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A B S T R A C T

Most suspension descriptions nowadays employed are based on Jeffery model and some of its phenomenological
adaptations that do not take into account the possible existence of a relative velocity between the fibres and the
suspending fluid when the fibre interactions increase. It is expected that at very low density of contacts, as
predicted by standard suspension models, fibres move with the suspending fluid velocity. When the density of
fibre interactions becomes extremely high and a percolated network of fibre contacts is established within the
suspension, fibres cannot move anymore and then the fluid flows throughout the rigid or moderately deformable
entangled fibre skeleton, like a fluid flowing through a porous medium. In between these two limit cases, one
could expect that fibres move but with a velocity lower than the one of the suspending fluid. Thus, two con-
tributions are expected, one coming from standard suspension theory in which fibres and fluid move with the
same velocity, and the other resulting in a Darcy contribution consisting of the relative fibre/fluid velocity. In
this paper, we elaborate a general model able to adapt continuously to all these flow regimes.

1. Introduction

Over the last decades, an increasing number of functional and
structural parts, made so far with metals, has been progressively re-
engineered by replacing metallic materials by polymers, reinforced
polymers and composites. The motivation for this substitution may be
the weight reduction, the simpler, cheaper or faster forming process, or
the ability to exploit additional functionalities. The fillers usually em-
ployed cover a broad range involving many scales: (i) the nanometer
scale (e.g. carbon nanotubes, graphene, fullerene, nanodiamonds); (ii)
the micrometer to the millimeter scale (particles and short fibres); (iii)
the centimeter scale of fibres used in Sheet Moulding Compound – SMC
– and Bulk Moulding Compound – BMC – composite processes; and fi-
nally (iv) the macroscopic scale where fibrous reinforcements are made
of continuous fibres arranged in bundles. When load-bearing capacities
are especially looked for, continuous fibre reinforced polymers are se-
lected. In that case, the impregnation of the reinforcement with a low
viscosity polymer involves the flow of a Newtonian or non-Newtonian
fluid in the complex multi-scale microstructure related to the fibre and
tow arrangement.

Reinforced polymers are selected instead of high-performance

polymers of equivalent properties since the latter are generally more
expensive. When looking for functional properties, the use of nano-
charges opens a wide spectrum of possibilities but also raises new
challenges, such as dispersion of charges into the polymer matrix and
occurrence of aggregation and disaggregation mechanisms. Suspensions
of practical interest involve many scales and many concentration re-
gimes, the latter ranging from dilute to highly concentrated.

When addressing discontinuous fibre composites, the microscopic
description is usually carried out by using the unit vector p defining the
orientation of each individual fibre. If we assume the flowing system
composed of F fibres, then the microstructure could be described by
specifying the position of each fibre centre of gravity and the associated
fibre orientation, Xi and pi, = ⋯i 1, ,F, respectively.

However, processes usually involve evolving microstructures, which
means that both position and orientation evolve in time, i.e. Xi(t) and
pi(t). In the case of dilute systems, it is assumed that the fibre kine-
matics (displacement and rotation) do not affect any other fibre in the
system.

In these circumstances, and assuming: (i) an unbounded medium
with respect to the fibre size; (ii) a constant gradient of velocity of the
surrounding fluid along the fibre length, (iii) the fluid Newtonian; and
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(iv) the fibre straight and rigid enough for ignoring bending and
buckling mechanisms despite the almost effective infinite aspect ratio
(length to diameter ratio) and (v) the fluid velocity is unperturbed by
the presence of the fibre, it was found by Jeffery almost one century ago
[27] that infinite aspect ratio fibres (rods) move with the fluid, i.e.

=X v X˙ ( ),i i with v(x) the fluid velocity at position x, and their rotary
velocity ṗi expressed by

= ∇ − ∇ ⊗ ∀ ip v p v p p p˙ · ( : ( )) ,i i i i iX Xi i (1)

where a:b refers to the tensor product of tensors a and b twice con-
tracted.

To avoid the complexity related to the huge number of fibres in-
volved in suspensions, the orientation distribution ψ(x, t, p) was in-
troduced, giving the fraction of rods that at position x and time t are
oriented along direction p. Conservation of probability yields the so-
called Fokker-Planck equation

∂
∂

+ ∇ + ∇ =
ψ
t

ψ ψx p·( ˙ ) ·( ˙ ) 0,x p (2)

where, for inertialess rods, = tx v x˙ ( , ). The Fokker-Planck equation
being high-dimensional, its numerical solution using mesh-based dis-
cretization is challenging. Even if separated representations recently
proposed in [9,10,14,17] allow in many cases to circumvent the curse
of dimensionality, coarser grained description operating at the macro-
scopic scale are preferred and usually considered in commercial simu-
lation codes.

