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Numerical model for determining fire behaviour of structures

A numerical model and computer program for predicting behaviour of structures 
subjected to fire action are presented in the paper. The nonlinear numerical procedure 
is conducted in pre-defined time increments. At that, the distribution of temperature 
is calculated in each increment and, depending on this calculation, material properties 
and stiffness of the element are corrected, and the static problem is resolved. The 
efficiency and accuracy of the model and computer program are presented on an 
example of a simply supported beam.

Neno Torić, Alen Harapin, Ivica Boko

Numerički model ponašanja konstrukcija uslijed požara

U radu je prikazan numerički model i razvijeni računalni program za predviđanje 
ponašanja konstrukcija uslijed djelovanja požara. Nelinearni numerički postupak provodi 
se u zadanim vremenskim inkrementima, pri čemu se u svakom inkrementu proračunava 
razdioba temperature, u ovisnosti o njoj korigiraju karakteristike materijala i krutost 
elementa te rješava statički problem. Na jednostavnom primjeru čeličnog grednog 
nosača prikazana je efikasnost i točnost razvijenog modela i računalnog programa.

Neno Torić, Alen Harapin, Ivica Boko

Numerisches Modell des Verhaltens von Konstruktionen infolge einer 
Brandwirkung

In der Arbeit ist das numerische Modell und das entwickelte Computerprogramm 
zur Prognosierung des Verhaltens von Konstruktionen infolge einer Brandwirkung 
dargestellt. Das nichtlineare numerische Verfahren wird innerhalb der vorgegebenen 
Zeitinkremente durchgeführt, wobei in jedem Inkrement die Temperaturverteilung 
ausgerechnet wird und abhängig davon werden die materiellen Charakteristiken und 
die Festigkeit der Elemente korrigiert sowie das statische Problem gelöst. Anhand 
des einfachen Beispiels des Einfeldträgers werden Effizienz sowie die Genauigkeit 
des entwickelten Modells und Computerprogrammes dargestellt. 
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1. Introduction

Numerical modelling of behaviour of structures subjected to fire 
is currently one of topical subjects of vital importance on the 
global level. The development of simple and efficient numerical 
models, especially those that have been confirmed through 
experimental study [1, 2], is the basis for better understanding 
of fire as a stochastic process, and for further development 
of construction standards with requirements for better and 
safer structures.

First scientific studies on the effect of fire on man-made 
structures were conducted already in 1960s. Since then, 
development of computers has spurred astonishing advances 
in all fields of engineering, and hence also fast evolution of 
mathematical/numerical models for the description of fire 
action on structures. First models were developed in 1970s, 
mostly for steel structures, and were based on the hybrid model 
of nonlinear bearing capacity of cross section, as combined with 
the heat transfer model. These models most often originated 
from the 2D heat transfer model that provided sufficiently good 
predictions about development of temperature in structure, if 
the structure is uniformly heated along the entire span, which 
was most often not true in real fire situations.

In more recent studies [3, 4, 5, 6], hybrid models have been 
complemented and improved with various mechanical structural 
model formulations based on 1D/2D elements for description 
of structure/section geometry, which was combined with 3D 
heat transfer models that enable more accurate prediction of 
temperature distribution within the structure. The definition of 
constitutive law of behaviour of materials at high temperatures 
in case of multiaxial stress still remains a considerable problem 
in experimental research, especially as it does not enable the 
use of the 3D mechanical model of cross section. The prediction 
of fire behaviour of structures is more accurate in case of steel 
structures when compared to concrete structures. This is due to 
less complicated behaviour of steel at high temperatures, and 
also to smaller deviation of experimentally defined mechanical 
properties of steel [7]. The prediction of fire behaviour and 
fire resistance of structures has become more accurate after 
introduction of various implicit and explicit material creep 
models defining creep effect at high temperatures [8, 9].

