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CONTINUITY OF THE TYCHONOFF FUNCTOR •
ABSTRACT. Let C be a class of the inverse systems X = iXA, fa~,A~.

We say that a functor F is C-continuous if F(limX) is homeomorphic

with lim F(X).

In the present paper the continuity of Tychonoff functor. is
investigated.

Section Two contains some theorems concerning the
non-emptyness and w-compactness of the limit of inverse systems of
w-compact spaces.

Section Three is the main section. Some theorems concering
C-continuity of the Tychonoff functor. are proved, where C is a
class of the inverse systems of w-compact, .-compact, H-closed or
R-clased spaces.
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o. INTRODUCTION
0.1. The set of all continuous,.real-valued (bou~ded) function on
a topological spaces X will be denoted by C(X) (C (X)).

Unliess otherwise stated, no separation axioms will be
assumed.

0.2. A set A ~ X is regularly closed (open) if A = lnt A

(A = lnt A).

0.3. A set A ~ 2) is said to be zero-set if there is an f E C (X)
such that A = f (0). The zero-set of f is denoted by Z(f) or by
ZX(f).
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A cozero-set is a complement of zero-set.
It is well-known [3] that
(i) z(f) = z ( I f I ) = zein) = z ( I f I Ai)
(ii) Evry zero-set is Go
(iii) z (~g) =2z(f) v z(g)
(iv) z (f' + g ) = Z ( I f I + I g I ) = z(f) ()z(g)
(v) The countable intersection of zero-set is zero-set.

0.4. Two subsets A and B of X are said*to be completely separtated
in X if there exists a function fEe (X) such that f'{x ) = 0 for
all x E A, and f'{x ) = 1 for all x E B.

0.5. A space X is said to be completely regular [3] provided that
it is Hausdorff space such that each closed set F ~ X and each x ~
F are completely separated.

0.6. A space X is said to be almost regular [9] if for each
regularly closed F c X and each x E X\F there exist disjoint open
sets U and V such that x E U and F c V.

0.7. By cf (A) we denote the cofinality of the well-ordered set A
i.e. the smallest ordinal which is cofinal in A.

0.7. We say that a space X is quasicompact if every centred family
of closed subsets of X has a non-empty interesection.

0.8. A space X is functionally Hausdorff of for each distinct
points x and y of X there is a continuous function f : X --->
[0,1] such that f(x) = 0 and fey) = 1. Each functionally Hausdorff
space is Hausdorff.

0.9. It follows that in a functionally Hausdorff space X for each
distinct points x and y there are cozero-sets U and U such x E

x Y
~ y ~ and y E U ~ X - ~ x ~.y
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0.10. If U is a cozero-set containing x E X, there exist a
cozero-set V 3 x such that x E V ~lV c U. Namely, if f : X --->
[O,lJ is a function such that x E f ([0,lJ) = U, then we define a
function F [O,lJ --> [O,lJ such that F(y) = 0 for y :S f'{x ) j 2

and F (y) = ((2y - f(x) : (2 - f'I x ) for y > f (x) j 2. Now, let
-1G = Ff. We have G (0,1) ~ u.

0.11. If X is functionally Hausdorff, then ~x~ = ~ ~U U is the
cozero-set containing x E X~. The proof holds from 0.8., 0.9. and
0.10.

1. FUNCTOR L

Let X be a topological space. We define an equivalence
relation p on X such that x p y iff f(x) = fey) for each f E C(X).
Let L (X) = XjL be a set of all equivalence classes equiped with
the smaltest topology in which are continuous all functions g
such that g. LX E C(X), where LX : X ---> XjL is the natural
projections. In [3:41J is actually proved that L (X) is completely
regular.

By [x] we denote the e~uivalence class containing x £ X.

1.1. LEMMA. If f : X ---> Y is a continuous mapping into a
completely regural space Y, then there exist a continuous mapping
g L(X) ---> Y such that f = g . LX'

Proof. If x J y then must be f'Lx) = fey) since f'{x ) ¢ fey)
implies that there is f' E C(Y) such that f'(x) = 0, f'(y) = 1.
This is in contradiction with x p y since ff' E C (X). This means
that for x' £ L (X) one cane define g(x') = f(x), x E x'.

