
1 
 

 

 

 

 

 

Videogames Design and Development 
Degree  

 

VJ1241: Technical Report of the Final Degree Project 
 

 

 

Creation of a complete horror level 
with its sound environment in Unreal Engine 4. 

 

 

 

 

 

 

 

 

Author: Jaime Lara Mora.  

Tutor: Miguel Chover Selles.   

 



2 
 

 Summary 

 

 

A key point to the success of a game is the immersion that creates on the player 

through its environment, this refers to the playable levels and the soundtrack of the 

game [1]. Focusing on this matter is something very valuable for game makers. This 

Final Degree Project is about creating such engaging and explorable horror 

environment, as a demonstration of what can be done in a game without actually 

creating the whole game, but a demo. On this document, the demo will be referred to 

as a game.   

  

 

The main objective of this project is the creation of a complete and explorable 3D 

environment that creates tension and fear in whoever plays it. Specifically, it consists 

on a mountain which you are be able to explore and hear. It is set on night time, thus 

having the corresponding sounds of nocturnal animals and some added extras, that 

creates a tense atmosphere. This is entirely done on Unreal Engine 4 

 

 

 

Key Words 

 

Horror environment, Game engine, 3D modelling, Sound Design, Events programming. 

 

 

 

 

 

 

 

 



3 
 

Index 
 

Summary ................................................................................................................................... 2 

Key Words ............................................................................................................................. 2 

1. Introduction ........................................................................................................................... 7 

1.1 Objectives ........................................................................................................................ 7 

1.2. Visual References ........................................................................................................... 7 

1.3. Resources ...................................................................................................................... 8 

2. Planning .............................................................................................................................. 11 

2.1 Tasks ............................................................................................................................. 11 

2.2. Risks and Contingency Plans ....................................................................................... 13 

3. Art ....................................................................................................................................... 15 

3.1. Terrain .......................................................................................................................... 15 

3.2. Moon ............................................................................................................................ 20 

3.3. Owl ............................................................................................................................... 21 

3.4. Rocks ........................................................................................................................... 23 

3.5 Water ............................................................................................................................. 26 

3.6. Ambience ...................................................................................................................... 28 

3.6.1. Main Post Process Volume .................................................................................... 28 

3.6.2 Fog .......................................................................................................................... 30 

4. Functional and Technical Specifications .............................................................................. 33 

4.1. Sound triggers .............................................................................................................. 33 

4.2. Steps sound .................................................................................................................. 34 

4.3. Jump scare ................................................................................................................... 35 

4.4. Rock Falling .................................................................................................................. 36 

4.5. Final Event .................................................................................................................... 37 

4.6 Owl Eyes ....................................................................................................................... 39 

4.7. Player controller ............................................................................................................ 41 

4.8 Camera Shake Class ..................................................................................................... 42 

4.9 Fade In .......................................................................................................................... 43 

5. Sounds ................................................................................................................................ 45 

5.1. Background sound ........................................................................................................ 45 

5.2. Steps ............................................................................................................................ 47 

5.3. Breathing ...................................................................................................................... 48 

5.4. After scare and Final scare ........................................................................................... 49 

6. Project Monitoring ............................................................................................................... 51 



4 
 

7. Conclusions......................................................................................................................... 55 

8. Bibliography ........................................................................................................................ 57 

9. Annex - External Assets used ............................................................................................. 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Figures Index 

 

Figure 1. Photo of the "Os Grobos" forest. ................................................................................ 8 

Figure 2. Gantt chart for the tasks. .......................................................................................... 13 

Figure 3. The model of the terrain inside the engine. ............................................................... 16 

Figure 4. Material of the terrain. .............................................................................................. 17 

Figure 5. Group inside the material of the terrain. .................................................................... 18 

Figure 6. Example terrain without rotations………………………………………………………….16                                                                           

Figure 7. Same terrain with rotations ....................................................................................... 19 

Figure 8. How Path texture (left) and Leaves texture (right) blend together on the terrain ....... 19 

Figure 9. Moon material………………………………………………………………………………..20           

Figure 10. Halo material……………….. ................................................................................... 20 

Figure 11. Moon with base color……………………………………………………………………...21              

Figure 12. Moon with emissive color… .................................................................................... 21 

Figure 13. Making process of the owl. ..................................................................................... 22 

Figure 14. The owl on the engine. ........................................................................................... 22 

Figure 15. A high poly version of one of the rocks. .................................................................. 23 

Figure 16. UV Maps of an example model. .............................................................................. 24 

Figure 17. Rock material blueprint. .......................................................................................... 25 

Figure 18. One of the rocks textured on the engine. ................................................................ 26 

Figure 19. Water material. ....................................................................................................... 27 

Figure 20. The result of the water. ........................................................................................... 28 

Figure 21. Scene without Post Process Volume. ..................................................................... 29 

Figure 22. Scene with Post Process Volume. .......................................................................... 29 

Figure 23. Fog material. .......................................................................................................... 30 

Figure 24. Scene without fog. .................................................................................................. 31 

Figure 25. Scene with fog. ....................................................................................................... 31 

Figure 26. Triggered sound blueprint. ...................................................................................... 33 

Figure 27. Steps sound blueprint. ............................................................................................ 34 

Figure 28. Jump Scare blueprint. ............................................................................................ 35 

Figure 29. Jump Scare on the engine. ..................................................................................... 36 

Figure 30. Rock Falling blueprint. ............................................................................................ 37 

Figure 31. Final Event Blueprint. ............................................................................................. 38 

Figure 32. The Final Event (the image is blurry because of the camera shake). ...................... 39 

Figure 33. Owl Eye blueprint. .................................................................................................. 40 

