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Bibliometric indicators: the origin of their
log-normal distribution and why they are not a
reliable proxy for an individual scholar’s talent
Giancarlo Ruocco1,2, Cinzia Daraio3, Viola Folli2 and Marco Leonetti2,4

ABSTRACT There is now compelling evidence that the statistical distributions of extensive

individual bibliometric indicators collected by a scholar, such as the number of publications or

the total number of citations, are well represented by a Log-Normal function when homo-

geneous samples are considered. A Log-Normal distribution function is the normal dis-

tribution for the logarithm of the variable. In linear scale it is a highly skewed distribution with

a long tail in the high productivity side. We are still lacking a detailed and convincing ab-initio

model able to explain observed Log-Normal distributions—this is the gap this paper sets out

to fill. Here, we propose a general explanation of the observed evidence by developing a

straightforward model based on the following simple assumptions: (1) the materialist prin-

ciple of the natural equality of human intelligence, (2) the success breeds success effect, also

known as Merton effect, which can be traced back to the Gospel parables about the Talents

(Matthew) and Minas (Luke), and, (3) the recognition and reputation mechanism. Building on

these assumptions we propose a distribution function that, although mathematically not

identical to a Log-Normal distribution, shares with it all its main features. Our model well

reproduces the empirical distributions, so the hypotheses at the basis of the model are not

falsified. Therefore the distributions of the bibliometric parameters observed might be the

result of chance and noise (chaos) related to multiplicative phenomena connected to a publish

or perish inflationary mechanism, led by scholars’ recognition and reputations. In short, being

a scholar in the right tail or in the left tail of the distribution could have very little connection

to her/his merit and achievements. This interpretation might cast some doubts on the use of

the number of papers and/or citations as a measure of scientific achievements. A tricky issue

seems to emerge, that is: what then do bibliometric indicators really measure? This issue calls for

deeper investigations into the meaning of bibliometric indicators. This is an interesting and

intriguing topic for further research to be carried out within a wider interdisciplinary inves-

tigation of the science of science, which may include elements and investigation tools from

philosophy, psychology and sociology.
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Introduction

The rich get richer or success breeds success effect, also called
Matthew’s principle from the parable of the Talents in
Matthiew 25:14-30), has been invoked many times in the

sociology of science to justify highly skewed distributions of
bibliometric indicators (often power laws, see Egghe, 2005 and
Rousseau, 2010) measuring the scientific production of scholars.
The basic underlying idea it is that if you have more, it’s easier to
gain more. This is a consequence of “the process of allocation of
rewards to scientists for their contributions” (recognition) “which
in turn affects the flow of ideas and findings through the
communication networks of science” generating a reputational
effect, as Merton (1968: 56) put it.

Concerning these mechanisms, Bonaccorsi et al. (2017)
discussed recognition as a trigger of a cumulative increase in
the scientific productivity of scholars and linked the results
to the framework proposed by Whitley (2000). According to
Whitley (2000) different scientific disciplines, which apply
different knowledge production systems, can be investigated in
a comparative way, on the base of a common ground, as they are
reputational work organizations.

A parable that is often considered similar to Matthew’s Talents,
but which opens toward a different perspective, is the parable of the
Ten Mines, in Luke (Luke, 19:11-27). In Matthew, different
outcomes are obtained starting by different amounts of Talents
given at the initial time to servants with different abilities. On the
contrary, in Luke, different outcomes are obtained starting from
exactly the same amount of stocks (one Mina) given at the initial
time to each servant, independently from their (unspecified) abilities.
A related view to the latter can be found in Helvetius (1772) which
proposes the materialist principle of equality of human intelligence.

