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The paper presents comparison between two approximate models of energized horizontal thin-wire conductors
above two-layer soil. The formulation is posed in frequency domain by using two approaches. The first one is based
on quasi-static image theory within Mixed Potential Integral Equation. The second one is based on transmission
line theory with approximation of per unit length parameters. The authors compare currents computed by the both
approximate models of a center fed wire to establish the computation errorsover a wide frequency range. The main
objective is to validate the proposed image and transmission line models for various lengths of wire conductors, and
various cases of low and high conductivities of two-layer soil. The verification of the results is done by comparison
with exact model based on full-wave theory. Detailed parametric analysisclearly illustrate validity domain and
problems when using both approximate models with respect to their use in practical EMC studies.
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Usporedba zrcalnog modela i modela prijenosnih linija u analizi horizontalne žičane strukture iznad
dvoslojnog tla. U radu je prikazana usporedba dviju približnih modela analize pobu�enog horizontalnog tankog
žičanog vodǐca iznad dvoslojnog tla. Formulacija problema je izvedena u frekvencijskoj domeni pomócu dva pris-
tupa. Prvi pristup se temelji na kvazi-statičkom zrcalnom modelu unutar integralne jednadžbe s mješovitim poten-
cijalima. Drugi se temelji na teoriji prijenosnih linija s aproksimacijom jediničnih parametara. Autori su usporedili
distribucije struje izrǎcunate s pomócu obje približne metode kako bi odredili pogrešku metoda u širokom rasponu
frekvencija. Glavni cilj bio je potvrditi predloženi zrcalni i linijski modelza razlǐcite duljine žǐcanog vodǐca i razne
slučajeve niske i visoke vodljivosti slojeva tla. Provjera rezultata obavljena jeusporedbom s modelom bez aproksi-
macija temeljenog na punovalnoj teoriji. Detaljna parametarska analiza jasnopokazuju valjanosti domene i vrste
problema uz korištenje obje približne metode s obzirom na njihovu primjenu upraktǐcnim EMC razmatranjima.

Klju čne riječi: punovalna teorija, teorija prijenosnih linija, kvazi-statička zrcalna aproksimacija, dvoslojno tlo

1 INTRODUCTION

The electromagnetic analysis of thin wire structures
above finitely conductive soil (homogeneous or stratified)
is often part of in both antenna and complex electromag-
netic compatibility (EMC) studies, such as transient anal-
ysis of transmission lines due to lightning or faults, pow-
erline communications, etc. Different strategies for mod-
eling have been developed, ranging from transmission line
theory to exact approaches based on electromagnetic the-
ory [1]. The most accurate solution is formulated by us-
ing antenna theory with at least approximations [2]. It is
based on rigorous formulation for the electric field due to
elementary Hertz dipole sources in presence of lossy half-
space. This solution involves Green’s functions that take
into account effects of interfaces between mediums via
exact Sommerfeld formulation. Although practical studies

are often based on a homogeneous earth model, there are
situations when two-layer model is needed to better esti-
mate effects of inherently non-homogeneous earth [3]-[6].
However, because of computational difficulties due direct
numerical integration, approximate approaches are of in-
terest in view that such exact solution becomes time con-
suming and very complex. The survey of the published
work in this area implies that such approximations usually
involve quasi-static theory concepts of images [7].

In this paper the authors present two approximate ap-
proaches. The first one is based on quasi-static image the-
ory in order to obtain approximate Green’s functions for
the given problem. The second approach is based on trans-
mission line theory and uses the propagation effects via
distributed parameters that are determined by using equiv-
alent homogeneous soil approach. To determine the valid-
ity domains of both approximate models, the authors com-
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Fig. 1. A center fed horizontal wire conductor above two-
layer soil

pare the results of the current in the feed point with re-
spect to exact solution. The calculations are done in wide
frequency range from 0.1 to 10 MHz. Detailed parametric
analysis clearly illustrate validity domain and problems in
using both approximate models with respect to their use in
practical EMC studies.

2 HORIZONTAL CENTER FED CONDUCTOR
ABOVE TWO-LAYER SOIL

Considerx–directed horizontal conductor of radiusa
and lengthL placed at heightH above two-layer soil, as
shown in Fig. 1. The central fed energization is assumed
by a harmonic voltage generatorVS in frequency range
from 0.1 to 10 MHz, the time variationejωt is assumed
and suppressed. The air, denoted as medium “0”, occupies
the upper half-space (z > 0), whereas the soil occupies the
lower half-space (z < 0). The soil non-homogeneity is rep-
resented by two parallel homogeneous finitely conductive
layers denoted by “1” for the upper layer of finite depth
d, and “2” for the lower semi-infinite layer. All mediums
are characterized by corresponding values for permeability
µ0, permittivityεi = ε0εri and conductivityσi, (i = 0, 1, 2),
andσ0 = 0 for the air.

