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Observation of replica symmetry breaking in
disordered nonlinear wave propagation
Davide Pierangeli1, Andrea Tavani1, Fabrizio Di Mei1, Aharon J. Agranat2, Claudio Conti 1,3 & Eugenio DelRe1,3

A landmark of statistical mechanics, spin-glass theory describes critical phenomena in

disordered systems that range from condensed matter to biophysics and social dynamics.

The most fascinating concept is the breaking of replica symmetry: identical copies of the

randomly interacting system that manifest completely different dynamics. Replica symmetry

breaking has been predicted in nonlinear wave propagation, including Bose-Einstein

condensates and optics, but it has never been observed. Here, we report the experimental

evidence of replica symmetry breaking in optical wave propagation, a phenomenon that

emerges from the interplay of disorder and nonlinearity. When mode interaction dominates

light dynamics in a disordered optical waveguide, different experimental realizations are

found to have an anomalous overlap intensity distribution that signals a transition to an

optical glassy phase. The findings demonstrate that nonlinear propagation can manifest

features typical of spin-glasses and provide a novel platform for testing so-far unexplored

fundamental physical theories for complex systems.
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D isorder in physical systems can introduce frustration
among its interacting constituents. This implies that a
large number of energetically equivalent and ergodically

separated states are accessible in phase space. The condition in
which these states dominate dynamics is generally known as the
glassy state1,2. From the equilibrium perspective of the spin-glass
theory, the transition to a glassy phase is signaled by replica
symmetry breaking (RSB), that is, a change in the statistical
distribution of the overlap between measurements in different
realizations of the dynamics3,4. This Parisi overlap is the order
parameter that indicates the transition to a RSB phase dominated
by an energetic landscape. In spite of huge theoretical efforts, the
replica breaking scenario has been only recently observed in
photonics in the spectral features of random lasers5–8 and mul-
timodal laser emission9. In the latter case, although structural
disorder is absent, frustration between modes emerges directly in
their interaction. In random lasers, a spin-glass approach to the
cavity modes of the electromagnetic field predicted how the
competition of quenched disorder and nonlinearity induces glassy
mode-locked regimes with many degenerate lasing states10–15.
The resulting RSB phenomenology has also been found to be
robust with respect to an averaging over different realizations of
the disorder16. However, at variance with the case of nonlinear
propagation, lasing dynamics require the influx of external
energy17. The fact that a closed Hamiltonian system, and, in
particular, a nonlinear wave propagation, can support RSB is still
an open question with great relevance in fields such as nonlinear
optics, polaritonics and Bose–Einstein condensates13.

Generally, the dynamics of disordered nonlinear waves admits
a non-equilibrium statistical mechanics description in terms of
wave turbulence18–20, which involves phenomena such as wave
condensation21–23 and strong turbulence of coherent and inco-
herent structures24–34. In particular, interacting localized modes
propagating in nonlinear disordered media35–37 and multiple
laser filaments in gases38,39 may lead to optical states whose
complexity resembles glassy phases. This suggests that the sta-
tistical properties of coupled nonlinear optical waves can be
investigated statically by means of Hamiltonian models with
quenched disordered interactions. In this respect, fields propa-
gating under a generalized nonlinear Schrödinger equation
(GNLSE) with disorder should sustain a transition to a glassy
behavior. According to theoretical predictions, replica symmetry
breaking for equivalent realizations of the optical dynamics takes
place for increasing nonlinearity, even for small degrees of
disorder13.

Here we report the observation of the breaking of replica
symmetry in nonlinear optical propagation. Shot-to-shot fluc-
tuations and spatial correlations of the optical field are investi-
gated in a photorefractive disordered slab waveguide across the
transition that leads from coherent to optically turbulent propa-
gation, where strong variations of the speckle pattern and the
degree of spatial correlations set in. In remarkable agreement with
the general theories of spin-glasses, the Parisi overlap probability
distribution function undergoes a radical change into a double-
peaked distribution as the nonlinearity exceeds a threshold value.
Replica symmetry breaking here indicates a global locking of
several spatial modes so that completely anticorrelated states may
emerge from equivalent conditions, the signature that different
metastable states underlie dynamics.