The success breeds success principle is known, and has been
reinvented many times over the last century. In animal and plant
taxonomy it is known as the Yule process (Yule, 1924; Raup,
1985; Reed and Hughes, 2007), after Udny Yule (1871–1951) who
studied the distribution of the sizes of biological taxa (for
instance, how many species are in a genus) in 1925. From a
mathematical point of view, the Yule process is a variation of the
Polya’s urn model (Mahmoud, 2008), attributed to the mathe-
matician George Polya (1887–1985). Subsequently, the Yule
process was generalized by the economist Herbert Simon (who
won the Turing award in 1975 and Nobel Prize in Economics in
1978) to study the distribution of wealth (1916–2001) (Simon,
1955; Mandelbrot, 1959; Simon, 1960). Simon demonstrated that
the rich get richer mechanism produces power-law distributions.
In Sociology, this principle was introduced by Robert Merton
(1910–2003), who named it the “Matthew effect” (Merton, 1968;
Wouters and Leydesdorff, 1994), after the quoted passage in the
Biblical Gospel of Matthew. In Scientometrics the model was
introduced in the 1970 s by the physicist Derek de Solla Price
(1922–1983) (de Solla Price, 1965; de Solla Price, 1976). Building
on Simon’s work, he applied the Yule process to investigate the
growth of the citation network, giving the mechanism a different
name: “cumulative advantage”. In 1984 two Hungarian scholars,
Wolfgang Glänzel a mathematician, and Andres Schubert with a
background in physical chemistry, propose a model of biblio-
metric distributions based on the success breeds success principle
which lead to the less common Waring distribution (Schubert
and Glänzel, 1984). Both scholars were later awarded the
Scientometrics Derek de Solla Price Medal.

More recently, the physicists Albert-Laszlo Barabasi and Reka
Albert once more reinvented Price’s network evolution mechan-
ism in a 1999 paper (Barabasi and Albert, 1999; Albert and
Barabasi, 2002; Barabasi et al., 2002), renaming it as “preferential
attachment”. In a recent paper, Glänzel and Schubert (Glänzel
and Schubert, 2016) present an overview of their 1984 statistical

model. They illustrate the whole family of distributions which can
be derived from their original model and show that, in retrospect,
it can be considered a precursor of the preferential attachment
network model, proposed by Barabasi. Many other examples of
applications and many other names of the success breeds success
mechanism can be found in the current literature. Among others,
we quote (1) in system biology, the vertex-copying models
recently proposed for the shape of genetic networks, proposed by
the physicist Ricard Sole and colleagues (Sole and Montoya, 2001;
Sole et al., 2002; Sole and Pastor-Satorras, 2003) and by the
mathematician Alexei Vazquez and colleagues (Vazquez, 2003);
(2) in the WWW network study, the fitness-based generalization
of preferential attachment, proposed by the physicists Ginestra
Bianconi and Albert-Laszlo Barabasi in 2001 (Bianconi and
Barabasi, 2001); (3) the forest fire model for densification,
proposed by the computer scientist Jure Leskovec and colleagues
(Leskoves et al., 2005); (4) the local-competition mechanism
proposed by the physicist Raissa D’Souza and colleagues (D’Souza
et al., 2007); (5) the propagation of scientific memes studied by
the physicist Matjaz Perc (Perc, 2013), who also recently reviewed
the methodology for measuring the impact of the Matthew effect
in social, technical and scientific areas (Perc, 2014).

In Scientometrics, the Price mechanism (as it is known) has
been mainly focused on the distribution of citations. Price’s
assumption was that the papers to be cited are chosen at random
with a probability that is proportional to the number of citations
those same papers already have. Thus, highly cited papers are
likely to gain additional citations, giving rise to the rich get richer
cumulative effect. Several modifications of the basic mechanism
have been proposed from time to time, but, aside from small
details, Price’s original formulation seems to catch the main
features of the distribution of citations.

The current literature often focuses on the distribution of
citations collected by a given paper. The question of what kind of
mathematical function best describes this distribution is crucial.
In 1998 Redner (Redner, 1998) considered the articles published
in Physical Review D, along with all articles indexed by Thomson
Scientific in the period 1981–1997. He found that the right tail of
the distribution (corresponding to highly cited papers) follows a
power law with exponent -3, in agreement with the conclusions of
Price (Wouters and Leydesdorff, 1994). Later, Laherrere and
Sornette (Laherrere and Sornette, 1998) studied the top thousand
most cited physicists during the same period (1981–1997). The
resulting citation distribution is better described by a stretched
exponential distribution with β= 0.3. Tsallis and de Albuquerque
(Tsallis and de Albuquerque, 2000) analyzed the same data used
by Redner with the addition of all papers published in Physical
Review E, and found that the Tsallis distribution1 with ξ≈10 and
β≈1.5 consistently fits the whole distribution of citations (not just
the tail). More recently, Redner performed an analysis over all the
papers published in the century-long history of all the journals
published in the American Physical Society (Redner, 2005). He
reaches the conclusion that the Log-Normal distribution
represents the data much better than a power law. In further
studies the distributions of citations have been fitted with various
functional forms: power laws (Seglen, 1992; Lehmann et al., 2003;
Bommarito and Katz, 2010; Perc, 2010; Rodriguez-Navarro,
2011), Log-Normal (Radicchi et al., 2008; Stringer et al., 2008;
Bommarito and Katz, 2010), Tsallis distribution (Wallace et al.,
2009; Anastasiadis et al., 2010), modified Bessel function (Van
Raan, 2001a; Van Raan 2001b) or more complicated distributions
(Kryssanov et al., 2007).