3 EXACT MODEL

The exact model for a given problem is based on
the Electric Field Mixed Potential Integral Equation (EF-
MPIE) that is solved by the Method of Moments (MoM)
using Galerkin formulation [8]. In due course, thin-wire
conductor is divided intoN fictitious sub-segments. Next,
the unknown currentI is approximated by a sequence of
expansion functions over two-neighbor subsections thus
forming a segment of total lengthln. Here, we use roof-
top expansion functions which results in a piecewise linear
approximation of the current, as shown in Fig. 2.

The boundary conditions regarding the tangential com-
ponent of the electric field at the wire surface are satisfied

Fig. 2. Approximation of the current with roof-top basis
functions over two neighbor segments

approximately in an average (weighted) way. We choose
the weighting functions to be the same roof-top functions.

The current distribution is obtained by solving the well
known matrix equation [9]

[Z] · [I] = [V ], (1)

where the column matrix [I] represents the unknown cur-
rent samples, [Z] is the generalized impedance matrix re-
lated to mutual impedances between segments, [V] is the
excitation matrix.

The elements of the impedance matrix denoted byzmn

represent self or mutual impedances between a pair of ob-
servation (m) and source (n) segment

zmn =
Vmn

In
=

−1

In

∫

lm

Enxdlm. (2)

Here,Enx is x–directed component of the electric field
vector tangential to the surface of the observation segment
m with lengthlm due to filaments of currentIn and charge
qn along the axis of the source segmentn by using the fol-
lowing Mixed Potential Integral Equation (MPIE) [10]

Enx = −jωAnx −∇Vn, (3)

Anx =
∫
ln

Gxx
A Indln

Vn =
∫
ln

GV qndln
. (4)

This model involves exact formulations for the Green’s
functions of the vector and scalar potentials. Here,Gxx

A

is thex-component of the dyadic Green’s function for the
magnetic vector potential due tox-directed horizontal elec-
tric dipole HED in air above two-layer soil. Respectively,
GV is the scalar potential Green’s function due to one
chargeq associated to the HED.
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The Green’s functionsGxx
A andGV are obtained firstly

in the transformed Fourier domain by solving the corre-
sponding wave equations with respect to the boundary con-
ditions at the interfaces. The spectral expressions for the
vector and scalar Green’s functions relative to this prob-
lem may be derived from the generalized expressions [11]

G̃xx
A =

µ0

2

[
e−u0(z−z′)

u0
+RTEgen

e−u0(z+z′)

u0

]

=
µ0

2

[
G̃dir + G̃xx

Aref

] , (5)

G̃V =
1

2ε0

[
e−u0(z−z′)

u0

+
k20RTEgen − u2

0RTMgen

λ2

e−u0(z+z′)

u0

]

=
1

2ε0

[
G̃dir + G̃V ref

]

. (6)

The spatial domain Green’s functions are later obtained
by solving a Sommerfeld-type integral

Gxx
A,V = S0

{
G̃xx

A,V

}
=

1

2π

∞∫

0

G̃xx
A,V (λ)J0(λρ)λdλ. (7)

where J0(λρ) is zero-order Bessel function of the first
kind, andr is radial distance between the HED and the
observation point.

The spatial domain solution of the first term in (5) and
(6) stands for so called direct termGdir representing a
spherical wave due to source HED in unbounded free space

S0{ e−u0(z−z′)

u0
} = 1

2π
e−jk0Rd

Rd
= Gdir

Rd =
√
ρ2 + (z − z′)2

(8)

whereRd stands for the direct distance between the HED
and the observation point.

The spatial domain solution of the second term in (5)
and (6) represents the wave reflected form finitely conduc-
tive two-layer. Here,RTEgen andRTMgen are generalized
FresnelTE andTM reflection coefficients [12]

R(TE,TM)gen =[R(TE,TM)01

+R(TE,TM)12e
−u12d] ·MTE,TM

MTE,TM = (1+R(TE,TM)01R(TE,TM)12 e
−u12d)−1

(9)
RTE i,i+1 = ui−ui+1

ui+ui+1

RTM i,i+1 =
k2
i+1ui−k2

iui+1

k2
i+1ui+k2

iui+1

(10)

ui =
√

λ2 − k2i ; i = 0, 1, 2
k20 = ω2µ0ε0; k21,2 = εr1,2k

2
0

εr1,2 = εr1,2 − jσ1,2(ωε0)
−1

(11)

The spatial solution of the reflected terms is obtained by
direct numerical integration similarly to the approach in
[2].

