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Abstract: Linearity is a common assumption for many real life systems. But in many cases,
the nonlinear behavior of systems cannot be ignored and has to be modeled and estimated.
Among the various classes of nonlinear models present in the literature, Parallel Hammertein
Models (PHM) are interesting as they are at the same time easy to understand as well as to
estimate when using exponential sine sweeps (ESS) based methods. However, the classical EES-
based estimation procedure for PHM relies on a very specific input signal (ESS), which limits
its use in practice. A method is proposed here based on the Welch method that allows for PHM
estimation with arbitrary sine sweeps (ASS) which are a much broader class of input signals
than ESS. Results show that for various ASS, the proposed method provides results that are in
excellent agreement with the ones obtained with the classical ESS method.

Keywords: Nonlinear system identification; Input and excitation design;

1. INTRODUCTION

Systems are generally assumed to behave linearly and in a
noise-free environment. This is in practice not perfectly
the case. First, nonlinear dynamic behaviors are very
common in real life systems. Second, the presence of
noise is a natural phenomenon that is unavoidable for all
experimental measurements. In order to perform reliable
model estimation of such systems, one should thus keep in
mind these two issues and care about them. Indeed, all the
noise that is not correctly removed from the measurements
could be misinterpreted as nonlinearities, thus polluting
measurements. And if nonlinearities are not accurately
estimated, they will end up within the noise signal and
information about the system under study will be lost.

The first problem addressed here is related to the estima-
tion of nonlinear models of real life systems (Pearson, 1999;
Kerschen et al., 2006). As nonlinear behaviors are complex
and various and as it is not intended to build a model for
each case, it is chosen here to rely on Parallel Hammerstein
Models as they can be interpreted easily (see Fig. 1). Such
models belong to the class of “Sandwich models” (Chen,
1995). Even if the model presented in Fig. 1 involves only
monomial nonlinearities, it has been shown to possess
a good degree of generality (Pearson, 1999)]. Classical
estimation methods for this class of system rely on a least-
square formulation of the problem but are computationally
costly and prone to conditioning issues (Gallman, 1975).
Hopefully, thanks to exponential sine sweeps (ESS), non-
parametric versions of such models can be very easily and
rapidly estimated (Novak et al., 2010, 2015; Rébillat et al.,
2011, 2016). However, one drawback of these ESS based

methods is that they rely on a specific class of input signals
(ESS) that limits their use in practice.

Fig. 1. Representation of parallel Hammerstein models

The second problem addressed here is related to the rejec-
tion of uncertainties caused by the presence of noise. One
way to address this issue relies on a careful design of the
excitation signal: special types of periodic excitations (Pin-
telon and Schoukens, 2001), non-stationary excitation with
an underlying periodic structure (Zhang et al., 2010), or
repeated ESS (Rébillat et al., 2016) for example. Another
way to remove noise consists, independently of the input
signal, to segment the output signal in several slices on
which output noise is assumed to be independently dis-
tributed, as done in the classical Welch’s Method (Welch,
1967). This kind of approach is very attractive in the
context of nonlinear system identification as it puts no
constraints on the input signal.

The aim of this paper is thus to provide a methodology
that allows for the estimation of Parallel Hammerstein



Models based on the Welch method and on arbitrary
sine sweeps (ASS). The paper is organized as follows: the
classical ESS and Welch Methods are first briefly recalled
in Section 2 and Section 3. Then the proposed method is
detailed in Section 4. Results comparing the classical ESS
method with the proposed method for various ASS are
provided in Section 5 before concluding in Section 6.

Note 1 : In this article, ∗ will stand for the convolution
product. The convolution product between a function a
and a function b will be denoted as a(t) ∗ b(t) instead of
a ∗ b(t) in order to simplify some notations.

Note 2 : f will refer to the continuous frequency whereas
k will refer to its discrete numeric version. Both will be
used depending on the context.

