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ABSTRACT

A key issue when mining web information is the labeling problem: data is abun-

dant on the web but is unlabelled. In this thesis, we address this problem by proposing

i) a novel theoretical granular model that structures categorical noun phrase instances

as well as semantically related noun phrase pairs from a given corpus representing

unstructured web pages with a variant of Tolerance Rough Sets Model (TRSM), ii)

a semi-supervised learning algorithm called Tolerant Pattern Learner (TPL) that la-

bels categorical instances as well as relations. TRSM has so far been successfully

employed for document retrieval and classification, but not for learning categorical

and relational phrases. We use the ontological information from the Never Ending

Language Learner (Nell) system. We compared the performance of our algorithm

with Coupled Bayesian Sets (CBS) and Coupled Pattern Learner (CPL) algorithms

for categorical and relational labeling, respectively. Experimental results suggest that

TPL can achieve comparable performance with CBS and CPL in terms of precision.

Keywords: Semi-supervised learning, Web information labeling, Never Ending Lan-

guage Learner, Granular Computing, Tolerance Rough Sets.
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Chapter 1

Introduction

According to Internet World Stats1, in December 1995, there were 16 million Internet

users worldwide. This number is estimated to be 2.9 billion for March 2014, depict-

ing a growth from 0.4% to 40.9% of the global population. Within just two decades,

Internet has become something so vast and fundamental that it has spawned a new

age of knowledge. With an ever increasing amount of information that is available

on the Web, there is also an emerging need for automated systems to extract and

structure information on the web. Much research has been taking place for extract-

ing relational facts from both structured and unstructured text. Web information

extraction (IE) systems such as YAGO [36], KnowItAll [8], TextRunner [1], and Nell

[4] gather entities and factual relations between entities from Web sources. These

systems employ classical machine learning as well as statistical classifiers.

A major issue when learning from the Web is the labeling problem: data is abun-

dant on the web but it is unlabelled. This condition renders supervised methods,

which rely on labelled data, inapplicable for most web information extraction prob-

lems. In accordance, unsupervised methods are used for the most cases. Another

option is the semi-supervised learning approach and it is adopted by the Never End-

ing Language Learner (Nell) [4]. Operational since 2010, Nell is a computer agent

that iteratively extracts and organizes relevant information from the Internet to grow

and maintain a knowledge base of facts. The facts in question are represented by

two means: categorical instances e.g. City(Winnipeg) and semantically related pairs

e.g. City-In(Winnipeg, Canada) for which the categories and relations are defined in

advance. The core component of Nell, called Coupled Pattern Learner (CPL) [3], is a

1http://www.internetworldstats.com/emarketing.htm
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semi-supervised algorithm extracting noun phrases that appear in free text form. To

do so, it uses contextual extraction patterns, a sequence of words providing a context

for the instance by preceding, succeeding, or surrounding the noun of interest (e.g.

“industrialized countries like arg”). These nouns and contexts are extracted from web

text by means of natural language processing along with their co-occurrence informa-

tion. A more recent treatment to Nell’s categorical information extraction problem

was made by Verma et. al [39] in 2012. They extract categorical noun phrase in-

stances by simultaneously learning independent classifiers in a new approach named

Coupled Bayesian Sets (CBS) algorithm. CBS outperforms CPL after 10 iterations

rendering it a good possible alternative for the CPL component of Nell. Nell became

our default Web IE system because of access to crucial data set that was necessary

for our experiments and for comparisons with CBS and CPL methods.

Rough Set theory has become one of the essential foundations of granular comput-

ing [22]. Granular computing is an umbrella term to cover any theories, methodolo-

gies, techniques, and tools that make use of information granules in complex problem

solving [46, 25]. A granule is a clump of objects (points) in the universe of dis-

course drawn together by indistinguishability, similarity, proximity, or functionality

[47]. Granulation leads to information compression/summarization. Reasoning with

granular models is particularly useful in machine learning problems with incomplete

information or unsharp class boundaries. Granulation with classical rough sets where

the concept of indiscernibility (similarity) formed by an equivalence relation is plau-

sible for text mining, but too restrictive. Instead a tolerance rough sets based model

(TRSM) [21, 29, 16, 27, 41, 26] that admits overlapping granules and specifically gen-

eralized tolerance approximation spaces [34] has been proposed. TRSM is a granular

model which has so far been used for term-described document representation for the

task of document classification and clustering [11, 12, 20, 40].

1.1 Problem Definition

In this thesis, we consider the type of web information labeling problem addressed by

the Never Ending Language Learner system henceforth termed as the “Nell problem”,

populating:

1. categorical noun phrase instances (e.g. Sport(Ice Hockey))

2. relational noun phrase pairs (e.g. Popular-Sport-Of(Canada, Ice Hockey))
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by using the contextual extraction patterns and their co-occurrence statistics with

noun phrases (for categories) and with noun phrase pairs (for relations) from a data

corpus of web documents. Categories and relations are predefined. Noun phrase

literals, contextual patterns and the co-occurrence data are assumed to be tokenized

and retrieved from web corpora in advance.

1.2 Proposed Approach

We address the problem by using a granular model based on tolerance rough sets.

We propose and examine

i) a granular model that structures categorical noun phrase instances as well as

related noun phrase pairs from a given corpus representing unstructured web

pages,

ii) a semi-supervised learning algorithm we call Tolerant Pattern Learner (TPL)

that labels categorical instances as well as relations.

To the best of our knowledge, this work is the first attempt in the literature at using a

granular-based approach to labeling context-described categorical and relational noun

phrases. We have been inspired by CBS and CPL in terms of the semi-supervised

approach we take for the problem. We have also been inspired by a tolerance form

of similarity rooted in granular computing. TRSM has been successfully employed

for document retrieval and classification yet its suitability for this particular domain

(semi-supervised labeling of noun phrases and noun phrase pairs as categorical and

relational instances) was to be explored.

1.3 Contributions

Our contributions [31, 32] are threefold:

• We propose a novel theoretical granular model for context-described noun and

relational phrase learning problem.

• We provide a practical implementation of our model as a semi-supervised algo-

rithm for categorical and relational information labeling.
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• We present empirical evidence on the performance of our proposed solution, by

comparing our approach to the benchmark algorithms CBS and CPL for the

categorical and relational learning problems, respectively.

1.4 Thesis Layout

The rest of this thesis organized as follows:

Chapter 2 provides a background for web information extraction (IE) along with

some state-of-the-art domain-specific and domain-independent systems.

Chapter 3 introduces the semi-supervised learning paradigm and the never ending

language learning (Nell) problem. It also describes the two semi-supervised algo-

rithms addressing the Nell problem, Coupled Bayesian Sets (CBS) and Coupled

Pattern Learner (CPL), which we used as benchmarks.

Chapter 4 discusses rough sets, tolerance approximation spaces and tolerance rough

sets model (TRSM) along with its applications in document clustering and text

clustering. All of these serve as basis for the theoretical framework of this thesis.

Chapter 5 provides the theoretical framework for the granular model we propose for

the categorical/relational learning problem. It also covers the proposed Tolerant

Pattern Learner algorithms for learning categorical and relational facts.

Chapter 6 gives the implementation details, experiments, results and discussion on

TPL and the described granular model.

Chapter 7 concludes the thesis, summarizes the work done and provides possible

future research directions.
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Chapter 2

Web Information Extraction

Information extraction (IE) is defined as the task of automatically extracting struc-

tured information from unstructured and/or semi-structured machine-readable docu-

ments [14]. For web information extraction, the documents in question are web pages

which may contain information as free text paragraphs or embedded in structures like

HTML lists. This extraction activity may involve steps from locating the informa-

tion, abstracting it from its surrounding by means of natural language processing and

structuring it within the desired context by means of machine learning. Figure 2.1

shows an example of this transformation. In this particular example, sentences are

decomposed into different subcomponents all of which are translated according to

their role in the sentence to obtain an ordered list of different categories.

Within the last decade, significant effort has been dedicated by the machine learn-

ing community to extract information in various forms of factual data from web-based

corpora. Some of these systems were designed to operate on specific domains or web-

sites whereas the others are intended to be more generic. Rest of this section discusses

some web information extraction systems which drew attention in the recent past.

2.1 Domain-Independent Projects

2.1.1 KnowItAll

In 2005, Etzioni et al. [8] proposed KnowItAll, an unsupervised web information

extraction system that can automatically extract facts from the web. The facts can

be in form of unary category instances or n-ary relation tuples, where the predicates

are defined in advance. Within a two-step process, KnowItAll first uses a small
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Figure 2.1: Structured information extraction from unstructured text [30]

number of generic extraction patterns as well as part-of-speech tagging to determine

the candidate facts. Then it calculates a probability of correctness for candidate

facts. The assessor module bases its probability on search engine hit counts used to

compute the mutual information between the extracted instance of a class and a set

of automatically generated discriminator phrases associated with that class [8].

2.1.2 TextRunner

Banko et al. [1] introduced a domain-independent unsupervised information extrac-

tion paradigm calledOpen IE along with TextRunner, a system that implements Open

IE on a large scale to extract relational facts. Basically, Open IE eliminates the need

for a pre-defined lexicon for asserting candidate arguments. The input of TextRunner

is a web corpus and the output is a set of extracted relations. This approach espouses

a single-pass relation discovery. It uses part-of-speech tagging by going through the

corpus sentence-by-sentence and determining the candidate tuples as well as rela-

tions. The candidates are then assigned a probability by a self-supervised learner

that employs a Naive Bayes classifier, which are eventually refined and indexed to

support efficient extraction and exploration via user queries. The authors reported

that TextRunner was able to match the recall of KnowItAll and it could achieve a
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better precision value [1].

2.1.3 ReVerb

ReVerb [9] is another information extractor that utilizes the Open IE paradigm. It is

composed of two modules, a relation extractor and an argument extractor to acquire

the relations and the related noun phrases, respectively. Just like the previous models,

part-of-speech tagging is at the core of this extraction process. ReVerb imposes a

syntactic constraint which ensures a relation phrase follows a white-listed part of

speech tag pattern as well as a lexical constraint which filters out the over-specified

phrases to limit the extraction of incoherent and uninformative word sequences as

relations. ReVerb is shown to outperform TextRunner and another state-of-the-art

Open IE system WOE discussed in Section 2.2.2 in terms of precision and recall [9].

2.1.4 FreeBase

In 2007, a company called Metaweb released FreeBase 1, an on-line structured knowl-

edge base collaboratively formed and maintained by its community [17]. The data it

uses are collected across the world wide web, including but not limited to, websites

such as Wikipedia and MusicBrainz as well as community contributions. Its ontology

is composed of domains (e.g. TV ), topics (e.g. TV Program) and properties (e.g.

Number of Episodes). It uses a non-hierarchical graph model depicting entities as

nodes and their semantic relations as links. The owning company was acquired by

Google in 2010 [18]. Details regarding the underlying technology of the system are

proprietary, as of today.

