
9.600	5.194	3.189	3.029	8.800
9.700	5.303	3.256	3.092	8.986
9.800	5.414	3.323	3.156	9.174
9.900	5.525	3.391	3.221	9.363
10.000	5.637	3.460	3.287	9.555

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	IMO 복원성	성능기준 선	희 중 횡경사	변형 계산식
Speed(m/s)	SK	SK	Hanwoori	Hanbada
	Island	Paradise	Tianwoon	Tianbada
5.000	2.815	1.729	1.643	4.761
5.100	2.929	1.799	1.709	4.954
5.200	3.045	1.871	1.777	5.150
5.300	3.164	1.943	1.846	5.351
5.400	3.284	2.017	1.916	5.556
5.500	3.407	2.093	1.988	5.764
5.600	3.532	2.170	2.061	5.976
5.700	3.660	2.248	2.135	6.192
5.800	3.790	2.327	2.211	6.412
5.900	3.922	2.408	2.288	6.636
6.000	4.056	2.491	2.366	6.864
6.100	4.192	2.575	2.445	7.096
6.200	4.331	2.660	2.526	7.332
6.300	4.472	2.746	2.608	7.572
6.400	4.616	2.834	2.692	7.816
6.500	4.761	2.924	2.777	8.063
6.600	4.909	3.014	2.863	8.315
6.700	5.060	3.106	2.950	8.571
6.800	5.212	3.200	3.039	8.831
6.900	5.367	3.295	3.129	9.095
7.000	5.524	3.391	3.221	9.362
7.100	5.684	3.489	3.314	9.634
7.200	5.846	3.588	3.408	9.910
7.300	6.010	3.688	3.503	10.190
7.400	6.176	3.790	3.600	10.475
7.500	6.345	3.894	3.698	10.763

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	IMO 복	원성 성능기준	선회 중 횡경	사 계산식
Speed(m/s)	SK	SK	Hanwoori	Hanbada
	Island	Paradise	панwооп	папраца
7.600	6.516	3.998	3.797	11.056
7.700	6.689	4.104	3.898	11.352
7.800	6.865	4.212	4.000	11.653
7.900	7.043	4.321	4.104	11.958
8.000	7.223	4.431	4.208	12.268
8.100	7.406	4.543	4.314	12.581
8.200	7.591	4.656	4.422	12.899
8.300	7.779	4.770	4.531	13.221
8.400	7.968	4.886	4.641	13.548
8.500	8.161	5.004	4.752	13.879
8.600	8.355	5.122	4.865	14.214
8.700	8.552	5.243	4.979	14.554
8.800	8.751	5.364	5.094	14.898
8.900	8.953	5.487	5.211	15.247
9.000	9.157	5.611	5.329	15.600
9.100	9.363	5.737	5.449	15.958
9.200	9.572	5.864	5.569	16.320
9.300	9.783	5.993	5.692	16.687
9.400	9.997	6.123	5.815	17.059
9.500	10.213	6.255	5.940	17.435
9.600	10.432	6.388	6.066	17.816
9.700	10.653	6.522	6.194	18.202
9.800	10.876	6.658	6.322	18.593
9.900	11.102	6.795	6.453	18.989
10.000	11.330	6.934	6.584	19.390

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	7	병상 선회 중 의	의방경사 이론<	식
Speed(m/s)	SK	SK	Hanwoori	Hanbada
	Island	Paradise		
5.000	2.775	1.706	1.570	4.658
5.100	2.887	1.775	1.634	4.845
5.200	3.002	1.845	1.699	5.036
5.300	3.118	1.917	1.764	5.230
5.400	3.236	1.990	1.832	5.429
5.500	3.357	2.064	1.900	5.630
5.600	3.480	2.140	1.970	5.835
5.700	3.605	2.217	2.041	6.044
5.800	3.732	2.295	2.113	6.256
5.900	3.862	2.375	2.186	6.472
6.000	3.993	2.456	2.261	6.691
6.100	4.127	2.539	2.337	6.914
6.200	4.263	2.622	2.414	7.140
6.300	4.401	2.708	2.492	7.370
6.400	4.541	2.794	2.572	7.603
6.500	4.684	2.882	2.653	7.840
6.600	4.828	2.971	2.735	8.080
6.700	4.975	3.062	2.818	8.323
6.800	5.124	3.154	2.903	8.570
6.900	5.275	3.247	2.989	8.820
7.000	5.428	3.341	3.076	9.073
7.100	5.583	3.437	3.164	9.329
7.200	5.740	3.535	3.254	9.589
7.300	5.900	3.633	3.345	9.852
7.400	6.061	3.733	3.437	10.118
7.500	6.225	3.834	3.530	10.388