2. Description of the numerical model

2.1. Introduction

The numerical model that accurately depicts behaviour of 
structures under fire must be capable of describing, in addition 
to nonlinear behaviour of structures subjected to load, the 
development of temperature within the structure and the 
change of material properties at high temperatures.
In order to conduct such a complete (nonlinear) analysis, it 

is of high significance to know the cross-sectional geometry, 
the exact type and position of reinforcement (for reinforced-
concrete structures), load conditions, and the constitutive 
material law, which is generally nonlinear.
The results of this analysis can greatly alter the stress and strain 
situation in individual structural elements, and enable structural 
engineer to gain a better insight into the behaviour and possible 
bearing capacity failure, which ultimately leads towards 
construction of more durable and economical structures.

2.2. Linear elastic model for beam elements

The principal starting point of almost all nonlinear analyses is 
the linear analysis, i.e. the analysis of materials conforming to 
Hooke's law. As this numerical model for behaviour of beam-
element structures is very well known, and as it has often been 
described in the literature [10, 11, 12], it will only be briefly 
outlined in this study.

Two-node, rectilinear, ideally straight and partly prismatic final 
elements, with 6 degrees of freedom per node, considered so 
far in many papers [11, 13, 14, 15, 16, 17], are used in this paper.
Behaviour of a beam element under load can generally be 
described using the following linear differential equation of 
equilibrium:

Where:
 - internal force vector
 - bracing vector
 - load vector
 - differential operator

In the absence of analytical solutions, the solution to equation 
(1) is normally sought through numerical procedures. One of 
the most often used and widely recognized procedures is the 
finite element method. The basic idea behind this method is 
to replace the system having an indefinite number of degrees 
of freedom with the system having a finite number of degrees 
of freedom. To achieve this, the behaviour of a set of points 
within a system is assumed (programmed) on a single finite 
element, as related to a specified number of fixed, previously 
determined points (nodes) on the same element.
An approximate solution of the displacement field on a single 
element is assumed as follows:

where H is the basic function matrix, while  is the vector of 
unknown node displacements. 
In case of beam-element systems, basic (shaping) functions 
are most frequently selected for the Hermite polynomial  
group [11, 13].
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The following can be deduced from the external and internal 
force equivalence:

that is:

i.e. after the left side is multiplied with :

or more simply:

where:
  -  vector of internal forces at the ends of the finite element
 - element stiffness matrix
 - vector of external forces
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Local stiffness matrices and load vector must be transformed 
to the global coordinate system and, after transformation, the 
global system equilibrium is established by simple arrangement 
of stiffnesses and fixity forces in the corresponding nodes of 
the finite element mesh.

These are generally known equations where K and F are 
matrices of stiffness and load, respectively, while u is the global 
displacement vector.
Before solving the above equation system, it is necessary to insert 
boundary conditions which, in case of a static problem, represent 
specified forces and/or displacements at system edges.

Prior to transformation to the global coordinate system, the 
local stiffness matrix of an element can be expressed, in its 
explicit form, as:

(3)

(4)

(5)

(6)

(7)

(8)
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It can clearly be seen from the above expression (8) that 
the local stiffness matrix, apart from depending on the beam 
length l , also depends on the material parameters: E, G, and 
the geometrical parameters: A, Iy and Iz. 
In case of a real element (beam/column) subjected to a load, 
internal forces (and primarily bending and torsion moments) 

Figure 1 . Stress-strain and stiffness along the girder as related to the level of stress in cross-section

can in a nonlinear case significantly alter distribution of stress 
and strain, which causes the change in stiffness.
The material nonlinear analysis can very easily be applied 
by dividing the element into smaller parts (subelements),  
in which case the real stiffness is calculated for each 
subelement (Figure 1).
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In order to conduct the nonlinear analysis, it is therefore necessary 
to define in which way the cross sectional stiffness at various 
levels of stress should be calculated.

2.3.  Calculation of stress and strain and calculation of 
cross-sectional stiffness

2.3.1. Basic assumptions

Basic premises of the model for calculating stress-strain situation 
along the cross-section [12, 18, 19] are:

- cross-sections remain flat even after deformation,
-   no sliding has been occurred at the connection of different 

materials,
-   uniaxial stress-deformation relationship (constitutive law) is 

known for all materials.

