Dr. Ivan Lončar

UDK: 51 Znanstveni rad

Fakultet organizacije i informatike V a r a z d i n

CONTINUITY OF THE TYCHONOFF FUNCTOR τ

ABSTRACT. Let C be a class of the inverse systems $X = \{X_{\lambda}, f_{\alpha\beta}, A\}$. We say that a functor **F** is C-continuous if $F(\lim X)$ is homeomorphic with lim F(X).

In the present paper the continuity of Tychonoff functor τ is investigated.

Section Two contains some theorems concerning the non-emptyness and w-compactness of the limit of inverse systems of w-compact spaces.

Section Three is the main section. Some theorems concering C-continuity of the Tychonoff functor τ are proved, where C is a class of the inverse systems of w-compact, τ -compact, H-closed or R-clased spaces.

Mathematics subjectclassification (1980): Primary 54H25, Secondary 46H40

Key words and phrases: functor; inverse system, continuity, w-compact, τ-compact

0. INTRODUCTION

0.1. The set of all continuous, real-valued (bounded) function on a topological spaces X will be denoted by C(X) (C (X)).

Unliess otherwise stated, no separation axioms will be assumed.

0.2. A set $A \subseteq X$ is regularly closed (open) if A = Int A(A = Int \overline{A}).

0.3. A set $A \subseteq X_1$ is said to be zero-set if there is an $f \in C$ (X) such that $A = f^{-1}$ (O). The zero-set of f is denoted by Z(f) or by $Z_X(f)$.

A cozero-set is a complement of zero-set. It is well-known [3] that (i) $z(f) = z (|f|) = z(f^n) = z (|f| \land 1)$ (ii) Evry zero-set is G_{δ} (iii) $z (fg) = z(f) \cup z(g)$ (iv) $z (f^2 + g^2) = Z (|f| + |g|) = z(f) \land z(g)$ (v) The countable intersection of zero-set is zero-set.

0.4. Two subsets A and B of X are said_{*}to be completely separtated in X if there exists a function $f \in C(X)$ such that f(x) = 0 for all $x \in A$, and f(x) = 1 for all $x \in B$.

0.5. A space X is said to be completely regular [3] provided that it is Hausdorff space such that each closed set $F \subseteq X$ and each $x \notin F$ are completely separated.

0.6. A space X is said to be almost regular [9] if for each regularly closed F \subset X and each x \in X\F there exist disjoint open sets U and V such that x \in U and F \subset V.

0.7. By cf (A) we denote the cofinality of the well-ordered set A i.e. the smallest ordinal which is cofinal in A.

0.7. We say that a space X is quasicompact if every centred family of closed subsets of X has a non-empty interesection.

0.8. A space X is functionally Hausdorff of for each distinct points x and y of X there is a continuous function $f : X \longrightarrow [0,1]$ such that f(x) = 0 and f(y) = 1. Each functionally Hausdorff space is Hausdorff.

0.9. It follows that in a functionally Hausdorff space X for each distinct points x and y there are cozero-sets U_x and U_y such $x \in U_x - \{y\}$ and $y \in U_y \subseteq X - \{x\}$.

0.10. If U is a cozero-set containing $x \in X$, there exist a cozero-set $V \ni x$ such that $x \in V \subset \overline{V} \subset U$. Namely, if $f : X \longrightarrow [0,1]$ is a function such that $x \in f^{-1}([0,1]) = U$, then we define a function F : $[0,1] \longrightarrow [0,1]$ such that F(y) = 0 for $y \leq f(x) / 2$ and F (y) = ((2y - f(x) : (2 - f(x)) for y > f(x) / 2. Now, let G = Ff. We have $\overline{G^{-1}(0,1)} \subseteq U$.

0.11. If X is functionally Hausdorff, then $\{x\} = \cap \{\overline{U} : U \text{ is the cozero-set containing } x \in X\}$. The proof holds from 0.8., 0.9. and 0.10.