It is worth noting that all but the Log-Normal fitting functions
used to describe the distribution of citations c are monotonically
decreasing functions of c, as the raw data clearly show no
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tendency to have a dip around c= 0. Even in those cases where
the Log-Normal shape of the distribution function has been
found, the data were fitted to high c tail of the Log-Normal
function (see, for example, Fig. 1 of Eom and Fortunato (2011).

In addition to citation distributions, other bibliometric
indicators have been shown to be well represented by a Log-
Normal function in the whole domain range. When, instead of a
single paper, the investigated indicator is referred to a single
scholar the distribution, far to be monotonically decreasing, on
increasing the variable value, first increases, reaches a maximum,
then decreases with a longer right tail. Furthermore, different
disciplines and different academic roles share the same Log-
Normal distribution when the indicator is scaled by the median
(or any other scale parameter) (Ruocco and Daraio, 2013). The
same conclusion applies not only to the Hard and Life Science
disciplines, but also to Social Sciences and Humanities
(Bonaccorsi et al., 2017).

The universality (but for a scaling parameter) of the
distribution of bibliometric parameters of scholars is an
intriguing finding, and its analysis can provide important
information on the Sociology and Science of Science. Also, the
ultimate origin of the shape of the distribution, which is highly
skewed and well represented by a Log-Normal function, can give
some hints on the publishing behavior of scholars and the related
scientific production process.

Why must the distribution of, for example, the number of
papers published by a full professor in mathematics working on

the theory of functions, or the one of an associate professor in
astrophysics, or the one of a pathologist, or the one of a Latinist,
each be a distribution that closely resembles a Log-Normal
function? The origin of the Log-Normal distribution lies in the
multiplicative noise (Mitzenmacher, 2004; Limpert et al., 2016),
that is, the product of a large number of statistically independent
fluctuations (additive noise would give rise to a normal
distribution function). This answer is not satisfactory, it is only
a reformulation of the original question. Why should the
scientific production of a scholar be the result of multiplicative
random phenomena? Are there other phenomena behind the
observed bibliometric distributions?

In this article we propose a very simple model, based on the
rich get richer rule, which—by the amplification of small initial
fluctuations and by the reputational cumulative advantage
mechanism- gives rise to the observed distribution of bibliometric
parameters.

The mathematics of our model is straightforward. It is based
on a deterministic differential equation for the individual
productivity, being the only statistical variability on the initial
conditions. God (Nature) gives an almost equal (number of)
talent (small “t”!) to any scholar. Each scholar performs equally
well, but the small initial differences, like in an inflationary
process, give rise to the huge differences observed in the
distributions.

The statement about the near equality of talents (note that in
the present paper ability, talents and intelligence are considered as
synonyms) is counter-intuitive and requires some explanation.
Indeed, scholars may be different not only in their abilities
(natural talents) but also in their opportunities of doing research.
Moreover, scholars are embedded in university departments,
universities and countries, all these levels being different in
resource allocation, recognition and prestige.

The rationale of our statement is that we would like to test if
the model, including this assumption, is still able to replicate the
(Log-Normal) distributions observed in many empirical studies.
This is important to say something about the meaning of
bibliometric indicators. The reader is referred to the last section
for more discussion on this point.