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	7	정상 선회 중 9	외방경사 이론~	식
Speed(m/s)	SK	SK	Llewryzoowi	Hanbada
	Island	Paradise	Hanwoori	папраца
7.600	6.391	3.937	3.624	10.660
7.700	6.559	4.041	3.720	10.936
7.800	6.729	4.146	3.817	11.215
7.900	6.901	4.253	3.915	11.497
8.000	7.075	4.361	4.015	11.781
8.100	7.251	4.470	4.115	12.069
8.200	7.429	4.581	4.217	12.360
8.300	7.609	4.693	4.320	12.654
8.400	7.791	4.806	4.425	12.950
8.500	7.976	4.920	4.530	13.249
8.600	8.162	5.036	4.637	13.552
8.700	8.350	5.153	4.745	13.856
8.800	8.540	5.272	4.854	14.164
8.900	8.733	5.392	4.965	14.474
9.000	8.927	5.513	5.076	14.787
9.100	9.123	5.635	5.189	15.103
9.200	9.321	5.759	5.303	15.421
9.300	9.521	5.884	5.418	15.741
9.400	9.723	6.010	5.535	16.064
9.500	9.927	6.138	5.652	16.390
9.600	10.133	6.267	5.771	16.717
9.700	10.340	6.397	5.891	17.047
9.800	10.550	6.528	6.012	17.379
9.900	10.761	6.661	6.135	17.714
10.000	10.974	6.795	6.258	18.050

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	 편각을	고려한 선회	중 외방경사	 이론식
Speed(m/s)	SK	SK	I I and a series	TTambada
	Island	Paradise	Hanwoori	Hanbada
5.000	2.836	1.749	1.525	3.960
5.100	2.951	1.819	1.587	4.120
5.200	3.068	1.892	1.649	4.284
5.300	3.187	1.965	1.713	4.450
5.400	3.309	2.040	1.779	4.620
5.500	3.432	2.116	1.845	4.793
5.600	3.559	2.194	1.913	4.970
5.700	3.687	2.273	1.982	5.149
5.800	3.818	2.353	2.052	5.332
5.900	3.951	2.435	2.124	5.518
6.000	4.086	2.519	2.196	5.707
6.100	4.223	2.603	2.270	5.900
6.200	4.363	2.690	2.345	6.096
6.300	4.506	12.777	2.421	6.295
6.400	4.650	2.866	2.499	6.497
6.500	4.797	2.956	2.578	6.702
6.600	4.946	3.048	2.658	6.911
6.700	5.097	3.141	2.739	7.123
6.800	5.251	3.236	2.821	7.339
6.900	5.407	3.332	2.905	7.557
7.000	5.565	3.429	2.990	7.779
7.100	5.726	3.528	3.076	8.005
7.200	5.889	3.628	3.163	8.233
7.300	6.054	3.730	3.252	8.465
7.400	6.222	3.833	3.342	8.700
7.500	6.392	3.937	3.433	8.939

【부록 2】대상별 모델링 요소 수치해석 - Speed(continued)

	IMO 복·	원성 성능기준	선회 중 횡경	사 계산식
Speed(m/s)	SK	SK	Hanwoori	Hanbada
	Island	Paradise	Hallwoon	Папраца
7.600	6.564	4.043	3.525	9.181
7.700	6.739	4.150	3.618	9.427
7.800	6.916	4.259	3.713	9.675
7.900	7.096	4.369	3.809	9.927
8.000	7.277	4.481	3.906	10.183
8.100	7.461	4.594	4.005	10.442
8.200	7.648	4.708	4.104	10.704
8.300	7.837	4.824	4.205	10.970
8.400	8.028	4.941	4.307	11.240
8.500	8.221	5.060	4.411	11.513
8.600	8.417	5.180	4.515	11.789
8.700	8.616	5.301	4.621	12.069
8.800	8.817	5.424	4.728	12.352
8.900	9.020	5.549	4.837	12.639
9.000	9.225	5.674	4.946	12.930
9.100	9.433	5.802	5.057	13.224
9.200	9.644	5.930	5.169	13.521
9.300	9.857	6.060	5.282	13.823
9.400	10.072	6.192	5.397	14.128
9.500	10.290	6.325	5.513	14.436
9.600	10.510	6.459	5.630	14.749
9.700	10.733	6.595	5.748	15.065
9.800	10.958	6.733	5.868	15.385
9.900	11.185	6.871	5.988	15.708
10.000	11.416	7.012	6.110	16.036

