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Abstract

Recent years, there is a great increase in application of Field Oriented

Control(FOC) for speed and torque of industrial induction motor drives. This

trend can be seen in various industries like Steel, paper and also various

machinery tools etc. Among the various method of drive controls, Direct

Torque Control (DTC) and Vector Control are considered most high

performance induction motor drives.

An induction motor based on DTC is being increasingly used in various

industrial applications. DTC offers faster torque response, better speed

control and lesser hardware costs in compared with vector controlled drives.

However, the conventional DTC suffers from high torque ripple, current

harmonics and low performance during torque transients.

In this paper, an improved direct torque control technique of induction



motor is presented. In comparison with the conventional DTC technique, a

well-developed Space Vector Modulation(SVM) technique is applied for more

accurate current control. The torque and flux magnitude are under control

using each PI controller, thereby generating the voltage command for

inverter control.

To control the speed and torque for induction motor, the system usually

necessitates an information of speed or flux of the motor. However, there

are many problems in case of using speed or flux sensors. A sensor

requires a mounting space on the motor, reduces the reliability, and

increases cost of the drive system. Therefore the various sensorless control

algorithms have been proposed for the elimination of speed or flux sensors.

For most of those sensorless methods, the control performance in high

speed range is good, but it is difficult to obtain satisfactory result in low

speed region.

This paper presents sensorless speed control system for induction motor

drive with an improved DTC method. The system consists of closed loop

stator flux and torque controller, speed and torque estimators, PI controllers,

PWM(Pulse width modulation) technique, IGBT(Insulated gate bipolar

transistor) voltage source inverter, and micro-processor. The motor speed is

estimated by using differential operator based on flux calculator.

The simulation and experimental results based on an improved DTC

technique indicated good speed and load response from the low speed range

to the high speed range. The torque and speed ripple could be reduced in

comparison with the conventional switching table DTC method.
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Table 4.1 Inverter switching states and output voltages.
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Table. 4.3 Comparison table of conventional DTC and improved DTC.
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Table 5.1 Parameters of induction motor used for computer simulation and

experiment & system constants.
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9[A]  180[mH]
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4  ( ) 0.1[Kg m2]
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Table 6.1 Specification of dynamometer.

Maker MAGTROL

Model HD-805-7NA

Brake Hysteresis Brake

Torque Range[N-m] 23.5[N-m]

Maximum Speed[rpm] 6,000[rpm]

Maximum Input Power[Watts]
3,600[Watts] continuous duty

6,000[Watts] < 5minutes
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