Model
Our model is inspired to Merton’s “Matthew effect”, and
therefore to Matthew (25: 14–30), which is at the origin of the
success breeds success effect. However, we also consider Luke’s
parable of the Ten Mines (Luke, 19:11-27) and the materialist
principle of Helvetius (Helvetius, 1772). We assume that
there is an equal distribution of talents, abilities and intelligence
(all these are considered as synonyms herein) and for that we
depart from Matthew which assumes an unequal distribution of
abilities. See Table 1 which summarizes the main components of
our model.

Note that Luke does not say that individuals have
different abilities; he simply does not report anything about the

Figure 1 | Examples of distribution functions obtained from eq. (11) for
selected values of the parameters. In the upper panel we show the case
τ1=2 and τ2=5 for three different values of Ω: 2 (black), 3 (red) and 4
(blue). In the middle panel, for the same three Ω values we have τ1= 2
and τ2= 7. Finally, in the lower panel, still at the same Ω’s, we report
τ1=2 and τ2=9.

Table 1 | The main elements of our model

Model Initial
Productivity α
+ηi

Initial Conditions
x(0)=0

Result x(t)

Gospel Abilities Initial Stock Outcome
Matthew Unequal Unequal Unequal
Luke Unspecified Equal Unequal
Materialism Equal — —
Our model Almost equal Equal Unequal (Log-Normal)
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abilities. For this reason we report that an unequal distri-
bution of ability is our interpretation of Luke, on a rational base
(Table 1).

Even if a theological interpretation is outside the scope of this
paper, a comparative and exegetical analysis of the Gospel of
Matthew and Luke shows some differences which are of interest
here. Diez Herrera (2003) finds a relevant difference between
Matthew and Luke: “pero encontramos también divergencias que
no podemos considerar secundarias ya que influyen decisiva-
mente en la interpretación de las parábolas. Así, tenemos
primeramente la desigual distribución del dinero entre los siervos
que presenta Mateo. Para el lo importante no es que todos reciban
la misma cantidad para negociar en igualdad de condiciones (cosa
que si aparece en la narración lucana) sino que destaca
expresamente que han recibo sumas distintas, y esto, no en
virtud de una decisión arbitraria y discriminatoria, sino según su
capacidad (Diez Herrera, 2003: 297–298).” That is, the uneven
distribution of money among the servants presented by Matthew
is purposely related to their ability and not an arbitrary decision.
On the other hand, in the Lucan narrative, the important thing is
that all receive the same amount to negotiate on equal terms. In
particular, this analysis shows some similarity of Luke with
Helvetius (1772)’s materialism.

Maggioni (2000) proposes an interpretation of the meaning of
the parable of Luke based on the history of the goods left in
custody. That is, to take advantage of what God has given you is
not simply a matter of preserving it but of producing fruit, of
being active and productive with enthusiasm and courage. Man is
not a simple guardian of God’s goods: he/she has the task of
trading to multiply them: “Il suo significato [della parabola di
Luca] è invece da ricercarsi nella storia dei beni lasciati in
custodia. Cioè: sfrutta ciò che Dio ti ha consegnato, perché dovrai
renderne conto. E’ il tema del giudizio. Che però va ulteriormente
precisato: non si tratta semplicemente di conservare, di non
perdere, ma di far fruttare. Occorre vivere in attesa di un padrone
severo, che vuole raccogliere ‘dove non ha seminato’, che vuole
cioè dall’uomo intraprendenza e coraggio. L’uomo non è un
semplice custode dei beni di Dio: ha il compito di commerciare
per moltiplicarli (Maggioni, 2000, p. 328–329)”.

In our model we adopt Maggioni (2000)’s entrepreneurial
interpretation of Luke, to be productive, to trade and multiply the
goods received in custody to support our hypothesis of the
correspondence between productivity and ability/talent/ intelli-
gence. Therefore, in our model, the operationalization of scholars’
talents (abilities, intelligence) in terms of research productivity is
based on Maggioni (2000).

Let’s focus on a specific bibliometric indicator, for example,
on the total number of papers published by a scholar in
her/his whole academic life. None of the concepts introduced
in what follows depends on the chosen indicator, and
all the considerations and results may apply to any extensive
parameter, as for example to the total number of citations
received by any author’s papers, or to the total IF collected by a
scientist.