Figure 34. Player controller. .................................................................................................... 41 

Figure 35. Camera Shake class. ............................................................................................. 43 

Figure 36. Matinee actor for the fade in. .................................................................................. 44 

Figure 37. Professional recorder used for this project (Zoom H4n). ......................................... 45 

Figure 38. Parametric Equalizer. ............................................................................................. 46 

Figure 39. Crossfade. .............................................................................................................. 47 

Figure 40. Audition's feature for noise reduction. ..................................................................... 48 

Figure 41. Convolution reverb panel. ....................................................................................... 49 

Figure 42. Kontakt interface with one of the instruments used loaded. .................................... 50 

Figure 43. External assets used. ............................................................................................. 59 

  



6 
 

Tables Index 

  

Table 2. Relation between tasks, objectives and deadlines……………………………………….11 

Table 2. Final table of time.……………………………………………….…………………………..50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

1. Introduction 

1.1 Objectives 

 

We can summarize the main purpose of this project in one sentence: Creating a 

complete and explorable 3D horror environment, including its soundtrack implemented 

in a game engine. In order to do this project, it is required to break down this idea into 

smaller objectives: 

 

1. Creating a complete environment that generates fear and tension in the player 

through 3D modeling and texturing. 

2. Record, edit and generate sounds for this project that will create the feelings 

mentioned above in the player.  

3. Being able to implement everything in a game engine. 

4. Professionally documenting all the work done, including a time schedule. 

5. Put into practice all the competences acquired in the degree.  

 

1.2. Visual References 

 

The level will be inspired in a forest named "Os Grobos" located in Galicia. The idea is 

to create a forest that has many karst formations which will make the player feel secure 

and insecure at the same time. In these formations you can hide but there's also the 

possibility that something has been hiding in there before you. You will start at the top 

of the mountain and will have to go all the way down to the end, experiencing a spooky 

night time ambient and some events, like rocks moving, falling, and even a strange 

presence. Here's a picture of the mentioned forest:  

 



8 
 

 

Figure 1. Photo of the "Os Grobos" forest. 

 

1.3. Resources 

 

 

For this project, a wide variety of software was used. Here they will be mentioned and 

briefly explained.  

 

Blender, 3D Max and zBrush 

 

These softwares were used for every 3D asset that needed to be created externally, 

including the terrain. These are currently widely used in the videogame industry. 

 

Ableton Live Lite, Kontakt and Adobe Audition 

 

For the sound aspect of this project Ableton Live Lite was used. It is a good musical 

editing software that suits the needs of this project. Adobe Audition was also used to 

edit some of the recordings that were made, and even some of the external sounds 

used were edited with it. Kontakt is a software to load virtual instruments and use them. 

 



9 
 

Unreal Engine 4 

 

Unreal Engine 4 was used to merge everything and create the finished project. This 

engine was chosen because it’s a big reference inside the game industry that is worth 

learning. Also, it may suit better the needs of the project because of its lighting engine. 

 

Google Apps 

 

Nowadays, Google is present in almost everything we do. It will be used for every 

research needed. Moreover, its other applications are valuable tools to work with, like 

Google Docs for example. The decision of using Google apps instead of other software 

like Microsoft Word, is mainly because Google apps are free and constantly synced 

with every device one may own.  

 

 

 

 

 

 

 

 

 

 



10 
 

 

  



11 
 

2. Planning 

 

This whole section is taken from the Technical Proposal. Later on this document, the 

deviations of the original planning will be discussed.  In this section, a list the tasks will 

be shown along with a table with the relations between them and the objectives.  

 

2.1 Tasks 

 

The Final Degree Project can be divided in the following tasks to have a better 

understanding of what is going to be done and how: 

 

1. Doing a professional technical proposal where the project is explained. 

2. Investigating horror games, their environments, music and sound effects. 

3. Modelling the level. 

4. Texturing the level. 

5. Modelling and texturing the asset.  

5.1. Implementing them on the game engine. 

6. Doing the soundtrack and designing the sound effects. 

7. Programming all the interaction in the game engine along with the sounds.  

8. Documenting the final results of the project and preparing a presentation 

for it. 

 

Considering this tasks, the Table 1 below will show the relations between them, the 

time and the objectives of this project: 

 

 

               

 

 

 

 

 



12 
 

 

Tasks Time Objectives 

1. Doing a professional technical proposal 

where the project is explained. 

15h 4 and 5 

2. Investigating horror games, their 

environments, music and sound effects. 

15h 5 

3. Modelling the level. 40h 1 and 5 

4. Texturing the level. 30h 1 and 5 

5. Modelling and texturing the asset and 

having them implemented on the game 

engine. 

50h 1, 3 and 5 

6. Doing the soundtrack and designing the 

sound effects. 

40h 2 and 5 

7. Programming all the interaction in the 

game engine along with the sounds.  

40h 3 and 5 

8. Documenting the final results of the 

project and preparing a presentation for it. 

50h 4 and 5 

 

Table 1. Relation between tasks, objectives and deadlines. 

 

It is a total of 300 hours that will be used to complete this game. Below this you will see 

the dates that were on the original planning on Figure 2: 

 

  

 

 

 

 



13 
 

 

 

Figure 2. Gantt chart for the tasks. 

 

 

2.2. Risks and Contingency Plans 

 

This project, like almost every one, has its risks. So, in order to succeed, it's a good 

practice to sit down to think about about them and how to avoid them. Here's the result 

of that thinking process: 

 

 

Risks Contingency Plans 

Unreal does not suit the needs of the 

project. 

The project will be moved to Unity. 

There's not enough time to model the 

assets. 

There will be less assets with less detail. 

Not enough time to finish the whole 

level.  