1. FUNCTOR τ

Let X be a topological space. We define an equivalence relation ρ on X such that x ρ y iff f(x) = f(y) for each $f \in C(X)$. Let τ (X) = X/ τ be a set of all equivalence classes equiped with the smaltest topology in which are continuous all functions g such that g. $\tau_X \in C(X)$, where $\tau_X : X \longrightarrow X/\tau$ is the natural projections. In [3:41] is actually proved that τ (X) is completely regular.

By [x] we denote the equivalence class containing x ε X.

1.1. LEMMA. If f : X ---> Y is a continuous mapping into a completely regural space Y, then there exist a continuous mapping g : $\tau(x)$ ---> Y such that f = g . τ_{y} .

Proof. If $x \int y$ then must be f(x) = f(y) since $f(x) \neq f(y)$ implies that there is $f' \in C(Y)$ such that f'(x) = 0, f'(y) = 1. This is in contradiction with $x \rho y$ since $ff' \in C(X)$. This means that for $x' \in \tau(X)$ one cane define g(x') = f(x), $x \in x'$.

1.2. COROLLARY. If f : X ---> Y is a continuous mapping, then ther exists a continuous mapping τ (f) : τ (X) ---> τ (Y) such that τ (f) $\tau_{\rm X} = \tau_{\rm V}$ f.

1.3. LEMMA. If X is functionally Hausdorf, then τ_X : X ---> $\tau(X)$ is one-to-one.

Proor. Trivial. An open set U⊆X is τ-open is U is the union of the cozero-sets. We say that a space X is w-compact [4] (quasi-H-closed)

if for each centred family $\{U_{\mu} : \mu \in M\}$ of τ -open (open) sets $U_{\mu} \subseteq X$ the set $\cap \{\overline{U}_{\mu} : \mu \in M\}$ is non-empty.

1.4. THEOREM. If X is w-compact, then τ (x) is a compact space (= T_2 quasi-compact).

Proof. It suffices to prove that $\tau(X)$ is quasi-H-closed since each regular H-closed is compact. Let $\{U_{\mu} : \mu \in M\}$ be a centred family of open sets in $\tau(X)$. This means U_{μ} is τ -open in X. It follows that $\cap \{\overline{U}_{\mu} : \mu \in M\} \neq 0$, where \overline{U}_{μ} is a closure in X. Let x $\in \{\overline{U}_{\mu} : \mu \in M\}$. From the continuity of τ_X we have $\tau_X(x) \in \cap \{\overline{U}_{\mu} : \mu \in M\}$ where now \overline{U} is a closure in $\tau(X)$. The proof is completed. A space X is said to be τ -compact [4] iff each cover $\{U_{\mu} : \mu \in M\}$ of X consisting of the cozero-sets U_{μ} has a finite subcover.

1.5. THEOREM. If X is τ -compact, then τ (X) is compact.

Proof. Trivial since each open set in τ (X) is τ -open in X. A space X is said to be perfectly w-compact (τ -compact, H-closed, R-closed) if $\tau_{X}^{-1}(y)$ is copmact for each $y \in \tau$ (X)i.e. every equivalence class [y] is compact.

2. INVERSE SYSTEMS OF W-COMPACT AND τ - COMPACT SPACES We start with the following theorem. 2.1. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of τ -compact (w-compact) functionally Hausdorff spaces X_{α} . If $X_{\alpha}, \alpha \in$ A, are non-empty, then $X = \lim \underline{X}$ is non-empty. Moreower, if $f_{\alpha\beta}$ are onto, then the projections $f_{\alpha} : X \longrightarrow X_{\alpha}, \alpha \in A$, are onto mappings.