2.3.2. Cross-section deformation plane

The graphical view of a possible deformation plane, as compared 
to the previous state of equilibrium, is presented in Figure 2. An 
additional deformation  of a given cross-sectional point is 
defined through equation of a plane:

 

 where:

In the above expressions  represents the vector of unknown 
parameters of the additional strain plane, and y, z the coordinates 
of the point in the Y-Z plane. The strain plane is described by its 
intersection   with the X coordinate axis, and the components 
of relative rotations  ,  around the Z and Y axis, respectively. 
If the considered section point has previous strain , its total 
strain  is:

The deformation  is known and determined through equilibrium 
position via , by analogy to expression (9), by means of:

If expressions (9) and (13) are inserted in the expression
 (12), we get:

or:

where  is the vector of the total plane deformation parameters.

Figure 2. Graphical presentation of a possible deformation plane

2.3.3. Relationship between stress and strain

The starting point is the known relationship between the 
uniaxial stress s and strain e for a given material, i.e. the so 
called constitutive law of material behaviour. For real materials, 
this relationship is basically curved, and is defined by uniaxial test 
or appropriate regulations. From the standpoint of numerical 
analysis, it is appropriate to define this relationship as linear by 
individual segments (Figure 3). The controlled error introduced 
in this way is negligible when compared to other assumptions. 
The s-e relationship between any of the two i, j points of the 
diagram is described by the following expression:

If the expression (14) is inserted in (16) and if the following change 
is made:

then the stress in the sector under study can be described with 
the following expression:

In the above expressions, the element E denotes the current 
modulus of elasticity of material (inclination of the straight line in 
the sector under study), while graphical interpretation  can be 
seen in Figure 3. It should be noted that the stress  is constant 
and defined for the known initial situation and for the assumed 
current deformation between the points i and j.

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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 is a part of the vector of internal forces which is obtained by 
integration of the stress  along the entire area of the composite 
cross section. Matrix members I represent current mechanical 
properties of the cross section.
The vector Sv is composed of the vector of external forces 
Svp, which defines the initial deformation plane , and of 
the additional force vector , which causes the additional 
deformation plane .

To establish the balance, Sv must be equal to Su, i.e. :

In its developed form, the expression (24) is the system formed 
of three equations with an unknown vector

2.3.5. Bar reinforcement

After determination of the total deformation of a given steel 
bar, the procedure continues by defining between which node 
deformations i, i+1 on the -  diagram it is situated. Then 
the corresponding elastic model E, is defined, along with 
contribution of current mechanical properties of bar material, 
by analogy to expression (22), using:

where As denotes the area of the bar. All bars cross-sections 
are summed up.
A part of the internal force vector the bar reinforcement is 
contributing to be defined by analogy with the expression (21), 
i.e. by:

In case of bar-based materials, it is more appropriate to define 
the initial deformation with the discrete value , rather than 
with parameters of the initial deformation plane .

2.3.6. Larger area materials

The area of material with significantly greater area when 
compared to the area of the entire cross section, is assigned 
through convex polygonal elements without voids (finite 
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In case of structures exposed to fire action, the stress and strain 
relationship of a material is highly dependent on temperature. 
For that reason, the behaviour of materials subjected to high 
temperatures is usually described as a set of stress - strain 
curves, each one for a specific temperature. At that, temperatures 
situated in between the specified ones are obtained by linear 
interpolation.

2.3.4. Equilibrium equation

The vector of cross-sectional internal resistance forces Su 
is a function of the resulting deformation plane and the s-e 
relationship of a specific material. If they are known, the Su can be 
calculated by integrating stress along the composite section area:

where Nu is the internal longitudinal force, Mzu and Myu are the 
corresponding moment forces with respect to coordinate axes, 
W is the area of a specific material, and S summation across all 
materials m.  If (18) is inserted in (19), then:

where:

Figure 3. Possible stress - strain relationship for a material

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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elements - FE). With the exception of bar reinforcement, only 
one type of material can be situated in the area occupied by a 
single FE. Each FE is defined with a list of nodal points and their 
coordinates, and with an index of material properties. In other 
words, contours of each material are first approximated with the 
polygon, and then the bounded area is divided into FEs (Figure 4).  
After determination of the resulting deformation plane on the 
observed FE and position of the corresponding neutral axis in 
the previous iteration, a set of straight lines parallel to it, with FE 
points along these lines, is defined, together with deformations 
equal to nodal deformations i of the working diagram. 
The points of intersection of these straight lines with sides of 
each FE is sought, and so the areas Ωei  (subelements) with 
constant modulus of elasticity E are defined on each of them.  
The matrix Ie for each of these areas is shaped as follows:

and it has been obtained by adding up all sides of subelement, 
using the expressions:

Figure 4. Spatial discretisation of cross-section

where arranged pairs ( , ) and ( , ),   represent coordinates 
of boundary points of the side under study, and n is the number 
of nodes (sides).
The summing up is conducted across all sides of the subelement.  
A part of vector of internal forces, to which this subelement is 
attributed, according to expression (20), is defined with:

where:

Mechanical properties and a part of the internal force vector 
of one finite element are obtained by summing up appropriate 
properties of all areas on this element, and of individual 
materials through all finite elements that describe this material.  
Analogously, by summing across all materials we obtain total 
properties of the composite cross-section.

2.4. Nonstationary heat transfer model

2.4.1.  Temperature rise in confined space and  
standard fire curve

The rise of temperature in space affected by real fire is dependent 
on a number of parameters: space covered by a combustible 
material, quantity of combustible material, size of ventilation 
openings, and dimensions of the affected space. Considering a 
great number of parameters influencing growth of temperature 
in space, when conducting experiments related to fire behaviour 
of structures, researchers the most often use the typified form 
of temperature growth in stove expressed/described by the fire 
growth curve defined by the following equation:

where:

T - temperature (°C),
T0 - initial temperature (°C),
t - time (min).

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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where:
-  heat flow on the surface of an element (surface heat 

flux)  (W/m2),
- coefficient of convection (W/m2K),
- configuration factor,
- resulting emissivity factor between the element and fire,
- Stephan Boltzmann constant (=5.67A10-8 W/m2K4),
- gas temperature near element (°C),
- temperature on the surface of the element (°C).

The spatial domain is approximated with a specified number 
of finite elements, as shown in Figure 5. The presented heat 
transfer model uses 8-node 3D finite elements.

2.4.3. Integration of discrete system equations

The system of non-linear ordinary differential equations 
(35) is solved through integration of equations between two 
neighbouring time points for a relatively small time interval 

. Temperatures at the beginning of the time interval are 
known and are used to calculate temperatures at the end of 
the time interval, i.e. at the moment t+ .  By applying the mixed 
integration approach to the equation system (35), we obtain:

where:
  -   known temperature at the beginning of the time 

interval,
 -   unknown temperature at the end of the time interval,

 - interpolation parameter,
 -  field production vector at the end of the time interval,
 -   boundary heat flow vector at the end of the time 

interval,
 - incremental time step.

The iterative procedure for determining the value  starts 
by assuming the equivalence = , in the first iterative step 
within the time increment . After that, a new temperature 
value at the end of time interval is calculated, until the following 
condition is met:

where:

  - incremental time step.
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2.4.2. Transient heat transfer

The transient heat transfer is a time-dependant heat transfer 
process in which the temperature field created by transfer of 
heat within the area under study changes in time. The model 
implemented is based on the 3D transient nonlinear heat 
transfer model.  The differential equation describing this process 
in a spatial setting is defined by the expression:

where:

 - density of matter (kg/m3)
 - specific heat capacity (J/kgK)
 - thermal conductivity coefficient tensor (W/mK)

 - heat diffusion tensor (m2/s)

By applying the weak formulation to the equation (34), and 
by using the Galerkin method for selection of approximate 
solution function, we obtain the system of p ordinary differential 
equations:

where:

 - space domain,
 - edge of space domain,
 - shape functions for approximate solution,

 -  total number of nodes in space domain 
discretisation.

The matrix C is called the capacitive matrix, matrix K the 
transmission matrix, vector F the thermal load vector, and 
Q the thermal inflow vector. The heat flow occurring as 
a result of fire is composed of convection and radiation.   
The heat flow on the surface of heated element is determined 
using the following expression:

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)



Građevinar 1/2012

9GRAĐEVINAR 64 (2012) 1, 1-13

Numerical model for determining fire behaviour of structures

Figure 5.  a) Global discretization of the space frame. (b) The beam-column 
element. (c) The element’s cross-section discretization. (d) The 
comparative body model for heat transfer analysis. (e) The stress-
strain constitutive law of the element’s cross-section.