2.2 Domain-Specific Projects

2.2.1 YAGO

YAGO (Yet Another Great Ontology) is said to be a lightweight and extensible knowl-

edge base [36]. It adopts an entity-relationship model; maintaining both taxonomic

(is-a) and non-taxonomic (has-a) relations between entities. YAGO relies entirely on

Wikipedia and WordNet (a lexical database for English). Entities are extracted from

these systems for predefined relations. YAGO uses a variety of heuristics to extract

1http://www.freebase.com
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knowledge. For example, it leverages the category pages from Wikipedia, which are

lists of articles belonging to a given category. “Zinedine Zidane” is present in the

page “List of international French footballers”. This is used to create the candidate

entity Zidane and to build the candidate relationships is-A(Zidane, footballer), and

citizen-of(Zidane, France). The authors state that their empirical evaluation of fact

correctness shows an accuracy of about 95% [36].

2.2.2 WOE

WOE (Wikipedia-based Open Extractor) [45] is another instance of the OpenIE sys-

tems like TextRunner. As the name implies, it uses Wikipedia as its source. WOE has

a layered architecture consisting of three parts: preprocessor, matcher and learner.

Processor splits pages to sentences, parses annotations via natural language process-

ing and compiles synonym tokens. Matcher creates the training data by matching

the attribute values in Wikipedia infoboxes (small boxes on the top right corner of a

typical article) with the corresponding article sentences using heuristics. Ultimately,

learner forms two independent extractors, WOEparse using dependency parse-trees

and WOEpos using part-of-speech tags. The former one is shown to run at the same

speed as TextRunner with an F-Measure between 15% and 34% better. The latter

one yields 79 % and 90 % improved F-measure against TextRunner with the cost of

30x slower execution due to parsing, the authors conclude [45].

2.2.3 TWICAL

TWICAL [28] is an open-domain event extraction and categorization system for Twit-

ter status messages. Events to be extracted are represented as 4-tuple e.g. (entity

= ‘iPhone’, event phrase = ‘announcement’, calendar date = ‘10/4/11’, event type

= ‘ProductLaunch’). Given a raw stream of tweets, first the tweets are POS tagged,

then named entities and event phrases are extracted, temporal expressions resolved

and the extraction events are categorized into types [28]. The approach uses latent

variable models to uncover the set of types matching the data. By leveraging large

volumes of unlabelled data, it outperformed a supervised baseline by 14% increase in

maximum F1 score [28].
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2.2.4 DBpedia

DBpedia 2 [15] is a structured knowledge base manufactured on top of the Wikipedia

project. Like WOE and YAGO, DBpedia also relies on the semi-structured infor-

mation on that website, such as infoboxes, article categories, annotations and links.

Factual information is extracted and organized from possibly multiple Wikipedia ar-

ticles into a uniform data set, making the content easier to retrieve. DBpedia has an

SQL-like interface called SPARQL supporting complicated queries (e.g. “All German

musicians that were born in Berlin in the 19th century”). A stable version of DBpedia

has been recently released in 2014.

2http://dbpedia.org/
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Chapter 3

Semi-supervised Learning and the

Nell Problem

3.1 What is Semi-supervised Learning?

Semi-supervised learning (SSL) is a machine learning paradigm that combines super-

vised (SL) and unsupervised learning (USL). Let us first elaborate these two consti-

tuting paradigms of SSL.

Supervised methods rely entirely on labelled i.e. “supervised” data to fulfill their

tasks, where the task can be statistical classification or information extraction. Typ-

ically, an entity x is represented as a vector x = (x0, ...xn) in an Euclidean space Rn

where each dimension corresponds to a different aspect, characteristic or attribute

of the entity. Then the goal is to find the function f that provides a mapping from

the entity x to the output class (label) y [6]. Supervised methods assume an inde-

pendent and identical distribution (i.i.d) over the entity-label pairs. The system is

trained (i.e. the function f is calibrated) via the labelled training examples, and the

resulting function is used as a classifier to determine the labels for the unlabelled

examples. This process is summarized in Figure 3.1. On the left, objects with ‘?’

are initially unlabelled; triangles and rectangles are the training examples of their

respective classes. On the right, all the objects are classified by the classifier f .

Unsupervised learning is the alternative when there are no labelled training ex-

amples available. The task is to reveal the underlying structure of the data from the

point of interest, by using unlabelled training points independently and identically

sampled from a shared distribution. For this paradigm, the problem in hand is essen-
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Figure 3.1: Supervised learning

tially to estimate the density which is likely to have generated the data distribution

in question [6]. In accordance, data points are clumped along with the points in their

neighbourhood, forming clusters of objects (see Figure 3.2).

As one might expect, both approaches have their strengths and weaknesses. The

supervised framework provides a better chance to properly constrain the learning

process and thus offers a better performance. Unfortunately, it suffers from scalability

if the data in hand is large: labelled examples become expensive to obtain and when

they are limited in number, they simply cannot accurately sample and represent the

entire data set. Unsupervised learning is more easily scaled for larger sets, yet it is

less reliable.

Semi-supervised learning is the result of an attempt to leverage the stronger sides

and to suppress the drawbacks of both methods. It incorporates both labelled and

unlabelled data for training to adjust the classifier function. This way it becomes

better scalable to larger data than SL and it tends to be more reliable than USL since

human supervision is involved.

A typical course of action for SSL is iteration. The system is “bootstrapped”

by using the provided labelled examples: They are used to label a first round of

data set, where the labelled data constitutes exclusively high-confidence instances.

Those examples are then fed-back to the system to further train it and to provide a
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Figure 3.2: Unsupervised learning

second round of results (see Figure 3.3). This iterative process is repeated as long as

desired, typically, until the classifier converges and all the elements are classified or

indefinitely, depending on the problem domain.

Semi-supervised learning has found its applications in web information extraction

some of which are discussed in the remainder of this chapter.

3.2 Never Ending Language Learner (Nell)

In 2010, Carlson et al. started to develop a computer system called the Never Ending

Language Learner (Nell)1 [4]. Its task is to extract and structure relevant information

continuously to grow a knowledge base of facts. The facts in question are represented

by two means:

• Category instances e.g. City(Winnipeg)

• Relation pairs e.g. City-In(Winnipeg, Canada)

It operates in an iterative semi-supervised fashion. The ontology is initialized by

a limited number of labelled examples for every category/relation. Those examples

1http://rtw.ml.cmu.edu/rtw/
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bootstrap the system and are used to label more instances, which will then be used

to label more, leading to an ever-growing knowledge base.

It has been noted that semi-supervised approaches using a small number of la-

belled examples together with many unlabelled examples are still unreliable as they

frequently produce an internally consistent, but nevertheless, incorrect set of extrac-

tions [39]. While such semi-supervised learning methods are promising, they might

exhibit low accuracy, mainly, because the limited number of initial labelled examples

tends to be insufficient to reliably constrain the learning process, creating concept

drift problems [7]. To overcome this issue, Carlson et al. couple the iterative training

by using the following 3 constraints [3]:

1. Output constraints: For two functions fa : X → Ya and fb : X → Yb, if there

are some constraints known on values ya and yb for an input x, one can require

fa and fb to satisfy this constraint. As an example, if fa and fb are Boolean-

valued functions and fa(x) → fb(x), fb(x) could be constrained to have value 1

whenever fa(x) = 1.

2. Compositional constraints: For two functions f1 : X1 → Y1 and f2 : X1 ×
X2 → Y2 there may be a constraint on valid y1 and y2 pairs of a given x1 and any

x2. One can require f1 and f2 to satisfy this constraint. For example, f1 could
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Figure 3.4: Coupling constraints in action [3]

“type check” valid first arguments of f2 so that ∀x1, ∀x2, f2(x1, x2) → f1(x1).

3. Multi-view-agreement constraints: For a function f : X → Y , if X can

be partitioned into two “views” where one writes X = ⟨X1, X2⟩ and assumes

that both X1 and X2 can predict Y , then one can learn f1 : X1 → Y and

f2 : X2 → Y and constrain them to agree. For example, Y could be a set of

possible categories for a web page, X1 could represent the words in a page, and

X2 could represent words in hyper-links pointing to that page.

These constraints are used to cross-check the characteristics of candidates and their

relations, which provides additional justification before committing to an assertion.

Figure 3.4 illustrates this procedure.

As a comprehensive IE system, Nell relies on a number of subcomponents each of

which are designed to work on a complementary basis [3]:

• Coupled Pattern Learner (CPL) is the core component of Nell whose task is

free text extraction. This will be discussed in detail in the following subsection.

• Coupled SEAL (CSEAL) is a set expansion algorithm that extracts instances

from semi-structured documents. It exploits the signatures of the wrapping

HTML tags to locate the desired content and extract them with the help of the

coupling constraints discussed above.
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• Meta-Bootstrap Learner (MBL) is the governing algorithm that merges

the results of the other two. It enforces the mutual exclusion and type-checking

constraints on the results and commits the ones which do not violate the con-

straints.

3.2.1 Coupled Pattern Learner (CPL) Algorithm

Coupled Pattern Learner (CPL) [3] uses what are called contextual patterns to detect

and extract noun phrase instances for the knowledge base. Those patterns are se-

quences of words e.g. “sports such as arg” or “arg1 is the president of arg2” providing

a context for a noun phrase argument. The main idea is, noun phrases that are likely

to belong to a particular category/relation are also likely to co-occur frequently with

the patterns associated to that category. Accordingly, the co-occurrence information

between noun phrases and contextual patterns is what CPL relies on for learning.

CPL is actually a two-way algorithm: Contexts are used to find the nouns and

nouns are used to find the contexts. This is done in a sequential and iterative manner.

In the noun learning mode, trusted contexts assigned to the category of interest

behave as features and are used to label more nouns. In the context learning mode,

the roles reverse and the nouns are used as features to acquire more contexts. In

either mode, the information used is the noun-context co-occurrence statistics.

The overall flow of the CPL algorithm is summarized in Algorithm 1. There

are four fundamental steps which are repeated for learning noun phrases and the

contextual patterns. An analogous process is adopted for learning relational pairs as

well. [3]:

1. Candidate Extraction: In each iteration, CPL uses the recently promoted pat-

terns to extract candidate instances. Particularly, it selects the 1000 candidates

which occur with the most number of patterns from the previous round. In the

first round, the seed patterns are used.

2. Candidate Filtering via Coupling: Mutual exclusion and type-checking con-

straints are enforced to filter out the low-confidence candidates. This is done in

a soft manner i.e. a candidate is not immediately rejected after the constraint is

violated. It is considered for further processing as long as the number of times it

co-occurs with a promoted pattern is at least 3 times more than the number of

times it co-occurs with the patterns of mutually excluded predicates. According
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Algorithm 1: Coupled Pattern Learner (CPL) [3]

Input : An ontology O, and text corpus C
Output: Trusted instances/contextual patterns for each predicate

1 for i = 1, 2, ...,∞ do
2 for each predicate p ∈ O do
3 EXTRACT new candidate instances/contextual patterns using recently

promoted patterns/instances;
4 FILTER candidates that violate coupling;
5 RANK candidate instances/patterns;
6 PROMOTE top candidates;

to the authors, this soft approach is much more tolerant of the inevitable noise

in web text as well as ambiguous noun phrases than a hard constraint [3].