Proof. From 1.2. it follows that $\underline{X}_{\tau} = \{\tau (X_{\alpha}), \tau (f_{\alpha\beta}), A\}$ is an inverse systems. In view of Lemma 1.3. there is a mapping $\tau : \underline{X}_{\tau} \to X_{\tau}$ such that $\tau = (\tau_{X_{\alpha}} : X \to \tau (X_{\alpha}))$ and $\tau_{X_{\alpha}}, \alpha \in A$, is identity mapping. The mapping τ induces a mapping $\lim \tau : \lim \underline{X}_{\tau} \to 0$ iff $\lim \underline{X}_{\tau} \neq 0$. Since \underline{X}_{α} is the inverse system of compact spaces $\tau (X_{\alpha})$, we have $\lim \tau (X) \neq 0$. The proof is completed.

Since each quasi-H-closed space is w-compact, we have 2.2. THEOREM. LET $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of functionally Hausdorff non-empty quasi-H-closed spaces X_{α} . Then X= lim X is non-empty.

We say that a regular (almost regular) space X is R-closed (AR-closed) if it is closed in each regular (almost regular) space in which it can be embedded [9]. Each completely regular R-closed (AR-closed) space X is compact since $X \subset \beta X$ [2]. If X is R-closed, Y regular, and f : X ---> Y a continuous mapping then Y is R-closed.

2.3. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of

non-empty functionally Hausdorff R-closed spaces X_{μ} . Then X = lim X is non-empty. Proof. The space τ (X_{α}) is completely regular R-closed i.e. a Hausdorf compact space. See the proof of Theorem 2.1. We say that a mapping f : X ---> Y is τ -open if f(U) is τ -open for each τ -open set U c X. 2.4. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of w-compact functionally Hausdorff spaces X_{α} If the projections f_{α} : $\lim X \longrightarrow X_{\alpha}$, $\alpha \in A$, are τ -open, then $X = \lim X$ is functionally Hausdorff and w-compact. Proof. Let $U = \{U_{\mu} : \mu \in M\}$ be a maximal centred family of τ -open sets in X. For each $\alpha \in A$ let $U_{\alpha} = \{f_{\alpha} (U_{\mu}) : \mu \in M\}$. We prove that U_{α} is the maximal centred family of τ -open sets in X_{α} (f is τ -open!). Suppose that V_{α} is τ -open in X_{α} such that $V_{\alpha} \cap$ $f_{\alpha}(U_{\mu})$ is non-empty for each $U_{\mu} \in U_{\alpha}$. This means that $f_{\alpha}^{-1}(V_{\alpha})$ is τ -open set wich meets each U. From the maximality of U it follows that $f_{\alpha}^{-1}(U_{\alpha}) \in U$ i.e. $V_{\alpha} \in U_{\alpha}$. Hence, U_{α} is maximal. From the w-compactness of X_{α} it follows that $Y_{\alpha} = \cap \left\{ \overline{f_{\alpha}(U_{\mu})} : U_{\mu} \in U \right\}$ is non-empty. From the maximality of U $_{\alpha}$ it follows that U $_{\alpha}$ contains all neighborhoods of all $y_{\alpha} \in Y_{\alpha}$ From 0.11. it follows that $Y_{\alpha} = \{y_{\alpha}\}$, where $y_{\alpha} \in X_{\alpha}$. For each $\alpha \in A$ let W_{α} be a family of all τ -open sets containing y_{α} . From the maximality of $U_{\beta}, \beta \geq \alpha$ it follows that U_{β} contains $f_{\alpha\beta}^{-1}(U_{\alpha}) = \{f_{\alpha\beta}^{-1}(U) : U \in U_{\alpha}\}$ This means that $f_{\alpha\beta}(y_{\beta}) = y_{\alpha}, \beta \ge \alpha$. Hence $y = (y_{\alpha} : \alpha)$

 $\in A$ is a point of X. It is readily seen that $y \in \cap \{U : U \in \}$. The proof is completed since it is clear that X is functionally Hausdorff.

2.5. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of perfect w-compact (τ -compact, H-closed, R-closed) spaces X_{α} . A space $X = \lim \underline{X}$ is non-empty iff the spaces $X, \alpha \in A$, are non-empty.