1.2. COROLLARY. If f : X ---> Y is a continuous mapping, then
ther exists a continuous mapping L (f) L (X) ---> L (Y) such
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that. (f) .X = • Y f.

1.3. LEMMA. If X is functionally Hausdorf, then.X
is one-to-one.

X ---> .(X)

Pro 0 r. Trivial.
An open set U ~ X is .-open is U is the union of the

cozero-sets.
We say that a space X is w-compact [4] (quasi-H-closed)

if for each centred family ~U : J.L E M~ of .-open (open) sets U ~J.L J.L

X the set ~ ~U : J.L E M~ is non-empty.J.L
1.4. THEOREM. If X is w-compact, then. (x) is a compact space (
= T2 quasi-compact).

Proof. It suffices to prove that .(X) is quasi-H-closed since
each regular H-closed is compact. Let ~U : J.L E M~ be a centredJ.L
fami ly of open sets in .(X). This means U is .-open in X. ItJ.L

follows that ~ ~U : J.L E M~ ~ 0, where U is a closure in X. Let xJ.L J.L

E ~UJ.L : J.L E M~. From the continuity of .X we have .X (x) E ~ ~UJ.L

J.L E M~ where now U is a closure in • (X). The proof is completed.

A space X is said to be .-compact [4] iff each cover ~U : J.L E M~J.L
of X consisting of the cozero-sets U has a finite subcover.J.L

1.5. THEOREM. If X is .-compact, then. (X) is compact.

Proof. Trivial since each open set in • (X) is .-open in X.
A space X is sa~9. to be perfectly w-compact (. -compact, H-closed,
R-closed) if .X (y) is copmact for each y E • (X) i.e. every
equi valence class [y] is compact.
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2. INVERSE SYSTEMS OF W-COMPACT AND L - COMPACT SPACES
We start with the following theorem.
2.1. THEOREM. Let ~ = ~Xa' fa(3' Ar be an inverse system of L

-compact (w-compact) funct ionally Hausdorff spaces X . If X , a Ea a
A, are non-empty, then X = lim X is non-empty. Moreower, if f (3- a
are onto, then the project ions faX ---> Xa' a E A, are onto
mappings.

Proof. From 1.2. it follows that ~L = ~L (Xa), L (fa(3) , Ar~s
an inverse systems. In view of Lemma 1.3. there is a mapping L : X
---> X such that L = (LX-L

a
identity mapping. The mapping

X ---> L (Xa)) and LX ' a E A, is
a

L induces a mapping 1im L

spaces L

lim X
lim X ::;:

-T

(Xex) • \hie

---> lim X
L

O. Since X is the inverse system of compact-a
have lim L (~) ::;:O. The proof is completed.

which is 1-1. This means that lim X ::;:0 iff

Since each quasi-H-closed space is w-compact, we have
2.2. THEOREM. LET X = ~X, f (3' A r be an inversea a
functionally Hausdorff non-empty quasi-H-closed spaces
= lim X is non-empty.

system of
X . Then X
a

We say that a regular (almost regular) space X is
R-closed (AR-closed) if it is closed in each regular (almost
regular) space in which it can be embedded [9J. Each completely
regular R-closed (AR-closed) space X is compact since X c (3 X [2J.
If X is R-closed, Y regular, and f X ---> Y a continuous mapping
then Y is R-closed.

2.3. THEOREM. Let X JX-1 a' fa(3' A r be an inverse system of
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non-empty functionally Hausdorff R-closed spaces X . Then X = lim
a

X is non-empty.
P roo f. The space ~ (X ) is completely regular R-closed i.e. a

a
Hausdorf compact space. See the proof of Theorem 2.1.

We say that a mapping f : X ---> Y is ~ -open if feu) is
~ -open for each ~ -open set U c X.