Let’s call x(t) the number of papers published after a time t by a
scholar, and define t= 0 the starting time of their academic career
(obviously x(0)= 0). In order to derive a model for the
distribution of x we now need two elements: (1) the time
evolution of x(t), and ii) the distribution of the academic ages at
the observation time. As we will see, the latter quantity is much
less important than the former, at least if no pathological age
distributions are chosen.

We first derive a differential equation describing the evolution
in time of the variable x(t), which is described in terms of a
productivity (that is, the number of papers published in a given
time), which, in turn, increases with time and is almost the same

for all scholars at the beginning of their career. Specifically, the
assumptions of the model are the following:

� Nature gives the same amount of talents to any scholar. In
mathematical terms, productivity at time zero, let’s call it α, is
the same for all the scholars.

� A tiny, random, variability of the talents exists. The previous
statement is not strictly true. The initial productivity is α+ηi,
where ηi is a small, addictive, term that depends on the specific
scholar i. The fluctuation of the initial talent, ηi follows a
normal distribution with zero average and standard deviation
σ:

Zh i ¼ 0

Z2
� � ¼ s2

P Zð Þ ¼ 1ffiffiffi
2

p
s
e�

Z2

2s2

ð1Þ

� According to a slightly modified version of the rich get richer
principle, the productivity—not the products—increases propor-
tionally to the amount of products accumulated up to that time.
The rationale behind this assumption, which is central to the
development of the model, is that the productivity of a scholar
is related to her/his recognition and reputation. It is well known
that grant allocation and conference participation, for instance,
are based on the international visibility of papers, on their
corresponding quality (for example, citations) and on the
recognition by the international research community. This is a
process which combines quantity and quality. In our model, the
recognition increases, on average, with the number of papers
produced, which in turn allows the scholar to get grants and
thus to attract students and Post Docs, who, in turn, will
increase her/his productivity. This will increase opportunity to
be invited to conferences (with the correlated advertisement of
her/his works, publishing additional conference papers, and so
on), thereby producing reputational cumulative effects. Math-
ematically, the productivity has a third addendum other than α
and ηi, which is βx(t), where β has the dimension of an inverse
of time. Its inverse (1/β) represents the characteristic time in
which the production x(t) increases by a factor e (~2.73). In
other words, this parameter specifies how much the recognition
counts in determining productivity (i.e. the cumulative
advantage of reputation generated by recognition). The
parameter β indeed determines the value of the productivity
(dx/dt) given a collection of output (x(t)). The parameter β can
also be expressed as the logarithmic increment of production
per unit of time: β= dln(x)/dt. We assume hereafter that β does
not depend on the individual characteristics (it does not
depend on “i”), rather β is the same for all.

Each assumption brings an addendum to the productivity: α, η,
and βx(t) respectively. The differential equation ruling the time
evolution of x(t), thus, is simply the statement that productivity is
the sum of the three terms:

dxi tð Þ
dt

¼ aþ Zi þ bxi tð Þ ð2Þ
where we have retained the pedix i to remember that -due to the
presence of the statistical variable ηi—the evolution is different for
each individual. This equation is promptly solved, and its
solution, with the initial condition xi(0)= 0, is:

xi tð Þ ¼ aþ Zi
b

½ebt � 1� ð3Þ
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This equation can be rearranged to be an expression for ηi:

Zi ¼
bxi tð Þ
½ebt � 1� � a ð4Þ

which establishes the identity between a statistical variable η and
a quantity which depends on t and x, but that must be equal to η
at any time. As we know the distribution function for η (eq. (1)),
we can read eq. (4) as change of variable x→ η, being t a
parameter, thus we can work out the distribution function of x(t)
via P(η)dη= P(x(t))dx(t). Therefore:

P x tð Þ; tð Þ ¼ dZ
dx tð ÞP Zð Þ ¼ b

½ebt�1�P Zð Þ ¼
b

ebt�1
1ffiffiffiffi
2p

p
s
exp � 1

2s2
bxðtÞ
½ebt�1� � a

� �2
� � ð5Þ

where we have made explicit that the distribution function P(x,t)
not only depends on x, but also explicitly on the time t.

The previous equation represents the statistical distribution of
the production x(t), at a given academic time t, for the scholars.
Its variability mirrors the small differences in the original
productivity associated to the term η. The distribution is a
normal distribution, where both mean and standard deviation
increase with the time t.