[부록 3] 대상별 모델링 요소 수치해석 - Speed length ratio

Speed 3 length ratio Is	7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		- -		ייי כס	,	-	נו		֝֝֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	
	왕경사	世略 利	형경사 변형 계산식(GoM 0.50)	A 0.50)		이론식(GoM 0.50)	oM 0.50)		· 유 정	외방경사 이론식(GoM 0.50)	-식(GoM	0.50)
	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
	Island	Paradise	woori	bada	Island	Paradise	woori	bada	Island	Paradise	woori	bada
0.300	3.830	3.949	2.841	2.882	3.787	3.911	2.760	2.830	3.862	3.995	2.698	2.419
0.310 4	4.090	4.217	3.034	3.078	4.043	4.175	2.946	3.022	4.124	4.267	2.881	2.583
0.320 4	4.358	4.494	3.233	3.280	4.307	4.448	3.139	3.219	4.395	4.547	3.070	2.752
0.330 4	4.636	4.780	3.438	3.488	4.580	4.729	3.338	3.423	4.674	4.836	3.265	2.927
0.340 4	4.921	5.075	3.650	3.703	4.860	5.019	3.543	3.633	4.963	5.135	3.467	3.107
0.350 5	5.216	5.379	3.868	3.925	5.149	5.316	3.754	3.850	5.260	5.442	3.674	3.293
0.360 5	5.519	5.691	4.093	4.152	5.445	5.623	3.971	4.072	5.565	5.758	3.887	3.484
0.370 5	5.831	6.013	4.324	4.387	5.750	5.937	4.193	4.301	5.880	6.084	4.106	3.681
0.380	6.152	6.344	4.561	4.628	6.063	6.260	4.422	4.535	6.203	6.419	4.332	3.883
0.390	6.481	6.684	4.805	4.875	6.383	6.591	4.657	4.776	6.535	6.762	4.563	4.090
0.400	6.819	7.032	5.055	5.129	6.712	6.930	4.898	5.023	928.9	7.115	4.801	4.303
0.410 7	7.166	7.390	5.311	5.389	7.049	7.277	5.144	5.276	7.226	7.478	5.044	4.521
0.420 7	7.522	7.758	5.574	5.656	7.393	7.632	5.397	5.535	7.585	7.849	5.294	4.745
0.430 7	7.887	8.134	5.844	5.930	7.745	7.995	5.655	5.799	7.953	8.230	5.550	4.974
0.440 8	8.261	8.519	6.120	6.210	8.104	8.366	5.920	6.070	8.330	8.620	5.812	5.209
0.450 8	8.643	8.914	6.403	6.496	8.472	8.745	6.190	6.347	8.716	9.020	6.080	5.449

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

Cassa	₹ OWI	복원성 성	IMO 복원성 성능기준 선회	선회 중	₩ ₩	정상 선회	중 외방경사	マ	南	편각을 고려한	한 선회	ớ
Speed Langeth	형경사	변형 계	횡경사 변형 계산식(GoM 0.50)	M 0.50)		이론식(GoM 0.50)	oM 0.50)		り歩き	외방경사 이론식(GoM 0.50)	식(GoM	0.50)
ıengın	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
гапо	Island	Paradise	woori	bada	Island	Paradise	woori	bada	Island	Paractise	woori	bada
0.460	5.847	6.034	4.293	4.358	5.761	5.953	4.157	4.267	5.895	6.105	4.067	3.629
0.470	6.105	6.301	4.482	4.550	6.012	6.213	4.339	4.454	6.155	6.374	4.246	3.788
0.480	6.368	6.573	4.676	4.747	6.269	6.478	4.524	4.644	6.420	6.650	4.429	3.951
0.490	6.638	6.851	4.873	4.947	6.530	6.748	4.714	4.839	6.695	6.931	4.616	4.118
0.500	6.912	7.135	5.074	5.151	6.797	7.024	4.907	5.038	696.9	7.218	4.807	4.288
0.510	7.193	7.424	5.280	5.360	0690.Z	7.305	5.105	5.240	7.252	7.512	5.002	4.462
0.520	7.480	7.720	5.490	5.573	7.346	7.591	5.306	5.446	7.541	7.811	5.200	4.639
0.530	7.772	8.022	5.703	5.790	7.628	7.882	5.510	5.656	7.836	8.116	5.403	4.819
0.540	8.070	8.330	5.921	6.011	7.915	8.178	5.719	5.870	8.136	8.427	5.609	5.003
0.550	8.374	8.643	6.144	6.237	8.207	8.479	5.931	6.088	8.442	8.745	5.820	5.191
0.560	8.683	8.963	6.370	6.467	8.503	8.786	6.147	6.310	8.755	890.6	6.034	5.382
0.570	8.999	9.289	0.09.9	6.701	8.805	6.097	6.367	6.535	9.073	9.398	6.252	5.577
0.580	9.320	9.621	6.835	6:636	9.112	9.413	6.590	6.764	6.397	9.734	6.474	5.775
0.590	9.647	9.959	7.074	7.182	9.423	9.735	6.818	6.997	9.727	10.076	6.701	5.976
0.600	9.980	10.303	7.317	7.429	9.739	10.061	7.048	7.234	10.062	10.424	6.931	6.181