2. EXPONENTIAL SINE SWEEP METHOD

A Parallel Hammerstein Model (PHM) is a relatively
simple model of a weakly non-linear system (see Fig. 1).
The input-output relation of such a model can be written
as follows:

y(t) =

+∞∑
n=1

hn(t) ∗ xn(t) (1)

where x(t) is the input of the system, y(t) its output and
hn(t) the kernels of the Hammerstein model.

Let’s consider an arbitrary sine sweep (ASS) x(t) as an
input of a PHM truncated to the order N . Such a signal is
defined as x(t) = sin [φ(t)] with φ(t) a strictly increasing
function of time. By using trigonometry formula, one can
then write (Novak et al., 2010, 2015; Rébillat et al., 2011,
2016):

y(t) =

N∑
n=1

gn(t) ∗ sin [nφ(t)] (2)

With gn(t) =
∑n

m=1Amnhm(t) a linear combination of
the kernels hm(t) with m ≤ n. This clearly highlights
the harmonics that commonly appear when measuring the
frequency response of a nonlinear system.

The identification of a PHM consists in finding the set
of kernels hn(t), by means of the known input x(t) and
the measured output y(t). Let’s consider the input x(t) as
an Exponential Sine Sweep (ESS) of duration T starting
from a frequency f1 and ending with a frequency f2. Its
instantaneous frequency can then be written as follows:

2πf(t) = φ′(t) = 2πf1 exp

[
t

T
ln (f2/f1)

]
(3)

The integration of this formula then gives:

φ(t) = 2π
f1T

ln (f2/f1)
exp

[
t

T
ln (f2/f1)

]
+ C

with C a constant value. To be able to identify the
kernels hn(t), the following relationship is desired and
can be obtained by different means depending on the C
value (Novak et al., 2010, 2015; Rébillat et al., 2011, 2016):

sin [kφ(t)] = sin [φ(t+ ∆tk)] (4)

Then, from Eq. (2) the following relationship is obtained:

y(t) =

N∑
n=1

gn(t) ∗ sin [φ(t+ ∆tn)]

The function h(t) can then be computed as follows:

h(t) = y(t) ∗ x−1(t) =

+∞∑
m=1

gn(t−∆tk) (5)

with x−1(t) defined such that: x(t) ∗x−1(t) = δ0(t), where
δ0 is the Dirac distribution. This deconvolution operation
is crucial for the ESS method and can be achieved by
different means (Novak et al., 2015; Rébillat et al., 2011).
Another way based on the Welch to perform this step is
proposed in this article.

Note from Eq. (5) that the linear combination gn(t) of high
order Hammerstein kernels hm(t), m < n of the system
are in advance in time of a given value ∆tn thanks to
Eq. (4). This justifies the usefulness of this property. Then,
the different terms gn(t) can be easily isolated by means
of a simple temporal windowing of h(t) and the kernel
hn(t) can be found by inverting the linear combination
defined by the matrix A = (Amn)1≤m,n≤N . Also note that
according to the classical ESS method implementation, the
length Tcut of the temporal window used to extract h(t)
has to be smaller than T ln((N + 1)/N)/ ln(f2/f1) where
N is the maximal order being considered. Consequently,
the power of the noise polluting the estimation is relative
to this length Tcut. This temporal window is usually build
with a Hanning window to avoid side effects.

3. WELCH METHOD

The Welch method was first introduced by Welch (1967)
and provides an estimation of the cross power spectral
density of two signals through an unbiased estimator that
belongs to the modified periodogram class.

3.1 Cross power spectral density estimation

Let’s assume the signals x[n] and y[n] to be realizations
of length NT of an ergodic and stationary process. By
definition, the Cross Power Spectral Density (CPSD) of
these signals is:

Γxy(k) = DFT
{
E
[
x[n]y[n−m]

]}
(k)

where E denotes the expected value, a the conjugate
product of a and DFT the Discrete Fourier Transform
operation.