3. CONTINUITY OF THE FUNCTOR τ

Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system and let τ be a Tychonoff functor described in Section One. From 1.2. it follows that $\tau(\underline{X}) = \{\tau(X_{\alpha}), \tau(f_{\alpha\beta}), A\}$ is an inverse system. Let C be a class of the inverse systems. We say that the functor τ is C - c o n t i n u o u s if $\tau(\lim X)$ is homeomorphic to $\lim \tau(\underline{X})$ for each \underline{X} in C. The functor τ is said to be continuous if τ is C - c ontinuous for each class C.

3.1. LEMMA. If \underline{X} is an inverse system, then there exists a continuous mapping $\tau_1 : \tau$ (lim \underline{X}) ---> lim τ (\underline{X}). Proof. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system and let τ (\underline{X}) = $\{\tau(\underline{X}), \tau(f_{\alpha\beta}), A\}$. From 1.2. it follows that there is $\tau_1 : \tau$ (lim \underline{X}) ---> (\underline{X}_{α}) such that $\tau_{x\alpha} f_{\alpha} = \tau_1 \tau$, where τ : lim \underline{X} ---> τ (lim \underline{X}). It is readily seen that $\tau_{1\alpha} = \tau(f_{\alpha\beta})$. $\tau_{1\beta}, \beta \ge \alpha$. This means that the mappings $\tau_{1\alpha}, \alpha \in A$, induce a continuous mapping τ_1 : $\tau(\lim \underline{X})$ ---> lim $\tau(X)$. The proof is completed.

3.2. LEMMA. $\lim \tau = \tau_1 \tau$ Proof. From the definition of τ_1 it follows $\tau_1 = f'_{\alpha} \tau_1$, where $\begin{aligned} \mathbf{f}_{\alpha}': & \lim \tau \ (\underline{X}) \ ---> \ \tau(\underline{X}_{\alpha}) \text{ is a projection. Moreower, } \tau_{\underline{X}_{\alpha}} \ \mathbf{f}_{\alpha} = \tau_{1_{\alpha}} \\ \text{and } \tau_{\underline{X}_{\alpha}} \ \mathbf{f}_{\alpha} = \mathbf{f}_{\alpha}' \text{ . lim } \tau \text{ . It follows that } \tau_{1_{\alpha}} \ \mathbf{\tau} = \mathbf{f}_{\alpha}' \text{ lim } \tau \text{ and } \tau_{1_{\alpha}} \\ = \mathbf{f}_{\alpha}' \text{ . } \tau_{1} \text{ . } \tau \text{ i.e. lim } \tau = \tau_{1}\tau \text{ . } Q.E.D. \end{aligned}$

3.3. THEOREM. Let C be the class of all inverse systems $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ such that $X_{\alpha}, \alpha \in A, X = \lim \underline{X}$ is w-compact (τ -compact) functionally Hausdorf. If the projections $f_{\alpha} : X \longrightarrow X_{\alpha}, \alpha \in A$, are onto, then the Tychonoff functor τ is C -cointinuous. Proof. From Lemma 1.3. it follows that each $\tau_{X_{\alpha}}, \alpha \in A$, is 1-1. This means that $\lim \tau$ is 1-1. Since $\lim \underline{X}$ is functionally Hausdorf we infer by 1.3. that $\tau : \lim \underline{X} \longrightarrow \tau$ ($\lim \underline{X}$) is 1-1. It follows that $\tau_1 : \tau$ ($\lim \underline{X}$) ---Y lim τ (X) is one-to-one. Since $\lim \tau$ (\underline{X}) and τ ($\lim \underline{X}$) are compact (1.4. THEOREM) we infer that τ_1 is a homeomorphism. The proof is completed.

3.4. COROLLARY. Let C be the class of all inverse systems an in Theorem 2.4. Then the Tychonoff functor τ is C -continuous.