A smaller portion of the level will be then 

presented. 

 

Table 3. Risks and Contingency Plans 

 



14 
 

 

  



15 
 

3. Art 

 

This chapter will show the art of the project, everything that has been done and used 

for it, including photos. The work done will be separated in 2 categories: Assets and 

Ambience. For showing purposes, in some images the lighting of the game will be 

raised to a point where everything can be seen. On the original game, the light is at a 

minimum value to give the game a dark feeling.  

 

The assets that were modeled on high poly had first to be processed to a lower poly 

version to optimize the performance of the game. Implementing some assets in the 

engine was a bidirectional task. One has to keep in mind how they will look in the 

engine while texturing them, so sometimes the model had to go back and forth from the 

3D software to Unreal to make it look right. 

 

Materials in Unreal are created by a series of connected nodes. These nodes are a 

form of visual scripting, as they contain HLSL code (High-Level Shader Language), so 

they can be as complex as the user wants. But to make it a little bit more difficult, 

complexity obviously affects performance as well. 

 

3.1. Terrain  

 

This was the first asset modeled. It was done using Blender and its sculpt mode. 

Although the texturing was done entirely on Unreal, this asset needed to go back and 

forth from Blender to Unreal to be able to extract the right normal maps in order to get a 

decent result on the engine. Also, the terrain on Unreal needed a bit of tweaking on its 

resolution and dimensions.  

 

 



16 
 

 

Figure 3. The model of the terrain inside the engine. 

 

Texturing the level was a bit of a challenge. First finding a texture that suited the 

atmosphere of the project. Then making it work on Unreal Engine. The terrain had to 

have different textures, but Unreal only allows one material for it, so it’s necessary to 

organize the material in layers. The terrain is composed by four layers, and every layer 

has its texture, some nodes to resize them, and other nodes to make variations on the 

surface, such as randomly rotating the texture along with lerp nodes to make it look 

good. To try what you do, you have to compile the material and wait for it. This takes a 

little bit of time, so it took longer than expected to make it right. This is what the material 

blueprint looks like:  

 



17 
 

 

Figure 4. Material of the terrain.  

 

 

This image barely shows the four layers used on this material. The first is “Leaves”, but 

the title is not visible, the second “Path”, the third “Grass” and the fourth “Stone”. Let's 

take a closer look at one of the Layers of the material to understand what's going on, 

we’ll focus on the “Path” layer: 

 



18 
 

 

Figure 5. Group inside the material of the terrain. 

 

As you can see, every part is grouped in boxes to make it easier to understand. From 

left to right, the first group is a variation applied to the texture. It consists in a "variation 

map" with its own scale, that when applied to the texture through a combination of add 

and multiply nodes, it slightly varies the color of the texture following a random pattern 

based on the map. It is then reduced multiplied by the color variation and applied to the 

main texture on the next two groups. On the bottom group, the main texture is rotated a 

few times, joined together by lerps and then applied to the main texture. This is a really 

important part of the material. Without this (Figure 6), the texture would look almost like 

tiles. Here's an external example of what is being mentioned: 

 



19 
 

Figure 6. Example terrain without rotations.                        Figure 7. Same terrain with rotations 

 

 

The last group on the right creates a Fresnel effect on the layer. This effect makes the 

material look better and a bit more realistic in the distance, is a good effect to apply to 

landscape materials. All this is joined by a Layer Blend node that joins the four layers to 

the material. So every layer gets its own texture, normal map, roughness, specular 

value, etc. This way you can manually paint on the terrain with any layer you want. 

Here you will be able to see an example, this is how the path texture and the leaves 

texture blend together. This was done using Unreal's paint and smooth brushes:  

 

 

Figure 8. How Path texture (left) and Leaves texture (right) blend together on the terrain 

 



20 
 

3.2. Moon 

 

The moon consists in two objects: A semi sphere and a plane. The semi sphere is 

textured with an actual image of the moon multiplied by a similar color, which is what 

gives it brightness. The halo works in a similar way. It's a 2D plane with a texture of a 

black and white radial gradient, and also is multiplied by a white color to add 

brightness. The only difference is that the plane is a masked material, this means that 

depending on its texture, some parts of the plane can be translucent, so the plane is 

seen as a circular halo and not as a plane. With the brightness multipliers we get the 

sensation that the moon is actually lighting the scene, but the real actor that lights the 

scene is invisible. Here's how the materials look:  

 

 

        Figure 9. Moon material.            Figure 10. Halo material. 
         

 

 

In order to have a glowing material, you have to use the emissive color connection 

instead of the base color. The base color is affected by the external lights, but the 

emissive color is not and has its own light. So when multiplied, it glows. To better 

understand the difference between emissive color and base color only, let's see two 

examples of the same moon with and without emissive color.  

 



21 
 

   Figure 11. Moon with base color.              Figure 12. Moon with emissive color. 

 

3.3. Owl 

 

The project needed to have some decoration, to make it have a sort of “soul” or 

personality. The idea was to have some animal with glowing eyes opening and closing 

and owls were perfect for this matter. Owls are often surrounded by beliefs and 

superstitions and associated with Occult knowledge, shamanism, demons and other 

spiritual matters. Their sound is often used to create mystery at night on films and 

games, plus they're often portrayed with glowing eyes on some tales. This asset was 

inspired on an external design of a cartoon owl. It was then modeled on zBrush. The 

body was sculpted from a sphere using the grab brush and smooth. After that, using 

the mask brush, its body parts were painted on it, then extracted and modified also with 

the grab and smooth brushes. Every part was done using the same system. Then the 

feet and some details were added to it using the sculpt brush. In the next figure you will 

be able to see its making process: 

 

 



22 
 

 

Figure 13. Making process of the owl. 