2.5.  Integral nonlinear model for estimating behaviour 
of structures subjected to fire load

The above defined models: model for the analysis of linearly elastic 
beam-element systems, model for dimensioning composite 
cross-sections and model for transient heat transfer, have been 
united into a single integral model: model for analysis of spatial 
beam-element systems exposed of fire action. The model has 
been incorporated in a computer program.
Figure 6 shows discretisation of a simple structure with the link 
between the spatial beam-element system, 2D and 3D network. 
The 2D network is used for discretisation of beam structure 
cross-sections, i.e. for calculating the stress-strain relationship 
along cross-section, and for stiffness calculation. The 3D network 
(model) is used for heat transfer calculation/analysis.
The procedure starts by defining the spatial beam (frame) system, 
i.e. the initial and the final node must be defined for each beam 
(column/beam). In addition, the cross section with behaviour 

pattern ( -  diagram) must also be defined for each beam element 
and for each material used (2D network). The 3D network for heat 
transfer calculation is then automatically generated along the 
beam element (beam/column). It is also necessary to define the 
number of subelements the final element will be divided into.  
A cross section and the law of behaviour from the global element 
(beam/column) are attributed to each subelement.
The heat flow calculation is made on the global 3D model and 
an instantaneous temperature is obtained in every node. The 
mean (average) temperature is calculated at every 2D network 
element (which represents the cross-section of the element), 
and the constitutive material law is corrected. After that the 
stress-strain situation in cross-section can be defined, as well 
as the cross-section stiffness, which represents stiffness of the 
beam (beam, column) subelement.
The model is incremental and linear along individual increments.  
The procedure starts from the cross-section level (zero position) 
by calculating real cross-section stiffness values for unstressed 
cross-section, according to expressions (22), (25) and (27). The 
values obtained in this way represent the initial stiffness of cross-
section. The initial stiffness values are used to calculate the 
initial beam-element stiffness matrix. It is significant to note 
that only axial and flexural properties of cross-section are set/
corrected by integration at the cross-section level, while shear 
and torsional properties are left unchanged. This is followed by 
the usual procedure of arranging the global stiffness matrix and 
the global load vector (2), and by system calculation.
After calculation of internal forces at the end of the beam element, 
the position of the deformation plane is determined and new 
cross-section stiffness is defined. In general, two cases are 
possible:

1.  The deformation plane position can be determined for cross 
section. In this case, the strength of the cross-section is sufficient 
to withstand the external force action (i.e. the action of forces 
obtained by linear analysis of the beam element system).

2.  The deformation plane position can not be determined for 
cross section, i.e. the procedure presented in section 2.2 is 
divergent. In this case, it can be stated that there is a failure 
at the cross-section, i.e. that local failure has occurred in the 
system, and hence that global system failure is also possible.  
In concrete terms, the stiffness values are then made equal to 
zero, and the global analysis procedure is reiterated.

The procedure continues until the standard of the displacement 
increase vector does not fall under an arbitrary value, i.e.:

In all practical cases, it can be assumed that the value  
amounts to 0.001.
The incremental procedure and the computer program flow 
diagram are presented in Table 1 and Figure 6.

(43)
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The initial load vector, which is actually the nul-
vector (F=0) is assumed. On the basis of this load, 
the initial local stiffness matrices are determined for 
each beam element (20 and 22), and also the initial 
global stiffness matrix :

This matrix represents the so called zero stiffness, 
i.e. the system stiffness not influenced by forces.

2

From the given external load on the beams/
columns, defining the forces on elements, and the 
vector of the applied forces:

3 Time loop, the first time step is set j=1.

4

The calculation of the temperature field in the 3D 
element (Fig. 5). For each cross section: 
the calculation of the mean temperature and the 
correction of the material characteristics according 
to the calculated mean temperature.

5 iteration loop, the first iteration step is set: i=1.

6

Calculation of node displacement and internal forces 
on elements:

7

Control of convergence:

If the convergence is satisfied, the procedure is 
finished and the results are printed. Procedure 
continues with new time step (4). If the convergence 
is not satisfied, the procedure continues– step (7).
The value  is an optionally chosen small value, 
usually 0,001.