At the macroscopic scale, the orientation distribution function is
substituted by its moments for describing the microstructure [4].
Usually, macroscopic descriptions of fibres suspensions are based on the
use of the first two non-zero moments, i.e. the second and the fourth-
order moments, a and A (odd moments vanish because

= −ψ t ψ tx p x p( , , ) ( , , )), defined by

∫= ⊗ ψ t da p p x p p( , , ) ,
S (3)

and

∫= ⊗ ⊗ ⊗ ψ t dA p p p p x p p( , , ) ,
S (4)

where S is the surface of the unit ball.
The microstructural evolution described at the macroscopic scale

considers the time evolution of the pdf moments. The evolution equa-
tion for the second-order orientation tensor for fibres with infinite as-
pect ratio (rods), is obtained by introducing expression (1) into the time
derivative of Eq. (3) (see chapter 2 in [12] for additional details):

= ∇ + ∇ − ∇a v a a v A v˙ · ·( ) 2 : .T (5)

This equation involves the fourth-order moment A. The time deri-
vative of the fourth-order moment involves the sixth-order moment ,A

and so on. Thus, an approximate closure relation is needed in order to
express the fourth-order moment A as a function of the lower-order
moment a [5,16,21,28,39].

In the semi-dilute regime, rod interactions cannot be neglected
anymore. As interactions tend to randomize the rod orientation dis-
tribution, interactions were modeled with a diffusion term in the
Fokker-Planck equation

∂
∂

+ ∇ + ∇ = ∇ ∇
ψ
t

ψ ψ D ψv p·( ) ·( ˙ ) ·( ),p r (6)

where ∇ and ∇p are the gradient operator in the physical and con-
formational spaces respectively, and Dr is the rotary diffusion. Thus, the
microscopic and macroscopic counterparts read respectively

= ∇ − ∇ ⊗ −
∇

D
ψ

ψ
p v p v p p p˙ · ( : ( )) ,r

p

(7)

and

= ∇ + ∇ − − ⎛
⎝

− ⎞
⎠

Da v a a v A D a I˙ · ·( ) 2 : 6
3

,T
r (8)

in the general 3D case (see chapter 2 in [12] for additional details).
Folgar & Tucker [25] assumed that the rotary diffusion depends on

the flow intensity through the second invariant of the rate of strain
tensor, =γ D D˙ (2 : ) ,

=D C γ̇,r I (9)

where CI is the so-called interaction coefficient. Thus, the associated
equation governing the evolution of the second-order orientation tensor
under the Folgar & Tucker assumption becomes

= ∇ + ∇ − − ⎛
⎝

− ⎞
⎠

C γa v a a v A D a I˙ · ·( ) 2 : 6 ˙
3

,T
I (10)

that in the sequel will be referred to as the F&T model.
For explaining anomalous experimental orientation findings, in

particular a delay in the orientation rates predicted by the F&T model,
other fibre-fibre interactions models have been proposed
[23,24,38,47,48]. In these studies, the observed delay was attributed to
the intense fibre-fibre interactions and modelled either with a modified
diffusion term, a microscopic description of interactions, or by in-
troducing a sliding mechanism between fibres and fluid. In [36], we
revisited this issue and attributed the anomalous behaviour to the
confinement effects that were further discussed in [35]. Obviously,
there are finer approaches based on the direct simulation where the
rod-rod interactions are taken into account explicitly [11,20,34].

When considering SMC processes, most of the hypotheses for-
mulated when deriving the models just discussed become unjustifiable.
Thus, in our former works we tried to analyse the effect of relaxing
them all. In particular, in [35,36,41] the confinement effects were
widely discussed. Then, the orientation kinematics in non-Newtonian
second-order fluids was addressed in [13]. The size effect that appears
as soon as the flow does not exhibit a uniform strain-rate along the rod
length, was deeply discussed in [3], where moreover bending me-
chanics were activated by the richer kinematics. Entangled systems as
the ones discussed in [32,33] exhibit aggregates whose kinematics was
addressed in [1,2,15] and chapter 2 in [12].

Compression moulding, BMC or SMC, are largely considered in the
automotive industry because of its high volume capabilities. In SMC
processes, a charge of a composite material, which typically consists of
a matrix composed of an unsaturated polyester or vinylester, reinforced
with chopped glass fibres or carbon fibre bundles and fillers, is placed
on the bottom half of the preheated mould. The charge usually covers
30 to 90% of the total area. The upper half of the mould is closed ra-
pidly at a speed of about 40mm/s. This rapid movement causes the
charge to flow inside the cavity. The reinforcing fibres are carried by
the resin and experience a change of configuration during the flow. This
strongly influences the mechanical properties of the final part.