This CPSD can be estimated with a certain bias by means
of the classical periodogram Sxy(k), defined as follows:

Sxy(k) =
1

NT fs
DFT [x](k)DFT [y](k)

Taking advantage of ergodicity and stationarity, another
estimator of Γxy(k) based on a temporal average process
can also be defined. The idea is to split the signals x and
y into P overlapping segments of length M containing
each D overlapping sample using a window w, and to
estimate the CPSD of each segment Γ̂p

xy(k) through the



periodogram before averaging it. An unbiased CPSD esti-
mator can thus be defined as (Welch, 1967; Akcay, 2012):

Γ̂xy(k) =
α

P

P∑
p=1

Γ̂p
xy(k) =

α

P

P∑
p=1

Sxpyp
(k) (6)

with xp(k) = w[k]x[k+pD] and yp(k) = w[k]y[k+pD] and

α a normalization factor such that: α = M/
∑M

m=1 |w(m)|2.

The main advantage of this approach is that when con-
sidering deterministic signals polluted by ergodic noise,
the error committed will be relative to the noise power
considered as a length M instead of length NT . However,
some spectral precision will necessarily be lost by using
smaller windows than the single whole signal.

3.2 Linear system identification using CPSD

The Welch method has been largely used to estimate the
frequency response of a linear system such as:

y(t) = h(t) ∗ x(t) + b(t) time domain

Y (f) =H(f)X(f) +B(f) frequency domain

where y(t) is the output, x(t) the input and b(t) the noise,
and A(f) = FT {a(t)}(f) where FT denotes the Fourier
transform. Note that b(t) is one realization of a ergodic
and stationary process with zero mean and then that y(t)
has the same statistical properties than this realization.

The simplest way to numerically estimate H is:

Ĥ(f) ≈ Y (f)/X(f)

and the error committed by doing so is proportional to
the power of the noise which last the whole signal length.
The idea is now to use the CPSD to define the transfer
function and then to use the Welch method in order to
reduce errors caused by noise. Using the fact that noise is
uncorrelated with the input signal and the deterministic
nature of H(f), one obtains:

H(f) = E

[
Y (f)X(f)

X(f)X(f)

]
− E

[
BΩ(f)X(f)

X(f)X(f)

]
=

Γxy(f)

Γxx(f)

Then the error commited is here again proportional to the
power of the noise as if it only lasts M samples.

4. WELCH SINE SWEEP OR CPSD METHOD

4.1 General idea of the method

Let’s assume a PHM as defined by Eq. (1) and an input
signal x(t) defined to be an arbitrary sine sweep (ASS) as
done in Eq. (2). That way x(t) = sin [φ(t)] with φ a strictly
increasing function of time. Then, at each time a single
frequency is played by the input x(t), involving an output
y(t) made up of a discrete set of harmonic frequencies.
Indeed y(t) is a linear combination of convolution products
between harmonics and gn(t) functions as described in
Eq. (2). This is illustrated in Fig. 2 which shows for a
given frequency of the input the frequencies contained in
the output of the PHM when considering an ASS as input.

The idea behind the Welch Sine Sweep method (also called
CPSD method) is to be able to estimate the kernels of

Fig. 2. Input sweep frequency versus output signal frequen-
cies for a 4th order PHM and windowing choices exam-
ples (no overlap): linear part [optimal] (blue dashed
lines), third harmonic [optimal] (green dashed lines),
linear part [suboptimal] (green dot-dashed line).

the PHM with the same precision than the ESS method
but by releasing all the constraints on the sweep itself.
As stated in Sec. 2, the ESS method is based on an ESS
which leads, when provided as the input of a PHM and
after a deconvolution, to time localized linear combination
gn(t) of kernels kn(t), see Eq. (5). A temporal windowing
operation is then performed to extract the impulses re-
sponses gn(t). By making use of the properties of the Welch
Method, we directly estimate the impulse responses gn(t)
by performing a temporal windowing operation on slices of
input and output signals. The deconvolution operation is
avoided and all constraints on the sweep are thus released.