4 QUASI-STATIC IMAGE MODEL

As it is well known, if a Hertz dipole is placed above
perfectly reflecting boundary (ideally conductive), the field
can be evaluated exactly by the method of images [13].
However, if the boundary is non-perfect the method of im-
ages is an approximate solution.

The proposed quasi-static image model is based on the
exponential approximation of the spectral Green’s func-
tions when frequency tends to zero. The spatial domain
Green’s functions are later obtained in closed form in terms
of infinite sum of Green’s functions of the source images.
In comparison to the classical quasi- static approach, this
image representation involves the propagation effect [14].

As ω → 0, k20 → 0 it may be assumedu0 ≈ u1 ≈ u2

sinceλ2 ≫ k2n (n = 0, 1, 2). This makes possible that the
TM reflection coefficients are approximated by complex
reflection constants that represent their near field approxi-
mations

RTM12 → −K12 RTM01 → K10

K12 =
ε1−ε2
ε1+ε2

K10 =
ε1−ε0
ε1+ε0

. (12)

By applying (12) into (9) we obtain

RTMgen ≈ K10 −K12e
−u12d

1−K10K12 e−u12d
. (13)

Next, the denominator in (13) is expanded into series

1−K10K12 e
−u12d →

∞∑

p=0

(K10K12)
p
e−u12dp (14)

That leads the following approximation

RTMgen_ ≈
(
K10 −K12e

−u12d
)

·∑∞
p=0 (K10K12)

p
e−u12dp . (15)

Respectively, the quasi-static approximation of the
terms associated to theTE leads to

RTE12 → 0 RTE01 → 0 MTE → 1. (16)

Applying above approximations into (5) and (6) it fol-
lows

G̃xx
A ≈ µ0

2

e−u0(z−z′)

u0
(17)

G̃V ≈ 1
2ε0

[
e−u0(z−z′)

u0
− (K10 −K12 e

−u12d)

·∑∞
p=0(K10K12)

pe−u12dp · e−u0(z+z′)

u0

] . (18)
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If we introducee−u1h ≈ e−u0h in (18) it is possible to
rewrite in spectral domain

G̃V ≈ 1
2ε0

[
e−u0(z−z′)

u0
− (K10 −K12 e

−u02d)

·∑∞
p=0(K10K12)

pe−u02dp · e−u0(z+z′)

u0

] . (19)

The corresponding spatial domain solutions of (17) and
(19) are obtained in closed-form by the direct termGdir

and in terms of infinite image representation

Gxx
A ≈ µ0

2
Gdir (20)

GV = 1
2ε0

{Gdir −K10Gimg

− (K10 −K−1
10 )

∑∞
p=1(K10K12)

pGp

} (21)

where

Gimg =
1

2π

e−jk0Ri

Ri
; Ri =

√
ρ2 + (z + z′)2 (22)

Gp =
1

2π

e−jk0Rp

Rp
; Rp =

√
ρ2 + (2dp+ z + z′)2.

(23)

Finally, if we assumeω = 0, it follows e−u0h = 1, so
that (20) and (21) reduce to dc expressions of static images.

5 TRANSMISSION LINE MODEL

The transmission line (TL) equations for a horizontal
wire conductor above two-layer soil excited by the voltage
generator can be derived from the Maxwell’s equations and
expressed in terms of voltage and current induced along the
conductor [1]

∂V (x)
∂x + ZI (x) = 0

∂I(x)
∂x + Y V (x) = 0

. (24)

The mathematical details regarding the solution of the fre-
quency domain transmission line equations are based on
the chain matrix. Here, we use quasi-static approximations
for per unit length parametersZ andY

Z =
jωµ0

2π
ln

2H

a
+ Zg (25)

Y =
jω2πε0

ln 2H
a

‖ Yg, (26)

whereZg andYg are earth return impedance and admit-
tance respectively [16]

Zg =
jωµ0

2π
ln

1 + γeqH

γeqH
(27)

Yg =
γ2
eq

Zg
(28)

γeq = jkeq (29)

keq = k1
(k1 + k2)− (k1 − k2)e

−j2k1d

(k1 + k2) + (k1 − k2)e−j2k1d
, (30)

wherekeq is the equivalent soil propagation constant [15].