2.4. THEOREM. Let X = ~X, f (3' A~ be an inverse system ofa a
w-compact functionally Hausdorff spaces X If the projections f :a a
lim X ---> X , a E A, are ~ -open, then X = lim X is functionally- a , -
Hausdorff and w-compact.
Proof. Let U = ~U : M E M~ be a maximal centred family of ~

M
-open sets in X. For each a E A let U = ~f (U) : M E M~. We

a a M
prove that U is the maximal centred family of ~ -open sets in X

a a
(f is ~ -open!). Suppose that V is ~ -open in X such that V n

a a a -1 a
f (U) is non-empty for each U E U .This means that f (V) is
a M M a a a

~ -open set wich meets each U. From the maximality of U it
-1 Mfollows that f (U) E U i.e. V E U . Hence, U is maximal. Froma a a a a

the w-compactness of X it follows that Y = n ~r-ro-) : U E
a a a M M

is non-empty. From the maximality of U it follows that
a

From 0.11.

U~

U
a

it followscontains all neighborhoods of all y E Y
a a

that Y = ~y ~, where y EX. For each a E A let W be a familya a a a a
of all ~ -open sets containing Ya. From the maximality of U(3,(3~ a

it follows that U(3contains f:~ ( Ua) = ~f:~ (U) : U E Ua~

This means that fa(3 (Yf3) = Ya' (3~ a. Hence y = Ya: a

E A~ is a point of X. It is readily seen that yEn ~U : U E ~.
The proof is completed since it is clear that X is functionally
Hausdorff.
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2.5. THEOREM. Let X = ~X ,- IX
perfect w-compact (~-compact,
space X = 1im X is non-empty
non-empty.

fIX(3'A~ be an inverse system of
H-closed, R-closed) spaces X. AIX

iff the spaces X, IX E A, areIX

3. CONTINUITY OF THE FUNCTOR ~

Let ~ = ~XIX'fIX(3'A ~ be an inverse system and let ~ be a
Tychonoff functor described in Section One. From 1. 2. it follows
that ~(X) = ~~(XIX)' ~(fIX(3)'A~ is an inverse system. Let C be a
class of the inverse systems. We say that the functor ~ is C - c
o n tin: u 0 u s if ~(l im X) is homeomorphic to 1im ~(~) for
each X in C . The functor ~ is said to be continuous if ~ is C -
continuous for each class C
3.1. LEMMA. If X is an inverse system, then there exists a
continuous mapping ~1 : ~ (lim X) ---) lim ~ (X).
Proof. Let ~ = ~XIX'fIX(3'A~ be an inverse system and let ~ (X
= ~~(X&, ~(fIXS' A~. From 1.2. it follows that there is ~1 'r

IX
(lim X) ---) (X ) such that ~ f = ~1 ~, where ~ lim X ---) ~- IX X IXIX IX
(Li m ~). It is readily seen that ~1 = ~(fa(3). ~1 ' (3 ~ IX. This

IX (3
means that the mappings ~1 ' IXE A, induce a continuous mapping ~1

IX
: ~(lim X) ---) lim ~(X). The proof is completed.

3.2. LEMMA. lim ~ = ~1 ~

Proof. From the definition of ~1 it follows ~1 = f~ ~1' where
IX
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f' : lim T (X) ---) T(X ) is a projection. Moreower, TX f = T1 Ta - a aa a
= f~ lim Land Ll T

a
fa = f~ . lim T. It follows that T1 T

a
and TX

a
= f~ . T1 . T i.e. lim T = T1T . Q.E.D.

3.3. THEOREM. Let C be the class of all
f (3' AL such that X , a E A, X = lim Xa ( a -
functionally Hausdorf. If the projections f : X ---) X , a E A,

a a
are onto, then the Tychonoff functor T is C -cointinuous.
Proof. From Lemma 1.3. it follows that each TX ' a E A, is

a
1-1. This means that Iim T is 1-1. Since Iim ~ is funct ionally

inverse systems X = ~X ,- a
is w-compact (T-compact)

Hausdorf we infer by 1.3. that T : lim X ---) T (lim X) is 1-1. It
follows that T1 : T (lim X) ---Y lim T (X) is one-to-one. Since
lim T (~) and T (lim ~) are compact (1.4.THEOREM) we infer that
T1is a homeomorphism. The proof is completed.

3.4. COROLLARY. Let C be the class of all inverse systems an in
Theorem 2.4. Then the Tychonoff functor T is C -continuous.

3.5. REMARK. In [4J is proved that if ~Xa : a E A~ is a family of
w-compact spaces Xa' then n Xa is w-compact an T (nXa) = n T (Xa).