3.5. REMARK. In [4] is proved that if $\{X_{\alpha} : \alpha \in A\}$ is a family of w-compact spaces X_{α} , then $\prod X_{\alpha}$ is w-compact an $\tau (\prod X_{\alpha}) = \prod \tau (X_{\alpha})$.

3.6. THEOREM: Let H be a class of the inverse systems $\underline{X} = \{X_{\alpha}, f_{\alpha\beta} A\}$ such that $X_{\alpha} \alpha \in A$, $X = \lim \underline{X}$ are functionally Hausdorff H-closed (R-closed). If the projections $f_{\alpha} : X \longrightarrow X_{\alpha} \alpha \in A$, are onto mappings, then the functor τ is H -continuous.

Proof. The spaces $\tau(X_{\alpha})$, $\alpha \in A$, and the spaces τ (lim X), lim τ (X) are compact (See the proof of 2.3. and 3.3.).

In [14] it is proved that $\lim \underline{X}$ is H-closed if X_{α} are H-closed, $f_{\alpha\beta}$ open and that $f_{\alpha\beta}$ are onto if $f_{\alpha\beta}$ are open onto. Hence, from 3.6. we obtain.

3.7. THEOREM. Let H be a class of the inverse system of H-closed functionally Hausdorff spaces X_{α} and open onto mappings $f_{\alpha\beta}$ Then the functor τ is H-continuous.

From [6] it follows that $\lim X$ is R-closed (AR-closed) f X_{α} are R-closed (AR-closed) and if $f_{\alpha\beta}$ are open-closed. By similar method of proof we have.

3.8. THEOREM. Let R be a class of the inverse systems of R-closed (AR-closed) functionally Hausdorf spaces X_{α} and open-closed onto mappings $f_{\alpha\beta}$. Then the functor τ is R -continuous.

We say that an inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is factorisable (or f-system) [10] it for each continuous mapping f : lim X---> [0,1] there exists a continuous mapping $g_{\alpha} : X_{\alpha} \longrightarrow [0,1]$ such thaf $f = g_{\alpha} f_{\alpha}$, where $f_{\alpha} : \lim X \longrightarrow X_{\alpha}$ is the natural projection.

3.9. LEMMA. If X is an f-system, then the mapping $\tau_1 : \tau$ (lim X) ---> lim τ (X) is one-to-one. P r o o f. Let [x] and [y] be two distinct points of τ (lim X), where x, y \in lim X. This means that there exists an f : lim X ---> [0,1] such that f (x) = 0 and f (y) = 1. Since X is f-system there is an $\alpha \in A$ and $g_{\alpha} : X_{\alpha} \longrightarrow [0,1]$ such that $f = g_{\alpha} f_{\alpha}$. It follows that $[f_{\alpha}(x)] \neq [f_{\alpha}(y)]$ since $g_{\alpha} f_{\alpha}(x) = 0$ and $g_{\alpha} f_{\alpha}(y)=1$. This means that $\tau_1([x]) \neq \tau_1([y])$. The proof is completed. 3.10. THEOREM. Let W be a class of the inverse f-system X = $\{X_{\alpha}, f_{\alpha\beta}, A\}$ such that all X_{α} and X = lim X are w-compact (H-closed, τ -compact, R-closed, AR-closed). Then the Tychonoff functor τ is W -cotinuous.

Proof: From 1.4. Theorem it follows that τ (lim X) and lim τ (X) are compact. By virtue of 3.5. Lemma it follows that τ_1 is the homemorphism Q.E.D.

3.11. LEMMA. [11]. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a well-ordered inverse system such that w $(X_{\alpha}) < \tau$ and $cf(A) > \tau > \aleph_{o}$. If $f_{\alpha\beta}$ are

perfect (open or X is continuous) then w (limX) < τ .