3. Ranking: The candidate patterns are ranked by

Precision(p) =

∑
i∈I count(i, p)

count(p)
(3.1)

where p is the pattern, I is the promoted instance set for the target predicate,

count(i, p) is the co-occurrence value of i and p, and count(p) is the total hit

count for the pattern in the text corpus.

4. Promotion: CPL promotes the top ranked candidates, provided that at most

100 instances and 5 patterns are promoted per iteration.

The performance of the CPL algorithm was empirically tested and justified [3].

A text corpus derived from 200 million web pages was used to create a data set

accommodating noun phrase contextual pattern co-occurrence statistics. To elaborate

some details on how this data set is prepared from the web pages, the authors [3]

first parsed the HTML web documents and filtered out the pages which contain non-

English or adult content using a stop-word-ratio threshold and a bad-word list. Then,

the resulting collection of “useful” web pages were treated by a third party software

called OpenNLP1. This software was used to decompose paragraphs into sentences,

tokenize the sentences into parts of speech and tag each token. Then, the sentences

with tagged tokens were processed to extract the candidate nouns and contexts, along

with their hit counts and their co-occurrence data. This is the extent to which this

1http://opennlp.sourceforge.net
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Table 3.1: Precision values (%) of CPL for selected categories [3]
Category Athlete BoardGame City Country Hobby
Precision 87 80 97 57 77

Category Politician Reptile Sport Vehicle Average (All 44)
Precision 80 95 77 67 78

Table 3.2: Precision values (%) of CPL for selected relations [3]
Relation AthletePlaysForTeam CityLocatedInCountry
Precision 100 93

Relation CompanyIsInEconomicSector TeamHasHomeStadium
Precision 93 100

Relation StateHasCapitalCity Average (All 20)
Precision 60 89

process is elaborated in the related work [3, 4] and further details including the

execution times and the hardware used have been withheld.

The ontology was populated with instances for 44 categories and 20 relations

after 10 iterations. The precision measure was calculated by sampling 30 promoted

instance per predicate. For this experiment, the average precision values of 78% and

89% for categories and relations, respectively were obtained. Nevertheless, there are

also a few problematic ones with poor results (see Tables 3.1 and 3.2).

3.3 Coupled Bayesian Sets (CBS) Algorithm

Inspired by Nell, Verma and Hruschka also considered the problem of extracting

categorical information from unstructured web pages. They proposed the Coupled

Bayesian Sets (CBS) [39] algorithm to fulfill the same task as CPL, that is, extracting

noun phrases to populate instances for category. Likewise, it follows a semi-supervised

approach and it makes use of the co-occurrence statistics between noun phrases and

contextual patterns.

CBS is based on the Bayesian Sets Algorithm [10]. Provided with an ontology

defining categories and a small number of seed examples along with a large corpus

yielding the co-occurrence information between phrases and patterns, CBS calculates

a probabilistic score by using those co-occurrence statistics for every category candi-

date; and the top ranked ones are promoted as trusted instances for that category.

The promoted instances are then used as seeds in the subsequent iterations. The
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algorithm also exploits the mutual exclusion relations across categories to provide

further evidence for its decisions.

Let x = (x.1, x.2, .., x.J) be a binary noun phrase vector where x.i ∈ {0, 1} is

the binary weight of contextual pattern i for that noun. Furthermore, let qc =

(qc1, q
c
2, .., q

c
J) be the binary weight vector for category C formed by using the noun

phrase vectors xi labelled for that category:

qcj =

{
1 ⇐⇒ ∃xi ∈ C ∧ xij = 1

0 otherwise
(3.2)

Then, CBS ranks every candidate instance x by the following score [39]:

logscore(x) = ρ+
∑
j

qcjx.j −
∑
i

∑
j

qijx.j (3.3)

In this equation, the first two terms constitute the Bayesian log score as proposed in

[10]. The final term implements the mutual exclusion constraint. The score of x for

category C is penalized if the mutex constraint is violated i.e. if a positive feature j

of x also matches to a mutually exclusive category i of C. The first term ρ is defined

as

ρ =
∑
j

log(αj + βj)− log(αj + βj +N) + log(β̃j)− log(βj) (3.4)

where

qij = log(α̃j
i)− log(αj)− log(β̃j

i
) + log(βj) (3.5)

Here, N is the number of vectors (noun phrases), α and β are hyper-parameters

(drawn by the Beta distribution that serves as the conjugate prior for the Bernoulli

distribution x is assumed to have). α̃ and β̃ are calculated as

α̃j = αj +
N∑
i=1

xij (3.6)

β̃j = βj +N −
N∑
i=1

xij (3.7)

Verma et al. set the hyper-parameters α = η ∗m and β = η ∗ (1−m) with m being

the mean vector of features across all instances and η = 2 [39].

Algorithm 2 summarizes the flow of CBS. It can be observed that this iterative
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Algorithm 2: Coupled Bayesian Sets (CBS) [39]

Input : An ontology O, and a corpus C
Output: Trusted instances for each given category

1 for i = 1, 2, ...,∞ do
2 for each category do
3 extract new instances using available labelled examples;
4 filter instances which violate coupling;
5 rank instances using score mentioned in Eq. 3.3 ;
6 promote top ranked instances;

Table 3.3: Precision values (%) of CBS for all categories [39]
Category Company Disease KitchenItem Person
Precision 100 100 94 100

Category PhysicsTerm Plant Profession Sociopolitics
Precision 100 100 100 48

Category Sport Website Vegetable Average (All 11)
Precision 97 94 83 92

semi-supervised algorithm exhibits significant resemblance with the CPL component

of Nell. The main difference is how the candidates are compared and ranked; CPL

uses a scoring mechanism based on the simplistic precision score in Eq. 3.1 whereas

CBS uses the Bayesian log score in Eq. 3.3.

To evaluate its performance, Verma et al. sampled 11 categories from the knowl-

edge base of Nell, for which they have populated instances throughout 10 iterations.

The performance of their algorithm was measured using Precision@30 metric. Preci-

sion@30 is calculated as follows: all the promoted instances of a specific iteration are

ranked and then the percentage of correct instances in the subset formed by the top

30 entities (in the ranked list) are calculated [39]. According to the results of their

experiments, CBS was able to outperform CPL in terms of this metric, rendering it

a good possible alternative for the free text extractor of Nell (see Table 3.3).

3.3.1 More Related Work on the Nell Problem

Further research involving different aspects of learning categories and relations is also

taking place for the Nell problem. Krishnamurthy et al. [13] introduced vector space

semantic parsing, a framework for learning compositional models for vector space
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semantics. This model envisions a vectorial representation for noun phrases along

with additional properties which are functions on those vectors. Wijaya et al. [43]

considered populating relational instances out of individual noun phrases (noun com-

pounds, as they refer) by splitting eligible ones into their components. They aimed

to derive relation instances like Relieved-By(Pills, Headache) via the noun compound

“headache pills”. Later, they proposed a model [44] to analyze the semantic changes

for words over time by inspecting the evolution of contexts that accommodate a

given noun phrase. Mohamed et al. [19] extended the challenge from finding the

related pairs to discovering the relations, thus, creating a dynamic ontology. Later

on, Talukdar et al. [38, 37] conducted studies on maintaining the temporal order of

relational pairs involving events e.g. Acted-In(DiCaprio, Titanic) occurring before

WonPrize(Titanic, Oscar). Very recently, Wijaha et al. [42] introduced a contextual

temporal profiling for entities to establish a temporal validity window for the records

in a knowledge base.

For the most part, we have kept these adjunctive work beyond our scope and

we focused on learning categorical/relational instances by using the contextual co-

occurrence statistics within a static, predefined ontology. Nevertheless, they are all

worth noting as they embody several future research directions.
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Chapter 4

Rough Sets, Tolerance

Approximation and TRSM

Rough Set theory was proposed by Zdzislaw Pawlak in 1980s [22, 23] as a new math-

ematical framework for reasoning about ill-defined objects. It is of fundamental im-

portance to artificial intelligence (AI) and cognitive sciences, especially in the areas

of machine learning, knowledge acquisition, decision analysis, knowledge discovery

from databases, expert systems, decision support systems, inductive reasoning, and

pattern recognition [24].

In this chapter, we restrict our discussion to classical rough sets (proposed by Z.

Pawlak) and its tolerance rough set extension, which is the theory that forms the

framework of this thesis. Subsequently, the tolerance rough sets model is introduced

along with its applications in text and document clustering.

4.1 Rough Sets

In classical rough sets theory, a universe of objects is partitioned into indiscernible

classes (i.e. granules) by means of an indiscernibility relation. Indiscernible classes

form basic granules of knowledge about the universe. Given a concept that is deter-

mined to be vague (not precise), this theory makes it possible to express the vague

concept by a pair of precise concepts called the lower and the upper approximation.

A vague concept is defined as a class (or decision) that cannot be properly classi-

fied. The difference between the upper and the lower approximation constitutes the

boundary region of the vague concept. Hence, rough set theory expresses vagueness
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not by means of membership, but by employing a boundary region [24].

4.1.1 Formal Framework

Let U be a finite, non-empty universe of objects and let R ⊆ U × U denote a binary

relation on the universe U . R is called an indiscernibility relation and for rough sets,

it has to be an equivalence relation. The pair

(U,R) = A

constitutes an approximation space [34]. Assume we have X ⊆ U as a target concept

in this universe. Then the task is to create an approximated representation for X in

U with the help of R.

Let [x]R denote the indiscernibility class of x i.e. y ∈ [x]R ⇐⇒ (x, y) ∈ R. Then,

every equivalence class forms a granule or partition which, as the name implies,

contains objects that are indiscernible for this approximation space A. Therefore,

every single item in a granule is considered identical and inseparable. Eventually,

these granules are approximated by the following means

• Lower approximation. Intuitively, these are the objects which certainly be-

long to X with respect to A.

LA(X) = {x ∈ U : [x]R ⊆ X} (4.1)

• Upper approximation. Intuitively, these are the objects which may belong

to X with respect to A.

UA(X) = {x ∈ U : [x]R ∩X ̸= ∅} (4.2)

These two approximations will also form the following two regions

• Boundary region. These are the objects occurring in the upper approximation

but not in lower approximation of X.

BA(X) = UA(X)− LA(X) (4.3)
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Figure 4.1: Rough sets and set approximation

• Negative region. These are the objects that certainly don’t belong to X.

U − UA(X) (4.4)

Figure 4.1 shows the regions that emerge with set approximation. Orange granules

constitute the lower approximation, granules in the green region make the boundary

region, and orange and green granules combined form the upper approximation, leav-

ing only the gray granules to form the negative region. We should note that each

granule can contain an arbitrary number of objects or may be empty. They are

depicted as squares only for the sake of illustration.