However, in order to still be able to estimate the non-
linear model, this temporal windowing cannot be done
arbitrarily. It must be done by taking into account the
fact that the input signal is an ASS and the fact that
the system under study is a PHM. A way to do so is
to focus on the different harmonics one by one and to
try to get information regarding them, and exclusively
them, within a considered time window. The challenge is
thus to be able to design temporal windows that ensure
that the frequency content of the harmonic under study
is contained within a frequency range that is not polluted
by the other harmonics. If the harmonic of interest is the
nth harmonic, and if the selected windows starts with a
frequency fstart, then the time at which this temporal
window should stop is the time at which the the input
frequency is such that fstop = (n+ 1)/n× fstart. Thus,
the higher the harmonic order is, the smaller the largest
window allowed is. This temporal window is called in
the following the “optimal” window as it is the longest
possible, but any shorter window is acceptable. Note
that there is no constraints on the start frequency fstart

and thus that the windows can start at any arbitrary
time, allowing to use overlapped windows. This process
is illustrated in Fig. 2 that shows two examples of optimal



windowing choice (without overlapping) when focusing on
the linear part (blue dashed lines) and when focusing on
the third harmonic (green dashed lines). It is also shown
how this “optimal temporal windowing” choice derived
when focusing on the third harmonic can be applied to
the linear part in green dot-dashed line and thus become
suboptimal with respect to the linear part.
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Fig. 3. Estimation of G1(f) over unity time windows
without overlap. Top: strict application of Eq. (7).
Bottom: application of Eq. (7) with regularization (see
Sec. 4.3). Time windows are built from Eq. (9) for
n = 1 with a security factor 3/4 (see Sec. 4.2). See
Sec. 5.2 for details regarding the simulated system.

Then, due to the linearization of the trigonometric
functions given in Eq. (2), it is possible isolate from
the selected windows the exact harmonic contribution
Gn(f) = FT [gn(t)](f) of the nth harmonic in the fre-
quency domain. However, as the information we try to
infer from these windows is related to the nth harmonic,
the nth harmonic of the input signal has to be used in
the estimation process. The function Gn(f) can thus be
directly by using the Welch method described in Section 3
over the selected temporal windows and using the nth

harmonic xn(t) = sin [nφ(t)] as input instead of the actual
input x(t) = sin [φ(t)]. This is illustrated in Fig. 3 where
the parts of G1(f) estimated by each window are plotted.
Formally, using notations of Eq. (6), what has been done
to estimate Gn(f) is:

Ĝn(f) =
Γ̂xny(f)

Γ̂xnxn
(f)

=

∑P
p=1 Γ̂p

xny(f)∑P
p=1 Γ̂p

xnxn(f)
(7)

From the estimated Ĝn(f), it is then possible to recover
the kernels Hn(f) of the PHM by inverting the linear
combination defined by the matrix A as in Sec. 2.

Note that contrary to the classical ESS implementa-
tions (Novak et al., 2010, 2015; Rébillat et al., 2011, 2016),
this method does not need an ESS satisfying any funda-
mental phase property as in Eq. (4). The only condition
that needs to be satisfied here is related to the function
φ(t) that needs to be known explicitely in order to deter-
mine the frequency bandwidth of each segment and thus
the windows lengths that suit the Welch method.

4.2 Design of temporal windows for the CPSD estimator

As stated previously, a temporal window series relative
to an harmonic of interest is said to be acceptable if :
for all the segment of this temporal window series, the
spectral content relative to the harmonic of interest is not
overlapping with the spectral content of other harmonics
(see Fig. 2). Then, it is possible to build the maximum
length of each temporal window by building rectangles
around each harmonic straight lines. Mathematically, it
is demonstrated by recurrence that when focusing on the
harmonic n, the pth temporal window of the series of
temporal windows starting at frequency fn0 and with no
overlap should stop at a time such that the frequency of
the input signal corresponds at this time to:

fnp = fn0

(
n+ 1

n

)p

(8)

This grid is defined in the frequency domain. It is then
necessary to go back to the temporal domain by making
use of the instantaneous frequency derived from the phase
function φ(t). If we consider the phase given in Eq. (3),
this gives the following series of times:

tnp =
T

ln(f2/f1)

[
ln(fn0 /f1) + p ln

(
n+ 1

n

)]
(9)

Note that this interestingly leads to regularly spaces times
for this particular case of an ESS. Additionally, the step
is the same as the maximum length of temporal window
in the ESS method, see section 5.2. This will lead to an
equivalent noise rejection for the two method.