We close this Section with the following 3.12. THEOREM. Let C be a class of the inverse systems X as in 3.11. If lim X is w-compact (τ -compact, H-closed, R-closed, AR-closed) adn if the projections f_{α} : X ---> $\alpha \in A$, are onto, then the functor τ is C -continuous. Proof. In view of Theorem 3.10. it suffices to prove that X is an f-system. Let $X = \lim X$ and let $f : X \longrightarrow [0,1]$ be a real-valued function. For each $z \in [0,1]$ let N_z be a countable family of open sets such that $\cap \{U : U \in \mathbb{N}_{z}\} = \{z\}$. We can asume that N = $\{N_z : z \in [0,1]\}$ is countable. It is readily seen that for each $U_i \in f^{-1}(N)$ there exist an $\alpha \in A$ and open $U_{\alpha_i} \subseteq X_{\alpha_i}$ such that $U_i = f_{\alpha_i}^{-1} (U_{\alpha_i}) [7]$ (See also [12]). Since the cardinality $|N| \leq \aleph_0$ and cf (A) > N there exist an $\alpha \in A$ such that $\alpha > \alpha_i$, $i \in \mathbb{R}$ N. Let Y_z be a set $\cap \{U_{\alpha}: f_{\alpha}^{-1}(U_{\alpha}) \in f_{\alpha}^{-1}(N_z)\}$. It is clear that Y_z $\land Y_{z}$, = \emptyset iff $z \neq z'$ and that $X_{\alpha} = \bigcup \{Y_{z} : z \in [0, 1]\}$. This means that for each $x_{\alpha} \in X_{\alpha}$ there is only one $z \in [0,1]$ such that $x_{\alpha} \in$ Y_z . Put $g_{\alpha}(x_{\alpha}) = z$. We define $g_{\alpha}: X_{\alpha} \longrightarrow [0, 1]$ such that $f = g_{\alpha}f_{\alpha}$. In order to complete the proof we prove that g, is continuous. Let $x_{\alpha} \in X_{\alpha}$ and let $g_{\alpha}(x_{\alpha}) = z$. For each neighborhoods V ε N there is a neighborhood U_{α} of x such that $f_{\alpha}^{-1}(U_{\alpha}) = V$. This means that g_{α} $(U_{\sim}) = V$. The proof is completed.

4. CONNECTEDNESS OF THE LIMIT SPACE

We start with following theorem 4.1. THEOREM: A topological space X is connected iff $\tau(X)$ is connected.

Zbornik radova (1990), 14

Proof. If X is connected, then τ (X) is connected since τ_X : X ---> τ (X) is continuous surjection. Conversely, let τ (X) be connected. If X is disconnected, then there exist two disjoint open sets U, V \subseteq X such that X = U \cup V.

Let g : X ---> [0,1] be a mapping such that g (x) = 0 if x \in U and g (x) = 1 if x \in V. Clearly, g is continuous. From the definition of τ (X) it follows that $\tau_X(U) \cap \tau_X(V) = \emptyset$ and $\tau_X(U) \cup \tau_X(V) =$ τ (X), where $\tau_X(U)$ is the image of U. Let f : τ (X) ---> [0,1] be a mapping such that f $[\tau_X(U)] = 0$, f $[\tau_X(V)] = 1$. Clearly, f $\tau = g$. Since g \in C (X), from the definition fo τ (X) it follows that is continuous i.e. f \in C (τ X)). This means that $\tau_X(U) = f^{-1}(0)$ and $\tau_X(V) = f^{-1}(1)$ i.e. $\tau_X(U)$ and $\tau_X(V)$ are disjoint open sets in τ (X). This contradiction with the connectedness of τ (X). The proof is completed.

4.2. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system such that the functor τ is X-continuous. The space X = lim X is connected iff lim τ X is connected.

P r o o f. The space τ (lim X) is connected since it is homemorphic with lim τ X. From 4.2. it follows that lim X is connected iff τ (lim X) is connected. Q.E.D.