The flow regime in compression moulding processes consists of a
squeeze flow induced by the suspension compression. Even if the flow
of a suspension does not affect “a priori” the volume fraction of fibres
(except in regions in which segregation mechanisms appear), when the
squeeze progresses the density of fibre interaction along the gap
thickness (that continuously decreases due to the compression) in-
creases considerably, and at the end many solid bridges across the gap
thickness appear preventing the compression from progressing.
Micromechanical modelling of rod contacts was addressed in a variety
of works from the theoretical viewpoint [7,19,40,42,43,45] being of
major relevance in the direct numerical simulation of suspension flows
[34].

The process simulation must track the entire fluid flow history in
order to be able to predict the final reinforcement structure, and sub-
sequently, the induced mechanical properties. Compression moulding
of SMC can also generate several defects. Among them, (i) in-
appropriate fibre orientation with respect to the optimal one; (ii)



segregation that results in regions in which the resin appears devoid of
fibres; (iii) fibres breaking due to excessive bending generated by local
flow conditions.

When analyzing the process experimentally, three different flow
regimes are identified. At low density of inter-fibre contacts, and as
predicted by standard suspension models, the fibres move with the
suspending fluid velocity. When the density of fibre interactions be-
comes extremely high and a percolated network of fibre contacts is
established within the suspension, the fibres cannot move anymore and
then the fluid flows throughout the rigid or moderately deformable
entangled fibres skeleton, like a fluid flowing through a porous
medium. In between these two limit cases, one could expect that fibres
move but with a velocity lower than the one of the suspending fluid,
and thus two contributions are expected, one coming from standard
suspension theory in which fibres and fluid move with the same velo-
city, and the other resulting in a Darcy contribution consisting of the
relative fibre/fluid velocity. The effect of these differential velocities is
observed mainly near the flow front as exposed in [6,18] or in the T-
joints at the mould ribs.

Even if the two limit flow regimes just described have been ex-
tensively studied, the intermediate one, bridging both limit cases,
constitutes an appealing modelling framework and whose micro-me-
chanical derivation constitutes the main aim of the present work.

The next section proposes a new micro-mechanical model able to
account for different velocities of the fluid and reinforcement phases.
Section 3 unifies the different flow regimes depending on the density of
fibre interactions into a generalized Brinkman model. Because in gen-
eral the addressed flows take place in narrow gaps, a lubrication ap-
proximation is proposed in Section 4, that is validated through some
numerical results in Section 5.

2. Extended micromechanical model

We consider a fibre (of length 2L) of infinite aspect ratio, rigid en-
ough to ignore as a first approximation bending and buckling me-
chanisms, and aligned in direction p, immersed in a flow (characterized
by its gradient of velocity ∇v) of a Newtonian fluid of viscosity η.

First, following the general framework proposed in our former
works for addressing rods [3], aggregates [1,2], confinement [36,41]
and non-Newtonian matrices [13], most of them collected in chapter 2
of [12], we proposed below a new extended model able to address the
rod kinematics previously discussed. For that purpose, we consider the
fibre consisting of two beads connected by a rigid connector (dumbbell
model). We assume that the forces applied on each bead depend on the
difference of velocities between the fluid and the bead, the first one
given by + ∇ Lv v p·0 and the second one by + Lv ṗG . Thus, the force F
(pL) reads:

= + ∇ − −L ξ L LF p v v p v p( ) ( · ˙ ),G0 (11)

where ξ is the friction coefficient, v0 the fluid velocity at the rod centre
of gravity, and vG the velocity of the rod center of gravity.

By enforcing linear and angular momentum balances, we obtain
first the velocity of the rod centre of gravity that coincides with the
velocity of the fluid at that position, i.e.

=v v ,G 0 (12)

that is, the rod centre of gravity moves with the fluid, and also the
expression of the rod rotary velocity ṗ (see Chapter 2 in [12]),

= ∇ − ∇ ⊗p v p v p p p˙ · ( : ( )) , (13)

that applies to any rod and constitutes the finest description of standard
suspension kinematics.