 

It wasn’t texturized because its purpose is to be totally black, so you can only 

see its silhouette and glowing eyes. Its eyes will be explained further more in the 

fourth section. Here you can see how his low poly version looks rendered on the 

engine: 

 

 

 

Figure 14. The owl on the engine. 

 



23 
 

3.4. Rocks 

 

 

As the initial idea was to make a forest with karst formations, some rocks were modeled 

for that purpose. Three rocks were modeled to have some variations. They all started 

as simple cubes, got resized and subdivided enough to be able to model them on high 

poly, even though only their low poly version were going to be used on the engine. This 

way the resulting low poly object will have more details even without normal maps. A 

total of three rocks were made for this project. This is an image of the high poly version 

of one of the rocks:  

 

 

 

 

Figure 15. A high poly version of one of the rocks. 

 

 



24 
 

There were two options to texture it: painting it on blender or doing it entirely on the 

engine. The result of the first option wasn't exactly what the project needed. Because of 

that, the texturing was done inside Unreal. First, the model has to have a defined UV 

Map. To create a UV Map, you "unfold" the model into a 2D image, kind of like origami. 

For a better understanding of what this is, here's an example on the next figure: 

 

 

 

Figure 16. UV Maps of an example model. 

 

 

Various techniques were used to get these maps, but the UV seams keep appearing on 

the model. The UV seams are the joints that join together every piece of the map on 

the model. It's really difficult to avoid having those seams on your model. After some 

research and tries, the best option was to do the unwrap with 3D Max, tweaking some 

parameters. This way, the rock could finally be moved inside the Engine. Once in 

Unreal, the project already had in use a good stone texture for the terrain, so the same 

was used for the rock, just needed a "Texture Coordinate" node (red node on the left of 

Figure X), which resizes the texture to the size you want. After that, a normal map is 

needed. Normal maps can easily be baked from the high poly model to the low poly 

one, but this didn't suit well the texture. The best option was to use the texture's normal 

map with the same Texture Coordinate node. Also, the normal map is multiplied by a 

specific blue color to soften the overall effect of the normal map. This is because if the 



25 
 

normal map is too abrupt, it will create really dark shadows, so it needs to be softened 

this way to make it look good.  Lastly, some parameters needed a bit of tweaking. 

Unreal uses PBR Materials, this materials approximate what light actually does instead 

of approximating what we think it should do. This results in more natural looking 

materials. Its properties are values that can be measured from real world Materials. 

These are: base color, roughness, metallic and specular [2].  

 

 

 

Figure 17. Rock material blueprint. 

 

 

After some tweaking, the rock finally looks like this on the engine:  

 



26 
 

 

Figure 18. One of the rocks textured on the engine. 

 

 

3.5 Water 

 

The end of the game is placed in a lake. This lake is created by a cube that is below 

the terrain and has a water material.  

 



27 
 

 

Figure 19. Water material. 

 

 

To simulate the waves of the water, a "Panner" node was used. This node makes a 

texture move on the X and Y axis at the speed you want. To get a good effect, two 

normal maps are used for this. Both are the same, but each one has a different Panner 

node with a different movement. Then they are multiplied to have two normal maps 

moving. This combined with a dark blue base color and some tweaking of the PBR 

values, generates a good looking water effect. But that's not all, if you look closely, the 

water not only has waves but also goes up and down. This is generated by the 

"SimpleGrassWind" node. This node, as his name shows, was designed to be used to 

simulate wind on grass, and can also be used on trees for the same reason. It is used 

on this project for that purpose. But after realizing what this node really does, it was 

clear that it was a good idea to use it to simulate water movements. After some 

tweaking of the values, a satisfactory result was achieved.  

 



28 
 

 

Figure 20. The result of the water. 

3.6. Ambience 

 

 

This part of the project is actually the key to its overall "creepy" and mystery feeling. 

This is what gives the world its personality. A good amount of thought and time has 

been used for this to suit perfectly what the project needed to create and transmit. Here 

you're going to be able to see the results of it. 

3.6.1. Main Post Process Volume 

 

 

Unreal Engine 4 has an actor called "PostProcess Volume". This works like a "filter" for 

the current camera, but is more complex than that. With this feature, you can change 

the brightness of the scene, contrast, saturation, colors, exposure to the light, etc. A 

default scene has all of these values at default, plus the default auto exposure is really 

aggressive for a night scene. With the Post Process Volume the auto exposure was 

change to be almost non-existant. The colors have been slightly altered towards blue 

tones to simulate a night scene, and the contrast and saturation values have been 

tweaked to improve the overall visuality. Here's the example of the scene with and 

without Post Process Volume.  

 



29 
 

 

Figure 21. Scene without Post Process Volume. 

 

 

Figure 22. Scene with Post Process Volume. 

 

 

 



30 
 

3.6.2 Fog 

 

The fog is a very important part of the game. Not only impairs the player's vision, which 

makes the player afraid of what he can't see, but also adds a huge impact to the overall 

feeling of the game. For this, Unreal Engine 4 has already an "actor" that simulates fog. 

This fog actor didn't quite suit the needs of the project, so instead of using the default 

actor, the fog was created in an alternative way. Unreal's Post Process Volumes are 

not only used only to tweak its parameters to change the global appearance of the 

world, but can also take some materials as "blendables" to process them. With this 

system, you can create your own material and use it as a custom Post Process 

Volume. This is how the fog was created: 

 

 

Figure 23. Fog material. 