If we consider now the phase of a linear sweep, i.e. a sweep
with the instantaneous frequency such that :

f(t) = f1 +
f2 − f1

T
t (10)

then the associated series of time is given by :

tnp =
(n+1

n )p−1

f2 − f1
f1T (11)

and the series of “optimal windows” is defined by

Tn
p = tnp + tnp−1 =

1

n

(
n+ 1

n

)p−1
f1T

f2 − f1
(12)

To remain simple, we keep a grid regularly spaced in time
for each order. Therefore, the step of the temporal grid



associated to the linear sweep is defined by the smallest
time window, which is Tn

1 in this case.

4.3 Regularization procedure

The computation of the inverse filter x-1(t) (see Sec. 2)
is crucial to reject unwanted harmonics. Because the
CPSD estimation is based on the temporal windowing
of the signals, the regularization procedure proposed by
Rébillat et al. (2011, 2016) applies naturally here. Thus,
the following regularization procedure is performed in
order to reject efficiently unwanted harmonics:

Γ̂xnxn(f) =

{
Γ̂xnxn(f) if nf1 < f < nf2

Γ̂xnxn(f) + εx ×maxf [Γxnxn(f)] else.

with εx an arbitrary factor. However, this will only af-
fect the exterior part of the frequencies played by the
input signal. This will not reject the higher harmonics
which are within the interval of the frequency played (see
Fig. 3). Therefore, an additional regularization operation
is performed for each segment to reduce the energy of the
partial part Γ̂p

xny(f) of the quantity Γ̂xny(f) outside of the
frequency range relative to this segment (see Eq. (7)):

Γ̂p
xny(f) =

{
Γ̂p
xny(f) if fnp−1 < f < fnp

Γ̂p
xny(f)/εy else.

with εy an arbitrary factor. Both εx and εy are taken
equal to 1010. This effect is illustrated on Fig. 3. In
each figures, 3 zones can be distinguished: the estimated
part, the rejected harmonics, and the noise floor. The top
figure is the straight application of the method whereas
the bottom figure includes the regularization procedure
proposed here. As can be seen from this figure, the
proposed regularization really helps in rejecting unwanted
harmonics components.

5. COMPARISON ON A SIMULATED SYSTEM

5.1 Implementation details

Demonstration of the efficiency of the CPSD method is
done with two kind of ASS : an exponential sine sweep
to compare results with the classical ESS method; and
a linear sine sweep (LSS) to illustrate the potential of
the method. All the ASS are 5 seconds long and starting
at frequency 200 Hz and rising up to 10 kHz with a
sampling frequency of 96 kHz. For the CPSD method, the
classical value of 50% of overlapping segments pondered
with Hanning windows has been retained.

For the ESS, the series of time used in CPSD method is
defined according to Eq. (9). The step has been multiplied
by a security factor equal to 3/4 which reduces the length
of the time windows. This is done to avoid the spectral
content from the next upper harmonic to be too close to
the spectral content of interest. Because of the overlapping
of 50%, the final series of time is given by:

tp =
1

2
× 3

4
× p× T ln[(N + 1)/(N)]

ln(f2/f1)
(13)

Note that the pth segment is composed by the points
[tp, tp+2] because of the 50 % overlapping.

In the same way, the series of times relative to the LSS for
the CPSD method is (see Sec. 4.2) :

tnp =
1

2
× 3

4

1

n

f1T

f2 − f1
(14)

Note that this time, we used a different grid for each order
in order n to keep a good precision in the low frequency
range.