Now, from Theorems 4.1. and 4.2. and from theorems of Section Three we obtain the following theorems.

4.3. THEOREM. Let X be an inverse system as in Theorem 2.4. Then $X = \lim X$ is connected iff $X_{\alpha} \quad \alpha \in A$, are connected.

4.4. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system such that $X_{\alpha}, \alpha \in A, X = \lim \underline{X}$ are functionally Hausdorff H-closed (R-closed). If the projections $f_{\alpha} : X \longrightarrow X_{\alpha}, \alpha \in A$, are onto

mappings, then X is connected iff X_{α} , $\alpha \in A$, are connected.

4.5. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of H-closed functionally Hausdorf spaces X_{α} and open onto mappings $f_{\alpha\beta}$. The space $X = \lim \underline{X}$ is connected iff X_{α} , $\alpha \in A$, are connected.

4.6. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of R-closed (AR-closed) functionally Hausdorf spaces X_{α} and open-closed onto mappings $f_{\alpha\beta}$. The space $X = \lim \underline{X}$ is connected iff the spaces X_{α} , $\alpha \in A$, are connected.

4.7. THEOREM. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse f-system such that all X_{α} and $X = \lim \underline{X}$ are w-compact (τ -compact, H-closed, R-closed). X is connected iff X_{α} , $\alpha \in A$, are connected.

REFERENCES:

- (1) Arhangel'skij A.V., Ponomarev V.I., Osnovy ob{~ej topologii v zada~ah i upra'nenijah, Nauka, Moskva, 1974.
- (2) Engelking R., General Topology, PWN, Warszawa, 1977.
- (3) Gillman L. and Jerison M., Rings of Continuous Functions, D. van Nostrand Comp., New York, 1960.
- (4) Ishii T., Some results on w-compact spaces, (in russian), UMN 35 (1980), 61-66.

(5) Lon~ar I., Applications of Θ -clsed and μ -closed sets, Zbornik radova Fakulteta organizacije i informatike

Vara'din 8 (1984), 237-254.(6), Inverse systems of R-closed spaces, Math. Balkan., 2(1988), 172 - 181.
(7), Lindelöfov broj i inverzni sistemi, Zbornik radova FOI Vara'din, 7 (1983), 245-252.

(8) Sigal M.K. and Asha Mathur, A note on almost completely

regular spaces, Glasnik matemati~ki 6 (26) (1971), 345-349. (9), On minimal almost regular spaces, Glasnik matemati~ki 6 (26) (1971), 179-185. (10) [~epin E.V.:, Funktory i nes~etnye stepeni kompaktov, UMN 36 (1981), 3-62. (11) Tka~enko M.G., Some results on inverse spectra I., Commentationes math. univ. carol. 22 (1981), 621-633. (12), Some results on inverse spectra II., Commentationes math. univ. carol. 22 (1981), 819-841. (13) Cepi i kardinaly, DAN SSSR 239 (1978),546-549. (14) Vinson T.O. and Dickman R.H., Inverse limits and absolutes of H-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 351-358.

Priml, jeno: 1990-05-29

Lončar I. Neprekidnost Tihnovljevog funktora

SADRZAJ

U radu je istrazivana neprekidnost Tihonovljevog funktora τ . Pri tome kazemo da je funktor F C-neprekidan ako su prostori F(lim X) i limF X homeomorfni, gdje je C klasa inverznih sistema X = =

 $\{X_{\alpha}, f_{\alpha\beta}, A\}.$

U odjeljku 1. dana je definicija i osnovna svojstva funktora τ. Drugi odjeljak sadrzi teoreme o nepraznosti i w-kompaktnosti limesa inverznih sistema w-kompaktnih prostora.

Teoremi iz drugog odjeljka sluze za dokazivanje teorema o C-neprekidnosti funktora τ , gdje je C klasa inverznih sistema w-kompaktnih (t-kompaktnih, H-zatvorenih ili R-zatvorenih) prostora.

226