 

The bottom part calculates the overall density of the fog. It also determines 

where the fog should start. This means that wherever is the player standing, 

there will be a space of X units, in this case 1000, without fog. So, the player will 

see the fog in the distance, and not on its own feet. With the part above it you 

can change the color and make it look brighter or darker. Below this you will see 

an example of what the fog provides to the world and how it would look without 

it. Figure 25 is a screenshot with the lighting slightly raised, otherwise the image 

would be too dark.  



31 
 

 

Figure 24. Scene without fog. 

 

 

Figure 25. Scene with fog. 

 

 



32 
 

 

  



33 
 

4. Functional and Technical Specifications 

 

 

This section will be used to explain the behavior of all the events programmed on the 

game. Unreal uses a sort of visual scripting that is called “Blueprints”. On this section 

more things about it will be explained and images of them will be provided. 

4.1. Sound triggers 

 

There are various sound triggers on the game, so one of them will be explained as an 

example. These triggers consist in a box-shaped collider. When the player walks 

through it, the collider gets destroyed and the sound is played. The collider is always 

destroyed first to prevent the blueprint to be called multiple times. The behavior of 

these blueprints is pretty much straight forward. 

 

 

 

Figure 26. Triggered sound blueprint. 

 

This blueprint triggers a breathing sound. The sounds will be explained later on this 

document. In this blueprint, when the players steps on the collider, the collider gets 

destroyed and the audio actor is spawned. The location for this actor is calculated 

getting the actual location of the player and adding it to a vector that makes the audio 

to spawn next to the player, at his right or at his left depending on what sound we're 



34 
 

talking about. This kind of calculations are done in almost every blueprint. The collider 

is lengthened widthwise, so the player will always trigger the collider when he's 

reaching that point of the path, even if he's all the way to the left or to the right. After 

that, the sound is played. Then a "delay" node is placed to wait till the sound is finished, 

and then it stops. Without the "stop" node the sound could remain being played on 

loop.  

 

4.2. Steps sound 

 

 

This blueprint works similarly to the above one, but making the audio actor move. The 

sound used on this blueprint is a steps sound. This combined with movement makes 

the player think someone is following him. The audio actor is also located using the 

actual player location. Then, it's moved to a relative location from the location the audio 

actor was spawned. Also, the sound has some Attenuation settings that makes the 

player to hear it on stereo, this means the player will hear the steps at his right, and if 

he moves the camera the sound will move accordingly. Later on this document the 

Attenuation settings will be explained.  

 

 

Figure 27. Steps sound blueprint. 

 

 



35 
 

4.3. Jump scare 

 

 

It's time to talk about more elaborated blueprints. This blueprint makes a "monster" 

appear in front of the player along with two sounds, one sound is a "hit" and the other is 

one called "after scare". More on that sound later on this document. At the same time, 

the camera will shake.  

 

 

Figure 28. Jump Scare blueprint. 

 

When the player collides with the box, it is destroyed as always first, then the monster 

is spawned in front of the player. This follows the same calculations as mentioned 

before, it takes the actual player location and adds a vector to make the actor always 

appear in front of the player, no matter where does the player collides with the trigger. 

Then, the monster actor is set to visible and then a hit sound is played. At the same 

time, the camera shakes using an Unreal function that uses a specific interface for it. 

Even though the "after scare" play sound node is after the function, it is played instantly 

at the same time. You can change the volume and pitch of the sounds you use via the 

blueprint. This is a very useful function that allows you to use the same sound with 

different volume and/or pitch for different situations. After that, the blueprint waits 0,4 

seconds to hide again the monster actor. This took some tests with people to see what 

time provided the best result. Generally, the lesser time the monster is shown the 

better, it must be a quick appearance, but it shouldn't be too quick, so the player can 

recognize the silhouette as something unnatural and threatening. In this case the stop 



36 
 

node is not needed, because the "Play Sound at Location" node only plays the sound 

once, so there's no chance for the sound to enter in a loop.  

 

 

Figure 29. Jump Scare on the engine. 

 

4.4. Rock Falling 

 

When the player walks through the collider of this blueprint, a rock appears up above at 

his right and rolls out from the ravine to the floor, with its corresponding sound. This is 

the first event that the player encounters. This could be caused by a natural rockfall, or 

maybe someone or something can cause this. After experiencing this, the player is 

forced to start thinking whether he's alone at the forest or not.  

 

 

 

 

 

 

 

 



37 
 

 

 

 

Figure 30. Rock Falling blueprint. 

 

This blueprint consists on a rock already placed on the air from where it should fall. The 

rock is hidden and its physics are off. Once the player collides with the trigger, the rock 

begins to simulate physics and stops being hidden in the game. The node "Add Force" 

adds an external force to the rock to make it fall with strength, like if something pushed 

it. The blueprint waits till the rock starts hitting the terrain and starts the camera shake 

and the sound. Both will be better explained further on. When the rock stops moving, it 

has a "Fade Out" node for the sound to slowly fade out and then finally gets stopped.  

 

 

4.5. Final Event 

 

Here is where the game ends. At the beginning you're told to look for blue luminescent 

grass, so the player finds it surrounded by rocks. When he enters, all the rocks blow 

away and then the monster appears screaming 

. 



38 
 

 

 

Figure 31. Final Event Blueprint. 

 

All the rocks have their physics turned off. After the player walks through the collider, all 

their physics are turned on, and a node adds a vector force to them, also a camera 

shake is applied. This simulates a supernatural force being applied to the rocks from 

the center of them, right where the monster appears. Two different nodes with two 

different vectors were needed to make it right because every rock has a different 

position and rotation. 0,3 seconds after they go away, the monster appears and 

screams to the player, then it disappears. Then the blueprints waits a few seconds and 

starts a fade out. This fade out not only fades the alpha value of the camera, but also 

fades out the overall sound of the game, making it perfect for an end game fade out. 