Let H be a class of the inverse systems X = JX ,- 1 a
f Q A~ such that X a E A, X = lim X are functionally Hausdorffa,.. .«
H-closed (R-closed). If the

3.6. THEOREM:

projections f : X ---) X a E A, area a
onto mappings, then the functor T is H -continuous.

Proof. The spaces T(X ), a E A, and the spaces T (lim ~), limex
T (X) are compact (See the proof of 2.3. and 3.3.).
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In [14] it is proved that lim ~ is H-closed if Xa are
H-closed, fa{3 open and that fa{3 are onto if fa{3 are open onto.
Hence, from 3.6. we obtain.

3.7. THEOREM. Let H be a class of the inverse system of H-closed
functionally Hausdorff spaces X and open onto mappings f Q Then

a a,J
the functor L is H -continuous.

From [6] it follows that lim X is R-closed (AR-closed) f
are R-closed (AR-closed) and if fa{3 are open-closed. By similarX

a
method of proof we have.

3.8. THEOREM. Let
R-closed (AR-closed)

R be a class of the inverse systems of
functionally Hausdorf spaces X anda

the functor L isThen Ropen-closed onto mappings
-continuous.

We say that an inverse system ~ = ~Xa' fa{3' A r is
factorisable (or f-system) [10] it for each continuous mapping f :
1im X---> [0,1] there exists a continuous mapping ga : Xa --->
[0,1] such thaf f = ga fa' where,fa: 1im X ---> Xa is the natural
projection.

3.9. LEMMA. If ~ is an f-system, then the mapping L1 : L (lim X)
---> lim L (X) is one-to-one.
Proof. Let [x] and [y] be two distinct points of L (ltm ~),
where x, y E lim X. This means that there exists an f lim X
---> [0,1] such that f (x) = a and f (y) = 1. Since ~ is f-system
there is an a E A and g : X ---> rO,l] such that f = g f. It

a a L a a
follows that [f (x)] *- [f (y)] since g f (x) = a and g f (y)=1.

a a a a aa
This mean~ that L1([x]) *- L1([y]. The proof is completed.
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3.10. THEOREM. Let W be a class of the inverse f-system X = ~Xa'

f Q' A l such that all X and X = 1im X are w-compact (H-closed,ap r a -
<-compact, R-closed, AR-closed). Then the Tychonoff functor < is
W -cotinuous.

Proof: From 1.4. Theorem it follows that < (lim X) and lim
< (~) are compact. By virtue of 3.5. Lemma it follows that <1 is
the homemorphism Q.E.D.

3.11. LEMMA. [llJ. Let ~ = ~Xa' fa[3' A~ be a well-ordered inverse
system such that w (X ) < < and cf'{A) > < > ~ If f Q area 0 a,-,
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Eerfect (open or X is continuous) then w (limX) < •.

We close this Section with the following
3.12. THEOREM. Let C be a class of the inverse systems_ X as in
3.11. If lim ~ is w-compact (.-compact, H-closed, R-closed,
AR-closed) adn if the projections f : X ---> 0: E A, are onto,

0:
then the functor. is C -continuous.
Proof. In view of Theorem 3.10. it suffices to prove that X
is an f-system. Let X = lim X and let f : X ---> [0,1] be a
real-valued function. For each Z E [0,1] let Nz be a countable
family of open sets such that n ~U : U E Nz~ = ~z~. We can asume
that N = ~N : z e [0,1]~ is countable. It is readily seen thatz -1for each U. E f (N) there exist an 0: E A and open U ~ X such

I 0:. 0:.
-1 I I

that U. = f (U) [7] (See also [12]). Since the cardinality
I 0:. 0:.