In order to control the relative velocity between the fluid and the
fibre, we consider the extended micro-mechanical model illustrated in
Fig. 1 where an extra force is applied at the rod centre of gravity that
scales with the relative velocity between the fibre and the mould

velocity. The consideration of a relative velocity is needed in order to
ensure the model objectivity, thus avoiding the existence of mechanical
work associated with translation of the coordinate frame, that is, in
order to ensure the Galilean frame-indifference. We consider the mould
velocity because when the contact percolation occurs it is expected that
fibres remain at rest with respect to the mould in which the flow takes
place. In the sequel, we consider that the mould velocity is zero, and
consequently the friction force applied at the rod center of gravity
reads:

= − μT v2 ,G (14)

where the choice of the pre-factor 2μ allows us to simplify the devel-
opments that follow.

Now, considering all forces acting on the rod: F(p), −F p( ) and T, the
inertia-free linear momentum balance reads:

= + − + = − +ξ ξ μ0 F p F p T v v( ) ( ) 2 2( ) ,G0 (15)

from which it results

=
+
ξ

ξ μ
v v ,G 0

(16)

that proves the existence of a fibre/fluid relative velocity vr,

= − =
+
μ

ξ μ
v v v v .r G0 0

(17)

With μ≥ 0, it results vG≤ v0, and we distinguish three different
flow regimes:

1. Interaction-free regime, in which μ≈ 0, that implies =v vG 0.
2. Percolated case, in which μ≫ ξ, that implies vG≈ 0.
3. Intermediate case, in which vG≠ 0 and vr≠ 0, with + =v v vG r 0.

In the first tentative modelling approach proposed in this paper, we
do not introduce any friction related to the rod rotary velocity. If one is
interested in introducing such a rotary friction, it suffices to add a re-
sistance torque as described in [12,37] while ensuring the model ob-
jectivity. In that case, we can represent different rotary kinematics
between two limit cases: (i) the one related to the standard Jeffery ki-
nematics, and the other (ii) in which the rod rotates with the flow
vorticity. In this work, we only consider the friction force, neglecting
the friction torque, and then, we show that the rotary kinematics re-
main, without loss of generality, the one associated with the standard
Jeffery model.

It is also important to note that in practical situations the gap
thickness becomes smaller that the fibre length, inducing confinement
and invalidating the fibre orientation kinematics discussed above. In
some of our recent works [35,36,41], we addressed the issue related to
confinement and concluded that standard models could work quite well
when using adequate empirically fitted closure relations.

In order to derive the orientation kinematics, we consider the

Fig. 1. Forces applied on a rod immersed in a Newtonian fluid.



balance of torques related to the mechanical system illustrated in Fig. 1.
By introducing the expression of vG given by Eq. (16) into the expres-
sion of the hydrodynamic forces F(p) and −F p( ), we have

= + ∇ −ξ L LF p v v p p( ) ( · ˙ ),r (18)

and

− = − ∇ +ξ L LF p v v p p( ) ( · ˙ ).r (19)

Now, considering the torques with respect to the rod center of
gravity, the contribution due to forces ξvr applied at both beads van-
ishes and then enforcement of a null torque results in the standard
Jeffery model, whose derivation remains exactly the same as the one
considered in [12], leading to Eq. (13).

Thus, from the point of view of the microstructure orientation de-
scription, there is nothing new. At the microscopic level, the rods rotary
velocity is given by the standard Jeffery model

= ∇ − ∇ ⊗p p v p p p˙ ( : ( )) , (20)

leading to the mesoscopic and macroscopic models presented and dis-
cussed in Section 1.

Before finishing this section, it is important to notice that the me-
chanical model sketched in Fig. 1 is able to activate fibres bending. For
modelling the bending mechanism, we introduce in the hydrodynamic
force expression (18) the one of the rotary velocity ṗ (20), that leads to

= + ∇ ⊗ξ ξF p v v p p p( ) ( : ( )) ,r (21)

where the components aligned in the fibre direction does not contribute
to the fibre bending. The one related to the relative velocity vr however
activates the fibre bending as soon as the relative velocity is not colli-
near with the fibre. Using standard results of beam theory, one can
evaluate strains, stresses and bending energy in order to couple the flow
analysis with failure mechanisms.

Obviously, as soon as the friction coefficient μ vanishes, the relative
velocity vanishes and the standard model is recovered where fibres
move with the fluid and bending is prevented because hydrodynamic
forces act along the fibre direction.

The friction coefficient μ is expected to scale with the density of
inter-fibre interactions, being mostly zero at the beginning of the
compression process, growing when the compression progresses, and
becoming very large as soon as contact percolation occurs, where it can
be assumed infinite. Thus, when squeezing a suspension, different re-
gimes can be distinguished depending on inter-fibre density of inter-
actions. All of them are described in the next section.