With this framework, we end up with two different types of sets: a set X is called

a crisp set if and only if BA(X) = ∅. Otherwise, it is called a rough set. The pair

(UA(X),LA(X)) forms the rough approximation for X.

4.1.2 Rough Sets in Information Systems

So far, we have established the rough sets theory from a mathematical point of view.

In this section, we illustrate its utility by means of a simple example.

Real world data is usually represented as an information system I = (U,A) where

U is a non-empty universe of objects and A is a non-empty finite set of attributes.
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Every attribute a ∈ A is associated to a function fa : U → Va where Va is called

the value set of a. Typically, an information system can be summarized within an

information table where each row corresponds to an object (e.g. client, patient,

subject,...) and each column corresponds to an attribute (e.g. age, income,...).

When there is a decision to be made for the objects in I, an additional attribute is

appended to the information table and it becomes a decision system. It is character-

ized by the pair (U,A∪d) where d /∈ A is the decision attribute, and the elements of A

are now called the conditional attributes. From the perspective of rough sets theory,

the decision attribute is the target concept and the objects are represented as vectors

of attribute values v(x) = ⟨fa1(x), fa2(x), ..., fan(x)⟩ where a1, a2, ..., an ∈ B ⊆ A.

The universe is then partitioned by an equivalence relation R over the set B

R = {(x, y) ∈ U × U : fa(x) = fa(y); ∀a ∈ B} (4.5)

By approximating the objects over the decision attribute, one can judge whether or

not every object can be classified perfectly, by using the provided attributes in B.

Example Let U = {x1, x2, x3, x4, x5, x6, x7, x8} be the universe of clients for a

telecommunication company. Each client has an associated age and monthly income,

as shown in the Table 4.1. In this case study, the decision attribute is whether or

not they have subscribed to the cable tv service of that company. We can define

an indiscernibility relation R over U in terms of the attributes ‘Age’ and ‘Income’:

R = {(x, y) ∈ U × U : fAge(x) = fAge(y) ∧ fIncome(x) = fIncome(y)}. It partitions U

into the following five equivalence classes (granules):

{x1, x8}, {x2}, {x3}, {x4, x5}, {x6, x7} (4.6)

Then, if we let X = {x ∈ U : Subscribed(x) = ‘yes’}, the upper and the lower

approximations will be

UA(X) = {x1, x3, x4, x5, x8} (4.7)

LA(X) = {x3, x4, x5} (4.8)

This means that x3, x4 and x5 can be certainly classified as “yes” and x2, x6 and x7

can be certainly classified as “no”.
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Table 4.1: Sample decision system: Cable TV subscription

Client Age Income Subscribed

x1 30-40 $2000-3000 yes
x2 20-30 $1000-2000 no
x3 20-30 $2000-3000 yes
x4 40-50 $2000-3000 yes
x5 40-50 $2000-3000 yes
x6 20-30 $500-1000 no
x7 20-30 $500-1000 no
x8 30-40 $2000-3000 no

4.2 Tolerance Approximation Spaces

As we have discussed, rough sets theory relies on an indiscernibility relation R ⊆ U×U

to approximate a target concept and in the (classical) rough sets theory, R has to be

an equivalence relation. In other words, it has the following 3 properties:

• Reflexivity: (x, x) ∈ R ∀x ∈ U

• Symmetry: (x, y) ∈ R ⇒ (y, x) ∈ R ∀x, y ∈ U

• Transitivity: (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R ∀x, y, z ∈ U

In practice, it partitions the universe into disjoint (non-overlapping) equivalence

classes which are regarded as information granules. However, there are some cases

where the disjoint granules are not desired. Particularly, when it comes to natu-

ral language processing and information retrieval, we need a non-transitive binary

relation that is reflexive and symmetric.

Example Consider the universe U of words {account, agency, antecedent, backbone,
backing, bottom, basis, cause, center, derivation, motive, root} excerpted from Roget’s

thesaurus [11]. Assume we would like to define an indiscernibility relation R over those

words based on their semantic affinity. Each of those words seem to share a meaning

with one or more of the concepts Root, Cause and Basis and their meanings are not

transitive. Therefore, overlapping classes would better fit to describe this universe

and the desired outcome is shown in Figure 4.2.
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Figure 4.2: Overlapping classes of words [11]

In order to define overlapping classes or granules, we need tolerance relations. A

tolerance relation I ⊆ U × U can be any binary relation that is reflexive and sym-

metric. It will be used as an indiscernibility relation for a tolerance form of rough

sets. Because it is not transitive, indiscernibility classes induced by such relations can

overlap. For instance, the following non-transitivity is required for the classes in Fig-

ure 4.2: (bottom,motive) ∈ I ∧ (motive, account) ∈ I ≠⇒ (bottom, account) ∈ I.
An indiscernibility class induced by a tolerance relation is called a tolerance class :

I(x) = {y ∈ U | (x, y) ∈ I}

It is analogous to the equivalence class of the classical rough sets. There has been

considerable effort in attempts to combine rough sets and tolerance relations ([29])

to obtain a realistic model (see for ex: [21, 27, 16]) leading to the tolerance rough

sets model. In this work we use the tolerance approximation space model proposed

in [34]. A tolerance approximation space [34] is denoted by

A = (U, I, ν, P ) (4.9)

where
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• Universe U is the universe of objects.

• Uncertainty function I : U → P(U) given that P(U) is the power set of U . It

defines the tolerance class of an object. It also implicitly defines the tolerance

relation I such that xIy ⇐⇒ y ∈ I(x). It can be any relation that is reflexive

and symmetric.

• Vague inclusion function ν : P(U) × P(U) → [0, 1] measures the degree of

inclusion between two sets. It can be any function that is monotone with respect

to the second argument: Y ⊆ Z =⇒ ν(X, Y ) ≤ ν(X,Z) for X,Y, Z ⊆ U

• Structurality function P : I(U) → {0, 1} where I(U) = {I(x) : x ∈ U}
allows additional binary conditions to be defined over the tolerance classes.

Then, the lower and upper approximations of set X can be defined as:

LA(X) = {x ∈ U : P (I(X)) = 1 ∧ ν(I(x), X) = 1} (4.10)

UA(X) = {x ∈ U : P (I(X)) = 1 ∧ ν(I(x), X) > 0} (4.11)

What follows is a discussion of the Tolerance Rough Sets Model (TRSM) as a

document representation model that is used for text clustering in general and for

document clustering/classification in particular.

4.3 Document Representation with TRSM

Tolerance Rough Sets Model (TRSM) was proposed in [12, 11] for text clustering and

document clustering/classification and to model relations between terms and docu-

ments [20]. Briefly, TRSM introduces a vectorial representation of documents where

each vector dimension corresponds to a term weight that is to be enhanced by means

of rough sets and tolerance approximation, by relating terms across documents. This

is useful particularly when each document is characterized by only a small number of

terms along with many zero-valued entries in a high dimensional term vector space.

So TRSM promises a richer representation for documents to be clustered.

Consider a set of documents D = {d1, d2, ..., dM} and a universe of index terms T =

{t1, t2, ..., tN} that occur in those documents. Each document dj is to be represented
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as a weight vector of its terms d̂j = ⟨(t1, w1j), (t2, w2j), ..., (tN , wNj)⟩ where wij ∈ [0, 1]

shows the significance of term i in document j. Then, given a query Q as a cluster

representative in the form Q̂ = ⟨(q1, w1q), (q2, w2q), ..., (qs, wsq)⟩ where qi ∈ T and

wiq ∈ [0, 1], the task in hand is to find ordered documents dj ∈ D that are relevant

to Q [11].

Determining the tolerance space. The tolerance approximation space A =

(U, I, ν, P ) for documents is reconstituted as follows

• The universe is the set of index terms: U = T = {t1, t2, ..., tN}

• The uncertainty function I ⊆ T × T aims to capture the affinity amongst

the terms and defines the tolerance class for each index term. It is based on

a tolerance relation that binds two terms if they co-occur frequently across

documents. So the function becomes

Iθ(ti) = {tj|fD(ti, tj) ≥ θ} ∪ {ti} (4.12)

It is parametrized over a threshold value θ where fD(ti, tj) denotes the number

of terms in which ti and tj co-occur. Note that tj ∈ Iθ(ti) ⇐⇒ tiIθtj and that

Iθ is reflexive (ti ∈ Iθ(ti)) and symmetric (tj ∈ Iθ(ti) ⇐⇒ ti ∈ Iθ(tj)) for all

ti, tj ∈ T , satisfying the tolerance relation requirements.

• The vague inclusion function is ν(X, Y ) = |X∩Y |
|X| . It is monotonous w.r.t the

second argument, as required. It can now be regarded as the membership

function µ for term ti ∈ T to target concept X ⊆ T

µ(ti, X) = ν(Iθ(ti), X) =
|Iθ(ti) ∩X|

|Iθ(ti)|
(4.13)

• Provided that T is a closed set and Q consists exclusively of terms from T , the

structurality function is simply P = 1 for TRSM.

The lower and upper approximations of X are defined as follows:

LA(X) = {ti ∈ T :
|Iθ(ti) ∩X|

|Iθ(ti)|
= 1} (4.14)

UA(X) = {ti ∈ T :
|Iθ(ti) ∩X|

|Iθ(ti)|
> 0} (4.15)
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Weight Adjustment via Tolerance Rough Sets Tolerance approximation is

used to enhance the document representation by adjusting the term weights. In the

absence of such enhancement, term weights are assigned by using the term frequency-

inverse document frequency (tf-idf) scheme

wij =

{
(1 + log(fdj(ti)))× log M

fD(ti)
if ti ∈ dj

0 if ti /∈ (dj)
(4.16)

where fdj(ti) denotes the number of times ti occurs in dj (term frequency) and fD(ti)

denotes the number of documents in D that accommodates ti (document frequency)

[11]. In such a model, a term ti acquires a nonzero weight for d̂j if and only if it

directly occurs in the document dj. On the other hand, the upper approximation of

a document UA(dj) covers the “tolerant” terms for all of its own terms as well. So

TRSM uses the following weighing scheme which also takes those boundary terms

into account and assigns nonzero weights

wij =


(1 + log(fdj(ti)))× log M

fD(ti)
if ti ∈ dj

minth∈djwhj × log(M/fD(ti))
1+log(M/fD(ti))

if ti ∈ UA(dj)\dj
0 if ti /∈ UA(dj)

(4.17)

creating the enriched representation.

Clustering Documents Once the weights are adjusted within the framework of

tolerance rough sets, one can measure the similarity between a query vector Q̂ and a

document vector d̂j by using the following formula

Similarity(Q̂, d̂j) =
2×

∑N
k=1(wkq × wkj)∑N

k=1w
2
kq +

∑N
k=1 w

2
kj

(4.18)

and ultimately, cluster the similar documents. A query vector may represent an actual

query in the context of information retrieval or a class of documents in the context

of document classification.