Speed length ratio(continued)

요소 수치해석

3】 中 4 별

돌바]

6.818 7.486 7.716 6.390 6.602 7.037 7.260 7.950 8.187 8.427 bada Han 외방경사 이론식(GoM 0.50) 편각을 고려한 선회 woori 7.165 7.645 8.917 7.403 8.142 8.396 9.183 9.454 7.891 8.654 Han 12.646 13.438 10.779 12.260 Paradise 11.140 11.507 11.880 13.039 13.844 14.257 \mathbf{SK} 11.106 11.466 11.833 12.584 12.969 10.752 12.205 13.758 10.404 Island 13.360 \mathbf{SK} 7.719 9.260 7.475 8.218 7.967 8.473 8.732 8.994 9.530 9.802 bada Han 중 외방경사 이론식(GoM 0.50) woori 7.283 7.762 8.008 8.256 8.509 9.286 7.521 9.024 8.764 Han 9.553 12.475 13.576 12.116 12.838 13.205 정상 선회 10.392 11.412 11.762 **Paradise** 10.727 11.067 \mathbf{SK} 11.732 12.080 12.789 10.385 10.715 11.389 12.432 10.060 11.050 13.149 Island \mathbf{SK} 10.136 8.195 9.278 9.559 9.845 7.680 7.935 8.459 8.728 bada IMO 복원성 성능기준 선회 중 횡경사 변형 계산식(GoM 0.50) Han 9.001 woori 7.565 7.816 8.072 8.332 8.596 8.865 9.415 9.983 9.138 Han 9.697 11.372 **Paradise** 11.009 12.498 10.653 13.281 11.741 12.116 12.886 13.682 14.089 \mathbf{SK} Island 10.319 11.736 12.105 13.250 10.664 11.015 11.373 12.480 12.862 13.644 \mathbf{SK} Speed length 0.6100.650 0.6700.680 ratio 0.630 0.640 0.660 0.6900.700 0.620

- Speed length ratio(continued) 요소 수치해석 모델링 디텔링 [부록 3] 대상별

	IMO 복원성 성능	농기준 선회	선회 중	₹°	정상 선회	중 외방경사	マ	海	편각을 고려한	한 선회	Кþ
\Rightarrow	변형 계	횡경사 변형 계산식(GoM 0.75)	M 0.75)		이론식(G	론식(GoM 0.75)		외방경사	ত	론식(GoM	0.75)
	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
Island	Paradise	woori	bada	Island	Paractise	woori	bada	Island	Paradise	woori	bada
2.483	2.563	1.825	1.852	2.457	2.540	1.770	1.818	2.503	2.593	1.729	1.542
2:652	2.736	1.948	1.978	2.623	2.712	1.890	1.941	2.673	2.768	1.846	1.647
2.826	2.916	2.076	2.108	2.795	2.889	2.014	2.068	2.849	2.950	1.967	1.755
3.005	3.101	2.208	2.241	2.972	3.072	2.142	2.199	3.030	3.138	2:092	1.867
	3.292	2.344	2.379	3.155	3.261	2.274	2.334	3.216	3.331	2.221	1.981
	3.489	2.484	2.522	3.342	3.455	2.409	2.473	3.408	3.530	2.353	2.100
3.577	3.692	2.628	2.668	3.536	3.655	2.549	2.616	3.606	3.735	2.490	2.221
3.779	3.900	2.776	2.818	3.734	3.860	2.692	2.764	3.810	3.945	2.630	2.347
3.986	4.114	2.928	2.973	3.938	4.071	2.839	2.915	4.019	4.162	2.774	2.475
4.199	4.334	3.085	3.131	4.148	4.287	2.990	3.070	4.233	4.384	2.922	2.607
4.418	4.559	3.245	3.294	4.362	4.509	3.145	3.229	4.454	4.612	3.074	2.743
4.642	4.790	3.409	3.461	4.582	4.736	3.304	3.392	4.680	4.847	3.230	2.882
4.872	5.028	3.578	3.632	4.807	4.969	3.467	3.559	4.911	5.086	3.390	3.024
5.107	5.271	3.751	3.808	5.038	5.207	3.634	3.730	5.149	5.332	3.553	3.170
5.348	5.519	3.927	3.987	5.273	5.450	3.804	3.905	5.392	5.584	3.721	3.320