3. Throughout the different flow regimes

As just indicated, when squeezing a suspension, five regimes can be
identified: (i) the one consisting of the suspending fluid in absence of
fibres associated to segregation; (ii) the one associated with negligible
fibre interactions; (iii) then the one in which interaction cannot be ig-
nored but where the fibre velocity corresponds to the one of the sus-
pending fluid; (iv) the one in which the intense interactions induce a
relative velocity between fluid and fibres; and finally (v) the very
concentrated regime that results in a percolated entangled fibrous
system in which the fibrous skeleton does not move anymore and the
fluid flows through it. The present section covers these different flow
regimes, unifying all of them in a unique Brinkman flow model, taking
place in the domain occupied by the fluid at time t, Ωf(t)⊂Ω, Ω being
the whole cavity.

The most usual inertia-free flow model consists of

⎧

⎨

⎪⎪

⎩
⎪
⎪

∇ =
∇ =

= − + + + −

= ∇ + ∇ − − −

( )
( )

P η ηN β

D

σ 0
v

σ I D a D a a

v a a v A D a

·
· 0

2 2 ( : )

· ·( ) 2 : 6

,p

D
Dt

T cl
r

I

a I

3

3 (22)

where Acl refers to an appropriate closure relation expressing the
fourth-order orientation tensor A as a function of the second-order one
a, as discussed in Section 1.

In (22), different flow regimes can be distinguished:

• In absence of fibres, the above model, with =N 0p and =β 0, and
ignoring the orientation equation (fourth relation in Eq. (22)), re-
duces to the standard Stokes problem whose solution yields the
velocity, strain-rate and stress at each position x∈Ωf(t).

• In the case of suspensions with negligible fibre interactions the ro-
tary diffusion vanishes, i.e. Dr≈ 0, as well as its contribution to the
stress, i.e. β≈ 0. In this case, the mass and momentum equations
(the first three relations in Eq. (22)) define an anisotropic Stokes
flow problem for a given orientation state characterized by the
microstructural descriptor a in the fluid domain Ωf(t). It is important
to note that, because inertia terms in the momentum and mass
balances are neglected, the flow velocity field evolves in-
stantaneously to adapt to the time-evolving microstructure a(x, t).
Thus, the only characteristic time present in the model is the one
related to the fibre orientation process.

• When fibre interactions cannot be ignored, all terms in the model
(22) apply. Here, the F&T assumption was employed for modelling
interactions, even if as discussed in Section 1 many other, and
probably better, choices exist.

In order to describe the fluid domain, we consider the fluid phase
field I(x, t) defined as

= ⎧
⎨⎩

∈
∉

I t
t
t

x
x
x

( , )
1 if Ω ( )
0 if Ω ( )

.
f

f (23)

Its evolution is governed by mass conservation:

=DI
Dt

0, (24)

where D
Dt

• is the material derivative: = + ∇∂
∂ v· •D

Dt t
• • .

The opposite flow case is the one encountered when fibres do not
move anymore and therefore the fluid flows through the porous
medium associated to the entangled fibrous skeleton. This flow can be
described by a standard Darcy model

⎧
⎨⎩

∇ =
= − ∇P
v

v K
· 0

· ,
(25)

or its combined form

∇ ∇ =PK·( · ) 0, (26)

again defined in Ωf(t) described from I(x, t).
In this model, the permeability is expected to depend on the rod

orientation distribution, i.e. K(ψ(p)). As discussed in the Introduction, it
is usual to describe the orientation state from the different moments of
the orientation distribution function, in particular its second-order
moment a, its fourth-order A, etc. Thus, the simplest choice consists in
assuming that the permeability tensor only depends on the second-
order orientation tensor a, which by using the Cayley-Hamilton the-
orem implies its dependency on I, a and a2. In what follows, we denote
such a simple dependency as K(a). This kind of approach was con-
sidered from a theoretical point of view in [22]. Another route consists
in creating different microstructures and identify the permeability from
the direct numerical simulation of the fluid flowing through them (from
the relation between the flow rate and the pressure drop [26,29,46,49]
or by identifying the permeability from the dissipated power as con-
sidered in [8,30,31]). Now, the calculated permeabilities allow one to
fit the parameters of a polynomial expression assumed in the functional
dependence of the permeability of the orientation, K(a) (similarly to the
route considered for constructing fitted closure relations).