Results
Nonlinear optical propagation in a disordered waveguide. To
investigate RSB in nonlinear propagation we make use of the
large optical nonlinearity of disordered ferroelectric crystals in
proximity of their structural phase transition28,37,40,41.

Specifically, we exploit a disordered micrometric-sized
photorefractive slab waveguide of potassium-lithium-tantalate-
niobate (Fig. 1a, b). The experimental geometry of our setup is
sketched in Fig. 1a and detailed in Methods. This system has
been also recently used to experimentally demonstrate light
beams undergoing antidiffraction and negative mass dynamics42.
In our experiments, spatial inhomogeneities spontaneously aris-
ing in the slab constitute a weak linear disordered optical
potential whose modes are mainly delocalized. The linear inter-
action between these optical modes is weak and nonlinearity is
needed to couple them all. As shown in Fig. 1c and detailed in
Methods, distinct realizations of the experiment present a dif-
ferent spatial distribution of disorder. Structural disorder changes
from one replica (“shot”) to another whereas it is fixed on the
time scale of each single realization of the dynamics. Therefore,
the replica symmetry breaking phenomenology we report here-
after has to be considered as averaged over different realizations
of the disorder in analogy with results in non-static random laser
systems16. The waveguide itself excludes dynamics along
the transverse coordinates y, simplifying data analysis and
allowing us to adopt a one-dimensional GNLSE model for wave
propagation (see Supplementary Note 1). In our experiment, the
degree of disorder is fixed by the experimental conditions so that
the strength of the nonlinearity plays the role of an inverse
temperature13. The strength of the nonlinearity is controlled by
the time the waveguide is exposed to the input light beam
(Supplementary Note 2). This relies on the nature of the photo-
refractive nonlinearity, that is noninstantaneous and accumulates
in time as a photogenerated space-charge field builds up43.
Observations at different times correspond to beam propagation
for increasing nonlinearity, up to saturation. The macroscopic
time scale of the process is fixed by the input power and the
applied voltage28.

Transition to an optical glassy phase. The spatial intensity
distribution I(x) detected as a function of the nonlinearity is
reported in Fig. 2a, b for input powers P= 0.2 mW, P= 5 mW
and applied voltage V= 200 V. We observe a phase transition to a
disordered state that corresponds to the loss of spatial coherence.
The transition is characterized by a large increase in the
width of the spatial Fourier spectrum I(k) (dots in Fig. 2c) and
corresponding collapse of the long-range mean intensity
autocorrelations (squares in Fig. 2c). The process presents strong
shot-to-shot fluctuations, where each shot consists in repeating
the experiment under analogous conditions (see Methods).
Samples of single-shot spectra are reported in Fig. 2d above and
below the transition threshold tc. The averaged spectrum exhibits
a change from a peaked to a broad distribution. The behavior of
the spectrum in Fig. 2d presents a strong analogy with the static
structure factor in amorphous materials and soft matter in the
transition from an ordered to a glassy state. Interestingly, the
transition occurs as fast as the input intensity: P can thus be
considered an equivalent of the quenching rate in structural
glasses, where the transition temperature is known to decrease
with supercooling44.

Evidence of replica symmetry breaking. To demonstrate the
emergence of replica symmetry breaking, we analyze the statis-
tical properties of shot-to-shot correlations above and below the
dynamic glass transition, at the threshold value of nonlinearity tc
(tc ’ 18 s and tc ’ 5 s for P= 0.2 mW and P= 0.5 mW, respec-
tively). Indeed, RSB is identified by a specific order parameter: the
Parisi overlap q that quantifies the correlation between fluctua-
tions in different replicas (see Supplementary Note 1). As we
measure the output intensity distribution, a natural choice to
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characterize each realization is to consider the spatial auto-
correlation function