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

,	IMO 복원성	부원성 성	성능기준 선회	선회 주	정상	선회	중 외방경사	☆	南	편각을 고려한	한 선회	ΝЬ
Speed	형경시	횡경사 변형 계산식(GoM 0.75)	산식(Gol	M 0.75)		이론식(GoM 0.75)	oM 0.75)		· 유 정	외방경사 이론식(GoM 0.75)	식(GoM	0.75)
lengui "etio	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
гапо	Island	Paradise	woori	bada	Island	Paradise	woori	bada	Island	Paradise	woori	bada
0.450	5.594	5.774	4.108	4.171	5.514	5.699	3.978	4.084	5.640	5.841	3.892	3.472
0.460	5.847	6.034	4.293	4.358	5.761	5.953	4.157	4.267	5.895	6.105	4.067	3.629
0.470	6.105	6.301	4.482	4.550	6.012	6.213	4.339	4.454	6.155	6.374	4.246	3.788
0.480	898.9	6.573	4.676	4.747	6.269	6.478	4.524	4.644	6.420	6.650	4.429	3.951
0.490	6.638	6.851	4.873	4.947	6.530	6.748	4.714	4.839	6.692	6.931	4.616	4.118
0.500	6.912	7.135	5.074	5.151	0.797	7.024	4.907	5.038	696.9	7.218	4.807	4.288
0.510	7.193	7.424	5.280	5.360	7.069	7.305	5.105	5.240	7.252	7.512	5.002	4.462
0.520	7.480	7.720	5.490	5.573	7.346	7.591	5.306	5.446	7.541	7.811	5.200	4.639
0.530	7.772	8.022	5.703	5.790	7.628	7.882	5.510	5.656	7.836	8.116	5.403	4.819
0.540	8.070	8.330	5.921	6.011	7.915	8.178	5.719	5.870	8.136	8.427	2.609	5.003
0.550	8.374	8.643	6.144	6.237	8.207	8.479	5.931	6.088	8.442	8.745	5.820	5.191
0.560	8.683	8.963	6.370	6.467	8.503	8.786	6.147	6.310	8.755	890.6	6.034	5.382
0.570	8.999	9.289	0.600	6.701	8.805	6.097	6.367	6.535	9.073	9.398	6.252	5.577
0.580	9.320	9.621	6.835	6:636	9.112	9.413	6.590	6.764	9.397	9.734	6.474	5.775
0.590	9.647	6:626	7.074	7.182	9.423	9.735	6.818	6.997	9.727	10.076	6.701	5.976
0.600	9.980	10.303	7.317	7.429	9.739	10.061	7.048	7.234	10.062	10.424	6.931	6.181