After everything is faded out, the game ends.  

 



39 
 

 

Figure 32. The Final Event (the image is blurry because of the camera shake). 

 

4.6 Owl Eyes 

 

The purpose of this blueprint is to make the owl open and close his eyes every 5 

seconds. At first this blueprint was supposed to be one of the easiest to do, but it 

turned out to be one of the hardest. The main reason behind this is because the 

blueprint needed to be always running, this means using the "Event Tick" node as the 

initiator, which is a node that is constantly being called for every tick of the game. The 

blueprint needed to make a rotation, then wait, and then make another rotation and so 

on. If you just use a "delay" node to make the blueprint wait for 5 seconds without 

moving is not going to work. The blueprint is a one way call only, this means the call 

only goes forward, never backwards nor on loops. With the delay node, every call 

makes a tiny movement and then waits 5 seconds to make the other movement. This 

results in 5 seconds of moving the eye normally and another 5 seconds of delayed 

movement calls stacked with the actual calls, so the eye starts running at a high speed 

and losing control. The initial approach was just wrong and needed to be entirely 

remade.  



40 
 

Let's start with the variables. We have a "Roll Float" with an initial value, which is the 

variable that will control the rotation. There's two more variables like it, one exactly the 

same, and the other inversed. This last two variables are used to reset the main "Roll 

Float" variable. The reset variables are needed because every tick, this value 

increments to move the eye. The variable "Time Float" represents every tick of the 

game, and it's multiplied to "Roll Float" to make the movement. "Timer" is the variable 

that manages the switches that the blueprint needs to do every 5 seconds. There are 

two booleans: To Close and To stop. One is to see if the eye needs to be closed or 

opened, and the other is to pause the blueprint for 5 seconds between movements. So 

the call works this way:  

 

 

Figure 33. Owl Eye blueprint. 

 

1. Every tick adds a value to the Timer Float, the Roll Float and the Timer. This is 

then stored into a vector for the rotation. Everytime the Timer variable gets to 5, 

the boolean To Stop is set true.  

2. If To Stop is true, the Roll Float value gets reset to stop the movement, and after 

waiting the 5 seconds, the Timer Float and the Timer get also reset and To Stop 

becomes false.  

3. If To Stop is false, then it checks if the eye has to open or close. If it has to be 

closed or opened, the correspondent Roll Float variable is set and it proceeds to 

rotate the eye. After 5 seconds, sets the condition to true or false, depending on 

which case is it in, and sets the Timer Float to 0.  

 



41 
 

This way, we can have an owl with opening and closing eyes every 5 seconds.  

 

 

4.7. Player controller 

 

The project has its own player controller blueprint. Not only the player can move, but 

can also crouch. This blueprint also controls two camera shakes and the steps sound. 

Here's how it looks like: 

 

 

 

Figure 34. Player controller. 

 

 

There are two nodes that are continuously waiting for movement inputs, one to go 

forward/backwards, and the other for right/left. When none of them are being called, the 

blueprint calls a camera shake for the idle state. This camera shakes simulates the 

character's breathing. When the player is moving, whether it's forward/backwards or 

right/left, another camera shake is used to simulate steps. The camera goes up and 

down as if the character was walking with its legs. Another node gets the velocity of the 

player, when it's above 0, it waits 0,8 seconds and then plays a step sound. This 



42 
 

synchronizes with the up and down movement on the camera, and also with the overall 

velocity of the character, so you can see and hear the character walking leg by leg.  

For the crouching, a node is waiting for that specific input. Once the player hits the 

"Ctrl" button, there's a condition that checks if the character is already crouched or not. 

If not, the character goes to the crouch position. As it is only a camera, this means that 

the height of the camera gets lower. This is done by two variables that store the 

standing position and the crouching position, and a "Timeline" node which is the one 

that allows the position to be changed smoothly, instead of doing it abruptly. All of this 

is interpolated by a Lerp node and then passed to the node that actually changes the 

height of the character.  

The movement of the camera and the jump function is pretty much straightforward from 

Unreal's nodes.  

 

4.8 Camera Shake Class 

 

These are a special kind of blueprint class that Unreal has to make a camera shake 

and use it inside of a blueprint. Tweaking the parameters, you can use it in your 

blueprints to make the camera shake however you want and whenever you need it. 

They look like this: 

 



43 
 

 

Figure 35. Camera Shake class. 

You can chose from any angle to make the camera rotate. You can control its 

"Intensity", duration, etc. This has been really helpful to add value to the character 

controller and the events of the game. It's a very useful feature that every game engine 

should have.  

 

4.9 Fade In 

 

The matinée feature of Unreal is used to make cutscenes inside of the game. After 

getting the fade out done for the end of the game, it felt like the beginning needed also 

a fade of its own. After some research, it became clear that the best way to do it was 

with the matinée feature. You have to create a new group, and select the fade option. 

Then, you select how much time you want it to last, create some key points on the 

timeline and change their alpha value. After this, placing the matinée actor into the 



44 
 

game and making it autoactivate at the beginning makes the game to have a fade in 

when it starts.  

 

 

Figure 36. Matinee actor for the fade in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

5. Sounds 

 

 

The sounds that were made exclusively for this project will be explained. Some of the 

sounds recorded for this project, were recorded by a professional recorder, courtesy of 

the Jaume I University, and one of them was recorded with the microphone of a 

smartphone. In this google drive folder [2] you will be able to download and hear every 

sound that was made for the project, the other sounds that are not here are taken from 

an external website: 

 

 

 

Figure 37. Professional recorder used for this project (Zoom H4n). 