30

4.3.1 Various Approaches Using TRSM for Document Clus-

tering

TRSM has been gaining popularity in document clustering and there are several

methods which employ this model along with different approaches. In this section,

we discuss the popular TRSM-based work for document clustering.

Hierarchical Document Clustering

The earliest known work on the application of TRSM as a document representation

model was proposed by Kawasaki et al. They introduced a TRSM-based hierarchical

document clustering that is an extension of the hierarchical agglomerative (bottom-

up) clustering algorithm [12]. In this model, every document is represented as a

weight vector of its terms and upper approximated by using a tolerance relation over

the terms, as described by the TRSM framework in Eq. 4.17. As before, it aims to

minimize the number of zero-valued coefficients in document vectors as well as to

increase the degree of similarity between documents with few common terms. Once

the representation is established, the clustering algorithm takes place. It first assigns

each document to a different cluster and defines cluster representatives as supersets

of popular terms of the constituting documents’. Subsequently, it finds the most

similar pair of clusters (by using a similarity method such as Dice, Jaccard or Cosine)

and merges them, in an iterative fashion, until all the clusters are merged into an

ultimate single cluster. The advantage of using a hierarchy is that it allows the use of

document cluster representatives to calculate the similarity between clusters instead

of averaging similarities of all document pairs included in clusters, which aids the

execution time [12]. The results of validation and evaluation of this method suggest

that this clustering algorithm can be well adapted to text mining [12].

Non-hierarchical Document Clustering

Soon after, Ho et al. introduced a non-hierarchical document clustering method using

TRSM [11]. The authors pointed out that hierarchical methods become unsuitable

for large document corpora, due to exploding time and space requirements of the

underlying algorithms [11]. This model also uses the TRSM framework described

in Section 4.3 and forms a pre-specified number of possibly overlapping document

clusters. First, the TRSM-based document representation is established (documents
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are approximated using the upper approximation operator, term weights are adjusted

according to Eq. 4.17). Then, the cluster representatives Rk are formed by randomly

assigning a document to each cluster. Similarly to the hierarchical approach, this

is done by using the popular terms of the constituting documents. Next, the simi-

larity between each cluster rep. and the upper approximation of each document is

calculated, as shown in Eq. 4.18. If the similarity is above a given threshold, the

document is also assigned to that cluster, and the cluster rep. is recalculated. This

process continues until there is no more change in the clusters. The algorithm has

been evaluated and validated by experiments on test collections [11].

Lexicon-based Document Clustering

More recently, a novel method for document clustering, named a lexicon-based doc-

ument representation (LBDR) was presented by Virginia et al. [40]. This model

uses TRSM in presence of a lexicon with the intention of creating an enhanced but

also a compact document representation. First of all, LBDR creates a term weight

vector for each document and then enhances the representation by means of TRSM,

just like the hierarchical [12] and non-hierarchical [11] methods. Next, the terms are

mapped to a lexicon and the ones which don’t occur in the lexicon (i.e. irrelevant,

non-informative terms) are filtered out reducing the number of dimensions in the

vectors, creating the compact but yet enhanced representation. The intuition behind

this approach can be demonstrated via Figure 4.3. In Figure 4.3 (a), we can see how

document d1 and the lexicon overlap. The intersection is compact, but limited. In

Figure 4.3 (b), the dashed line shows the upper approximated TRSM representation

of d1. LBDR combines the two and creates the dense and enhanced representation

of d1 in lower dimensional space, as shown in the dark shaded area in Figure 4.3 (c).

Eventually, the authors conclude that the effectiveness of lexicon-representation is

comparable with TRSM-representation while the efficiency of lexicon-representation

should be better than the existing TRSM-representation [40].

Web Search Results Clustering

Ngo and Nguyen [20] focused on a more specific type of document clustering. They

proposed a web search results clustering method which is based on tolerance rough

sets model. Their goals were the same as in [11] and [12], creating an enriched

representation for the web documents in order to reveal the subtle inter-document
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Figure 4.3: Lexicon-based document representation [40]

similarities and to boost the clustering quality. They proposed a Tolerance Rough set

Clustering (TRC) algorithm, which is based on k-means clustering. First, each doc-

ument is pre-processed to create an index term-based vectorial representation. After

that, those vectors are combined and a term-document matrix is formed. Then, they

enhance the term weights of the documents by using TRSM and upper approxima-

tion. Ultimately, TRC clusters the search results and labels them on a given query.

Their experiments have shown that tolerance rough sets and upper approximation it

offers can indeed improve the representations, with positive effects on the clustering

quality [20].

Two Class Clustering with Ensemble Learning

Shi et al. [33] proposed a tolerance-based semi-supervised two-class ensemble classi-

fier for documents when there are positive and unlabelled examples present, yet no

negatives. They used tolerance rough sets to extract a set of negative examples upon

which they built an ensemble classifier using Naive Bayes and Support Vector Ma-

chine algorithms. Experimental results indicate that the proposed method achieves

significant performance improvement [33].
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Chapter 5

A Semi-supervised Tolerance

Rough Sets Approach for Web

Information Labeling

In this chapter, we present the formal model and the algorithm for our proposed

tolerant pattern learner (TPL) [31, 32], whose task is to address the Nell problem

described in Section 3.2, that is, to extract

i) categorical noun phrase instances (e.g. City(Winnipeg) )

ii) relational noun phrase pairs (e.g. CapitalOf(Canada,Ottawa) )

using contextual co-occurrence statistics between the noun phrases (e.g. Winnipeg) or

noun phrase pairs (e.g. (Canada,Ottawa)) and the contextual patterns (e.g. “North

American cities such as arg”, “arg1 is the capital of arg2”), parsed from a web derived

data set. These two tasks are handled separately by the categorical and relational

extractor modules of TPL, respectively.

TPL is our attempt to employ the tolerance rough sets model (TRSM) to the

semi-supervised web information labeling problem. As we have discussed in Sec-

tion 4.3 TRSM has been successfully used as a document representation tool to serve

the task of clustering related documents. In all the work discussed in that section,

documents were the target entities and the index terms were the features describing

the documents. In this research, instead of documents, the target entities are the

noun phrases and instead of index terms, the features are the contextual patterns.

In other words, we observed that there is a natural affinity between the document

clustering problem and the context-based noun phrase clustering problem.
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1. Initialize Ontology 

Load Categories 

(Relations), Seeds, 

Unlabelled Data

2. Calculate enriched 

representation 

(approximations) of 

given category (relation) 

seeds

3. Calculate similarity 

score for candidate 

nouns (pairs)

4. Rank candidates by 

score

5. Promote top ranked 

candidates as new seeds.

Output top ranked nouns 

(pairs) to user

6. Repeat from (2) for 

every category (relation), 

and then for every 

iteration

Figure 5.1: TPL algorithm flow

TPL shown in Figure 5.1 represents noun phrases in terms of their co-occurring

contextual patterns, and it enhances this representation by using the two approxi-

mation operators, upper and lower approximations on noun phrases via a tolerance

relation defined over those contexts. Ultimately, it detects the most likely candidates

for a given category by scoring them in terms of their similarity with the trusted

instances. The top instances are promoted and fed back to the system as new seeds,

completing the semi-supervised framework. The relational fact extraction is analo-

gous to this categorical extraction process. In that case, instances are semantically

related noun phrase pairs and the predicates are relations instead of categories.

Rest of this chapter describes the formal framework and the algorithms of the

TPL model, for both categorical and relational fact extractors.
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5.1 Formal framework

Let us first define the universes of entities to operate on:

• N = {n1, n2, .., nM} is the universe of noun phrases. This set will accommodate

every single noun phrase to be parsed from the source web documents.

• C = {c1, c2, ..., cP} is the universe of categorical (unary) contextual patterns.

These contexts are to yield the individual noun phrases to be extracted as

category instances.

• R = {r1, r2, ..., rQ} is the universe of relational (binary) contextual patterns.

These contexts are to yield the noun phrase pairs to be extracted for relations.

• T = {tij = (ni, nj) ∈ N 2 : ∃rk ∈ R ∧ fT (tij, rk) > 0} is the universe of

co-occurring noun phrase pairs (i.e. tuples) described via the relational co-

occurrence function fT (tij, rk) = {κ ∈ N : tij occurs κ times within the context

rk}

We can define the following cross-mapping functions to represent every noun

phrase (and noun phrase pair) by means of their contexts, and vice versa:

• C : N → P(C) maps each noun phrase to its set of co-occurring categorical

contexts: C(ni) = {cj : fN (ni, cj) > 0} where fN (ni, cj) = {κ ∈ N : ni occurs κ

times within context cj}

• N : C → P(N ) maps each categorical context to its set of co-occurring noun

phrases: N(cj) = {ni : fN (ni, cj) > 0}

• R : T → P(R) maps each noun phrase pair to its set of co-occurring relational

contexts: R(tij) = {rk : fT (tij, rk) > 0}

• T : R → P(T ) maps each relational context to its set of co-occurring noun

phrase pairs: T (rk) = {tij : fT (tij, rk) > 0}

With the help of these cross-mapping functions, we can define the following ap-

proximation spaces to provide the framework for the categorical and relational infor-

mation extraction, respectively.

Definition 1. A categorical noun-context tolerance model [31] is described by the

tolerance approximation space A = (C,N , I, ω, ν) where N and C are as defined
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previously. I = Iθ is the parametrized uncertainty function describing the tolerance

classes for the contexts, in terms of contextual overlaps:

Iθ(ci) = {cj : ω(N(ci), N(cj)) ≥ θ} (5.1)

Here, θ is the tolerance threshold. ω is the overlap index which is the Sorensen-Dice

index [35]:

ω(A,B) =
2|A ∩B|
|A|+ |B|

(5.2)

ν : P(C)× P(C) → [0, 1] measures the degree of inclusion and is defined as ν(X,Y ) =
|X∩Y |
|X| . Within the framework of A, a context-described noun phrase can now be

approximated using the lower approximation:

LA(ni) = {cj ∈ C : ν(Iθ(cj), C(ni)) = 1} (5.3)

giving us its “closely” related contexts; or else it can be approximated with the upper

approximation to its “somewhat” related contexts:

UA(ni) = {cj ∈ C : ν(Iθ(cj), C(ni)) > 0} (5.4)

Definition 2. A relational noun-context tolerance model [32] is the analogous model

to extract related pairs. It is described by the approximation spaceA = (R, T , I, ω, ν)

where T , R, ω and ν are defined as previously. Iθ is again the uncertainty function

with the tolerance threshold θ:

Iθ(ri) = {rj : ω(T (ri), T (rj)) ≥ θ} (5.5)

Within the framework of A, a context-described noun phrase pair can now be lower

approximated to its closely related contexts:

LA(tij) = {rk ∈ R : ν(Iθ(rk), R(tij)) = 1} (5.6)

or else it can be upper approximated to its somewhat related contexts:

UA(tij) = {rk ∈ R : ν(Iθ(rk), R(tij)) > 0} (5.7)
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Figure 5.2: Four zones of recognition for contexts emerging from approximations of
ni.