8

The calculation of the new stiffness in 2D elements, 
according to corrected material characteristics and 
the corrected internal forces.

Procedure continues with new time step: j=j+1 and 
the calculation procedure continues to step (6). 
The procedure continues until certain accuracy is 
achieved or until divergence occurs. This divergence 
points out to that load capacity of the cross-section 
is reached, i.e. the failure of the element in that 
section and possible failure of the entire structure.

Table 1. Numerical model and incremental procedure

Figure 6. Computer program flow diagram

3. Verification of numerical model

3.1. Description of model and experiment

An example of modelling experiment conducted by Wainman 
and Kirby [20] is considered in order to present capabilities of 
the described numerical model for predicting fire behaviour of 
structures. This experiment involves a freely supported steel 
element I 254/146, steel quality S275, length: 4.58 m, exposed 
to temperatures defined by the standard fire curve. A non-
composite concrete slab 12.5 cm in thickness and 65 cm in width, 
situated on top of the element, exerts load amounting to 2.21 
kN/m along the length of the slab. Four concentrated forces 
K were taken as additional load. The forces amount to 32.5 kN 
and are placed in positions as defined in Figure 7, where we also 
see disposition of measurement points in which a time-related 
increase of temperature was monitored.
The dimensions and geometrical properties of the steel section 
I 254/146 that were used as input data for modelling the freely 
supported steel element are presented in Table 2.
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Figure 7. View of experimental sample [20] with temperature measurement points  (W-web, F-flange)

Table 2. Section dimensions and properties

h (mm) b (mm) tw (mm) tf (mm)
I (cm4) A

(mm2)
Iy Iz

259.6 147.3 7.3 12.7 6558.0 677.0 5452.0

Figure 8 . Stress - strain curves according to Wainman and Kirby

Figure 9. Stress - strain curves according to EN1993-1-2

3.2.  Experiment results and comparison 
with numerical model

Experiment simulation was conducted 
for two different types of input 
mechanical properties: experimentally 
determined stress-strain diagrams for 
high temperatures [20] corresponding to 
the quality of steel S275 out of which the 
element was made, and the stress-strain 
diagrams given in EN1993-1-2 [21] for 
engineering calculation of fire behaviour 
of steel structures, as shown in Figures 
8 and 9.

The results obtained in the course of 
the Wainman and Kirby experiment, 
and results obtained by model in typical 
steel element points, are presented in 
Figures 10-13.

The comparison of results of vertical 
deflection measured in a half of the 
element, taken from the experiment 
conducted by Wainman and Kirby, with 
results obtained through the described 
model, is presented in Figure 14.
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Figure 12. Comparison of temperature results obtained by experiment and model - top flange

Figure 11. Comparison of temperature results obtained by experiment and model - web

Figure 10. Comparison of temperature results obtained by experiment and model - bottom flange
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4. Conclusions

It can be seen from Figures 10-12 that the model predicts, with 
sufficient accuracy, the temperature increase in typical points of 
the steel element: at bottom flange, at web, and at top flange.  
A possible reason why temperatures obtained by model deviate 
from those obtained by experiment is that the input parameter 
in the model is the mean temperature of stove, which is defined 
in a relatively small number of points that do not suffice for 
accurate description of temperature boundary conditions in 
experiments. Also, it can be seen from Figure 14 that the model 
predicts with sufficient precision deflections of the element 
in the 22 minute time interval, with significant deviation of 

deflection at 14 minutes after the start of the experiment, when 
temperatures of over 450°C are developed in the element, and 
when the steel creep at elevated temperatures greatly influence 
deformation of the structure, i.e. deflection of the element.
A relatively small deviation in deflection prediction occurs at two 
different types of stress - strain curves, which points to the fact 
that the proposed stress - strain curves, based on Eurocode 3 
for fire action, are sufficiently accurate for modelling behaviour 
of steel structures subjected to fire action.
Future development of the model will be oriented towards 
implementation of different implicit and explicit models of steel 
flow at elevated temperatures, so as to enable a more accurate 
prediction of element deflection at elevated temperatures.