The distribution in eq. (5) depends on the two variables x and
t, and has three model dependent parameters: α, β and σ. We can
use two of these parameters to scale t and x, and we are therefore
left with a single parameter. Defining the scaled time, τ, and the
scaled number of papers, ξ, as:

t ¼ bt

x ¼ bt
s
x

ð6Þ

and the remaining parameter, Ω, as:

O ¼ a
s

ð7Þ
we get (remembering that P(ξ)= P(x)dx/dξ= P(x)σ/β):

P x; tð Þ ¼ 1ffiffiffiffiffi
2p

p 1
½et � 1�exp �1

2
x

½et � 1� � O
	 
2

( )
ð8Þ

This distribution is normalized, ∫ P(ξ,τ)dξ= 1, and its mean
and standard deviation are given by

mP ¼ O½et � 1�
sP ¼ ½et � 1� ð9Þ

The second step is to take into account the distribution, let’s
say R(τ), of the (scaled) academic ages τ. The distribution of the
(scaled) number of papers ξ is therefore:

ℱ xð Þ ¼
Z

dtℛ tð ÞP x; tð Þ ð10Þ
In a mature, stationary, world the distribution of the

academic ages R(τ) is stable and, to a good level of approxi-
mation, is flat in the time interval between the average academic
time to reach the specific academic role, and the time to
leave this role by promotion (or retirement, if we are considering
the full professor role). We are confident that the choice R(τ)= θ
([τ1− τ][τ− τ2])(τ2− τ1)− 1, being τ1 and τ2 the initial and final
(scaled) times for the academic role and θ(t) the Heavside step
function, is a safe approximation at an aggregate level. However,
it is well known that this is not exactly the case in centralized
academic systems such as the Italian and the French ones (see
Lissoni et al., 2011 and Pezzoni et al., 2012). For this reason, we
have tested that the results are resilient to modifications of this

function, as for example to the smoothing of the harsh
discontinuities at τ1 and τ2.

In conclusion, we deal with the function:

ℱ xð Þ ¼ 1
t1 � t2ð Þ

Z t2

t1
dtP x; tð Þ ¼

¼ 1ffiffiffiffiffi
2p

p 1
ðt1 � t2Þ

Z t2

t1
dt

1
½et � 1�exp �1

2
x

½et � 1� � O
	 
2

( )

ð11Þ

Results
In Fig. 1, we show a few examples of the distribution functions
obtained in the present paper. These have been obtained by a
numerical integration of the expression in eq. (11). Each panel
reports three different Ω values (2, black; 3, red; and 4, blue). The
different panels refer to different τ2 values (upper, τ2= 5; middle
τ2= 7; lower τ2= 9), while τ1 is kept fixed to 2. The degree of
similarity with the observed Log-Normal distribution depends on
Ω, being maximum between Ω= 2 and 3. However, for all the
values of the parameters, the present model produces highly
skewed distributions.

The present distribution is similar, but not mathematically
equivalent to a Log-Normal distribution function:

ℱ xð Þ ¼ 1ffiffiffiffiffi
2p

p
xS

exp �
log2 x

m

� �
2S2

0
@

1
A: ð12Þ

To better emphasize their similarities, in Fig. 2 we show an
example of comparison. We choose a set of parameters for the
present model, τ1= 2, τ2= 4, and Ω= 2.5, and search by a χ2

minimization, the parameters for the Log-Normal distribution
that give the best agreement between the two distributions:
μ= 41.3 and Σ= 0.85.

Having established that the distribution obtained in the present
model is undistinguishable from a Log-Normal distribution, it is
important to map the set of parameters describing the present
model with those describing a Log-Normal. As an example, in
Fig. 3 we report the best choice of the Log-Normal’ s μ and Σ for
each Ω value, for selected τ1 and τ2. This mapping has been
obtained by a numerical χ2 minimization.