A tolerance approximation space is employed by TRSM to generate an enriched

representation for the documents. In an analogous way, it is used by TPL to create an

enriched representation for the promoted noun phrases and pairs. Nevertheless, TPL

does not use a vector-space model and it describes noun phrases as sets of co-occurring

contexts, instead of vectors. In accordance, we associate every trusted instance ni

of a given category cat to these following three descriptor sets: C(ni), UA(ni) and

LA(ni). These sets are employed to calculate a micro-score for the candidate noun

phrase nj, against the trusted instance ni of the category cat:

micro(ni, nj) = ω(C(ni), C(nj))α+

ω(UA(ni), C(nj))β + ω(LA(ni), C(nj))γ
(5.8)

Once more, we make use of the overlap index function ω in Eq. 5.2 for this calculation.

α , β and γ are the contribution factors of the scoring components and they may be

adjusted for the particular application domain.

The intuition behind this approach may be explained by Figure 5.2. A trusted

instance ni has the universe of contexts partitioned by its descriptors LA(ni), C(ni)
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and UA(ni) into four zones of recognition. For a candidate nj, each zone will represent

a different degree of similarity. When calculating the micro-score, the candidate’s

contexts falling in zone 1 (lower approximation) will be covered by all three descriptors

and will thus make a high contribution to its score. Contexts in zone 2 will be covered

by C(ni) and UA(ni) so they will make medium contribution. Zone 3 contexts will

only be covered by UA(ni) and they will make low contribution. Contexts in zone 4

will not to contribute at all since they suggest no resemblance between ni and nj.

An analogous scoring mechanism is also employed for learning relations. These

descriptors are used to calculate a micro-score for a candidate pair tkl, by the trusted

pair tij:

micro(tij, tkl) = ω(C(tij), C(tkl))α+

ω(UA(tij), C(tkl))β + ω(LA(tij), C(tkl))γ
(5.9)

5.1.1 Categorical Noun Phrase Extractor Algorithm

The input for the categorical extractor is an ontology which is formed by a set of

categories (e.g. City) and a handful of seed noun phrases (e.g. Winnipeg, New Delhi,

Ankara). Furthermore, it expects a large co-occurrence matrix representing the noun

phrases and the contextual patterns extracted from the world wide web. The output

are trusted instances assigned to their respective categories within the ontology.

In this design, a category is represented by means of its trusted instances. Hence,

a trusted instance acts as a “proxy” for the category it belongs. Candidate noun

phrases are ordered by their similarity to these proxies, and thus, to the categories.

Seed instances are to serve as the initial proxies.

TPL employs a score-based ranking and the scoring mechanism is given in Eq. 5.8.

For a given category cat, we can keep a macro-score (i.e. an accumulated micro-score

of proxies) for the candidate nj

macrocat(nj) =
n∑

∀ni∈Trustedcat

micro(ni, nj) (5.10)

After calculating it for every candidate of cat, we rank the candidates by their macro-

scores (normalized by the number of trusted instances of cat). Eventually, we promote

the top new candidates as trusted.

The overall flow for the categorical extractor is summarized in Algorithm 3. Like
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CBS and CPL, TPL is an iterative algorithm which is appointed to run indefinitely.

In every iteration r, it learns new trusted instances of categories and it uses its

growing knowledge to make more informed judgments. As the first iteration is based

on user-labelled seeds, it forms the supervised step of the algorithm. The succeeding

iterations use the automatically extracted instances, forming the unsupervised step.

Algorithm 3: Tolerant Pattern Learner for Categories

Input : An ontology O defining categories and a small set of seed examples; a
large corpus U

Output: Trusted instances for each category
1 for r = 1 → ∞ do
2 for each category cat do
3 for each new trusted noun phrase ni of cat do
4 Calculate the approximations UA(ni) and LA(ni);
5 for each candidate noun phrase nj do
6 Calculate micro(ni, nj);

7 for each candidate noun phrase nj do

8 macrocat(nj) =
∑

∀ni∈cat
micro(ni, nj) (Eq. 5.10);

9 Rank instances by macrocat/|cat|;
10 Promote top instances as trusted;

5.1.2 Relational Noun Phrase Pair Extractor Algorithm

Similarly, the input for the relational extractor is an ontology formed by a set of

relations (e.g. City-Country) as well as a few seed noun phrase pairs per relation

(e.g. (Winnipeg, Canada), (New Delhi, India), (Ankara, Turkey)). It also expects

a large co-occurrence matrix representing the noun phrase pairs, and the contextual

patterns. The output are trusted relation instances, in forms of ordered noun phrase

pairs, assigned to their respective relations.

An analogous score-based ranking is also employed for relations. For the relation

rel, an accumulated macro-score is maintained for the candidate tkl

macrorel(tkl) =
n∑

∀tij∈Trustedrel

micro(tij, tkl) (5.11)

The overall flow for the relational noun phrase extractor is summarized in Algo-
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rithm 4. It functions with the same principles as the categorical extractor. Each

trusted pair represents its associated relation and is used to detect and extract more

pairs in an iterative manner.

Algorithm 4: Tolerant Pattern Learner for Relations

Input : An ontology O defining relations and a small set of seed examples; a
large corpus U

Output: Trusted pairs for each relation
1 for r = 1 → ∞ do
2 for each relation rel do
3 for each new trusted noun phrase pair tij of rel do
4 Calculate the approximations UA(tij) and LA(tij);
5 for each candidate noun phrase pair tkl do
6 Calculate micro(tij, tkl);

7 for each candidate noun phrase pair tkl do

8 macrorel(tkl) =
∑

∀tij∈rel
micro(tij, tkl) (Eq. 5.11);

9 Rank pairs by macrorel/|rel|;
10 Promote top pairs as trusted;
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Chapter 6

Implementation, Experiments,

Results and Discussion

This chapter discusses the implementation details, experiments and empirical results

for our proposed Tolerant Pattern Learner, for both categorical and relational fact

extractions. We also provide further discussion on our findings regarding TPL’s

performance, compared to the benchmark algorithms CBS [39] and CPL [3].

6.1 Category Instance Extraction

6.1.1 Implementation

The categorical noun phrase extractor module of TPL was implemented in MATLABR⃝.

We chose this environment because the dataset TPL expects is in form of a sparse

(noun phrase-contextual pattern co-occurrence) matrix, which is the primary type of

data MATLAB R⃝ was designed to operate on. The experiments for the benchmark

algorithm CBS were also conducted in MATLABR⃝ [39] so it seemed to be a proper

choice for this task. For the experiments, we used a Windows 7 machine with 2.40

GHz Intel i7 Processor with 16 GB of memory (4 GB available).

6.1.2 Dataset

The original source for our data matrix is ClueWeb09 [2]. It is a massive web docu-

ment collection consisting of roughly 1 billion web pages in ten languages, collected

in early 2009 [2]. Nonetheless, we did not directly interact with these web pages. We
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Table 6.1: All-pairs data set summary
File Information # Elements Size on Disk
F1 Noun phrase list ≈ 9.8 Million ≈ 185 MB
F2 Contextual pattern list (categorical) ≈ 8.5 Million ≈ 193 MB
F3 Noun-Context co-occurrence counts ≈ 1.1 Billion ≈ 26.4 GB
F4 Noun phrase pair list ≈ 144 Million ≈ 3.6 GB
F5 Contextual pattern list (relational) ≈ 11 Million ≈ 350 MB
F6 Pair-Context co-occurrence counts ≈ 1.8 Billion ≈ 46.9 GB

Table 6.2: All-pairs data set format

File Data Format

F1 ⟨ni⟩ \t ⟨count⟩ \n

F2 ⟨ci⟩ \t ⟨count⟩ \n

F3 ⟨ni⟩ [\t ⟨cj⟩ -#- ⟨count⟩ [...]] \n

F4 ⟨ni⟩||⟨nj⟩ \t ⟨count⟩ \n

F5 ⟨ri⟩ \t ⟨count⟩ \n

F6 ⟨ni⟩||⟨nj⟩ [\t ⟨rk⟩ -#- ⟨count⟩ [...]] \n

used the all-pairs data set [5] by Andy Carlson who is a member of the Nell team.

Natural language processing methods were used to process pages from CluWeb09 to

derive the all-pairs set which accommodates millions of raw noun phrases, contextual

patterns and all the co-occurrence information. Table 6.1 summarizes the content

of the all-pairs corpus. The information is organized within 6 different text files.

Literals for noun phrases, noun phrase pairs and contextual patterns are stored in

line-delimited lists along with their hit counts whereas the co-occurrence informa-

tion is stored in a slightly more complicated format (see Table 6.2). Figure 6.1 is a

snapshot for the noun phrase-contextual pattern co-occurrence information excerpted

from file F3 of the all-pairs data set. In every line, first entry is a noun phrase followed

by a contextual pattern and the co-occurrence cardinality in between.

Data Preparation Procedure

Having access to the All-pairs data set was a big help for our experiments. However,

the data set had to undergo significant pre-processing to be useful for TPL algorithm.

We had to convert the data to a co-occurrence matrix which MATLAB R⃝ can read.



43

Figure 6.1: Noun-context co-occurrence counts (indexed by noun phrases) excerpted
from all-pairs data set. Arrows denote delimiting tabs.

Moreover, we had to subsample the data as it was too large to be processed on

the hardware available to our experiments. Fortunately, S.Verma provided us the

68,919 noun phrases used in the CBS experiments [39] so we decided to use them as

our noun phrase universe N . Rest of the information was to be acquired from the

all-pairs dataset and we took the following approach:

1. First, we exported those 68,919 noun phrases from MATLABR⃝ to a list in text

form.

2. Next, we coded a Java applet to extract, for each of those noun phrases, the

list of the top 100 co-occurring contexts from the all-pairs set, in textual form.

3. Subsequently, we went over those co-occurring context lists, eliminated du-

plicates and populated our initial context universe C accommodating 930,426

contexts, in textual form.

4. Next, we imported N and C back to MATLAB R⃝ as 1-D arrays of string literals.

5. Then, we initialized an empty noun × context co-occurrence matrix with di-

mensions |C| × |N |.

6. We went over the co-occurrence lists once more and imported the co-occurrence
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Figure 6.2: Noun-context co-occurrence matrix

cardinalities to our matrix.

7. For further feasibility, we eliminated the contexts with low cross-noun phrase

frequency value i.e. |N(ci)| < 10.

It took us roughly 12 hours to execute all these steps, accumulatively. At the end,

we obtained a dataset consisting of 68,919 unique noun phrase instances and 59,325

unique contextual patterns stored in a matrix Mij with each cell recording the co-

occurrence cardinality of contextual pattern i against noun phrase j, as shown in

Figure 6.2.