The solution of (24) thanks to boundary conditions
I(0) = I(L) = 0 leads to following expression for the cur-
rent distribution

I(x) =
Vg sinh γL/2
Z0 sinh γL sinh γ(L− x) for x ≥ L/2

I(x) =
Vg sinh γL/2
Z0 sinh γL sinh γx for x ≤ L/2

.

(31)

where Z0 =
√

Z
Y and γ =

√
Z · Y are respectively

the characteristic impedance and the propagation constant
along the transmission line.

6 NUMERICAL EXAMPLES

To determine the domain of applicability of proposed
approximate image model and TL model we have com-
pared the current in the center feed point of a horizon-
tal conductor above two-layer soil. The studies cases are:
L = 20-m (short conductor) andL = 200-m (long con-
ductor), with radiusa = 0.01 m positioned at heightH:
0.5 m, 2.5 m and 5 m. Two values for the upper layer
depth are assumed:d = 0.2 m (thin layer) andd = 1.2 m
(thick layer). The two-layer soil is assumed by fixed con-
ductivity σ1 = 0.01 S/m for the upper layer, whereas two
distinct conductivities are assumed for the bottom layer:
σ2 = 0.001 S/m andσ2 = 0.1 S/m. In both cases the rela-
tive permittivity of two-layer soil isǫr = 10.

The excitation is central feed by a harmonic voltage
source of 1 V, in frequency range from 0.1 to 10 MHz.

In the following section the results obtained by using
exact moment method approach are denoted by “Exact”
(solid line), the image approximation is denoted by “Im-
age” (dash line) and TL approximation is denoted by “TL”
(dotted line).

6.1 Short 20-m conductor

Fig. 3 to Fig. 5 show respectively the current at the
feed point of a 20-m (short) conductor at heightH: 0.5 m,
2.5 m and 5 m above two-layer soil with thin upper layer
(d = 0.2 m). Respectively, in Fig. 6 and Fig. 7 it may be ob-
served the current at the feed point in case of a thick upper
layer (d = 1.2 m).

The results show that Image and TL models represent
good approximation in the lower frequencies, but also in
the range up to few MHz. Differences are observed at fre-
quencies around the resonance (~7 MHz). The results show
that the parameters of the two-layer soil and the position of
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Fig. 3. Current at the feed point of a 20-m conductor at
H = 0.5 m (thin layer d = 0.2 m)

the conductor play important role that affects significantly
the accuracy of the approximate models.

The Image model shows mismatch of the resonant fre-
quency in case when the conductor is close to the air-soil
interface, as shown in Fig. 3 and Fig. 6 (H = 0.5m). How-
ever, these differences decrease when increasing the con-
ductor height, as shown in Fig. 5 and Fig. 7.

The accuracy of the Image model is higher when in-
creasing the upper layer depth, since the influence of the
bottom layer decreases.

On the other hand, the TL model shows very good
agreement with the Exact model when the conductor is
close to the air-soil interface (Fig. 3 and Fig. 6). However,
the accuracy of the TL model decreases when increasing
the heightH, as shown in Fig. 5 and Fig. 7. As may be
observed, the current peaks are much higher than the ex-
act values which lead to more significant calculation errors
around the resonance.

Generally, both approximate models show better agree-
ment in the case when the bottom layer is less conductive
(hereσ2 = 0.001 S/m).

In order to measure the accuracy of both approximate
models we determine the calculation error in frequency do-
main by comparing the currents at the feed point computed
by

Fig. 4. Current at the feed point of a 20-m conductor at
H = 2.5 m (thin layer d = 0.2 m)

Fig. 5. Current at the feed point of a 20-m conductor at
H = 5.0 m (thin layer d = 0.2 m)
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Fig. 6. Current at the feed point of a 20-m conductor at
H = 0.5 m (thick layer d = 1.2 m)

Fig. 7. Current at the feed point of a 20-m conductor at
H = 5.0 m (thick layer d = 1.2 m)

Fig. 8. Calculation error for 20-m conductor obtained by
using Image and TL models for d = 0.2m

Abs

[
IExact − IImage,TL

IExact

]
· 100, (32)

whereIExact is complex value of the current obtained by
using Exact model, andIImage,TL are corresponding ap-
proximate values obtained by using Image model and TL
model respectively.