We illustrate an example of application of the present model to
show its ability to represent some real data, although its validity

Figure 2 | Comparison of the distribution from eq. (11) and the Log-

Normal distribution (eq. (12)). The parameters for the present model are
τ1= 2, τ2=4, and Ω=2.5, while the parameters for the Log-Normal
distribution, μ=41.3 and Σ=0.85, was chosen to obtain the best
agreement between the two distributions.
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may be broader (see the last section for a discussion on this
point). In Fig. 4 we illustrate a comparison between some
experimental data and the present model. The data, reported as a
function of the scaled variable ξ/ξo, represent the distributions of
the number of publications, in all of the different disciplines, in a
10 year period, for all the Italian scholars, scaled by their medians,
as obtained in Bonaccorsi et al. (2017). They studied the scientific
production of the universe of Italian academic scholars over a
ten-year period across 2002–2012 by using a database built by the
Italian National Agency for the evaluation of Universities and
Research Institutes. In Italy, each scholar belongs to a disciplinary
sector by law. This official classification of scholars separates
disciplines according to Life and Hard Sciences (LHS) disciplin-
ary sectors and Social Science and Humanities (SSH) sectors. This
classification therefore offers the opportunity to investigate the
behavior of scholars without having to create a subjective
classification of scholars for the analysis.

For additional information, including descriptive statistics on
the data, see Bonaccorsi et al. (2017). In Fig. 4, the red points
represent the data of scholars belonging to LHS disciplines, the
blue points those of the SSH disciplines. The present model has
been adjusted to the real data by a numerical χ2 minimization.

Finally, for practical purposes, we now present an approxima-
tion to eq. (11) that leads to a simpler analytic expression for the
distribution F(ξ) not involving the numerical integration over τ.
In the case the value of τ1 is large enough, we can exploit the
consequences of the approximation exp(− τ) ≫ 1, to rewrite eq.
(11) as:

ℱ xð Þ ¼ 1ffiffiffiffiffi
2p

p 1
t2 � t1ð Þ

Z t2

t1

dte�texp �1
2
xe�t � Oð Þ2

� �
ð13Þ

Now the integral in this equation can be solved with the
substitution ζ= exp(− τ), that is:

ℱ xð Þ ¼ 1ffiffiffiffiffi
2p

p 1
t2 � t1ð Þ

Z expðt2Þ

expðt1Þ
dzexpt �1

2
xz� Oð Þ2

� �
¼

¼ 1
t2 � t1ð Þ

1
2x
½erf xe�t1 � Offiffiffi

2
p

	 

� erf

xe�t2 � Offiffiffi
2

p
	 
� ð14Þ

As an example, in Fig. 5 we report the comparison between the
exact result in eq. (11) and its approximate counterpart for
selected values of the parameters. As expected, for large τ1the
approximation becomes better and better, but already at τ1= 2
the two curves appear to be undistinguishable.

Discussion and Conclusion
The distributions reported on the previous section are not
coincident with the Log-Normal function, but with this function

Figure 3 | Example of mapping between the Ω parameter of the present

model and the μ and Σ parameters of the Log-Normal distribution that
gives the best agreement between the two curves. In the present
example, we keep τ1= 1 and τ2= 3 fixed.

Figure 4 | A comparison between some experimental data and the

outcome of the present model. The data, reported as a function of the
scaled variable ξ/ξo, represent the distribution of the number of
publications in a ten year period for all the Italian scholars, obtained in
Bonaccorsi et al. (2017) by scaling the distribution of all the different
disciplines by their medians. See figure 6 in Bonaccorsi et al. (2017). The
red points represent the data for scholars belonging to Life and Hard
Science disciplines, the blue points those of the Social Science and
Humanities disciplines. The present model has been adjusted to the data.
The resulting parameters are Ω= 2.0, τ1=2.0, τ2=3.6 and ξo= 30.

Figure 5 | Comparison of the exact result of the present model from eq.
(11) and its approximation, eq. (14), for the selected parameter values:
Ω= 2, τ1=2, τ2=4.
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they share their main features, to the level that they can be
confused. Also, the unavoidable statistical uncertainty of the
experimental data does not allow us to distinguish the small
differences between eq. (11) and a Log-Normal function. In
summary, we can talk of eq. (11) as a quasi-Log-Normal
distribution. In Fig. 4 we have shown a mapping between the
parameters Ω, τ1 and τ2 and the genuine Log-Normal parameters
and conclude that the distributions observed in the bibliometric
parameters in Ruocco and Daraio (2013) and Bonaccorsi et al.
(2017) can be described by eq. (11) to an high degree of accuracy.