In the ESS method, after deconvolution of the output
signal, each harmonic impulse response is localized in
advance from the linear part and is extracted by a simple
temporal windowing of length Tcut (see Sec. 2). As stated
in Sec. 4.1 and 3.2, this parameter has an equivalent
role than the step of the CPSD series of time. Then
the value Tcut = 3/4T ln((N + 1)/N)/ ln(f2/f1) ≈ 0.21 s
is kept. Note that for the linear case, the equivalent
value of Tcut extracted from the CPSD method is Tcut =
3/4Tf1/(n(f2 − f1)) ≈ 0.076 s (n = 1) or 0.019 s (n = 4).
Because the windows are smaller for the LSS, the noise
will have a lower influence on the estimated kernels in
comparison with the ESS.

5.2 Simulated system

We simulated a PHM system of order 4. The linear part is
modeled by a Chebyshev filter of Type II of order 4 with a
cutoff frequency of 2 kHz. The harmonic parts are modeled
with ARMA filters of order 2 defined by the coefficients
given in Tab. 1.

Table 1. Coefficients of the ARMA filters used
to model high order kernels

Order a0 a1 a2 b0 b2 b2
2 1.0000 -1.8996 0.9025 0.0500 -0.0951 0.0470
3 1.0000 -1.9075 0.9409 0.0250 -0.0474 0.0226
4 1.0000 -1.8471 0.8649 0.0087 -0.0115 0.0056

We also add a Gaussian white noise to the output signal
y(t). Numerous SNR , PHM order N and different length
of sweep have been tested showing identical results. We
kept the representative value of N = 4, SNR = 40 dB
and a duration of 5 s to present results. However a small
discussion about computation time as a function of the
sweep length and PHM order is given later.

5.3 Results

The PHM Kernels estimated through the classical ESS
method and the proposed Welch Sine Sweep Method for
the two kind of sweeps versus the theoretical ones are
presented in the frequency domain in Fig. 4. From this
figure, it can be seen that as expected both methods
provides estimated Kernels that are in good agreement
with the theoretical ones. The PHM Kernels estimation
through a LSS is only possible with the CPSD method. As
expected, the noise is more rejected with this sweep than
with the ESS as the windows used are smaller. Note that
because the LSS spends more time in high frequency than
in low frequency as compared to the ESS, the estimation
obtained with the LSS is better in high frequencies than
in low frequencies. Finally, note that the ESS method only
requires a single deconvolution whereas the CPSD method
need as much FFT as the number of temporal windows



Fig. 4. PHM Kernels estimated through the classical exponential sine sweep method (ESS) and the proposed Welch Sine
Sweep Method (CPSD) for two kind of sweeps versus theoretical ones in the frequency domain (SNR = 40 dB).

being used. Then the longer is the signal, the higher is the
computational cost of the CPSD method. Also, because
the largest acceptable length of window depends on the
maximum order N of the PHM, the more complex is the
system, the higher is the computational cost of the CPSD
method. Some computation times are given in Tab. 2.

Table 2. Comparison of computation times
between CPSD (ESS) and ESS method.

Method N = 4 N = 4 N = 7 N = 7
T = 1 s T = 5 s T = 1 s T = 5 s

ESS 0.016 0.050 0.017 0.049
CPSD 0.168 0.427 0.277 0.957

6. CONCLUSION AND PERSPECTIVES

In this article, a new method to estimate a a Parallel
Hammerstein Models based on the Welch estimator of the
cross power spectral density is proposed and validated.
This method is compared to the classical ESS method
on a simulated system with noise. It is shown that the
proposed method releases all constraints on the input
sweep in comparison with the classic ESS method at the
cost of a longer computational time. Results provided by
both methods are found to be almost identical. Because
constraints on sine sweep are released and it is harmonic
based, this new method is very attractive as it could be
used with contextual sweeps (related to the power spectral
density of the environmental noise for example) or be the
basis of a nonlinear model estimation with input harmonic
signals such as music, which corresponds to a strong
demand of professionals in loudspeaker measurement.
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Rébillat, M., Ege, K., Gallo, M., and Antoni, J. (2016).
Repeated exponential sine sweeps for the autonomous
estimation of nonlinearities and bootstrap assessment
of uncertainties. Journal of Mechanical Engineering
Science, 230(6), 1007–1018.
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