In Fig. 8 and Fig. 9 it may be observed respectively the
values of the calculation error (up to 100%) (32) in case of
20-m wire conductor above two-layer soil with thin layer
(d = 0.2 m) and thick layer (d = 1.2 m) for two values of
the conductor heightH = 0.5 m andH = 5.0 m.

As may be observed, the Image model shows good
agreement in the lower frequency range up to few MHz.
High calculation error is obtained in the higher frequency
range above 4 MHz. The TL model shows better agreement
in case when the conductor is close to the air-soil interface
practically in all frequency range. However, in case when
the conductor is set to greater heights the calculation er-
ror even in the lower frequency range is about 20%. Both
models introduce very high calculation error around the
resonant frequency.

6.2 Long 200-m conductor
In this section we represent the results obtained in case

of long 200-m (long) conductor. Fig. 10 to Fig. 12 repre-
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Fig. 9. Calculation error for 20-m conductor obtained by
using Image and TL models for d = 1.2m

sent respectively the current at the center feed point calcu-
lated for three conductor heightsH: 0.5 m, 2.5 m and 5.0 m
in case of a thin upper layer (d = 0.2 m). Respectively, in
Fig. 13 and Fig. 14 it may be observed the current at the
feed point in case of a thick upper layer (d = 1.2 m) for
two conductor heightsH: 0.5 m and 5.0 m.

The results show that in case of a long conductor the Im-
age model introduces more visible differences around res-
onant frequencies. More precisely, there is a mismatch in
the current peaks particularly when the conductor is close
to the soil surface, Fig. 10.

Again, the errors are higher when the bottom layer is
more conductive.

Figures 15 and 16 show the calculation error (up to
100%), that the application of the Image model is limited to
the lower frequency range below the first resonance (here
0.3 MHz).

On the other hand, the TL model shows very good
agreement in case when the conductor is close to the air-
soil interface in all frequency range. However, in case
when the conductor is set high above the soil surface, the
application of the TL model is limited to frequencies up to
about 1 MHz.

Fig. 10. Current at the feed point of a 200-m conductor at
H = 0.5 m for d = 0.2 m

Fig. 11. Current at the feed point of a 200-m conductor at
H = 2.5 m for d = 0.2 m
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Fig. 12. Current at the feed point of a 200-m conductor at
H = 5.0 m for d = 0.2 m

7 CONCLUSION

The exact modeling of horizontal wire-conductor above
two-layer soil is considered as numerically most precise.
In the practice however, often most simplified models are
needed due to time consuming numerical calculations.

In this paper, we have presented and compared two ap-
proximate approaches: Image model and TL model. The
results show that the parameters of the two-layer soil and
the position of the conductor play important role that af-
fects significantly the accuracy of proposed approximate
models.

The Image model is derived from the exact model by a
single substitution of the reflection Fresnel coefficients in
the spectral domain with their quasi-static forms. The TL
model uses approximate expressions for the per unit length
parameters on the basis of homogenous soil approximation
of two-layer soil by equivalent resistivity approach. Both
approximate models show better agreement in case of less
conductive bottom layer.

The Image model is accurate at dc and leads to gen-
erally small errors at low frequencies. At higher frequen-
cies (above few MHz for short conductors, and few hun-
dred kHz for long conductors), the error introduced is
strongly dependent on resonances. Also, the Image model
introduces higher calculation error when the conductor is

Fig. 13. Current at the feed point of a 200-m conductor at
H = 0.5 m for d = 1.2 m

Fig. 14. Current at the feed point of a 200-m conductor at
H = 5.0 m for d = 1.2 m
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Fig. 15. Calculation error for 200-m conductor obtained
by using Image and TL models for d = 0.2 m

Fig. 16. Calculation error for 200-m conductor obtained
by using Image and TL models for d = 1.2 m

close to the air-soil interface, but this error decreases when
increasing the conductor height. Better agreement is ob-
tained in cases when the bottom layer is less conductive.
When increasing the upper layer depth, the results tend to
those obtained for homogeneous soil with parameters of
the upper layer.

The TL model shows very good agreement in case when
the conductor is close to the soil surface, however larger
calculation errors are observed when increasing the con-
ductor height. In case of short conductors at greater heights
(H = 5.0 m) the TL model introduces errors about 20%
even in the lower frequency range. For long conductors,
the TL model shows very good agreement with the Exact
model but again only when the conductor is close to the
soil surface. Otherwise, similarly as the Image model, large
calculation errors are observed in the higher frequency
range, particularly at resonant frequencies.
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