When considering compression moulding, the microstructure also



evolves because of the changes in the inter-fibre distances and not only
rod orientation. To address the former other microstructural de-
scriptors, as the ones proposed in [44], should be considered. In what
follows, we consider the simplest choice in which the permeability
mostly depends on the mould closing stroke, or equivalently on the
mould gap at time t, because as proved later the orientation does not
evolve very much.

Remark. All the previous flow models must be solved by enforcing
appropriate initial and boundary conditions.

In between the two limit flow regimes just considered, an inter-
mediate regime where intense hydrodynamic interactions and contacts
are at the origin of a relative velocity between the fibres and the sus-
pending fluid, is expected to exist.

When intense interactions occur, we can assume that the flow
consist of one contribution coming from the suspension flow with a
velocity that coincides with the one of the fibres, and another in which
the fibres are assumed at rest and the fluid flows through the fibrous
skeleton with the fluid/fibres relative velocity. The fluid velocity is
denoted by v, the one of the fibres that defines the suspension velocity
by vs, and the relative velocity of the fluid with respect to the fibres by
vd (the Darcy contribution, assumed to be the spatial average of the
actual fluid velocity). As discussed in Section 2, we have the equalities:

⎧

⎨

⎪⎪

⎩
⎪
⎪

= +

=
+

=

=
+

= −

ξ
ξ μ

α

μ
ξ μ

α

v v v

v v v

v v v(1 )

.

s d

s

d

(27)

Now, we consider the pressure drop related to both flow contribu-
tions, the one of the suspension flowing at velocity vs (neglecting the
interactions contribution to the stress, i.e. taking =β 0 and assuming a
quadratic closure relation),

∇ = + ∇P η ηNv D a aΔ 2 ·(( : ) ),s s
p

s (28)

then the one related to the Darcy contribution,

∇ = − −P K v· ,d d1 (29)

where the permeability tensor takes into account the fact that vd is the
spatial average of the fluid velocity.

Adding both pressure drops for obtaining the total one,

∇ = ∇ + ∇ = + ∇ − −P P P η ηNv D a a K vΔ 2 ·(( : ) ) · ,s d s
p

s d1 (30)

and writing both velocities vs and vd as a function of the total fluid
velocity v according to Eq. (27), we obtain

∇ = + ∇ − − −P α η ηN αv D a a K v{ Δ 2 ·(( : ) )} (1 ){ · }.p
1 (31)

This has the form of the Brinkman model where the viscous and Darcy
contributions are weighted by α and − α(1 ) respectively, with α de-
pending on the friction coefficient μ that depends in turn on the density
of fibre interactions.

It is important to note that this linear dependence with respect to
the parameter α is not a modelling hypothesis, but it rather naturally
derives from the proposed micromechanical modelling approach.

The solution of the extended Brinkman problem (31) yields the fluid
velocity v and the associated suspension velocity = αv v,s the former
allowing us to update the fluid presence function I(x, t) whereas the
latter serves for updating the suspension presence function Is(x, t), both
evolving according to

∂
∂

+ ∇ =I
t

Iv· 0, (32)

and

∂
∂

+ ∇ =I
t

Iv · 0,
s

s s
(33)

respectively.

4. Lubrication approximation

In the case of narrow gaps, lubrication theory implies a computa-
tionally valuable dimensionality reduction. First, we consider the vis-
cous contribution, where for the sake of simplicity we ignored the an-
isotropic term, i.e. we assume =N 0p (even if it could be retained). We
have

∇ =P η vΔ ,s s (34)

with = u v wv ( , , )s s s s T . Lubrication approximation states that the velo-
city gradients in the thickness direction are much larger than in-plane
gradients, and that the through-the-thickness velocity component can
be neglected with respect to the in-plane components:
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The last approximation in (35) leads to =P P x y( , ), that allows us, by
integrating twice the first two equations in (34) and enforcing no-slip
boundary conditions at both gap walls, to obtain:

= ∇ −x y z
η

P z hv ( , , ) 1
2

( ),s s 2 2

(36)

where the gap thickness is 2h.
The averaged velocity across the gap thickness reads

∫= = − ∇∼
−

+

x y
h

x y dz h
η

Pv v( , ) 1
2

( , )
3

,s

h

h
s

2

(37)

where the out-of-plane component almost vanishes, i.e. ws≈ 0. The
previous equation can be rewritten as

∇ = − ∼P
η

h
v

3
.s s

2 (38)

The Darcy contribution, assuming that the out-of-plane velocity also
vanishes, reads

∇ = − −P K v· ,d d1 (39)

where vd is constant across the narrow gap and then coincides with its
averaged value = ∼v v ,d d leading to

∇ = − ∼−P K v· .d d1 (40)

Now, adding both pressure contributions, we obtain

∇ = − −∼ ∼−P
η

h
v K v

3
· ,s d

2
1

(41)

and by expressing both velocities from the one related to the fluid, the
pressure gradient finally reads

∇ = − − −∼ ∼−P α
η

h
αv K v

3
(1 ) · .2

1
(42)

The following two limit cases can be identified:

• Newtonian fluid flow. In this case =α 1, and we obtain the standard
lubrication counterpart of the Stokes model. By enforcing mass
conservation, we obtain the boundary value problem – BVP – that
allows us to calculate the pressure field and from it the flow kine-
matics.