6.1.3 Experimental Configuration

Throughout our experiments for the category extractor, we attempted to pursue the

same conventions as CBS [39]. We used the same 11 categories in our ontology: Com-

pany, Disease, KitchenItem, Person, PhysicsTerm, Plant, Profession, Sociopolitics,

Website, Vegetable, Sport. Each category was initialized by 5-8 seed instances and we

let the extractor run for 10 iterations. For every category, we had the top 5 new noun

phrases promoted as “trusted” per iteration, which were then destined to be used

as seeds in the upcoming iterations. We heuristically set the tolerance threshold to

θ = 50% since it led us to the most semantically accurate tolerance classes. We also

tried to provide a balance between directly co-occurring terms and their tolerants by

setting the contribution factors to α = 0.5, β = 0.25 and γ = 0.25.

6.1.4 Evaluation Criterion

The metric we used to measure the performance of our category extractor is Preci-

sion@30, which is also the same metric used to evaluate CBS [39]: In any iteration,
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Table 6.3: Precision@30 of TPL for all categories, by iteration (%)

Iteration 1 2 3 4 5 6 7 8 9 10

Company 100 100 100 100 100 100 100 100 100 100
Disease 100 100 100 100 100 100 100 100 100 100
KitchenItem 100 100 100 100 100 100 100 100 100 100
Person 100 100 100 100 100 100 100 100 100 100
PhysicsTerm 100 100 100 100 93 97 97 93 90 90
Plant 100 100 97 97 100 97 97 97 97 97
Profession 100 100 100 97 100 100 100 100 100 100
Sociopolitics 100 100 100 100 100 100 100 100 100 100
Website 87 90 90 90 90 90 90 90 90 90
Vegetable 77 90 90 90 93 93 87 80 73 63
Sport 100 97 97 97 97 97 97 100 100 100
Average 96.7 97.9 97.6 97.3 97.5 97.6 97.3 96.4 95.4 94.5

after scoring and ranking noun phrases for a given category, we compute the percent-

age of the correct instances in the set of top-30 ranked noun phrases. At the end, we

manually judged the accuracy of the extractions, since the data was unlabelled.

6.1.5 Results

We ran our test scenario as a single thread, on a Windows 7 machine with 2.40 GHz

Intel i7 processor; it took around 2 hours and 40 minutes. Table 6.3 summarizes the

Precision@30 results for every category per iteration and the outcome is promising.

For vast majority of the categories, TPL successfully maintained high precision over 10

iterations without showing any sign of semantic drifting. One category that yielded a

relatively poor precision was Vegetable; the algorithm first drifted by mistaking fruits

for vegetables and then went considerably off-track by labeling meat products and

dairies. (See Table 6.4.) However, it was also a challenging category for the CBS

algorithm so this problem may be deemed as a categorical anomaly.

TPL managed to achieve a comparable performance with CBS, in terms of the

precision metric. Table 6.5 illustrates the results for iterations 5 and 10. As the

experimental setups (seeds, dataset) were not identical, a numerical comparison with

CBS may not be very demonstrative. Nevertheless, the stable average precision values

across iterations shall be considered as an indication for the promising nature of this

granular-based algorithm.
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Table 6.4: TPL’s top-16 ranked instances for selected categories. Incorrect instances
are boldfaced.

Iteration 1 Iteration 10
Phys’Terms Soc’politics Vegetables Phys’Terms Soc’politics Vegetables
inertia socialism zucchini density humanism zucchini
acceleration democracy spinach conductivity pluralism cabbage
gravity dictatorship cucumber intensity federalism kale
buoyancy monarchy tomato viscosity interna’lism celery
velocity independence broccoli permeability nationalism cauliflower
momentum justice lettuce velocity rationality eggplant
magnetism equality celery brightness liberalism carrots
resonance pluralism cabbage attenuation secularism asparagus
curvature interna’lism kale luminosity individualism tomatoes
electromagnet. federalism cauliflower reflectance democracy spinach
density secularism asparagus sensitivity environ’ism squash
elasticity liberalism carrots amplitude morality cucumber
surface tension hegemony tomatoes thickness pragmatism melon
polarization self-determ. avocado frequency spirituality chicken
vibration unification eggplant water cont. regionalism tofu
entropy capitalism carrot salinity subjectivity shrimp

6.1.6 Discussion

There seems to be a number of factors playing a role in the performance of TPL

over individual categories. To begin with, some categories are more difficult to define

and their boundaries are relatively vague, so the measured performance may alter

depending on the inclusion degree. To illustrate, Sociopolitics was such a category

that had no apparent borderline and for that category, judges accepted virtually ev-

ery concept having an interpretation in a socio-political context (See Table 6.4). On

the other hand, several nouns were rejected for the category Website even though

they might have referred to websites but their sensible meanings were different (e.g.

SkypeTM, MicrosoftTM). Propitiously, most categories including Person, Sport, Dis-

ease, Plant, Company, Profession had clear definitions and conceivable boundaries

so the verdicts for their instances were much more apparent. Another factor that

affects the performance of our category learner is the ratio of the inter-intra category

similarity. PhysicsTerm is a good example for this case; the mis-extractions were

chemistry terms (e.g. reactivity), or mathematical terms (e.g. curvature) which were

relatively close to the context of physics. We already explained, some vegetables ap-



47

Table 6.5: Precision@30 of TPL and CBS per category. CBS results are as seen in [39]
Categories Iteration 5 Iteration 10

TPL CBS [39] TPL CBS [39]
Company 100% 100% 100% 100%
Disease 100% 100% 100% 100%
KitchenItem 100% 94% 100% 94%
Person 100% 100% 100% 100%
PhysicsTerm 93% 100% 90% 100%
Plant 100% 100% 97% 100%
Profession 100% 100% 100% 87%
Sociopolitics 100% 48% 100% 34%
Sport 97% 97% 100% 100%
Website 90% 94% 90% 90%
Vegetable 93% 83% 63% 48%
Average 97.5% 92% 94.5% 87%

peared to overlap with fruits, meat products and dairy because in essence, the main

cluster those nouns tend to form is “food” and it challenged the algorithm.

As Verma et al. [39] point out, it is an arduous task to learn classifiers individually.

For this reason, CBS and CPL coupled the learning procedure by simultaneously

learning the classifiers. In particular, they enforced mutual exclusion constraints:

given a pair of mutually exclusive categories A and B, evidence for a noun phrase to

fall in the borders of A is used to decrease its likelihood to be assigned to B. Such

a constraint has not been used for our learner so it may be considered as a potential

room for improvement.

6.2 Relation Pair Extraction

6.2.1 Implementation

Using the libraries and the matrix infrastructure of MATLABR⃝ came quite handy

both for preparing the data and implementing the categorical noun phrase extractor.

Accordingly, our first intention was to extend our category learner in MATLABR⃝ to

implement the relation learner module. Due to the nature of noun phrase pairs, our

data matrix had to be much larger and MATLABR⃝ emerged to be unsuitable for this

task. So we implemented the relation-pair extractor in C++ as a 64-bit Windows

application. For the implementation and the experiments, we used a Windows 7
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Table 6.6: Arrays used to represent an efficiently traversable sparse matrix
data[] Array of nonzero co-ocurrence values (row-major order)
rows[] The row # of the cells in data array
cols[] The column # of the cells in data array

nextCol[] Index for the next element in the same column
rowHeader[] Index for the header cell of every row
colHeader[] Index for the header cell of every column

machine with 2.40 GHz Intel i7 processor and 16GB memory.

Sparse Representation Designed for the Data Matrix

This platform change introduced some additional design concerns. Representing the

data matrix was one of them. MATLABR⃝ used its own internal structures to ef-

ficiently store and access matrices in sparse forms so this part of the problem was

abstracted from our work. With C++, however, we had to take care of this task

ourselves.

We designed a sparse matrix framework in which the nonzero matrix cells are

stored in a long 1-D array called data, along with the information in Table 6.6. This

representation allows efficient row-by-row and column-by-column traversal of nonzero

cell values, which are needed to find the co-occurring contexts of a noun phrase, the

tolerance class of a context and the lower/upper approximations of a noun phrase.

6.2.2 Dataset

Similar to our experiments with category instance extraction, our data matrix was

derived from Andy Carlson’s all-pairs data set [5]. This time we didn’t have any

noun phrases to begin with so we need to sample them from the all-pairs data set

as well. Heuristically, we concluded that the majority of the meaningful noun phrase

pairs were formed by title case and uppercase phrases so we sampled the data in a

way which we keep such entries. The resulting dataset consisted of 13,020,010 unique

noun phrase pairs and 11,424,413 unique contextual patterns. They are stored in our

traverse-efficient array-based sparse matrix Mij, with each cell corresponding to the

co-occurrence number of contextual pattern #i against noun phrase pair #j. The

matrix was loaded to the memory in advance of the execution.
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Data Preparation Procedure

The data matrix was produced as a result of the following steps:

1. From the file of relational contexts (F5), we extracted the full list of context

literals, sorted them lexicographically and eliminated the duplicates. The results

were stored in file CONTS.txt

2. From the file of pair-context co-occurrence (F6), we extracted the full list of

paired noun phrase literals, sorted them lexicographically and eliminated du-

plicates. The results were stored in file NPAIRS.txt

3. In file F6, we sorted every line (lists of co-occurring contexts for a given noun

phrase pair) in itself, lexicographically. The resulting file was COOCS.txt

4. We split COOCS.txt into 252 pieces, with names COOCS i.txt to be sorted.

This was so that the files could fit in the memory entirely, for sorting.

5. We sorted every COOCS i.txt file by their lines (i.e. by the noun phrase pairs

at the beginning of the lines)

6. We merged COOCS i.txt 252 ways. The resulting file was a giant 40GB file,

with contexts ordered in-line and noun phrase pairs ordered across lines.

7. We subsampled NPAIRS.txt to uppercase & titlecase noun phrase pairs.

8. We subsampled COOCS.txt to uppercase & titlecase noun phrase pairs.

It took us roughly 24 hours to execute all these steps accumulatively. The final

data set is made up of the following 3 files:

• “CONTS.txt”. This file contains the lexicographically sorted list of 11,424,413

relational contexts in the universe R.

• “NPAIRS.txt”. This file contains the lexicographically sorted list of 13,020,010

noun phrase pairs in the universe T such that both noun phrases begin with a

capital letter.

• “COOCS.txt”. This file contains the co-occurrence data for all the pairs and

contexts declared in the two files above, accommodating ≈ 48,800,000 nonzero

co-occurrence entries.

These 3 files can now be directly used by our program to populate our pair ×
context data matrix.
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6.2.3 Experimental Configuration

We used 10 relations, each initialized with 5-6 seeds. The program ran for 10 itera-

tions. Experimental configuration was similar to our previous categorical extraction

experiments. We promoted the top 5 new noun phrases for every relation as trusted,

which were to be used as seeds in subsequent rounds. As before, we set the tolerance

threshold θ = 50% as it produced the most semantically accurate tolerance classes.

We also set α = 0.5, β = 0.25, and γ = 0.25.

6.2.4 Evaluation Criteria

In order to measure the performance, we took two different approaches both of which

involved the Precision@30 metric:

1. To get a ranking-based result, we followed the same convention as CBS [39]:

In any iteration, after noun phrases are scored and ranked for a relation, the

percentage of the correct pairs in the set of the top 30-ranked pairs is calculated.