 

5.1. Background sound 

 

After the research that has been done about horror games and their sound, when 

building the sonorous aspect of the game the first thing that comes in mind is that the 

game needs its own "background noise", just like every other game has. Standing in a 

forest at night hearing the wind will probably not scare anyone, but is the background 

noise that makes you think something is not right. That noise symbolizes a strange 

presence, maybe the blood pressure of the character's brain who's going insane, etc. 

After thinking about it and trying some things, a conclusion was made. The sound of a 

desktop is always on the background and nobody notices it, is the background noise of 



46 
 

a room. A desktop was recorded and the result was not bad at all, but it needed to be 

darker and less "mechanical". For this, Adobe Audition and its parametric equalizer was 

used. 

 

 

 

Figure 38. Parametric Equalizer. 

 

 

Features like this one of this program really helped the project to get a good sounding 

quality and reach what it needed to transmit. After being happy about the result, the 

noise was only some seconds long, but wasn't loopable. To do this, a few seconds of 

the end are needed to be cut and pasted at the beginning. Then, the old end and the 

old beginning must be joined together with a "crossfade". A crossfade is a function that 

fades out the first sound and fades in the second one. 

 



47 
 

  

Figure 39. Crossfade. 

 

This way, you can join together two sounds without hearing an erroneous "clipping" 

sound. With this technique you get a perfect loop in any engine. That's how the 

background noise was made for this project.  

 

5.2. Steps 

 

 

This sound can be called a “foley effect”. These kind of sound effects are made on 

studio, and are a simulation of how something might sound like. For example, instead 

of recording the sound of a fire, you can record an egg being fried and then edit it. This 

way you may get a “fire” sound effect that may be even better than the sound that an 

actual fire makes. So, back to the project, the step sounds were done by folding a 

newspaper and then putting it inside a plastic bag. To simulate steps, a hand was 

recorded slightly tapping the plastic bag with the newspaper inside it.  After this was 

done, the recording was moved into Adobe Audition. Once in there all the extra noise 

that was on the recording was reduced thanks to a special function of this program. It 

consists in selecting a "silent" part of the recording, where there's only white noise, and 

then apply the reduction on the whole recording based on that noise fragment. 

 

 



48 
 

  

Figure 40. Audition's feature for noise reduction. 

 

After this is done, the parametric equalizer is used again to get the better quality out of 

the recording.  

 

5.3. Breathing 

 

The project needed a ghostly breathing sound to add more sound triggers. It could 

have been taken from some free website but it would be good for the project if this 

could be originally recorded and edited without external help. Smartphones don't have 

the best microphones, but with Audition's noise reduction feature one can get a decent 

recording. After recording a real human voice breathing deeply and equalizing it, the 

sound needed an extra effect to suit the game correctly. Here enters in play the 

convolution reverb effects that Audition has. These effects are already set, but can also 

be tweaked. After some testing, a satisfactory sound of the recording was finally 

achieved with one of the effects and some tweaking.  

 



49 
 

 

Figure 41. Convolution reverb panel. 

 

 

5.4. After scare and Final scare 

 

There are some good horror sound effects already made and prepared to be freely 

used. These effects are made with synthesizers. Even though there are being used two 

external sounds for this project, it would be good for the project to create its own 

synthesizer sound effects. For this, Ableton Live was used along with Kontakt. Kontakt 

is a software sampler, used to load virtual instruments to be played. This software used 

with a music production software like Ableton, is used to create music and all kinds of 

sounds. After searching for some instruments and finally finding two good ones that 

suited what the project needed, some notes were played on a MIDI keyboard, mixing 

low pitched notes with high ones, thus creating a haunting sound effect for the project. 

The Final Scare is also designed to be played on an infinite loop, so the same 

technique used to loop the Background noise was used for this.  

 



50 
 

 

Figure 42. Kontakt interface with one of the instruments used loaded. 

 

 

The Final Scare sound is placed on the end of the game as a sound actor. It also has 

its own attenuation effects. This is a function that Unreal uses to spatialize sounds. This 

is what makes a sound to be heard on 3D. In order for the sound to be heard only with 

one ear if it's totally on one side of the listener, the sound must be in Mono and not in 

Stereo. If the sound is in stereo, it will only fade with distance, but be heard by both 

ears no matter where the listener is. The main idea of this, is that when the player is 

reaching the end of the game, he starts to hear a sound that really haunts the player 

and makes him alert to what can happen.  

 

 

 

 

 



51 
 

6. Project Monitoring 

 

Here will be explained how the project got developed step by step. From what was 

planned on the technical proposal to what has been improvised or changed. A lot of 

problems have emerged during the making process of this project, so some changes 

needed to be done in order to finish it. On this stage of the work is where one can really 

appreciate and learn what to plan a project is and how important it is.  

 

1. Doing a professional technical proposal where the project is 

explained. 

 

Here's where the project started. This has been a great help for speeding things up, but 

some mistakes were made on the planning that had to be changed.  

 

2. Investigating horror games, their environments, music and sound 

effects. 

 

This was an important part of the project. In order to succeed in the industry, you first 

have to see what are your competitors doing, what works and what doesn't. An analysis 

of what works and what not on horror games was done. It was really important to know 

where the fear and tension really comes from. This is how some good ideas for the 

project were born, like the continuous background noise. Every fear game or movie has 

it, but they're all different and have its own identity. 

  

3. Modelling the level. 

 

This task was mostly straightforward, although it gave some trouble. To import a terrain 

on Unreal, you can’t just import the “.obj” file. It’s better to use Unreal’s terrain 

manager. So to import your modeled terrain into Unreal, you have to generate the 

height map and import it. This caused a little bit of travel to get right, and took some 

tweaking inside Unreal as well. 