• Fluid flowing through a fibrous medium at rest. In that case =α 0, and
the previous equation reduces to the standard Darcy model with the



permeability depending on the microstructure from the second-
order orientation tensor. Again, by enforcing mass conservation, we
obtain the BVP governing the pressure distribution and from it the
fluid phase velocity.

For intermediate values of α, we can define an effective perme-
ability:

= + −∼− −α
η

h
αK I K

3
(1 ) .1

2
1

(43)

This allows us to define the effective Darcy flow model

∇ = − ∼∼−P K v· ,1 (44)

or

= − ∇∼ ∼ Pv K· . (45)

4.1. Squeeze flow in narrow gaps

When squeezing the fluid in a narrow gap of thickness 2h with a
compression rate ,U the flow-rate q(x, y) is given by

= ∼x y h x yq v( , ) 2 ( , ), (46)

from which the mass conservation reads

∇ =q· .U (47)

Now, by replacing expression (46) into Eq. (47), we have

− ∇ ∇ =∼h PK2 ·( · ) ,U (48)

or

∇ ∇ = −∼ ∼PK·( · ) ,U (49)

with =∼
h2U
U .

It is always possible to derive richer lubrication models, in-
corporating anisotropy terms of the suspension model as well as con-
sidering more complex contact conditions between suspension and gap
wall, as the one considering a lubricated sliding.

5. Numerical results

In this section, we consider two squeezing scenarios, the first one
concerning the compression of a thin disc that can be solved analyti-
cally, and the second one involving a more complex geometry.

5.1. Compression of a thin disc

We consider a disc of initial radius and height r0 and h0 respectively,
with h0≪ r0. The disc is compressed at rate U . Mass conservation im-
plies volume conservation:

=πr h πr h ,t
2

0
2

0 (50)

where rt and h are respectively the disc radius and height at time t. Eq.
(50) leads to

=r h
h

r ,t
0

0 (51)

where the disc thickness at time t is given by

= −h h t.0 U (52)

The flow radial velocity v͠r comes again from mass conservation,

= =πr πr hv r r t2 ( , ),͠t t r t
2U (53)

or

= =v r r t r
h

( , ) 1
2

,͠ r t
t U (54)

with h expressed from Eq. (52). In this example, we consider a perfect
sliding at both plate surfaces.

The suspension radial velocity is expressed from

= = =v r r t αv r r t( , ) ( , ),͠ ͠r
s

t r t (55)

that allows us to describe the segregation process once the coefficient α
is adequately expressed. In this first academic example, we consider the
following evolution:
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(56)

and the compression progresses until reducing the disc height by half,
i.e. while ≥h h

2
0 .

Fig. 2 depicts the evolution of the domain occupied by the sus-
pension (yellow region) and the one occupied by the resin that segre-
gates from the suspension due to the fibre/fluid relative velocity (green
area).

The orientation process deserves a detailed analysis. At time t, the
radial component of the flow velocity (the circumferential component
vanishes because the flow problem symmetry) reads

=v r t
h

r( , )
2

,͠ rs
U

(57)

which gives the associated cartesian components
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2

2
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from which we can obtain the plane component of the velocity gra-
dient:

⎜ ⎟∇ = ⎛
⎝

⎞
⎠

∼ β
β

v( )
0

0
,sP

(59)

where (•)P is the plane component of tensor (•). The flow in-
compressibility is not compromised because the null trace of the total
velocity gradient is ensured by the through-the-thickness velocity gra-
dient, that is by the squeezing flow.