2. To get a promotion-based result, we followed the steps of CPL [3]: From the set

of all promoted pairs for a given relation, we sampled 30 pairs to be evaluated

and we calculated the percentage of the correct pairs within that set.

The correctness of the pairs are judged by ourselves, as before.

6.2.5 Results

On a Windows 7 machine with 2.40 GHz Intel i7 processor and 16GB memory, it

took about 1 hour and 10 minutes to run our test scenario in single thread. Table 6.7

summarizes the results, which are mostly self-evident. It can be observed that for

most relations, TPL performed high precision extractions throughout the iterations,

steering clear of the semantic drift problem. Average precision values are comparable

with CPL and are promising for both metrics.

To elaborate some details, Table 6.8 shows the promotions in the last iteration.

First of all, we should note that our data set was not up to date and we did not

flag expired events. We accepted a pair for a relation if it has ever been correct.

For example, athlete Taurasi used to play for team Phoenix so it was accepted. We

also accepted properly formed aliases e.g. Pompey & Portsmouth F.C, L.A. & Los

Angeles and likewise.
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Table 6.7: Precision@30 results of TPL and CPL as seen in [3] (%).
Evaluation Ranking-based Promotion-based

TPL TPL CPL
Iterations 1 5 10 1 5 10 10
Relations

Athlete-Team 100 90 87 100 96 87 100
CEO-Company 100 100 100 100 100 100 100
City-Country 100 100 100 100 100 100 93
City-State 100 100 100 100 100 100 100
Coach-Team 93 93 93 100 100 93 100
Company-City 83 90 93 40 84 97 50
Stadium-City 97 93 80 80 92 70 100
State-Capital 100 97 73 100 100 63 60
State-Country 100 100 100 100 100 100 97
Team-vs-Team 93 83 80 100 84 80 100
Average 96.6 94.6 90.6 92.0 95.6 89.0 90.0

In Table 6.8, we can observe different types of mis-promotions. One of them is

improperly tokenized pairs, such as (Grant, Former Chelsea) which is caused by Grant

being the former Chelsea football team coach. Such cases are hard to identify and easy

to deceive the algorithm since contextually, it appears as if the name of the team is

“Former Chelsea”. Other erroneous promotions are somewhat off-course pairs, which

are relevant in the context but not properly fit the definition. State-Capital, one of

the few poorly performed relations, demonstrates this case. The incorrect promotions

are formed by states and non-capital cities, however, the cities in question are indeed

located in the respective states. For that particular relation, we observed drift from

Capital to City. Nonetheless, that relation challenged CPL as well [3], which suggests,

it was a difficult one to work on.

6.2.6 Discussion

Based on the experiments, we observed that our assumptions regarding the similarity

of the categorical and relational information labeling problems were true. These two

problems indeed responded to the same theoretical approach in a similar manner. For

most relations, TPL maintained high quality extractions and high precision values

throughout the iterations, steering clear from the concept drift problem. The clarity

of the concepts and inter-intra class similarity were once again determining factors of

the correction of the extractions.
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Compared to the category learner module of TPL, one big challenge was the

exploding size of entities. For categorical information extraction, we needed to work

on |N | noun phrases. The universe of noun phrase pairs, however, is bound by the

Cartesian Square (T ⊆ N 2) so the number of pairs required to create a reasonable

subsample is much larger for a relation learner. Not to mention the more noun

phrase pairs implies the more contextual patterns, which results in a much larger co-

occurrence matrix. This is why we had to work on a 13 million by 11 million matrix

for the relation learner as opposed to 69 thousand by 60 thousand for our category

learner. Fortunately, these matrices are sparse. Moving to a compiled language and

implementing an efficient array based sparse matrix helped us boost the execution

time. At the end, it even outperformed our category learner.

We sustained our simplistic approach to form the relation learner. Though this

simple approach seems to perform well, the accuracy of the extractions may be open

for improvement with the help of additional constraints. One constraint is type-

checking. If the relation learner is combined with the category learner, they can help

each other by “testifying.” For instance, when learning the pair (Winnipeg, Canada)

for City-Country, we can check if Winnipeg qualifies as a City and if Canada qualifies

as a Country. One other constraint is mutual exclusion, as pointed out before. We

can define non-overlapping relations as mutually exclusive and check if a given pair

qualifies for any excluded category. Nell makes active use of these constraints [3] and

they are indeed shown to be effective.

6.3 Complexity and Scalability Issues

There are several parameters that contribute to the time complexity of the TPL

algorithm including number of iterations #iter, number of categories (or relations)

#cat, number of promotions per category #prom, number of noun phrases (or pairs) |N |
and number of contexts |C| in the universe. The most expensive part is calculating the

lower and upper approximations for the trusted nouns, which requires the calculation

of the tolerance classes for the co-occurring contexts of those nouns. Provided that

#iter, #cat and #prom are fixed, the execution time would depend on the sparsity of

the data matrix, which can be ensured by preprocessing the matrix to filter out the

low cardinality co-occurrence values (i.e. only keep the top n co-occurrence values).

This provides an upper bound on the matrix density and it is indeed how we formed

our matrix. Ultimately, the complexity for TPL becomes O(|C|) matching the O(N =
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#terms) value of TRSM-based document clustering algorithm [11]. It is not surprising

since both methods employ the tolerance rough set framework. The space complexity

is drawn by the total number of non-zero co-occurrence values which is limited by

O(|N | ∗ |C|) for the unfiltered data matrix and O(|C|) for the filtered.

Although we only tested TPL in a single-thread setup on CPU, we believe it is

a highly scalable algorithm. Most tasks are independent of one another and can

be parallelized on various levels. For instance, each category can be processed in

parallel for its current iteration, each trusted noun can be processed in parallel for

its approximations and each context can be treated likewise for its tolerance class.

This should also mean that the system can be deployed on GPU to facilitate parallel

processing.
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Table 6.8: Pairs promoted by TPL in iteration 10. Wrong extractions are italicized.
Athlete-Team CEO-Company
Diana Taurasi , Ph’x Mercury Vittorio Colao , Vodafone
Jordin Tootoo , Nashville Vijay Mallya , Kingfisher
Stanley Robinson , UConn John Gay , Gunns
Jason Richardson , Golden St. Adam Pearson , Derby
James Posey , Heat Peter Storrie , Pompey

City-Country City-State
Managua , Nicaragua Akron , Ohio
Seoul , South Korea Billings , Montana
Kampala , Uganda San Antonio , Texas
Kingston , Jamaica Colorado Springs , Color’o
Nassau , Bahamas Burlington , Vermont

Coach-Team Company-City
Tony Smith , England Chipotle , Denver
Eriksson , Former England SGI , Mountain View
Zico , Fenerbahce Sega , Tokyo
Roy Hodgson , Finland XM Sat. Radio , Wash’n
Grant , Former Chelsea Vodafone , Newbury

Stadium-City State-Capital
Dodger , L.A. Ohio , Cincinnati
Dolphin , South Florida Arizona , Tucson
Drillers , Tulsa Connecticut , Hartford
Kings Park , Durban Michigan , Detroit
El Madrigal , Villarreal Vermont , Burlington

State-Country Team-vs-Team
Kansas , United States XSV , Dynasty
Colorado , US GT , FSU
Connecticut , U.S. Worcester , Georgia
Oregon , United States PSG , Lens
Minnesota , United States Tottenham , Man City
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Chapter 7

Conclusion

In this thesis, we considered a particular type of web information labeling problem:

populating categorical and relational facts as noun phrases and noun phrase pairs by

using the contextual co-occurrence statistics in a dataset harvested from web docu-

ments. We proposed a granular-based model rooted in tolerance rough sets, adapting

the document representation model TRSM to this specific problem by representing

noun phrases and noun phrase pairs as granular sets of their contextual patterns

and investigating their similarity by means of their representation. We also provided

a practical solution; we introduced a semi-supervised algorithm, Tolerant Pattern

Learner (TPL), which employs the proposed noun-context and pair-context represen-

tation model to iteratively populate instances for categories and relations. We have

demonstrated that the TPL algorithm produces promising results for both streams

of facts, which is comparable with the benchmark algorithms CBS and CPL in terms

of precision.

7.1 Future Research Directions

Here are some possible future research directions on this work:

• Ensemble learning We may combine categorical and relational modules of

TPL to create an ensemble learner, which can also employ type-checking and

mutual exclusion constraints to provide further justification for the candidates,

aiding the learning process.

• Dynamic ontology discovery We may consider developing a tolerance rough
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set based model that works on an evolving ontology, by discovering categories

and relations on-the-fly.

• Temporal Scoping One may also consider examining the temporal scope of the

facts learned by TPL, and introduce a chronological order, as done by Talukdar

et al. [38, 37].
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Appendix A

Snapshots from the Experiments

In this chapter, we present some snapshots from our experiments in order to provide

the reader a better illustration of our experimental environment.

A.1 Categorical Extraction

In Figure A.1 we see a snapshot from the execution of our TPL category instance

extractor module we described in Section 6.1. The driver function Run TPL takes

3 parameters. W is the list of noun phrase literals (i.e. N ), C is the list of con-

textual pattern literals and D is the co-occurrence matrix (see Figure A.2 for their

contents). In that snapshot, each seed for the category Company is lower and upper

approximated by means of tolerance rough sets.

Figure A.3 shows a full iteration on the category Sport. We first calculate the

enhanced representation of the seed nouns and then we calculate the macro score for

every noun phrase in W , by using Eq. 5.10. We than rank the noun phrases by those

score and dump the top-30 to the screen, for Precision@30 evaluation. At the end,

we promote the 5 new top-ranked instances as seeds for the upcoming iterations.

A.2 Relational Extraction

In Figure A.4 we see a snapshot from the execution of our TPL relation instance

extractor module we described in Section 6.2. The executable requires three input

files, “NPAIRS.txt”, “CONTS.txt”, and “COOCS.txt”. (Their content is illustrated

in Figure A.5.) Similarly to the previous case, the seeds pairs of the relation City-
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Figure A.1: TPL category extractor in action.

State are processed for enriched representation and they are used to calculate for

every noun phrase pair in the universe, by using Eq. 5.11. The pairs are than ranked

and the top-scoring 30 pairs are dumped to the screen, for Precision@30 evaluation.

Finally, the 5 top-ranked new pair is promoted to be used as seeds.
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Figure A.2: Input data C, W , D for the category learner. D is a |C| × |W | sparse
matrix and it is sub-sampled to 500× 500 for display purposes.
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Figure A.3: Ranking and labeling phrases for category “Sport”.
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Figure A.4: TPL relation extractor in action: Populating the relation “City-State”.
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Figure A.5: Three input files for the relation learner, as discussed in Section 6.2.2.
In “COOCS.txt” the (+) or (−) sign denotes whether the pair is in true or inverted
order for the succeeding context.
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