In conclusion, we have presented an (over)simplified model
that catches the main features of the observed distributions of
different bibliometric indicators. This model is built over the
simple assumption that the natural talent is (almost) the same for
all scholars at the beginning of their career. It is well known that
visibility is not just the effect of publication rates. Moreover, it is
the effect of only some publications not all of them (Merton,
1968). In our model, only small fluctuations are allowed. These
fluctuations inflate with time following the recognition and
reputation rule à la Merton, mediated by the entrepreneurial
interpretation of Luke (Maggioni, 2000): the more you publish,
the more you are known, the higher your probability of being
recognized, the more likely you are to get the right conditions for
increasing your publication rate. With these simple ingredients,
and with elementary algebra, we derive a functional form
that, although not coincident with a Log-Normal function, has
all the features of this function, to the extent that they can be
confused one with each other. We have called this function
quasi-lognormal, and we proved that, to any practical purpose,
one could use the Log-Normal functional shape to fit the
experimental data.

It is worth noting that the assumptions at the basis of the
present model, and therefore the implications and the outcome of
the model itself, can be extended to other fields outside of the
investigation of scientific publishing. The same set of assumptions
may apply not only to scientific production, but to numerous
other activities as well. Some examples may include the analysis of
production and trade, income and wealth distribution, but also
more applied political economy matters including public choice
or policy advice analyses. In this sense the model may certainly
have implications that go beyond the Science of Science.

However, all these considerations leave a tricky issue open:
what do bibliometric indicators really measure? A discussion on
this point follows in the next section.

Policy implications and further research
The investigation on the ab-initio causes of the observed
empirical distributions of bibliometric indicators is an interesting
topic from a philosophical and modelling perspective. On the
other hand, policy makers need metrics for, among other things,
setting thresholds, establishing criteria of funding allocation or
rules for national qualification of scholars. They are not very
interested in the philosophical investigation on the origin of the
success breeds success effect, that is, if all scholars receive the same
amount of talents or intelligence, or if they receive different levels
of it. Policymakers are mostly interested in understanding what
publications and citations really measure; if these metrics are a
good proxy of the scientific achievements, ability and efforts of
the scholars. For this purpose, our model could provide some
hints for further development. According to the hypotheses of
our model, the empirical distributions of the bibliometric
parameters observed might be the result of chance and noise
(chaos) related to multiplicative phenomena connected to a
publish or perish inflationary mechanism, led by the recognition
and reputation of scholars. Summing up: being a scholar in the

right tail or in left tail of the distribution could have very little
connection to her/his merit and achievements. This interpretation
might cast some doubts on the use of the number of papers and/
or citations as a measure of scientific achievements along the lines
of the general critiques against quantitative metrics (see e.g.
Wilsdon, 2015, 2016), and may lead to reconsider the method of
peer review, despite its well-known limitations.

In the interpretation of our model, however, we follow the
deductive induction of Popper (1959). In other words, the
assumption of our model about the equality of ability/talents/
intelligence, operationalized through an inflationary productivity
process, along with the other assumptions, has led to a model that
seems to reproduce some observed empirical evidence (Log-
Normal distributions). This does not mean that the assumptions
of the model (including that of equality of talents) are true, but
that simply, according to the modus tollens, they are not falsified
by our model. A tricky issue seems to emerge from this
interpretation of our model that is: what do bibliometric
indicators really measure? The analysis of this issue, calls for
deeper investigations on the meaning of the bibliometric
indicators. These further analyses are clearly outside the purpose
of the present paper. They will require the development of more
detailed and accurate models than our (over)simplified model, in
which the relationships among intelligence, talents, their
historical characterization, ability, merits and their measure
(see, for example, Carson, 2007) are more carefully taken into
account and modelled. This is an interesting and intriguing
topic for further research to be carried out beyond Science of
Science and Sociology of Science, including elements and
investigation tools from Philosophy, Psychology and Theology.
It could also be worthwhile to further investigate from a policy
maker’s perspective, to understand, model, explain and assess the
scholars’ behavior and its relation with scientific publication
parameters.

Note
1 The Tsallis distribution of a variables x is given by the expression: P(x)= Po/[1+(β−1)
(x/ξ)]β/(β− 1).
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