I I

INI~ ~ and cf (A) > N there exist an 0: E A such that 0: > 0:., i Eo 0 I

N. Let Y be a set n JU : f-1(U ) E f-1 (N ) L. It is clear that Yz 1 0: 0: 0: 0: Z ( Z

n Yz' = 0 iff z:;t z' and that Xo:= u ~Yz : z E [0,1]~.This means
that for each x E X there is only one z E [0,1] such that x E

0: 0: 0:

Y . Put g (x ) = z. We define g:X ---> [0,1] such that f = g f .
Z 0:/0:: 0: 0:: 0::0:

In order to complete the proof we prove that g is continuous. Let
0::

x E X and let g (x ) = z. For each neighborhoods V e N there is
0: 0: 0: 0: -1 z

a neighborhood U of x such that f (U) = V. This means that g
0: 0: 0: 0: 0:

(U ) = V. The proof is completed.
0:

4. CONNECTEDNESS OF THE LIMIT SPACE

We start with following theorem
4.1. THEOREM: A topological space X is connected iff .(X) is
connected.
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Proof. If X is connected, then. (X) is connected since .X :
X ---) • (X) is continuous surjection. Conversely, let .(X) be
connected. If X is disconnected, then there exist two disjoint
open sets V, V~· X such that X = V u V.

Let g : X ---) [O,lJ be a mapping such that g (x) = a if x E V and
g (x) = 1 if x E V. Clearly, g is continuous. From the definition
of • (X) it follows that .X(V) n LX (V) = 0 and .x (V) U .x (V) =
L (X), where LX (V) is the image of V. Let f : L (X) ---) [O,lJ be
a mapping such that f[LX (V)J = 0, f[.X (V)J 0= 1. Clearly, f • =g.
Since g E C (X), from the definition fo • (X) it follows t~rt is
continuous i.e. f E C (. X». This means that L (V) = f (0)

x
and. (V) = f -1(1) i.e.. (V) and L (V) are disjoint open setsx x x
in • (X). This contradiction with the connectedness of • (X). The
proof is completed.

4.2. THEOREM. Let ~ = ~Xa' fa~' A~ be an inverse system such that
the functor • is_X-conti~uous. The space X = lim X is connected
iff lim • X is connected.

Proof. The space L (1im X) is connected since it is
homemorphic with 1im • X. From 4.2. it follows that 1im X is
connected iff. (lim Xl-is connected. Q.E.D.

Now, from Theorems 4.1. and 4.2. and from theorems of
Section Three we obtain the following theorems.

4.3. THEOREM. Let X be an inverse system as in Theorem 2.4. Then
X = lim X is connected iff X a E A, are connected.

a

4.4. THEOREM. Let X = JX , f Q'- 1 a a,...
X, a E A, X = lim X area
(R-closed).

Ar be an inverse system such that
functional~y Hausdorff H-closed

If the pr-o.ject rons f : X ---) X a E Aa . a' , are onto
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mappings, then X is connected iff X , a E A, are connected.a

Let X = JX ,- ") a
H-closed funct ionally Hausdorf

X =

fa(3' A ~ be an inverse system of
spaces X and open onto mappingsa

X is connected iff X, a E A, are
a

4.5. THEOREM.

fa(3' The space
connected.

1im

4.6. THEOREM. Let X = ~Xa' fa(3'

R-closed (AR-closed) functionally
A~ be an inverse system of

Hausdorf spaces X
a

.open-closed onto mappings fa(3' The space X = 1 im X is connected
iff the spaces X , a E A, are connected.a .

and

4.7. THEOREM. Let ~ = ~Xa' fa(3' A~ be an inverse f-system such
and X = 1im ~ are w-compact (L-compact, H-closed,that all X

a
R-closed, AR-closed). X is connected iff X , a E A, are connected.

a
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Loncar I. Neprekidnost Tihnovljevog funktora

v
SAD R Z A J

U radu je istrazivana neprekidnost Tihonovljevog funktora L. Pri
tome kazemo da je funktor F C-neprekidan ako su prostori F(lim X)
i limF ~ homeomorfni, gdje je C klasa inverznih sistema X - -

~Xa,fa{3'A~.
U odjeljku 1. dana je definicija i osnovna svojstva funktora L.
Drugi odjeljak sadrzi teoreme 0 nepraznosti i w-kompaktnosti
limesa inverznih sistema w-kompaktnih prostora.
Teoremi iz drugog odjeljka sluze za dokazivanje teorema 0
C-neprekidnosti funktora L, gdje je C klasa inverznih sistema
w-kompaktnih (L-kompaktnih, H-zatvorenih ili R-zatvorenih)
prostora.
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