gαðxÞ ¼
XR

x′
Iαðx′ÞIαðx′þ xÞ; ð1Þ

where R is a cut-off length. Mode interaction and locking gen-
erally result in typical features of the autocorrelation function. In
fact, possible phase correlations between different spatial points
in the transverse field contribute as constructive and destructive
interference effects at a distance x. Moreover, as this quantity
reflects only global properties of the optical field, it is not affected
by changes in the alignment of the optical setting from shot to
shot that can alter the overlap evaluation (see Supplementary
Note 1). We define the single-shot fluctuation as
ΔαðxÞ ¼ gαðxÞ � gðxÞ, where gðxÞ is the correlation averaged
over all realizations. The experimentally accessible overlap

parameter qαβ, that quantifies the similarity between shot-to-shot
intensity fluctuations, is thus

qαβ ¼
PR

x
ΔαðxÞΔβðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

x
ΔαðxÞð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

x
ΔβðxÞ
� �2

s : ð2Þ

The measured intensity over N= 120 independent realizations
of the dynamics is used to calculate the set of all N(N − 1)/2 values
of qαβ, so as to determine their probability distribution P(q) for
different values of nonlinearity. The experimental order para-
meter P(q) here defined is a coarse graining of the theoretical
distribution of the overlap between mode amplitudes, a distribu-
tion that is not directly accessible and forms the fundamental
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Fig. 2 Loss of spatial coherence and shot-to-shot fluctuations. a, b Detected intensity distributions I(x) at the slab output for increasing nonlinearity and
input powers a P= 0.2 mW, b P= 5mW. Both observations show a dynamic phase transition at tc (marked by a red arrow) to a spatially incoherent state. c
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indicated
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quantity that describes the glassy phase transition for light in
terms of RSB (Supplementary Note 1).

Results are reported in Fig. 3. At moderate nonlinearity
(Fig. 3a) the overlap distribution is centered around zero, which
indicates that the correlation between field amplitudes in different
points is an independent variable and modes do not interact
strongly. The behavior drastically changes as modes are strongly
coupled by the nonlinearity. As reported in Fig. 3b, a non-trivial
overlap distribution emerges for t> tc; the order parameter q
assumes all of its possible values (P(q)> 0) and the largest ones
are particularly enhanced. P(q) shows that, under the same
experimental conditions, the shot-to-shot correlations are
extremely sensible to the selected measurements. This is the

signature of the breaking of replica symmetry. It identifies an
optical glassy phase in which the interplay between disorder and
nonlinearity leads to locked intensity fluctuations. In Fig. 3c we
show the maximum overlap qmax, that is, the absolute value for
which we observe the maximum of P(q), as a function of the
nonlinearity. In agreement with the overall change in the overlap
distribution, qmax significantly grows around t ’ tc, indicating a
phase transition that coincides with the one in Fig. 2b. Although
the breaking of the replica symmetry cannot be rigorously
characterized across this transition, the shape of the P(q) in
Fig. 3b suggests a one-step plus full replica symmetry breaking
scenario (1RSB + FRSB) continuous in the order parameter q9,15.
In fact, if a single-peaked distribution centered around qj j≈ 1

–1 0 1
0.000

0.005

0.010

0.015

q

P
 (
q

)
a

0 10 20 30 40 50
0.0

0.5

1.0

Nonlinearity (s)

q
m

ax

c

0 20 40 60 80 100

0.6

0.8

1.0

1.2

1.4

1.6

x (µm)

g 
(x

)

e

–1 0 1
0.00

0.01

0.02

0.03
P= 5 mW
P= 12 mW

q

P
 (
q

)

d

0 20 40 60 80 100

0.9

1.0

1.1

1.2

g 
(x

)

f

x (µm)
–1 0 1

0.00

0.01

0.02

0.03

0.04

q

P
 (
q

)

b

Fig. 3 Evidence of replica symmetry breaking. a Overlap distribution measured for moderate nonlinearity t ’ 18 s and b in the highly-nonlinear regime at
t ’ 40 s (input power P= 0.2 mW, cut-off scale R= 100 μm). c Overlap qmax, corresponding to the maximum in P qj jð Þ, as a function of the interaction
strength. d Same as in b for data sets collected using different powers of the input wave (P= 5mW, P= 12 mW). e Glass transition in the correlation
functions shown by gα(x) up to R= 100 μm for different replicas (color dots) at t ’ 18 s and f at t ’ 40 s. The two well-separated groups of states in f form
the basis for replica symmetry breaking. The black solid line in e, f indicates the average correlation gðxÞ