Assuming a test rod with planar orientation, i.e.
= θ θp (cos , sin , 0),T using the Jeffery equation we obtain a null rotary

Fig. 2. Evaluating suspension segregation.



velocity, that is =θ̇ 0. This results seems a bit conter-intuitive and
deserves a discussion. If rods are assumed to have a planar orientation
(i.e. their out-of-plane component vanishes), the rod kinematics is de-
termined by the planar component of the velocity gradient. If we as-
sume the general form of the planar component of the velocity gradient
given by

⎜ ⎟∇ = ⎛
⎝

⎞
⎠

G G
G Gv( ) ,xx xy

yx yy
P

(60)

Jeffery’s equation (1), with = θ θp (cos , sin )T and consequently
= −θ θ θṗ ˙ ( sin , cos )T reads

Fig. 3. Filling snapshots of a part (reinforced fluid initially located on the top surface): simulation with the generalized model.
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θ θ
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θ
θ

˙ sin
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sin

T cos
sin

,xx xy

yx yy (61)

where T is the scalar ∇v: (p⊗p). Now, multiplying the first row by
− θsin , the second by cos θ, and adding both of them, we obtain

= − − + +θ G θ θ G θ G θ G θ θ˙ sin cos sin cos sin cos .xx xy yx yy
2 2 (62)

In the case considered above, with =G Gxx yy and = =G G 0,xy yx we
get =θ̇ 0 as announced, however, in the case of a radial diverging or
converging flow, ≠θ̇ 0, thus inducing respectively an alignment along
the circumferential and radial directions.

Thus, when squeezing a disc the fibre orientation does not change.
The microstructure, almost planar from the very beginning, does not
evolve significantly and so, the mould filling process has to be

Fig. 4. Filling snapshots of a part (reinforced fluid initially located on the top surface): simulation without accounting for segregation phenomena.



simulated only for anticipating segregation issues.

5.2. Numerical simulation

In this section, we consider a more complex geometry, a sort of a
rectangular hat, where the reinforced resin is initially placed on the top
surface. Then compression is applied and the suspension is pushed,
filling the mould. The lubrication approach is considered and the flow
model adapts to the different flow regimes controlled by α.

The flow and the associated filling and orientation fields are de-
picted in Fig. 3, where segregation induced by the particular choice of
α(h) can be noticed. In this figure, the colours refer to the fluid element
filling degree (I(x, t) in reference to Eq. (32)), thus, yellow elements are
fully filled by the fluid whereas those in blue remain empty. In this
figure, ellipses have been associated to all the elements fully occupied
by the fibre suspension (Is(x, t) in reference to Eq. (33)), and ad-
ditionally ellipses indicate the existing orientation. In this figure, the
triangulation of the mould (fluid domain) does not correspond to the
one considered for solving the flow and orientation equations. The
computational mesh was coarsened in order to better represent the
solution, in particular the orientation state described from an ellipse,
whose axes length corresponds to the orientation tensor eigenvalues
and their direction, i.e. their eigenvectors. Fig. 4 depicts the solution at
the same instants for a suspension where no segregation effects are
taken into account, i.e. =α 1.

The velocity field being almost governed by the compression rate
and the fluid incompressibility, the time evolution of the fluid domains
is almost the same when considering or not segregation mechanics. The
applied pressure in both cases is different however because of the dif-
ferent rheologies. From the microstructural point of view, it can be
noticed in Fig. 4 that at the upper surface the suspension model exhibits
more intense orientations than the generalized model involving segre-
gation. This behavior can be explained by the fact that when con-
sidering the suspension model (without segregation) the orientation
mechanisms act all along the simulation, while in the other case the
orientation mechanism stops as soon as the fibre contacts percolate.

If the parameter α depends on position, the fluid/fibre relative ve-
locity will depend also on position, and other than predict the filling
and the orientation, we could have access to the fibre concentration. It
can be understood that a micro-mechanical model for parameter α
becomes of major interest.

6. Conclusions

In this work, we proposed a 3D modelling framework and its lu-
brication counterpart able to described the flow of suspensions when
considering different density of fibre interactions. A generalized model,
with solid micro-mechanical foundations, allowed us to derive a
Brinkman model that embraces all possible models: from the one in
which no interaction occurs to the one in which segregation occurs due
to too intense interactions.

Numerical results showed that the main modelling features are well
recovered in the model solution, opening many valuable routes for the
efficient simulation of composite processing technologies such as
compression moulding or SMC.

The development of a micro mechanical model for evaluating α, the
consideration of fibre bending and buckling and the 3D solution of the
flow model for addressing more complex geometries involving regions
in which the lubrication approximation fails and then 3D models be-
come compulsory, are some of the works in progress. Other important
issues also considered in our works in progress concern the introduction
of the fibre concentration and its associated evolution equation, the
consideration of lubricated boundary conditions at the upper and
bottom plates within the squeeze flow modelling framework and finally
the necessity of considering fluctuations of the effective viscosity (re-
lated to fluctuations in the density of entanglements) and the evaluation
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