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

1	₹ OWI	IMO 복원성 성능기준 선회	농기준	선회 중	₹ 0	정상 선회	중 외방경사	수	海	편각을 고려	고려한 선회	Кþ
Speed 12502th	형경사	횡경사 변형 계산식(GoM 0.75)	'산식(Go	M 0.75)		이론식(GoM 0.75)	oM 0.75)		8 1 1 1 1	외방경사 이론식(GoM 0.75)	식(GoM	0.75)
iengui	\mathbf{SK}	\mathbf{SK}	Han	Han	\mathbf{SK}	\mathbf{SK}	Han	Han	$\mathbf{X}\mathbf{S}$	\mathbf{SK}	Han	Han
rano	Island	Paradise	woori	bada	Island	Paractise	woori	bada	Island	Paradise	woori	bada
0.610	10.319	10.653	7.565	7.680	10.060	10.392	7.283	7.475	10.404	10.779	7.165	6.390
0.620	10.664	11.009	7.816	7.935	10.385	10.727	7.521	7.719	10.752	11.140	7.403	6.602
0.630	11.015	11.372	8.072	8.195	10.715	11.067	7.762	7.967	11.106	11.507	7.645	6.818
0.640	11.373	11.741	8.332	8.459	11.050	11.412	8.008	8.218	11.466	11.880	7.891	7.037
0.650	11.736	12.116	8.596	8.728	11.389	11.762	8.256	8.473	11.833	12.260	8.142	7.260
099.0	12.105	12.498	8.865	9.001	(11.732	12.116	8.509	8.732	12.205	12.646	8.396	7.486
0.670	12.480	12.886	9.138	9.278	12.080	12.475	8.764	8.994	12.584	13.039	8.654	7.716
0.680	12.862	13.281	9.415	9.559	12.432	12.838	9.024	9.260	12.969	13.438	8.917	7.950
069.0	13.250	13.682	6.697	9.845	12.789	13.205	9.286	9.530	13.360	13.844	9.183	8.187
0.700	13.644	14.089	9.983	10.136	13.149	13.576	9.553	9.802	13.758	14.257	9.454	8.427
0.710	14.045	14.503	10.273	10.431	13.514	13.952	9.822	10.079	14.162	14.676	9.728	8.672
0.720	14.452	14.924	10.568	10.730	13.882	14.331	10.095	10.359	14.572	15.103	10.007	8.920
0.730	14.865	15.352	10.867	11.034	14.255	14.715	10.372	10.642	14.989	15.535	10.290	9.171
0.740	15.285	15.786	11.171	11.342	14.632	15.103	10.651	10.928	15.413	15.975	10.577	9.427
0.750	15.712	16.227	11.479	11.655	15.012	15.494	10.934	11.218	15.843	16.422	10.868	9.685
0.760	16.145	16.676	11.791	11.973	15.396	15.889	11.220	11.511	16.280	16.876	11.164	9.948

0.000) IMO	IMO 복원성 성능기준 선회	능기준	선회 중	₩ ₩	정상 선회	중 외방경사	ヤ	南	편각을 고려	고려한 선회	Кþ
Speed 1220th	형경시	횡경사 변형 계산식(GoM 0.75)	산식(Go	M 0.75)		이론식(GoM 0.75)	oM 0.75)		외방경사	경사 이론	이론식(GoM	0.75)
lengui "otio	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
ratio	Island	Paractise	woori	bada	Island	Paradise	woori	bada	Island	Paractise	woori	bada
0.770	16.585	17.131	12.108	12.295	15.784	16.288	11.510	11.808	16.724	17.337	11.463	10.214
0.780	17.031	17.593	12.430	12.621	16.175	16.691	11.802	12.108	17.174	17.805	11.767	10.484
0.790	17.485	18.062	12.756	12.953	16.570	17.097	12.098	12.411	17.632	18.281	12.075	10.758
0.800	17.945	18.539	13.087	13.288	16.968	17.506	12.397	12.717	18.096	18.764	12.388	11.036
0.810	18.412	19.023	13.422	13.629	17.370	17.918	12.699	13.026	18.568	19.254	12.705	11.317
0.820	18.887	19.515	13.762	13.975	17.774	18.334	13.003	13.338	19.047	19.752	13.026	11.602
0.830	19.369	20.014	14.106	14.325	18.182	18.753	13.311	13.653	19.533	20.257	13.351	11.891
0.840	19.858	20.520	14.456	14.680	18.593	19.175	13.622	13.971	20.026	20.771	13.681	12.183
0.850	20.354	21.035	14.810	15.039	19.007	19.599	13.936	14.292	20.527	21.292	14.015	12.480
0.860	20.858	21.557	15.169	15.404	19.423	20.027	14.252	14.616	21.036	21.822	14.354	12.780
0.870	21.370	22.088	15.532	15.774	19.842	20.457	14.572	14.943	21.552	22.359	14.697	13.084
0.880	21.889	22.626	15.901	16.148	20.264	20.889	14.894	15.272	22.077	22.905	15.045	13.392
0.890	22.416	23.173	16.274	16.528	20.688	21.324	15.219	15.605	22.609	23.460	15.397	13.704
0.900	22.951	22.951 23.729	16.653	16.912	21.115	21.761	15.546	15.940	23.149	24.023	15.754	14.020
											ı	