–1 0 1
0.000

0.005

0.010

0.015

q

P
 (
q

)

a b

–1 0 1
0.00

0.01

0.02

0.03

0.04
R = 30 µm 

R = 40 µm 

R = 60 µm 

R = 80 µm 

R = 120 µm 

q

P
 (
q

)

R = 30 µm 

R = 40 µm 

R = 60 µm 

R = 80 µm 

R = 120 µm 

Fig. 4 Stability of replica symmetry breaking. a P(q) for different cut-off scales R at t< tc (paramagnetic-like phase) and b at t> tc (spin-glass-like phase)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01612-2

4 NATURE COMMUNICATIONS |8:  1501 |DOI: 10.1038/s41467-017-01612-2 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


would indicate two distinct groups of states underlying the
dynamics (1RSB), the region at qj j ~ 0 is not completely depleted,
as compatible with FRSB (hierarchy of states). The observation of
RSB does not depend on the input intensity; in Fig. 3d we report
the P(q) for P= 5mW and P= 12 mW. The qualitative shape of
the distribution remains unaltered.

A physical picture underlying RSB in the present case can be
given considering the behavior of each autocorrelation function.
In Fig. 3e, f we report different gα(x) as examples of both the
replica-symmetric and non-replica-symmetric case. The first
presents oscillations with variable amplitude and phase (Fig. 3e);
the corresponding fluctuations depend on the replica selected and
vary with the relative distance x, so that their mutual correlation
is randomly distributed. Differently, as shown in Fig. 3f, two
distinct behaviors can be found in the glassy phase: at every
distance a generic realization can be either more or less correlated
than the average. These two trends can be thought of as two
groups of states acting as separate dynamical attractors; in terms
of spin variables, they can be thought of as ferromagnetic and
anti-ferromagnetic dominated configurations. Each realization
tends to fall into one of these two branches, so that fluctuations
from shot to shot appear either completely correlated (q≈ 1) or
anticorrelated (q≈ −1). It is relevant to note that in both spin and
structural glasses an almost constant correlation function such as
that of Fig. 3f indicates a dynamical transition where ergodicity is
broken2.

The stability of the RSB process can be addressed acting on
the cut-off length R, which fixes the maximal spatial scale for
intensity correlations. R is related to the number of interacting
spatial modes taken into account in the analysis. Increasing R
means accounting for modes with a large interaction range and
hence exploring the mean-field regime in which all modes are
interacting. Figure 4 shows the overlap distribution P(q)
for various R; we found that the RSB onset weakly depends on
the cut-off scale. In the glassy phase, we note a weakening
of the peaks in the P(q) for small cut-off distances (R= 30 μm
and R= 40 μm). Moreover, the overlap distribution does not
present further significant changes when a cut-off length larger
than R= Rmin= 100 μm is considered, which indicates that most
of the relevant modes have been included for R≈ Rmin. These
facts agree with the behavior of g(x) shown in Fig. 3f; different
realizations are not distinguishable at small spatial scales. On the
contrary, they are well separated at a scale of the order of 80 μm.
This circumstance may indicate a weakening of the glassy
behavior when only nearest-neighbor points of field are randomly
coupled.

Discussion
In conclusion, we have reported the observation of replica sym-
metry breaking for waves propagating in nonlinear disordered
media providing a direct measurement of the Parisi overlap dis-
tribution function. The glassy phase of light, that emerges as
nonlinear interaction overcomes a threshold, is characterized by
strong shot-to-shot variations of the speckle-like intensity dis-
tribution and the degree of spatial coherence. Surprisingly, these
fluctuations are not randomly distributed but can be either
completely correlated or anticorrelated, as resulting from sepa-
rated groups of states in the underlying energy landscape. In
agreement with spin-glass theory, the overlap distribution
between identical replicas incurs in a nontrivial change that
indicates how the same realizations of the dynamics may give rise
to statistically different physical observables. This nontrivial
change of the overlap distribution is observed although disorder
in the system cannot be considered as quenched over all the

realizations, a point that remains generally open and whose
understanding needs further theoretical efforts15,16.