 

 

 



52 
 

4. Texturing the level. 

 

This part is one of the tasks that took longer than expected to accomplish. So much 

problems appeared and every change that was made took time to compile. A good 

amount of research was needed to learn how to make the textures look right.   

 

5. Modelling and texturing the asset.  

 

To avoid overextending the time needed for the project, a few external were used, such 

as the vegetation and the 3D characters. The assets that were made for the project are 

the rocks, the walls of the beginning of the game and an owl with bright eyes to bring a 

special ambient to the game. Texturing some of the assets was also a challenge. If this 

is not done carefully, it results in a lot of UV seams all over the asset, which makes it 

look wrong.  

 

 

6. Doing the soundtrack and designing the sound effects. 

 

This part went more or less as planned. It was a rewarding task, every hour spent on searching 

for external sounds, recording or editing was really noticeable on the final project.  

 

7. Programming all the interaction in the game engine along with the 

sounds.  

 

This is the part that took the longest time to do by far. There was an idea of how the 

events should be and feel in general, but their content was still open. As explained 

above, every event that has been programmed took time and effort, long researches on 

Unreal's documentation page and a lot of try and failure tests.  

 

8. Documenting the final results of the project and preparing a 

presentation for it. 

 

This part was really useful to stop and analyze all the work done and how much one 

can learn with it. Sadly, some hours had to be taken away from this part. 



53 
 

Tasks Time Objectives 

1. Doing a professional technical proposal 

where the project is explained. 

15h 4 and 5 

2. Investigating horror games, their 

environments, music and sound effects. 

10h 5 

3. Modelling the level. 20h 1 and 5 

4. Texturing the level. 45h 1 and 5 

5. Modelling and texturing the asset and 

having them implemented on the game 

engine. 

50h 1, 3 and 5 

6. Doing the soundtrack and designing the 

sound effects. 

40h 2 and 5 

7. Programming all the interaction in the 

game engine along with the sounds.  

85h 3 and 5 

8. Documenting the final results of the 

project and preparing a presentation for it. 

35h 4 and 5 

 

Table 2. Final table of time. 

 

 

The Table 2 shows exactly how the time had to be reassigned from some tasks to 

others. This was the result of unexpected problems or needs that came along the 

working process.  

 

 

 

 

 

 

 



54 
 

 

  



55 
 

7. Conclusions 

 

 

This project is the culmination of everything that we learnt over the course of this 

degree. Here was put on practice our knowledge of videogames making. In this 

particular case, this knowledge also was used as background to be able to learn new 

software, different from what we used on the degree, like Unreal Engine. For example, 

this engine uses visual scripting for programming, and even though we haven’t really 

touched that topic, knowing how to program was an essential part to be able to 

understand and use blueprints. This is where all goes down to, knowing first the basics, 

and then you can learn to use every software without too much complication. The 

documentation part was tedious but necessary to understand and learn how planning 

works, and to get to know one’s possibilities and limitations.  

 

The project was successfully completed in time. The idea was to create a horror 

environment that created tension to the player and scare him, and so it did. Several 

tests were made with people inside and outside of the degree, and the results were 

promising. It is true that every person has a different tolerance to fear, but when the 

player focuses only on playing the game with headsets the tension is visible.  

 

This game achieved its own personality and identity. In a future, without limiting the 

time and the human resources, this demo could easily be developed into a full game, 

with a story and more levels. On the bibliography you’ll be able to find a link for a 

playable demo. 

 

 

 

 

 

 

 

 

 

 



56 
 

 

 

  



57 
 

8. Bibliography 

 

[1] Gamasutra webpage: 

http://www.gamasutra.com/view/news/200150/Why_ambient_sound_matters_to_your_

game.php  

[2] Unreal Engine documentation: 

https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/  

[3] Folder with the sounds that were made for the project: 

https://drive.google.com/open?id=0B1gJncMeKxfSYzZsckFOT0JQTVU (26/09/2016)  

 

 

External Assets Source 

 

https://www.freesound.org/  

https://www.assetstore.unity3d.com/  

https://forums.unrealengine.com/  

http://tf3dm.com/  

 

Playable demo 

 

https://drive.google.com/file/d/0B1gJncMeKxfSWTJDcjd6dGNpM1U/view?usp=sharing  

(26/09/2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.gamasutra.com/view/news/200150/Why_ambient_sound_matters_to_your_game.php
http://www.gamasutra.com/view/news/200150/Why_ambient_sound_matters_to_your_game.php
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/
https://drive.google.com/open?id=0B1gJncMeKxfSYzZsckFOT0JQTVU
https://www.freesound.org/
https://www.freesound.org/
https://www.assetstore.unity3d.com/
https://forums.unrealengine.com/
http://tf3dm.com/
https://drive.google.com/file/d/0B1gJncMeKxfSWTJDcjd6dGNpM1U/view?usp=sharing


58 
 

 

 

 

 

 

 

 

  



59 
 

9. Annex - External Assets used 

 

 

As this project has a time limit of 300h, there was not a chance for a single person to 

be able to do all the assets needed for it, while also programming everything. Also, 

repeating tasks will devalue the project, so the best choice was to do some assets and 

then use some other external assets and focus on other tasks to have more variety in 

the work done. On the image below, you will see the 4 external assets that were used 

on this project:  

 

 

Figure 43. External assets used. 

 

Also, as already mentioned before, some sounds have been taken from other websites 

mainly because most of them could not be recorded due to not having proper 

equipment nor human resources. These include: 

- Owl sound. 

- Cricket sound. 

- Scream sound from the final event.  

- A “hit” sound that sounds like a bass drop.  

 

These were all free assets taken from some websites that you can check on the 

bibliography.  