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

	IMO 복원성	복원성 성	성능기준 선회	선회 중	₹ %	정상 선회	중 외방경사	수	南	편각을 고려한	1한 선회	ΝЬ
Speed 1870 ath	형경사	· 변형 계	황경사 변형 계산식(GoM 1.00)	M 1.00)		이론식(GoM 1.00)	oM 1.00)		·유명	외방경사 이론식(GoM 1.00)	-식(GoM	1.00)
lengm "otio	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
rano	Island	Paractise	woori	bada	Island	Paractise	woori	bada	Island	Paradise	woori	bada
0.500	5.035	5.201	3.660	3.718	4.963	5.134	3.539	3.637	5.075	5.261	3.458	3.069
0.510	5.239	5.412	3.808	3.868	5.163	5.341	3.682	3.783	5.281	5.475	3.598	3.193
0.520	5.447	5.627	3.959	4.022	5.366	5.551	3.827	3.933	5.491	5.692	3.741	3.320
0.530	5.659	5.846	4.113	4.178	5.573	5.765	3.975	4.085	5.704	5.914	3.886	3.449
0.540	5.876	690.9	4.270	4.337	5.784	5.983	4.126	4.240	5.923	6.140	4.034	3.581
0.550	960.9	6.297	4.430	4.500	2:998	6.205	4.280	4.398	6.145	6.371	4.185	3.715
0.560	6.321	6.529	4.593	4.665	6.2175	6.431	4.436	4.559	6.371	6.605	4.339	3.851
0.570	6.549	992.9	4.759	4.834	6:436	6.661	4.595	4.722	6.602	6.844	4.496	3.990
0.580	6.782	7.006	4.928	5.005	6.665	6.894	4.757	4.888	6.836	7.088	4.655	4.132
0.590	7.019	7.251	5.099	5.180	6.895	7.131	4.922	5.058	7.075	7.336	4.818	4.276
0.600	7.261	7.501	5.274	5.357	7.128	7.373	5.089	5.230	7.319	7.588	4.983	4.422
0.610	7.506	7.754	5.452	5.538	7.365	7.617	5.259	5.404	7.566	7.845	5.151	4.571
0.620	7.756	8.012	5.633	5.722	7.606	7.866	5.432	5.582	7.818	8.106	5.321	4.722
0.630	8.009	8.275	5.817	5.908	7.850	8.119	5.608	5.762	8.074	8.371	5.495	4.876
0.640	8.267	8.541	6.003	860.9	8:098	8.375	5.786	5.945	8.334	8.641	5.671	5.033
0.650	8.530	8.812	6.193	6.291	8.349	8.635	5.967	6.131	8.598	8.915	5.851	5.192

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

1	MO	IMO 복원성 성능기준 선회	농기준 /	선회 중	₹°	정상 선회	중 외방경사	本	海	편각을 고려한	한 선회	ሎ
Speed 1828	형경시	횡경사 변형 계산식(GoM 1.00)	산식(Go	M 1.00)		이론식(GoM 1.00)	oM 1.00)		る時で	경사 이론	외방경사 이론식(GoM 1.00)	1.00)
lengui "ctio	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
rano	Island	Paradise	woori	bada	Island	Paradise	woori	bada	Island	Paractise	woori	bada
0.660	962'8	880.6	986.9	6.487	8.604	8.898	6.150	6.320	8.867	9.194	6.033	5.353
0.670	6.067	9.368	6.582	989.9	8.863	9.165	6.337	6.511	9.140	9.477	6.218	5.517
0.680	9.342	9.652	6.781	6.888	9.125	9.436	6.526	6.705	9.417	9.765	6.405	5.684
069.0	9.622	9.941	6.983	7.093	9.391	9.710	6.717	6.902	669.6	10.057	6.596	5.852
0.700	6.905	10.234	7.187	7.301	099.6	9.988	6.911	7.101	9.985	10.354	6.789	6.024
0.710	10.193	10.532	7.395	7.513	0.932	10.270	7.108	7.303	10.275	10.656	986.9	6.198
0.720	10.486	10.834	2.606	7.727	10.208	10.554	7.308	7.508	10.570	10.962	7.185	6.375
0.730	10.782	11.141	7.821	7.944	10.487	10.843	7.510	7.716	10.869	11.272	7.387	6.554
0.740	11.084	11.453	8:038	8.165	10.770	11.134	7.715	7.926	11.173	11.587	7.592	6.735
0.750	11.389	11.769	8.258	8.389	11.056	11.430	7.922	8.139	11.481	11.907	7.800	6.919
0.760	11.699	12.089	8.481	8.616	11.345	11.728	8.132	8.354	11.794	12.232	8.011	7.106
0.770	12.014	12.415	8.708	8.846	11.637	12.030	8.344	8.572	12.111	12.561	8.224	7.295
0.780	12.333	12.745	8.937	6.079	11.933	12.335	8.559	8.793	12.432	12.895	8.441	7.487
0.790	12.656	13.079	9.170	9.315	12.232	12.643	8.777	9.016	12.758	13.234	8.660	7.681
0.800	12.984	13.419	9.405	9.555	12.534	12.954	8.997	9.242	13.089	13.577	8.883	7.878
0.810	13.317	13.763	9.644	9.797	12.839	13.269	9.219	9.470	13.424	13.926	9.108	8.078