These findings are general and do not depend on the
specific form and character of the nonlinearity and type of
disorder. They can be extended to a large class of optical systems
including disordered periodic potentials, such as disordered
waveguide arrays45, speckle patterns from nonlinear
scatterers46–49, multiple pulse filamentation38,39 and wave pro-
pagation in the time domain50,51. A particularly promising optical
setting may also be found in nonlinear multimode fibers52,53; here
structural disorder is absent but complex dynamics are known to
emerge from the disordered interaction of several excited guided
modes. Beyond optics, the universality of the RSB scenario for
propagating waves may be found from hydrodynamics to
Bose–Einstein condensates54–56. Our evidence of a large scale
coherence in the presence of disorder at the RSB transition may
open a number of further scenarios for testing fundamental
physical theories, for example quantum phase transitions in dis-
ordered systems.

Methods
Experimental setup. An optical beam at wavelength λ= 532 nm from a
continuous 30 mW Nd:YAG laser source is focused down to a cylindrical
Gaussian beam with waist ω0= 7 μm along the y-direction and quasi-homogeneous
(several mm wide) along the x-direction. The wave is launched into an optical
quality sample of K0.985Li0.015Ta0.63Nb0.37O3 (KLTN)57, 3.9(x)×0.9(y)×2.4(z) mm
size, with a layer of He+ ions implanted beneath its surface. Implantation at
2.3 MeV with a fluence of 0.8 × 1016 ions per cm−2 yields a partially amorphous
layer with refractive index profile as presented in Fig. 1b. This forms a slab
waveguide between the surface of the sample with the implanted layer that acts as
the cladding58. A sketch of the optical system is shown in Fig. 1a. In linear con-
ditions, the line beam experiences no appreciable diffraction along x inside the slab
waveguide. The crystal exhibits a ferroelectric phase transition at the Curie tem-
perature TC= 285 K and nonlinear light dynamics is studied at T= TC + 2 K, a
condition ensuing the presence of small-scale disorder, giant nonlinearity,
optimal transmission and high reproducibility28. The input y-polarized wave
copropagates along the z-axis with a uniform background intensity, and the
time-dependent photorefractive nonlinearity sets in when an external bias field E is
applied along y (Supplementary Note 2). In nonlinear conditions, the involved local
variations of the refractive index δn are at most of the order of 10−3 and do
not affect the confining slab profile. The spatial intensity distribution is measured
at the slab output for different nonlinearity (exposure times) and input power
by means of an high-resolution imaging system composed by an objective lens
(NA= 0.5) and a CCD camera at 15 Hz. The output analyzed area is that corre-
sponding to the imaged slab confining area, ~10 μm and 300 μm wide along y and
x, respectively.

Replicated experiments. Each shot is a single realization of the experiment with
fixed experimental parameters; it corresponds to the nonlinear dynamics of the
input wave field as observed at the slab waveguide output for increasing non-
linearities. To acquire replicas of the optical dynamics the whole experiment is
repeated keeping the experimental conditions fixed. Between a shot and the sub-
sequent one the continuous-wave laser is blocked, the sample is heated up to TC +
15 K, it is allowed to relax under mW white-light illumination (microscope illu-
minator) to clean it from the previously photogenerated charges, and, after
20–30 min, it is slowly brought back to the operating temperature. This procedure
is sufficient to erase the photorefractive space-charge pattern written by the pre-
vious highly-nonlinear dynamics. No evidence of memory effects is found, so as to
have independent realizations. However, the method does not allow us to fix the
actual distribution of disorder that arises from sample inhomogeneities due to the
proximity of the ferroelectric phase transition (linear index of refraction variations
are of the order of 10−4)59. In fact, although these polar-regions may form pre-
ferentially in specific spatial points related, for example, either to composition and
implantation defects or surface strains, their spatial distribution varies for any
realization. Differently, the degree (strength) of disorder can be considered as
constant for fixed experimental conditions such as crystal temperature and
cooling rate.

Data availability. Data supporting the reported results and other findings of this
study are available from the corresponding author upon reasonable request.
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