- Speed length ratio(continued) 요소 수치해석 모델링 [부록 3] 대상별

	₹ OWI	IMO 복원성 성능기준 선회	농기준	선회 중	₹ %	정상 선회	중 외방경시	수	南	편각을 고려	고려한 선회	ሎ
Speed	형경사	황경사 변형 계산식(GoM 1.00)	'산식(Go	M 1.00)		이론식(GoM 1.00)	oM 1.00)		· 육 62 /	외방경사 이론식(GoM 1.00)	식(GoM	1.00)
lengui "etio	SK	SK	Han	Han	SK	SK	Han	Han	SK	SK	Han	Han
гапо	Island	Paradise	woori	bada	Island	Paractise	woori	bada	Island	Paradise	woori	bada
0.820	13.654	14.112	988.6	10.043	13.147	13.586	9.444	9.701	13.764	14.279	9:336	8.280
0.830	13.995	14.465	10.131	10.292	13.458	13.907	9.671	9.935	14.109	14.637	9.567	8.485
0.840	14.342	14.824	10.380	10.545	13.772	14.230	9.901	10.170	14.458	15.000	9.802	8.692
0.850	14.693	15.187	10.631	10.800	14.089	14.557	10.134	10.409	14.813	15.368	10.039	8.902
0.860	15.049	15.556	10.886	11.059	14.408	14.886	10.368	10.650	15.172	15.741	10.279	9.114
0.870	15.410	15.929	11.143	11.321	14.731	15.219	10.605	10.893	15.535	16.119	10.522	9.329
0.880	15.775	16.308	11.405	11.587	15.056	15.554	10.845	11.138	15.904	16.502	10.768	9.547
0.890	16.145	16.691	11.669	11.855	15.384	15.891	11.087	11.386	16.277	16.891	11.017	6.767
0.900	16.521	17.080	11.936	12.127	15.715	16.232	11.331	11.637	16.656	17.284	11.270	066.6
0.910	16.901	17.474	12.207	12.402	16.048	16.575	11.577	11.889	17.039	17.683	11.525	10.216
0.920	17.286	17.873	12.481	12.681	16.384	16.920	11.826	12.144	17.428	18.087	11.783	10.444
0.930	17.676	18.277	12.759	12.963	16.722	17.268	12.077	12.402	17.821	18.497	12.044	10.675
0.940	18.071	18.687	13.039	13.248	17.063	17.619	12.330	12.661	18.220	18.912	12.309	10.909
0.950	18.471	19.102	13.323	13.537	17.406	17.972	12.585	12.923	18.624	19.332	12.576	11.145
096.0	18.877	19.522	13.611	13.829	17.751	18.327	12.843	13.187	19.033	19.758	12.847	11.384
0.970	19.288	19.948	13.901	14.125	18.099	18.684	13.103	13.453	19.447	20.190	13.121	11.626

[뉴록 3]

- Speed length ratio(continued) 수치해석 숙 모델링 [부록 3] 대상별

100	î OMI	IMO 복원성 성능7	1 우기준 4	기준 선회 중	₩	상 선회	정상 선회 중 외방경사	사	<u> </u>	편각을 고려한 선회	한 선회	ớ
opeed of oth	횡경시	형경사 변형 계산식	산식(Go∣	식(GoM 1.00)		이론식(GoM 1.00)	oM 1.00)		り帯グ	외방경사 이론식(GoM 1.00)	식(GoM	1.00)
ıngııa	\mathbf{SK}	\mathbf{SK}	Han	Han	\mathbf{SK}	\mathbf{SK}	Han	Han	$\mathbf{X}\mathbf{S}$	\mathbf{SK}	Han	Han
гапо	Island	Island Paradise	woori	bada	Island	Paractise	woori	bada	Island	Paradise	woori	bada
.980	19.704	0.980 19.704 20.380 14.	14.195	14.424	18.449	19.044	13.365	13.722	19.867	20.627	13.398	11.870
066.0	20.125	20.125 20.817 14	14.493	14.726	18.801	19.406	13.629	13.992	20.292	21.070	13.678	12.117
1.000	20.552	20.552 21.260 14	14.794	15.032 19.155	19.155	19.769	13.895	14.265	20.723	21.519	13.961 12.367	12.367

1945

